808 research outputs found

    Algebraic observer design for PEM fuel cell system

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this paper, the concept of the algebraic observer is applied to Proton Exchange Membrane Fuel Cell (PEMFC) system. The aim of the proposed observer is to reconstruct the oxygen excess ratio through estimation of their relevant states in real time from the measurement of the supply manifold air pressure. A robust differentiation method is adopted to estimate in finite-time the time derivative of the supply manifold air pressure. Then, the relevant states are reconstructed based on the output-state inversion model. The objective is to minimize the use of extra sensors in order to reduce the costs and enhance the system accuracy. The performance of the proposed observer is analyzed through simulations considering measurement noise and different stack-current variations. The results show that the algebraic observer estimates in finite time and robustly the oxygen-excess ratio.Peer ReviewedPostprint (author's final draft

    Nonlinear predictive control for durability enhancement and efficiency improvement in a fuel cell power system

    Get PDF
    © . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/In this work, a nonlinear model predictive control (NMPC) strategy is proposed to improve the efficiency and enhance the durability of a proton exchange membrane fuel cell (PEMFC) power system. The PEMFC controller is based on a distributed parameters model that describes the nonlinear dynamics of the system, considering spatial variations along the gas channels. Parasitic power from different system auxiliaries is considered, including the main parasitic losses which are those of the compressor. A nonlinear observer is implemented, based on the discretised model of the PEMFC, to estimate the internal states. This information is included in the cost function of the controller to enhance the durability of the system by means of avoiding local starvation and inappropriate water vapour concentrations. Simulation results are presented to show the performance of the proposed controller over a given case study in an automotive application (New European Driving Cycle). With the aim of representing the most relevant phenomena that affects the PEMFC voltage, the simulation model includes a two-phase water model and the effects of liquid water on the catalyst active area. The control model is a simplified version that does not consider two-phase water dynamics.Peer ReviewedPostprint (author's final draft

    Adaptive online parameter estimation algorithm of PEM fuel cells

    Get PDF
    Since most of fuel cell models are generally nonlinearly parameterized functions, existing modeling techniques rely on the optimization approaches and impose heavy computational costs. In this paper, an adaptive online parameter estimation approach for PEM fuel cells is developed in order to directly estimate unknown parameters. The general framework of this approach is that the electrochemical model is first reformulated using Taylor series expansion. Then, one recently proposed adaptive parameter estimation method is further tailored to estimate the unknown parameters. In this method, the adaptive law is directly driven by the parameter estimation errors without using any predictors or observers. Moreover, parameter estimation errors can be guaranteed to achieve exponential convergence. Besides, the online validation of regressor matrix invertibility are avoided such that computation costs can be effectively reduced. Finally, comparative simulation results demonstrate that the proposed approach can achieve better performance than least square algorithm for estimating unknown parameters of fuel cells.Postprint (published version

    Nonlinear observation in fuel cell systems: a comparison between disturbance estimation and High-Order Sliding-Mode techniques

    Get PDF
    © . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/This paper compares two Nonlinear Distributed Parameter Observers (NDPO) for the observation of a Proton Exchange Membrane Fuel Cell (PEMFC). Both NDPOs are based on the discretisation of distributed parameters models and they are used to estimate the state profile of gas concentrations in the anode and cathode gas channels of the PEMFC, giving detailed information about the internal conditions of the system. The reaction and water transport flow rates from the membrane to the channels are uncertainties of the observation problem and they are estimated throughout all the length of the PEMFC without the use of additional sensors. The first observation approach is a Nonlinear Disturbance Observer (NDOB) for the estimation of the disturbances in the NDPO. In the second approach, a novel implementation of a High-Order Sliding-Mode (HOSM) observer is developed to estimate the true value of the states as well as the reaction terms. The proposed observers are tested and compared through a simulation example at different operating points and their performance and robustness is analysed over a given case study, the New European Driving Cycle.Peer ReviewedPostprint (author's final draft

    Algebraic observer-based output-feedback controller design for a PEM fuel cell air-supply subsystem

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this paper, an algebraic-observer-based output-feedback controller is proposed for a Proton Exchange Membrane Fuel Cell (PEMFC) air-supply subsystem, based on both algebraic differentiation and sliding-mode control approaches. The goal of the design is to regulate the Oxygen Excess Ratio (OER) towards its optimal setpoint value in the PEMFC air-supply subsystem. Hence, an algebraic estimation approach is used to reconstruct the OER based on a robust differentiation method. The proposed observer is known by its finite-time convergence and low computational time compared to other observers presented in the literature. Then, a twisting controller is designed to control the OER by manipulating the compressor motor voltage. The parameters of the twisting controller have been calculated by means of an off-line tuning procedure. The performance of the proposed algebraic-observer-based output-feedback controller is analyzed through simulations for different stack-current changes, for parameter uncertainties and for noise rejection. Results show that the proposed approach properly estimates and regulates the OER in finite-time.Peer ReviewedPostprint (author's final draft

    Nonlinear observer design for PEM fuel-cell systems using first-order sliding mode techniques

    Get PDF
    This paper presents a nonlinear observer design for Proton Exchange Membrane Fuel-Cell (PEMFC) systems. The aim of the proposed observer is to reconstruct the oxygen excess ratio through the estimation of their relevant states in real time from the measurement of the supply manifold air pressure. A First-Order Sliding Mode (FOSM) differentiation method is adopted to estimate, in finite time, the time derivative of the supply manifold air pressure. By means of the output-state inversion model, the relevant states are reconstructed. The objective of the proposed appproach is to minimize the use of additional sensors in order to reduce the costs and enhance the system accuracy. The performance of the proposed observer is analyzed through simulations considering measurement noise and different stack-current variations. The results show that the nonlinear observer properly estimates in finite time and robustly the oxygen excess ratio.Peer ReviewedPostprint (author's final draft

    Real-time adaptive parameter estimation for a polymer electrolyte membrane fuel cell

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksIn this paper, we propose real-time adaptive parameter estimation methods for a polymer electrolyte membrane fuel cell (PEMFC) to facilitate the modeling and the subsequent control synthesis. Specifically, the electrochemical model of this fuel cell is in a nonlinearly parametric formulation. Hence, most of existing parameter estimation techniques for PEMFC mainly rely on the optimization approaches, requiring heavy computational costs or even offline implementation. In comparison to those methods, real-time adaptive parameter estimation methods for nonlinearly parametric system are developed in this paper. First, the nonlinearly parametric function is linearized by using the Taylor series expansion. Then, adaptive parameter estimation methods are proposed for estimating the constant or time-varying parameters of PEMFC. Different from the well-recognized adaptive parameter estimation methods, the proposed adaptive laws are driven by the extracted estimation errors, so that exponential convergence of the parameter estimation error can be guaranteed, without using any predictors or observers. Finally, practical experiments in a H-100 PEMFC system are conducted, which illustrate satisfactory performances of the presented parameter estimation methods under different operation scenariosPeer ReviewedPostprint (author's final draft

    Nonlinear distributed parameter observer design for fuel cell systems

    Get PDF
    This paper presents the development of a nonlinear state observer to estimate the different gas species concentration profiles in a Proton Exchange Membrane Fuel Cell energy system. The selection of the estimated states follows functionality and fuel cell performance criteria. The implementation is based on the finite element discretisation of a fuel cell distributed parameter model. Forward and backwards discretisation of the partial derivative equations is performed to take advantage of the boundary conditions of the problem and also to apply lumped systems theory in the synthesis procedure of the observer. A second-order sliding-mode super-twisting corrective input action is implemented to reduce the estimation error to zero in a finite amount of time. The sliding-mode control approach grants a suitable corrective action without incrementing the model-dependency of the observer. Simulation results are presented to show the performance of the proposed observer of the fuel cell internal states and to extract conclusions for future research work.This work is partially funded by the Spanish national MICINN project DPI2011-25649, as well as by the 7th Framework Programme of the European Commission in the context of the Fuel Cells and Hydrogen Joint Undertaking (FCH JU) through the project PUMA-MIND FP7 303419.Peer Reviewe

    Neural network and URED observer based fast terminal integral sliding mode control for energy efficient polymer electrolyte membrane fuel cell used in vehicular technologies

    Get PDF
    In this research work, a Neural Network (NN) and Uniform Robust Exact Differentiator (URED) observer-based Fast Terminal Integral Sliding Mode Control (FTISMC) has been proposed for Oxygen Excess Ratio (OER) regulation of a Polymer Electrolyte Membrane Fuel Cell (PEMFC) power systems for vehicular applications. The controller uses URED as an observer for supply manifold pressure estimation. NN is used to estimate the stack temperature which is unavailable. The suggested control method increased the PEMFC's effectiveness and durability while demonstrating the finite-time convergence of system trajectories. By controlling the air-delivery system in the presence of uncertain current requirements and measurement noise, the approach ensures maximum power efficiency. The Lyapunov stability theorem has been used to confirm the stability of the presented algorithm. In addition, the suggested method eliminated the chattering phenomenon and improved power efficiency. Given these noteworthy characteristics, the research has the potential to decrease sensor dependence and production costs while also improving the transient and steady-state response in vehicular applications

    Robust fault diagnosis of proton exchange membrane fuel cells using a Takagi-Sugeno interval observer approach

    Get PDF
    In this paper, the problem of robust fault diagnosis of proton exchange membrane (PEM) fuel cells is addressed by introducing the Takagi-Sugeno (TS) interval observers that consider uncertainty in a bounded context, adapting TS observers to the so-called interval approach. Design conditions for the TS interval observer based on regional pole placement are also introduced to guarantee the fault detection and isolation (FDI) performance. The fault detection test is based on checking the consistency between the measurements and the output estimations provided by the TS observers. In presence of bounded uncertainty, this check relies on determining if all the measurements lie inside their corresponding estimated interval bounds. When a fault is detected, the measurements that are inconsistent with their corresponding estimations are annotated and a fault isolation procedure is triggered. By using the theoretical fault signature matrix (FSM), which summarizes the effects of the different faults on the available residuals, the fault is isolated by means of a logic reasoning that takes into account the bounded uncertainty, and if the number of candidate faults is more than one, a correlation analysis is used to obtain the most likely fault candidate. Finally, the proposed approach is tested using a PEM fuel cell case study proposed in the literature.Peer ReviewedPostprint (author's final draft
    • …
    corecore