342 research outputs found

    Terminal sliding mode control strategy design for second-order nonlinear system

    Full text link
    This study mainly focuses on the terminal sliding mode control (TSMC) strategy design, including an adaptive terminal sliding mode control (ATSMC) and an exact-estimator-based terminal sliding mode control (ETSMC) for second-order nonlinear dynamical systems. In the ATSMC system, an adaptive bound estimation for the lump uncertainty is proposed to ensure the system stability. On the other hand, an exact estimator is designed for exact estimating system uncertainties to solve the trouble of chattering phenomena caused by a sign function in ATSMC law in despite of the utilization of a fixed value or an adaptive tuning algorithm for the lumped uncertainty bound. The effectiveness of the proposed control schemes can be verified in numerical simulations.<br /

    A Hybrid Controller for Stability Robustness, Performance Robustness, and Disturbance Attenuation of a Maglev System

    Get PDF
    Devices using magnetic levitation (maglev) offer the potential for friction-free, high-speed, and high-precision operation. Applications include frictionless bearings, high-speed ground transportation systems, wafer distribution systems, high-precision positioning stages, and vibration isolation tables. Maglev systems rely on feedback controllers to maintain stable levitation. Designing such feedback controllers is challenging since mathematically the electromagnetic force is nonlinear and there is no local minimum point on the levitating force function. As a result, maglev systems are open-loop unstable. Additionally, maglev systems experience disturbances and system parameter variations (uncertainties) during operation. A successful controller design for maglev system guarantees stability during levitating despite system nonlinearity, and desirable system performance despite disturbances and system uncertainties. This research investigates five controllers that can achieve stable levitation: PD, PID, lead, model reference control, and LQR/LQG. It proposes an acceleration feedback controller (AFC) design that attenuates disturbance on a maglev system with a PD controller. This research proposes three robust controllers, QFT, Hinf , and QFT/Hinf , followed by a novel AFC-enhanced QFT/Hinf (AQH) controller. The AQH controller allows system robustness and disturbance attenuation to be achieved in one controller design. The controller designs are validated through simulations and experiments. In this research, the disturbances are represented by force disturbances on the levitated object, and the system uncertainties are represented by parameter variations. The experiments are conducted on a 1 DOF maglev testbed, with system performance including stability, disturbance rejection, and robustness being evaluated. Experiments show that the tested controllers can maintain stable levitation. Disturbance attenuation is achieved with the AFC. The robust controllers, QFT, Hinf , QFT/ Hinf, and AQH successfully guarantee system robustness. In addition, AQH controller provides the maglev system with a disturbance attenuation feature. The contributions of this research are the design and implementation of the acceleration feedback controller, the QFT/ Hinf , and the AQH controller. Disturbance attenuation and system robustness are achieved with these controllers. The controllers developed in this research are applicable to similar maglev systems

    HTS levitation and transportation with linear motor control

    Full text link
    High temperature superconductor (HTS) bulk can produce strong levitation force and has attracted strong interest of application in maglev transportation systems, to which a linear motion drive has advantages to be incorporated. This paper presents the design and performance analysis of a linear synchronous motor drive for a levitated object by HTS bulks. The analysis results show that the developed linear motor scheme can effectively drive and control the HTS levitated transporter

    CDM Based Servo State Feedback Controller with Feedback Linearization for Magnetic Levitation Ball System

    Get PDF
    This paper explains the design of Servo State Feedback Controller and Feedback Linearization for Magnetic Levitation Ball System (MLBS). The system uses feedback linearization to change the nonlinear model of magnetic levitation ball system to the linear system. Servo state feedback controller controls the position of the ball. An integrator eliminates the steady state error in servo state feedback controller. The parameter of integral gain and state feedback gains is achieved from the concept of Coefficient Diagram Method (CDM). The CDM requires the controllable canonical form, because of that Matrix Transformation is needed. Hence, feedback linearization is applied first to the MLBS then converted to a controllable form by a transformation matrix. The simulation shows the system can follow the desired position and robust from the position disturbance. The uncertainty parameter of mass, inductance, and resistance of MLBS also being investigated in the simulation. Comparing CDM with another method such as Linear Quadratic Regulator (LQR) and Pole Placement, CDM can give better response, that is no overshoot but a quite fast response. The main advantage of CDM is it has a standard parameter to obtain controller’s parameter hence it can avoid trial and error

    Hybrid Magnetic Suspension Actuator for Precision Motion Control

    Get PDF

    Control Of An Active Magnetic Bearing System With Sliding Mode Controller Using Nonlinear Disturbance Observer

    Get PDF
    Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2008Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2008Bu çalismada, aktif manyetik yataklama sistemleri için düşük mertebeden doğrusal olmayan bozucu gözlemleyicisi kullanılarak kayan kipli bir kontrollör tasarlanmıştır. Sistemdeki bozucu etkileri, yer çekimi ivmesi ve ortam ve mıktanıstan kaynaklanan diğer düzensizliklerin tümünü içermektedir. Bu düzensizlikler, düşük mertebeden doğrusal olmayan bir gözleyici tarafından ön görülmektedir. Elde edilen bozucu etki fonksiyonu, kayan kipli kontrollörde öne sürülen kontrol işaretinin foksiyonunda kullanılır. Son olarak kayan kipli kontrolör, elde edilen hata işaretinin istenen karakteristiği sağlaması yönünde, yeni bir kontrol işareti fonksiyonu ön görülmesiyle tamamlanır.In this study, a sliding mode controller is designed to control an active magnetic bearing system by using a reduced-order nonlinear disturbance observer. The disturbance in the system are issued to the gravitational acceleration, friction in the environment and disturbance and uncertainties caused from electromagnet. The disturbance is estimated by the help of the reduced-order nonlinear disturbance observer. The disturbance function obtained through the oberveration is applied to the proposed control signal in sliding mode controller. As last, the design of sliding mode controller is completed in the way that the error signal performs the desired characteristic.Yüksek LisansM.Sc

    Hierarchical Triple-Maglev Dual-Rate Control Over a Profibus-DP Network

    Full text link
    © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksThis paper addresses a networked control system application on an unstable triple-magnetic-levitation setup. A hierarchical dual-rate control using a Profibus-decentralized peripherals network has been used to stabilize a triangular platform composed of three maglevs. The difficulty in control is increased by time-varying network-induced delays. To solve this issue, a local decentralized H∞ control action is complemented by means of a lower rate output feedback controller on the remote side. Experimental results show good stabilization and reference position accuracy under disturbances.Manuscript received October 24, 2011; revised July 30, 2012; accepted September 9, 2012. Manuscript received in final form October 2, 2012. Date of publication November 12, 2012; date of current version December 17, 2013. The work of R. Piza, J. Salt, and A. Cuenca was supported in part by the Spanish Ministerio de Economia under Grant DPI2011-28507-C02-01, Grant DPI2009-14744-C03-03, and Grant ENE2010-21711-C02-01 and the Generalitat Valenciana Grant GV/2010/018. The work of A. Sala was supported in part by the Spanish Ministerio de Economia under Grant DPI2011-27845-C02-01 and the Generalitat Valenciana Grant PROMETEO/2008/088. Recommended by Associate Editor C. De Persis.Pizá, R.; Salt Llobregat, JJ.; Sala, A.; Cuenca Lacruz, ÁM. (2014). Hierarchical Triple-Maglev Dual-Rate Control Over a Profibus-DP Network. IEEE Transactions on Control Systems Technology. 22(1):1-12. https://doi.org/10.1109/TCST.2012.2222883S11222

    Disturbance observer based control for nonlinear MAGLEV suspension system

    Get PDF
    This paper investigates the disturbance rejection problem of nonlinear MAGnetic LEViation (MAGLEV) suspension system with “mismatching” disturbances. Here “mismatching” refers to the disturbances that enter the system via different channel to the control input. The disturbance referring in this paper is mainly on load variation and unmodeled nonlinear dynamics. By linearizing the nonlinear MAGLEV suspension model, a linear state-space disturbance observer (DOB) is designed to estimate the lumped “mismatching” disturbances. A new disturbance compensation control method based on the estimate of DOB is proposed to solve the disturbance attenuation problem. The efficacy of the proposed approach for rejecting given disturbance is illustrated via simulations on realistic track input
    corecore