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BİR AKTİF MANYETİK YATAKLAMA SİSTEMİNİN DOĞRUSAL 

OLMAYAN BOZUCU GÖZLEYİCİSİ KULLANARAK KAYMA YÜZEYLİ 

KONTROLLÖR İLE KONTROLÜ 

 

ÖZET 

 

Bu çalismada, aktif manyetik yataklama sistemleri için düşük mertebeden doğrusal 
olmayan bozucu gözlemleyicisi kullanılarak kayan kipli bir kontrollör tasarlanması 
amaçlanmıştır. Sistemdeki bozucu etkilerin, yer çekimi ivmesi ile ortam ve 
mıktanıstan kaynaklanan diğer düzensizliklerin tümünü içerdiği kabul edilen 
nonlineer bir sistem modeli kullanılmıştır. Düşük mertebeden doğrusal olmayan bir 
gözleyici, ölçülebilen durum değişkenleri dışındaki tüm durum değişkenlerini ön 
görmektedir. Sistem düzensizlikleri de, doğrusal olmayan bu düşük mertebeli 
gözlemleyicinin çıkışlarından biridir. Aktif manyetik yataklama sisteminin doğrusal 
olmayan matematik modelini kullanarak kontrol etmek üzere önerilen kayan kipli 
kontrollörün kontrol kuralı elde edilmiştir. Daha sonra sistemde kestirilen bozucu 
etki fonksiyonu, kayan kipli kontrollörde öne sürülen kontrol işaretinin foksiyonunda 
kullanılır. Son olarak kayan kipli kontrollör tasarımı, elde edilen hata işaretinin 
istenen karakteristiği sağlaması yönünde, yeni bir kontrol işareti fonksiyonu ön 
görülmesiyle tamamlanır.  



 x 

CONTROL OF AN ACTIVE MAGNETIC BEARING SYSTEM WITH 

SLIDING MODE CONTROLLER USING NONLINEAR DISTURBANCE 

OBSERVER  

 

SUMMARY 

 

In this study, it has been aimed to design a sliding mode controller in order to control 
an active magnetic bearing system by using a reduced-order nonlinear disturbance 
observer. The disturbance in the system is issued to the gravitational acceleration, 
friction in the environment and disturbance and uncertainties caused from 
electromagnet. The reduced-order nonlinear observer estimates all of the state 
variables rather than the measurable state variables. The estimated disturbance is one 
of the outputs of this reduced-order nonlinear observer. Thereafter, the control law of 
the sliding mode controller is extracted which is proposed to control the active 
magnetic bearing system using its mathematical model. Then the disturbance 
function estimated by the observer is applied to the function of the proposed control 
law. Finally, the design of the sliding mode controller is completed by defining a 
control signal applied to the plant in the way that the error behaviour performs a 
desired characteristic.  
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1. INTRODUCTION: THEORY AND ANALYSIS 

Active magnetic bearing systems are systems where the rotor of the motor or bearing 

equipment are hooked without any contact and therefore cause very low energy loss 

and also provide very high speed [9]. Magnetic levitation and active bearing systems 

which can suspend objects without mechanical contact have been used in many 

applications such as high speed magnetic levitation vehicles, magnetic bearings for 

high speed machinery, flywheels, artificial hearts, magnetic vibration isolation and 

pointing systems and wind tunnel suspensions [12]. These active magnetic levitation 

and bearing systems are open-loop unstable. Feedback controllers are generally used 

to achieve desired stability. Nevertheless, due to the nonlinearities, the governing 

differential equations are linearized about various operating points and local 

feedback controllers are implemented to stabilize small perturbations [10]. 

The need for high performance accurate magnetic levitation and active magnetic 

bearing systems has become increasingly important due to the recent applications 

[8].  

The most recent work in the adaptive approach concentrates on constructing 

estimation rules to estimate and cancel the nonlinearities of the system in issue. 

Regarding the robust control approach, the sliding control methodology has been 

investigated frequently. Usually, the sliding mode controllers based on the linear 

models and viewed the nonlinearities and uncertainties as disturbance to the models 

[11].  

Due to the importance of the system differential function in controller design, the 

nonlinear system function of behaviour of the active magnetic system should be 

obtained with the most possible uncertainties covering loss and frictions in the 

physical mechanism. To achieve a successful controller to stabilize and control an 

active bearing system, an observer is designed. This observer is aimed to estimate the 

disturbance which is the uncertain term of the control signal suggested in sliding 

mode controller. As next step, the control action of the sliding mode is proposed. 
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1.1. Introduction to Nonlinear Systems 

Systems and system representations or models may be classified onto numerous 

categories according to mathematical structure and physical realizability. A typical 

classification may be summarized in how they are commonly represented by partial 

differential equations or by a finite number of ordinary differential equations. They 

may be stochastic (random) or deterministic; linear or nonlinear; discrete or 

continuous; autonomous or non-autonomous.  

In this classification from control point of view, although linear system theory and 

control design has been established well along the decades, nonlinear systems in 

general do not have a convenient uniform theory. Unfortunately, many classical 

notions developed for linear systems are not valid for nonlinear systems. Even the 

concept of stability for linear system theory may not be always convenient for 

nonlinear system design either. 

In nonlinear systems, stability is strongly dependent on the magnitude of the initial 

conditions as well as the magnitude of any input. Moreover, nonlinear systems have 

generally more than one equilibrium points where some of them may be stable and 

some unstable. As a result, nonlinear mathematical models do not have a unique 

solution [14].  

In some cases, nonlinear systems may be analyzed conveniently by an appropriate 

selection of coordinates, transformation and or state space representation. A class of 

nonlinear systems is one of which consists of a linear system with appropriately 

constrained by non-dynamic nonlinear element in the feedback regulator as shown in 

figure (1.1). The latter is based on the existence of a Lyapunov function.   

 

)(⋅K )(sH
)(te )(tu

0=r )( ty+

 

Figure 1.1: Simple nonlinear regulator [14] 
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More generally, a finite-state differential system is defined by the nonlinear vector 

differential equation  

))(),((
)(

tutxf
dt

tdx
=                  (1.1) 

where f(.) is a real nonlinear mapping from mn RR ×  to nR . The output can be given 

by  

))(),(()( tutxgty =                  (1.2) 

with nRx ∈ , mRu ∈  and pRy ∈ . Hence, time-variant systems of this class are 

denoted by 

)),(),(()(

)),(),(()(

ttutxgty

ttutxftx

=

=&
                 (1.3) 

 

1.2. Lyapunov’s First Method 

1.2.1. Equilibrium Point 

Consider a nonlinear system described by  

)(xf
dt

dx
=                   (1.4) 

where the equilibrium states xe are given by 

0)( =exf                   (1.5) 

Let xe be an isolated equilibrium point (state) in state space such that no other 

equilibrium point lie within its infinitesimal neighbourhood. Then the stability of xe 

can be defined as in figure 1.2. 
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Figure 1.2: Illustration of equilibrium point stability 

The system (1.4) is stable at xe if for every initial state x0 that is sufficiently close to 

xe, the solution x(x0, t) remains near xe.  

More precisely, the equilibrium point xe is stable if for every ε > 0, there exists a real 

number δ > 0 such that δ<− exx0  implies that ε<− extxx ),( 0  for all 0tt ≥ . The 

system (1.4) is asymptotically stable at xe if it is stable, which means also x(t) 

approaches xe as t → ∞. The equilibrium state xe is asymptotically stable if it is stable 

and convergent. Regarding figure 1.3, there exists a real number δ1 > 0, and for every 

ε1 > 0 there exists a T(ε1) > 0 such that 10 )( δ<− extx  implies that 

10 ),( ε<− extxx  for all 0tTt +≥ . More commonly, the definition can be also 

given by 

0),(lim 0 =−
∞→

e
t

xtxx                  (1.6) 
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01)( tTt += ε
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Figure 1.3: Asymptotically stable equilibrium point 

Asymptotic stability requires that the motion proceeds to xe in the limit as t → ∞. 

Furthermore, it is the motion converges asymptotically so that the longer it gets the 

closer it gets to xe [14].  

1.2.2. Lyapunov’s First Method and Local Stability Theorem 

Consider the system (1.4) with a perturbation equation at an equilibrium state xe, 

given by  

),()( xxrxx
x

f
x ee δδδ +

∂

∂
=&                 (1.7) 

so that 

x

xxr e

x δ

δ
δ

),(
lim

0→
                  (1.8) 

Noting that the eigenvalues nii ,,2,1, K=λ of the n×n matrix A, which is 
x

xf e

∂

∂ )(
 

in (1.4) are the solutions of the matrix determinant [ ] 0det =− AI iλ , the following 

results can be obtained: 
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• If all the eigenvalues of 
x

xf e

∂

∂ )(
 have only negative real parts, xe is 

asymptotically stable 

• If one or more of the eigenvalues of 
x

xf e

∂

∂ )(
 have positive real parts, xe is 

unstable. 

• If one or more eigenvalues of 
x

xf e

∂

∂ )(
 have zero real parts and no eigenvalues 

with positive real parts, stability of xe can not be ascertained by perturbation 

theory.  

In particular, Lyapunov’s first method maybe analysed for stability at isolated 

equilibrium points by means of its linearized autonomous equations if the highe-

order terms of the Tylor series are sufficiently small [14]. 

Assume that the equilibrium point to be tested for stability is the origin like the 

nonlinear system (1.4) with (1.5). Let the elements of the Jacobian matrix  





















∂

∂

∂

∂

∂

∂

∂

∂

=

n

nn

n

x

f

x

f

x

f

x

f

A

L

LLL

L

1

1

1

1

                  (1.9) 

exist and be continuous at the origin. As a consequence, f(x) can be written 

)()( xgAxxf +=                (1.10) 

where  

0
)(

lim
0

=
→ x

xg
x

                (1.11) 

As a candidate of Lyapunov function, MxxxV T=)(  is selected where M is the 

solution of a Lyapunov equation  

QMAMAT −=+   

with Q = I and M are positive definite matrices. Then  
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)()(

))(())((

xMgxMxxgQxx

xgAxxMxxgAxV
TTT

TTTT

++−=

+++=&
            (1.12) 

Using (1.11), g(x) approaches zero faster than x. Thus, by keeping x sufficiently 

small, )()( xMgxMxxg TT +  can be kept smaller than xxQxx TT = . Hence, the local 

stability implies that the origin of the nonlinear system )(xf
dt

dx
=  is asymptotically 

stable if the Jacobian matrix (1.9) has all of its eigenvalues in the left half plane 

excluding the imaginary axis. If the linearized system has eigenvalues on the 

imaginary axis, the stability in the vicinity of the origin depends on the higher-order 

terms, i.e. g(x) in (1.11) [2]. 

 

1.3. Lyapunov’s Second Method 

Lyapunov introduced an interesting direct method to investigate the stability of a 

solution to a nonlinear differential equation. The key idea is that the equilibrium will 

be stable if there can be found a real function on the state space whose level curves 

enclose the equilibrium such that the derivative of the state variables always points 

towards the interior of the level curves [1].  

1.3.1. Stability and Energy  

Consider the total constant energy E of a conservative system as 

ExVxT =+ )()( &                (1.13) 

 where ( )2

2

1
)( xmxT && =  is kinetic energy, ∫= dxxfxV )()(  is potential energy stored 

in a forced spring with the spring force function f(x), and x, x&  are respectively 

position and velocity. The Euler-Lagrange equation for such a system is given by 

 0=
∂

∂
−








∂

∂

x

L

x

L

dt

d
&

               (1.14) 

with the Lagrangian, )()(),( xVxTxxL −= && . Then (1.13) can be represented by 

normalizing by 1=m  

0)(
2

2

=+ xf
dt

xd
               (1.15) 
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Noting these, if the conservative system expressed in (1.15) has an added nonlinear 

damping term xxh &)( , the non-conservative system becomes 

 0)()(
2

2

=++ xf
dt

dx
xh

dt

xd
              (1.16) 

where 0)( ≥xh . The total energy ),( xxHE &= decreases monotically toward an 

asymptotically stable equilibrium state where the potential energy becomes a 

minimum with zero kinetic energy. In canonical form, (1.16) is given by 

211
2

2
1

)()( xxhxf
dt

dx

x
dt

dx

−−=

=

              (1.17) 

where 0)( 11 >xfx  and 0)0( =f  so that 021 == ee xx  is a unique equilibrium point. 

If the energy is normalized with respect to mass 1=m , and V(x1, x2) designates the 

total energy as  

∫+=
1

0

2
2

21 )(
2

)(
),(

x

df
x

xxV σσ               (1.18) 

with  

0)( >xV  for 0≠x  and  

0)0( =V                 (1.19) 

(1.19) states that the energy goes to zero at equilibrium point.  

Note that the rate of change of the energy a long a trajectory which is the solution to 

(1.18) is given by 

dt

dx

x

V

dt

dx

x

V

dt

dV 2

2

1

1 ∂

∂
+

∂

∂
=  

where 

2
21 ))(( xxh

dt

dV
−=                (1.20) 

Therefore, the total energy V(x) is dissipated along a solution path if the damping 

h(x1) is positive for all nonzero x1, and x2 is nonzero. Moreover, since )( 12 xfx −=& is 
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zero only when xe = 0, the motion can not remain at x2 = 0 unless it is an equilibrium 

with x1 = 0 as well.   

 

0,0)( 11 ≠> xxh 0)( 1 =xh 0,0)( 11 ≠< xxh

 

Figure 1.4: Phase-plane sketches for (1.17) 

 

1.3.2. Lyapunov’s Stability Theorem 

Consider the system (1.4) with (1.5). Then the Lyapunov function V(x) 

corresponding to this system is defined in a neighbourhood D of the origin if 

• V(x) is positive definite. 

• )(xf
x

V
x

x

V

dt

dV

∂

∂
=









∂

∂
= &  is negative semi-definite. 

Then the following theorems can be derived [14]: 

• Stability Theorem: The origin is table if a Lyapunov function V(x) exists 

throughout D, a neighbourhood of origin.  

• Asymptotical Stability Theorem: The origin is asymptotically stable if a 

Lyapunov function V(x) exists throughout D, a neighbourhood of the origin 

such that )(xV& is negative definite.  

• Instability Theorem: The origin is unstable if a V(x) exists in the 

neighbourhood D of the origin, where V(0) = 0 such that )(xV& is positive 

definite on D, and V(x) > 0 for x  arbitrary small. 
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• Global Asymptotic Stability Theorem: The origin is asymptotically stable in 

the large if it is asymptotically stable and V(x) is radially unbounded such that 

V(x) → ∞ as  x  → ∞.  

• Region of the Asymptotic Stability Theorem: As theorem (2) with η<)(xV  

in D. Then the 0 is asymptotically stable and every solution with x(t0) in D 

approaches 0 asymptotically.  

1.3.3. Lyapunov Function Generation 

For linear continuous systems, a quadratic form which MxxxV T=)(  is a Lyapunov 

function satisfies Lyapunov equation such as QMAMAT −=+  where 

0,0 >=>= TT QQMM  if the equilibrium state is asymptotically stable. 

Nevertheless, for nonlinear systems there is not such a methodology available. 

Therefore, several methods are proposed to generate Lyapunov function for 

nonlinear systems. One of them is Aizerman’s Method which proceeds as follows to 

analyse stability of 0 for (1.4).  

a. Linearize (1.7) at 0 to obtain 

xAx δδ )0(=&                (1.21) 

where  

)0()0(
x

f
A

∂

∂
=   

b. Select a quadratic form for (1.21) which is positive definite so that  

MxxV T=                (1.22) 

has unspecified jiij mm =  , where M is a positive definite matrix and mii is its 

real positive elements where i = 1, 2, 3… n. 

c. Select a negative definite QxxV T−=&  according to the Lyapunov equation 

QMAMAT −=+  and (1.21), which in turn specifies iiq  and Q, if (1.21) is 

stable.  

d. Solve V&  along x(t) for the nonlinear system (1.4), and recomputed V from 

(1.22) and step (c).  

e. Find the range for permissible parameter values for asymptotic stability.  
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2. SLIDING MODE CONTROL 

Every control variable has a limit range. As an example, an on-off switching device 

can not be more than fully open or more than fully closed. In the same sense, the 

control voltage of a drive system can not exceed the supply voltage. Therefore, all 

control system design in practice must be handled with control variables that are 

saturated [2].  

Usually, use of an actuator that is so capable to avoid saturation, it is often not 

economical to implement because of its characteristics such as cost, weigh or size 

and etc. as well. Hence, a control system using such an actuator has been over 

designed if the actuator is also rarely used [2].  

In early 60’s, researches in sliding mode control had been widely done in former 

USSR by Emelyanov and Barbashin and also in Yugoslavia [5]. The nature of the 

investigations had expanded from mostly theoretical issues in the next two decades 

to many industrial applications. In 1976, it was the article of Professor Utkin which 

provided a broad perspective of many potential applications of sliding mode control. 

[6].  

The popularity of sliding mode control has continued increasing for the last decade 

due to the possibility of realization in nonlinear systems and its ability to consider 

robustness to modelling uncertainty and disturbance. In the nonlinear systems, the 

sliding mode controller tackles both the nonlinearity and the uncertainty of the 

system [11]. Sliding mode control has been applied in robot control, motor control, 

in spacecraft control and process control [9].  

Many applications in frictionless bearing and high speed trains have been seen to 

have successfully applied sliding mode control in magnetic levitation. The 

performance of the sliding mode controller has achieved a superior result compared 

to classical controller in magnetic levitation applications [10].   

In sliding mode control, modelling the nonlinear system with unknown disturbance 

has a big influence in the result. A proposed novel controller is designed with the 

help of well-defined model for the nonlinearities and finite element analysis for 
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characterization of uncertainties [11]. According to the comparative simulations 

results of different controllers such as proposed novel sliding mode controller, 

feedback linearization, PID control and Linear-model-based sliding mode controller, 

the tracking errors are given in table 2.1 [11].  

Table 2.1: Comparison of tracking errors with different controller types investigated 

in the study of Yeh, Chung and Wu [11] 

 

2.1. Variable Structure Control 

Variable structure control systems are a class of systems where the control law is 

deliberately changed during the control process according to the certain rules defined 

to stabilize the plant in issue. They consist of a set of continuous subsystems with a 

proper switching logic. The resulting control action is a discontinuous function of the 

system states, disturbance and reference inputs.  

Consider a double integrator of a system where y is the position and y&  is the velocity 

)()( tuty =&&                   (2.1) 

and the effect of using feedback control law with a positive scalar k  

)()( tkytu −=                   (2.2) 

Substituting (2.1) in (2.2) and multiplying both sides with y&  gives 

yykyy &&&& −=                   (2.3) 

Integrating (2.3) results in 

ckyy =+ 22
&                   (2.4) 

Depending on the value of k, equation (2.4) plots a circle or an ellipse. From control 

point of view, the control law given in (2.2) is not appropriate since the position y 
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and the velocity y&  do not converge to the origin. Although y and y&  remain bounded 

for all time the closed loop is stable, it is asymptotically not stable.  

y& y&

y y

)()( 1 tyktu −= )()( 2 tyktu −=

 

Figure 2.1: Phase portraits of simple harmonic motion.  

Therefore, the control law is modified 





−

<−
=

otherwisetyk

yytyk
tu

)(

0)(
)(

2

1 &
                (2.5) 

where 21 10 kk <<< . This control law fits the description of variable structure 

control and results in the following plot in figure 2.2 by splicing together the 

appropriate regions of the plots in figure 2.1. 

 

y&

y

 

Figure 2.2: Phase portrait of the system under variable structure control 
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This can be verified by considering the function  

22),( yyyyV && +=                  (2.6) 

The function in (2.6) is the circle if the distance from the point ),( yy &  to the origin 

and may be considered as the energy of the system. The time derivative of (2.6)  





>−

<−
=+=

0)1(2

0)1(2
22),(

2

1

yykyy

yykyy
yyyyyyV

&&

&&
&&&&&&               (2.7) 

is always negative and the distance approaches to the origin.  

A more significant expression for control law can be defined as follows 





<

>−
=

0),(1

0),(1
)(

yys

yys
tu

&

&
                (2.8) 

where the switching function is  

0,),( >+= mymyyys &&                 (2.9) 

The switching function (2.9) crosses the origin for any value of m where   1<ym &  is 

satisfied and  0),( =yys &  as shown in figure 2.3.  

 

y&

y

 

Figure 2.3: Phase portrait of sliding motion 

 

When 1<ym & ,  
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0lim
0

<
+→
s

s
&  and 0lim

0
>

−→
s

s
&              (2.10) 

Such dynamical behaviour is called as ideal sliding motion and the equation (2.11) is 

called as the sliding surface.  

{ }0),(:),( == yysyyLs &&               (2.11) 

2.2. Properties of Sliding Motion 

The key result is that the sliding surface (2.11) is obtained and is forced to remain 

there. During sliding mode, the system behaves as if it is independent of the control. 

The control action ensures that the conditions in (2.10) are satisfied and this 

guarantees that 0),( =yys & . (2.10) is also expressed as  

0<ss&                  (2.12) 

which is referred to as reachability condition.    

The aim is therefore to explore the relation between the control action and the 

switching function instead of the one between the control action and the plant output.  

Consider the double integrator in (2.1) and the control law in (2.8). When m = 1, the 

control action is in figure 2.4 for closed-loop behaviour. Assume ts when the 

switching surface is reached and an ideal sliding motion takes place.   

 

 

Figure 2.4: Discontinuous control action [5] 

 

When 0)( =ts  for all stt > , thus 0)( =ts&  for all stt ≥ . This implies 
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)()( tymtu &−=  for stt ≥               (2.13) 

The control action in (2.13) is called as equivalent control action.  

2.2.1. Existence of Solution and Equivalent Control 

Consider the linear time invariant system with uncertainty  

),,()()()( tuxftButAxtx ++=&              (2.14) 

where nnRA ×∈  and mnRB ×∈  with nm <≤1 . nmn RRRRf →××:  represents the 

bounded uncertainty. Let mn RRs →:  be a linear function represented as  

Sxxs =)(                 (2.15) 

where nmRS ×∈  is full rank and is defined as hyper plane  

{ }0)(: =∈= xsRxS n               (2.16) 

Let the uncertainty of system in (2.14) is identically zero and assume the systems 

states lay on the surface S define in (2.16) at the time ts which means that 0)( =tSx  

and 0)()( == txSts &&  for all stt ≥ . Thus (2.14) becomes 

0)()()( =+= tSButSAxtxS&  for all stt ≥             (2.17) 

Suppose the matrix S such that SB is a non-singular square matrix. This implies the 

definition that the equivalent control associated with the system (2.14) with zero 

uncertainty is defined to be the unique solution to the algebraic equation (2.17) and 

given as  

)()()( 1 tSAxSBtueq
−−=               (2.18) 

Thus a motion independent of the control action is denoted as 

)())(()( 1 tAxSSBBItx −−=&  for all stt ≥  and 0)( =stSx           (2.19) 

2.2.2. Independency of Uncertainty 

Define  

))(( 1 SSBBIPs
−−≡                (2.20) 

as a projection operator satisfying 
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0=sSP  and  0=BPs              (2.21) 

Defining the uncertainty function in (2.14) as ),(),,( txDtuxf ξ=  where the 

matrix lnRD ×∈  is known and ln RRR →×+:ξ is unknown, the equivalent control 

(2.18) becomes 

)),()(()()( 1 txSDtSAxSBtueq ξ+−= −   for all stt ≥           (2.22) 

and the sliding motion satisfies  

),()()( txDPtAxPtx ss ξ+=&  for all stt ≥  and 0)( =stSx           (2.23) 

Consider Ps is the projection operator as in (2.20) and )()( BRDR ⊂ . There exists a 

matrix of elementary column operations lmRR ×∈  such that BRD = . This implies 
0=DPs  and results in  

)()( tAxPtx s=&   for all stt ≥  and 0)( =stSx            (2.24) 

As a result, any uncertainty which can be expressed as in (2.14) where 

),(),,( txDtuxf ξ=  and )()( BRDR ⊂  is defined as matched uncertainty and the 

sliding motion does not depend on the exogenous signal.  

2.2.3. Reachability  

Consider the system general denoted in (2.14) and its sliding motion defined in (2.9 – 

2.11). Since sss
dt

d
&=)(

2

1 2 ,  

2

2

1
)( ssV =                 (2.25) 

follows as a Lyapunov function for the state s. Equations (2.10) and (2.12) do not 

guarantee the existence of an ideal sliding motion as they guarantee that the sliding 

surface is reached asymptotically.  

Let the linear feedback control law be defined as  

)()()()( tytymtu Φ−Φ+−= &               (2.26) 

where Φ  is a positive design scalar. The closed-loop motion therefore has the poles 

),( Φ−−m  and a direct computation reveals  

ss Φ−=&  where 2sss Φ−=&              (2.27) 
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From (2.27), it follows that  

tests Φ−= )0()(                (2.28) 

Therefore, if 0)0( ≠s which means that the states initially do not lay on the sliding 

surface, then 0)( ≠ts  for all 0>t . However 0)( →ts  as ∞→t . A stronger 

condition is the η-reachability condition given by  

sss η−≤&                 (2.29) 

where η  is a small positive constant. Rewriting (2.29) as  ssss
dt

d
η−≤= &)(

2

1 2  and 

integrating it from 0 to ts 

ss tsts η−≤− )0()(                (2.30) 

is obtained and ts is implied as  

η

)0(s
t s ≤                 (2.31) 

 

2.3. Chattering Problem 

There might be two possible erroneous switching curves for a second order system. 

If the actual switching curve is below the ideal switching curve, the switching would 

follow later than it would on the ideal switching curve but parallel to it. This 

sequence continues indefinitely, as the trajectory works its way to the origin without 

reaching it in a finite time.  

Another situation is where the actual switching curve is above the ideal switching 

curve. In this case, the switching would occur before it reaches the ideal switching 

curve. The sign of the control is such that the state would move on a trajectory that 

returns it to the region from where it was just before. As soon as this happens, the 

control is switched again. Therefore, the control would switch at an infinite 

frequency which is called as chattering while the state slides along the switching 

curve [2].  
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2.4. Model Reference Design Approach 

The model-following design has the objective to develop a control scheme which 

drives the plant dynamics to follow the desired dynamics of an ideal model and is 

developed because of the difficulties encountered in direct design of multi-variable 

control system using linear optimal control techniques. A linear model-following 

approach avoids also the difficulty of performance specification because the model 

specifies the design objectives where the controller is supposed to minimise the 

tracking error between the plant and the model. The problem of parameter variations 

will still remain which requires that the adaptive rules maintain the high 

performance. Therefore a transient response of the error dynamics can be prescribed. 

The approach is well suited to apply to uncertain, time-varying systems because it 

does not require any convergence properties [5].  

Assume a linear time-invariant system defined by  

)()()( tButAxtx +=&                (2.32) 

and the corresponding ideal model by 

)()()( trBtxAtx mmmm +=&               (2.33) 

where n
m Rxx ∈,  are the state vectors of the real system and ideal model, mRu ∈  is 

the control vector, rRr ∈ is the control input vector and A, B, Am and Bm are the 

compatible dimensioned matrices. The pair (A, B) is assumed to be controllable and 

that the ideal mode is asymptotically stable. The tracking error is defined by 

)()()( txtxte m−=                 (2.34) 

The error is derived as  

)()()( txtxte m&&& −=                (2.35) 

The dynamics of the error system can now be determined directly from equations 

(2.34) and (2.35)  

)()()()()( trBtButxAtAxte mmm −+−=&             (2.36) 

Adding and subtracting the term Axm(t) the equation (2.36) becomes 

)()()()()()( trBtButxAAtAete mmm −+−+=&            (2.37) 
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It is evident that for any given system and model, a perfect model-following system 

may be imposed to achieve. A sufficient condition is that all orders of the time 

derivatives of the error are zero at any time t. By starting with the zeroth derivative, 

it follows 

)()( txtxm =                 (2.38) 

Considering that some arbitrary term feeding forward the model states, is added to 

the control action gives 

))()(()()( tGxtuBtAxtx m++=&              (2.39) 

Since the first derivative of error zero,  

)()()()()( trBtxAtBGxtButAx mmmm +=++             (2.40) 

must hold. Thus the control expression is obtained as  

))()()()(()( tBGxtAxtrBtxABtu mmm −−+= ι            (2.41) 

where ιB denotes the Moore – Penrose pseudo-inverse of matrix B. Substituting the 

equation (2.41) in (2.39) and rearranging yields 

0)()()()()()( =−+−−− trBIBBtAxIBBtxAIBB mmm
ιιι                      (2.42) 

Noting the equation (2.38), the equation (2.42)  

0))(( =−− mAAIBBι               (2.43) 

0)( =− mBIBBι                (2.44) 

The equations (2.43) and (2.44) show that all the derivatives of error will be also zero 

after an arbitrary time t. If the structure of the control signal will be defined by  

)()()( 21 tututu +=                 (2.45) 

where 

)()(1 tKetu −=                (2.46) 

)()()()(2 trBBtxAABtu mm
ιι +−=              (2.47) 
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Substituting the control law (2.45) in the equation (2.37) and assuming (2.43) and 

(2.44) hold, then 

)()()( teBKAte m −=&                (2.48) 

If (Am, B) is a controllable pair, the closed-loop matrix Am – BK can have an arbitrary 

set of eigenvalues to find suitable K. Equation (2.43) and (2.44) are the conditions for 

a perfect tracking and the equations (2.45) is the control law for implementing it.  

If the following rank conditions hold 

[ ] [ ]BrankAABrank m =−               (2.49) 

[ ] [ ]BrankBBrank m =               (2.50) 

there exists compatibly dimensioned matrices F and G such that 

AABF m −=                 (2.51) 

mBBG =                 (2.52) 

Thus the equation (2.47) can be rewritten by 

)()()(2 tGrtBFxtu +=               (2.53) 

Gurleyen, Bahadir and Tekin proposed using a model reference design in their 

approach by linearizing the non-linear system behaviour. A differential dynamic 

behaviour of second order is determined to achieve as objective and is denoted by 

r
nm

m

nm

m x
x

x

x

x








+

















−−
=








2

2

1
2

2

1 0

2

10

ϖξωϖ&

&
            (2.54) 

and is based on the transfer function of the second order dynamic system defined by  

22
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X
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ωξω

ϖ

++
=               (2.55) 

where xm represents the desired state, xr represents the reference state, nϖ  is the 

undamped natural frequency being positive and ξ  is the damping ratio of the second 

order system as positive value. Both of the parameters are pre-defined to achieve the 

desired performance.  

In the study, the error vector [ ]TeeE 21=  is defined by  
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To extract the error dynamics, it is essential to consider the system model used in the 

study. The system is illustrated in section 4.1 and the dynamic behaviour of the 

system is given by 
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             (2.57) 

Therefore, the error dynamic is denoted by 

)()()( ubtAete σ+=&                (2.58) 

where  
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           (2.59) 

and )(uσ is a function of control signal uc and the control current term (u(t) = i(t)) of 

system dynamics.  

)(2)( 21
2 tdxxxu nrnc −−−= ξϖω              (2.60) 

Therefore, 

)(2)( 21
2 tdxxxu nrnc −−−= ξϖω              (2.61) 
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σ              (2.62) 

By choosing the Lyapunov equation as  

)(2)(

)(

uPbEQEEEV

PEEEV
TT

T

σ+−=

=

&
             (2.63) 

the stability of the approach can be verified as long as there is a real u(t) satisfying 
0)( =uσ  for every 0tt ≥  [9]. 
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2.5. Controllers Using Output Information 

In most practical situations as mentioned before, all the state variables of the system 

might be neither physically possible nor economical to measure. Therefore, the 

approach to design the control system with uncertainties aims to use the only 

available output information.  

Consider a system  

)()(

),,()()()(

tCxty

tuxftButAxtx

=

++=&
             (2.64) 

where nRx ∈ , mRu ∈  and pRy ∈ with npm <≤ . Assume that the nominal linear 

system (A, B, C) is known and that the input and output matrices B and C are both of 

full rank. The function nmn RRRRf →××+:  represents the system nonlinearities 

and is assumed to match the condition  

),,(),,( tuxBtuxf ξ=                (2.65) 

where the bounded function mmn RRRR →××+:ξ  satisfies  

),(),,( 1 tyuktux αξ +<               (2.66) 

with some known function ++ →× RRRf p:  and positive constant 11 <k .  

The objective here is to develop a control law which induces and ideal sliding motion 

on the surface  

{ }0: =∈= FCxRxS n               (2.67) 

for some selected matrix pmRF ×∈ . A control law of the form  

yvtGytu −= )()(                (2.68) 

will be searched where G is a fixed gain matrix and the discontinuous vector vy 
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=
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             (2.69) 

where ),( tyρ  is the positive scalar function of the outputs.  
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2.6. Some Other Approaches to Sliding Mode Control Design 

In this section, the suggested methods in several sources are applied to active 

magnetic levitation systems. 

Considering the system illustrated in figure 2.5; Cho, Kato and Spilman used the 

dynamic model defined by  

)()()()( tdgtuxBtx +−=&               (2.70) 

where B(x) is the force – distance relationship given by 

( )32
2

1 )()(

1
)(

atxatxam
xB

++
=               (2.71) 

 

Figure 2.5: Schematic of single-axis magnetic levitation. z (x(t)) is the distance from 

object to the bottom [10].  

In order to achieve a desired error dynamics, Cho, Kato and Spilman suggested the 

sliding surface in their study [10] as  

 )()()( tetetS λ+= &                (2.72) 

Thus their objective has been to achieve S(t) = 0. For this, the attraction condition has 

been defined as 0)()( <tStS &  as in (2.12). 

Remembering the reachability condition in (2.29), a control law is formulated to 

achieve S(t) = 0 on average.  

( ) ( )))(sgn())()(2()())()(()( 312
2

11 tStxtxtxgatxatxamtu rr ηλ −−−+×++= &&        (2.73) 
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This control law results in a chattering problem due to the discontinuity of the 

function sgn(S(t)) while the control in (2.73) law nevertheless stabilizes the system. 

The chattering problem can be improved by using control smoothing approximation. 

The indefinite of sgn(S(t)) at S(t) = 0 can be replaced with a finite gain when the 

magnitude of the S(t) is smaller than some prescribed value φ . This can be achieved 

by replacing the function sgn(S(t)) with  
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sat              (2.74) 

The attraction guarantee of the S(t) = 0 manifold is possible only when φ≥)(tS . 

When φ<)(tS , the attraction guarantee of the S(t) = 0 manifold may not be 

satisfied due to presence of the modelling errors and disturbance [10]. 

 

Figure 2.6: Magnetic bearing system 

Yeh, Chung and Wu have worked on another model of magnetic bearing systems 

illustrated in figure 2.6 and proposed a controller consisting of a nominal control part 

that linearizes the nonlinear dynamics and the robust control part that provides robust 

performance against the uncertainties. There are two electromagnets and a levitated 

object. In this model, i1 and i2 are the currents input to the electromagnets, x0 denotes 
the nominal air gap, x is the displacement, and 0µ  is the air permeability. The 

magnets are assumed to have the same pole area A and the same number of turns n.  

The dynamic equation of the system is proposed by the equation in (2.75).  
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where 
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A bias current is applied to both coils and a control current is added or subtracted 

from either of the coil current. Thus, the dynamics (2.75) can be linearized and a 

linear controller is sufficient to maintain the stability and performance near the 

equilibrium point. However, the linearization is accurate only locally and the power 

consumption is slightly higher due to the bias voltage applied.  

The control law is defined by  

mgekecxmF r +−−= 00 &&&               (2.77) 

where e = xr – x is the tracking error and the parameters c0 and k0 are positive 

constants so that the control law can lead to the following exponentially stable 

dynamics defined by 

 000 =++ ekecem &&&                (2.78) 

Since F is virtually control input, the control law has to be implemented by properly 

modulating coil currents such as 
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             (2.79) 

The feedback linearization stabilizes the system without presence of uncertainties 

and disturbance. Therefore the sliding mode controller is addressed to achieve the 

robust stability. The differential equation is defined then by  

gFxbx −= )(&&                 (2.80) 

where b(x) is a position dependent control gain and uncertain. Thus the control law 

has been chosen as  
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⋅−= −

φ

s
satkFxbF ˆ)(1               (2.81) 

In this control law  

[ ]Fxxk ˆ1)()( −+≥ βηβ               (2.82) 

and sat(.) is the saturation function. s is the sliding surface defined by  

∫++= eees 22 λλ&                 (2.83) 

with λ being strictly positive constant, φ  the boundary layer, and η another strictly 

positive constant which dictates how fast the state trajectory reaches the sliding 

surface. )(xβ  is the associated gain matrix and F̂ is the control law when b(x) is 

exactly known [11].   

Hassan and Mohamed have used the variable structure control to stabilize a magnetic 

levitation system illustrated in figure 2.7 with the dynamic equation (2.84).  

1e

2e

1f

2f

 

Figure 2.7: Schematic of magnetic levitation used by Hassan and Mohamed [12] 

dfmgffxm −+−= 12&&
              (2.84) 



 28 

where x is the air gap deviation under the electromagnet, m is the object mass, f1 and 

f2 are the forces produced by the upper and lower electromagnets, and fd represents 

disturbance or model uncertainty.  The electromagnetic force for each electromagnet 

can be expressed in terms of flux φ  and constant k 

jj kf φ=                 (2.85) 

The voltage ej across the electromagnet has been defined by 

2,1
2

0

=+= j
AN

gR

dt

d
Ne jjj

j
µ

φφ
             (2.86) 

where R is the coil resistance, N is the number of coil turns, A is the area of one 

magnet pole, gj the air gap and G0 the nominal air gap denoted as  

xGg += 01 , xGg −= 02               (2.87) 

In order to control the air gap x, the dynamic equation is desired to include the 

voltages of electromagnets rather than electromagnetic forces and has been obtained 

by differentiating as 

dfffxm &&&&&& +−= 12                (2.88) 

Differentiating (2.85) and substituting in (2.88) gives the dynamic equation including 

the electromagnetic forced voltages.  
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The state variables are chosen as xx =1 , xx &=2 , xx &&=3 , 14 φ=x , 25 φ=x  11 eu =  

and 22 eu =  where   

)()()( xVUxBXAX ++=               (2.90) 

with [ ]TxxxxxX 54321= , [ ]TuuU 21= , dfD &=   

The proposed design of variable structure controller by Hassan and Mohamed 

consists of two inputs and thus they have used two sliding surfaces S1 and S2. 

However the problem has been simplified into dealing with one sliding surface S  

because the objective to control the air gap of upper and lower electromagnets x±  

results in the same switching surfaces S1 and S2 with opposite signs. The switching 
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surface is suggested to be a linear combination of the error and its higher order 

derivatives such as 

 eeeS 21 λλ ++= &&&                (2.91) 

In the sliding surface, λ1 and λ2 are free design parameters such that the system is 

asymptotically stable. To minimize chattering, they have also denoted a reaching 

function of the form 

 KSSQS −−= )sgn(&                (2.92) 

where Q and K are free design parameters being positive real numbers.  

Substituting the necessary equations into (2.92), the expression of the control signals 

can be obtained such as 
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Except the disturbance D, all the quantities are known in equation (2.93) according to 

the model of Hassan and Mohamed. To cope the problem due to the disturbance, 

they suggest replacing D with a conservative known quantity Dc, guaranteeing the 

reaching condition. Being DL and DU the lower and upper bounds respectively,  

 UL DDD ≤≤  

the conservative disturbance Dc is chosen according to the statements 

• when S < 0, D > Dc is desired, so let Dc = DL 

• when S > 0, D < Dc is desired, so let Dc = DU 

which is denoted as  

)sgn(
22

S
DDDD

D LULU
c

−
+

+
=              (2.94) 
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When the equation (2.94) is substituted with D in (2.93), the ultimate control signal 

can be obtained. As a result, robust stability against parameter perturbation is 

achieved [12].  
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3. NONLINEAR OBSERVER 

In designing of control systems, all state variables assumed to be available and 

measurable for feedback by measuring with several kinds of sensor devices. 

However, in practise, current sensor technology and associated technical and cost 

limitations do not always allow the observation of full vector of systems state 

variable. On the other hand, there might not be necessary to measure other 

measurable state variables, either. These state variables can be linearly related to the 

other ones which are available to measure by conventional sensor devices.  

Estimation of state variables is commonly called as observation. A device or a tool 

that estimates or observes the state variables is called as state observer. If the 

observer observes all the state variables of the system, it is called a full-order state 

observer. There might be some cases where the output variables are observable and 

linearly related to state variables. Thus, it is only necessary to estimate n – m state 

variables, where n is the dimension of the state vector and m is the dimension of the 

output vector. If an observer estimates n – m state variables of such a system, it is 

called reduced-order state observer.  

3.1. Observability 

Consider the system described by the following equations: 

BuAxx +=&                   (3.1) 

DuCxy +=                   (3.2) 

The system is said to be observable if every state x(t0) can be determined from the 

observation of the output y(t) over a finite time interval, t0 ≤ t ≤ t1. Therefore, the 

system is completely observable if every transition of the state eventually affects 

every element of the output vector.  

According to the equations (3.1) and (3.2), the state x(t) and y(t) can be found as in 

the followings: 
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∫
−+=

t
tAAt dBuexetx

0

)( )()0()( τττ                (3.3) 

∫ ++= −
t

tAAt DudBueCxCety
0

)( )()0()( τττ               (3.4) 

The matrices A, B, C and D are known and u(t) is also known, the last two terms on 

the right-hand side if the equation (3.4) are known quantities. Therefore, they may be 

subtracted from the observed value of y(t). Hence, to investigate the observability, it 

suffices to consider matrices A and C. Let x be an n – dimensional vector and y an m 

– dimensional output vector. Assume that A is an n × n and C is an m × n matrix. 

Considering the system with the following equations; 

Axx =&                   (3.5) 

Cxy =                   (3.6) 

y(t) becomes 

)0()( xCety At=                  (3.7) 

From the mathematical computation by using Cayley-Hamilton Theorem, eAt can be 

obtained as in the following.  

∑
−

=

=
1

0

)(
n

k

k
k

At Ate α                  (3.8) 

By using (3.7) and (3.8), y(t) becomes 

)0()()0()()0()()0()()( 1
110

1

0

xCAtCAxtCxtxCAtty n
n

n

k

k
k

−
−

−

=

+++==∑ αααα K        (3.9) 

According to the equation (3.9), given the output y(t) over a time interval, x(0) can 

be uniquely determined. Therefore, if the rank of the mn × n matrices  
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nCA

CA

C

 or [ ]TnTTTT CACAC 1)(.. −  

is n, the system described in (3.1) and (3.2) is completely observable.  
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3.2. Full-Order State Observer 

Consider a plant with dynamic equation (3.1) and (3.2) where D = 0.  

The observer is a subsystem to reconstruct the state vector of the plant to be 

controlled. The mathematical model of the observer is basically the same as that of 

the plant, except that an additional term is included where there is an estimation error 

to compensate for inaccuracies in matrices A and B and the lack of the initial error. 

The estimation error, which is also observation error, is the difference between the 

measured output and the estimated output. Initial error is the difference between 

errors of initial state and initial estimated state. Considering that x~  is the observed 

(estimated) state vector, the mathematical model of the observer is defined in (3.10). 

yKBuxCKAxCyKBuxAx eee ++−=−++= ˆ)()~(~~
&           (3.10) 

The estimated output will be C x~ . Ke is the observer gain matrix, which is a weighing 

matrix to the correction term involving the difference between the measured output y 

and the estimated output C x~ .  

 

y

y~

−

x~

u

 Figure 3.1: Full-state order observer figure 
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xx ~−  is defined as error vector e  

xxe ~−=                  (3.11) 

and in order to obtain the observer error equation, one should subtract the equation 

(3.10) from the equation (3.1). 

)~)(()~(ˆ)(~ xxCKAxCCxKBuxCKABuAxxx eee −−=−−−−−+=− &&   

eCKAe e )( −=&                (3.12) 

From (3.12), the dynamic behaviour of the error vector is determined by the 

eigenvalues of matrix A – KeC. If matrix A – KeC is a stable matrix, the error vector 

will converge to zero for any initial error vector e(0). This implies that )(~ tx  will 

converge to x(t) regardless of the values of x(0) and )0(~x .  

3.3. State Observer Gain Matrix 

Designing a full-state observer becomes that of determining the observer gain Ke 

such that the error dynamics defined by equation (3.12) are asymptotically stable 

with sufficient speed response. Therefore, the design of full-order observer becomes 

that of determining an appropriate Ke such that A – KeC has desired eigenvalues [4]. 

On the other hand, let an be the coefficients of characteristic polynomial AsI −  such 

that 

01
1

1 =++++=− −
−

nn
nn asasasAsI K             (3.13) 

Define nα  as the coefficients and nµ  as the desired eigenvalues of the characteristic 

polynomial of the equation (3.12) such as  

 0)())(( 1
1

121 =++++=−−− −
−

nn
nn

n ssssss αααµµµ KL          (3.14) 

Then let a new state vector x̂  be defined such as  

xQx ˆ=                 (3.15) 

where Q is the transition matrix and is defined as  

NWQ =                 (3.16) 

[ ]TnTTTT CACACN 1)(.. −=              (3.17) 
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and 
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The transition matrix approach is used in pole placement in designing a control 

system. Here the same approach is applied to obtain the gain matrix Ke. According to 

the transition matrix approach, the characteristic equation of the system (3.12) can be 

written as in equation (3.19). 

( ) 0111 =+−=+−=+− −−− CQKQAQQsIQCKAsIQCKAsI eee         (3.19) 

Noting that the eigenvalues of A – KC and AT – CTKT are the same and that Q-1AQ 

and Q-1ATQ result in the same matrix, the equation can be rewritten and solved as in 

the following. 
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The equations (3.14) and (3.20) give the same characteristic polynomial where 
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From (3.20), it can be seen that  

[ ] [ ]QaaaQQK nnnnnn
T

e 111111 −−−== −−− αααδδδ LL         (3.21) 

Thus considering the property ( ) e
TTT

e KQQK =  and NWQ = , Ke can be obtained as 

in the following. 
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Besides using transition matrix, another way of determining observer gain matrix is 

Ackermann’s formula which is basically used in designing control system with state 

feedback. There is a matrix )(Aφ  defined as 

0)( 1
11 ≠++++= −

−
nn

nn AAAIA αααφ L             (3.23) 























= −

1

0

0

0
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TTT
e NAK φ               (3.24) 

Referring to figure 3.1, one should notice that the feedback signal through the 

observer gain matrix Ke serves as a correction signal to the plant model to account 

for the unknowns in the plant. If significant unknowns are involved, the feedback 

signal through the matrix Ke should be relatively large. Nevertheless, if the output 

signal is contaminated significantly by disturbance and noises, the output might not 

be reliable and Ke should be relatively small.  
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3.4. Nonlinear Observers 

A major application of nonlinear observers is to provide an estimate of the process 

state for use in implementation of a nonlinear feedback control law.  In such an 

application, estimation of the state of the process under control is only the means to 

another objective – stable closed-loop control. If the ultimate objective is achieved, 

inaccuracy in the estimate of the state of the process is hardly objectionable.  

In the contrary, an estimate might also be needed for other purpose than closed-loop 

control. If only a rough estimate is acceptable, there is a great deal of latitude in 

design.  

3.4.1. Nonlinear Full-Order Observer 

A plant which is consisting a dynamic system like in equation (3.1), can be expressed  

),( uxfBuAxx =+=&               (3.25) 

The observer of the system in (3.25) given by 

),( uxgy =                 (3.26) 

is another dynamic system, the state of which is donated by x~ , excited by the output 

y of the plant, having the property where the error is expressed as in (3.11) and 

converges to zero [2].  

xxe ~−=            

One way of obtaining an observer is to imitate the procedure applied in linear 

systems, namely to construct a model of the original system in (3.25) and force it 

with the “residual”: 

),~(~ uxgyyyr −=−=               (3.26) 

Thus the observer becomes 

)),~((),~(~ uxgyuxfx −+= κ&               (3.27) 

where ()κ  is a suitably chosen nonlinear function. A block-diagram representation of 

a general nonlinear observer is shown in figure 3.2.  
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Figure 3.2: General structure of nonlinear observer 

 

The expression of dynamic behaviour of the error e is given by 
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uxguexguexfuxf
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−=

κ

κ

&&&

           (3.28) 

By the proper choice of ()κ  the error equation in (3.28) can be made asymptotically 

stable, so that the equilibrium state is reached where e&  goes to zero when the 

nonlinear functions ),( ⋅⋅f  and ),( ⋅⋅g  used in the observer are exactly the same as in 

equations (3.25) and (3.26). Any discrepancy between the corresponding functions 

will generally prevent e&  from vanishing and therefore will lead a steady state error. 

Since the mathematical model of physical system is always an approximation, the 

steady state error will not go to zero in practise. For the same reason, the control law 

that goes to the plant should be applied in the same manner in the observation [2].  

The function ()κ  must be selected to ensure the asymptotically stability of the origin 

(e = 0). According to the theorem of Lyapunov’s first method, the origin is 

asymptotically stable if the Jacobian matrix of the dynamics corresponds to an 

asymptotically stable linear system. For the dynamics of the error, the Jacobian 

matrix is obtained by deriving with respect to e at e = 0 and is given by 
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xAc )(                (3.29) 
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3.4.2. Design Approaches for Nonlinear Reduced Order Observer Design  

The design approach mentioned in the previous section can be stated in more general 

observer error linearization [8]. Consider a system 

),(

),(

wxhy

wxfx

=

=&
                (3.30) 

that represents the dynamics of a process, where x is the state vector, y is the vector 

of measurements and w is the vector of unmeasurable process or sensor disturbance. 

The dynamics of the disturbance is governed by the system  

)(wsw =&                  (3.31) 

The problem of state and disturbance estimation can become a state estimation 

problem when the system is considered like: 

)(

),(

),(

wsw

wxhy

wxfx

=

=

=

&

&

                (3.32) 

where 








w

x
 is the extended state vector of the system which must be estimated with 

an appropriately designed observer [8]. In the consideration of the system (3.32), 
nln RRRf →×: , ll RRs →: , ρRRRh ln →×:  are real analytic functions with 

f(0,0) = 0, s(0) = 0 and h(0,0) = 0. The number of states of the system (3.32) (n+l) 

and the number of measurements is ρ. 

As a special case of the problem, let the disturbances affect only in an additive way 

expressed like in equation [8] (3.33). 
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wqxhy
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+=

=

=

&                (3.33) 

Considering the system (3.32), a locally analytic mapping ),( wxz θ=  from ln RR ×  

to ρ−+lnR  is selected that maps the system (3.32) into  

)(yAzz β+=&                 (3.34) 

In (3.34), A is a ( ) ( )ρρ −+×−+ lnln  matrix and ρρβ −+→ lnRR:  is a real analytic 

function with 0)0( =β [8]. With the aid of such a mapping, the equation (3.35) can be 
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used as observer dynamics and the system’s state 








w

x
 can be reconstructed from the 

solution of the set of algebraic equations  

ywxh

zwx

=

=

),(

),(θ
                 (3.35) 

The equations in (3.35) are solvable in x and w. Thus the reduced-order nonlinear 

observer takes the form  

 )(~~ yzAz β+=&                (3.36) 










w

x
~

~
 is the solution of 





=

=

ywxh

zwx

)~,~(

~)~,~(θ
             (3.37) 

It becomes that the unknown immersion map θ  must satisfy the following system of 

singular partial differential equation: 

)),((),()(),(),( wxhwxAws
w

wxfwx
x

βθ
θθ

+⋅=⋅
∂

∂
+⋅

∂

∂
          (3.38) 

Therefore, the problem is reduced to the study of partial differential equations (3.38) 

and the properties of the solutions.  

Proposition: 

Consider the system (3.32) with the new expression (3.34) that is mapped by the θ  

in (3.35).  

),( wxfx = ;  nln RRRf →×:  

),( wxhy = ;  ρRRRh ln →×:  

)(wsw =& ;   ll RRs →:  

)(yAzz β+=& ; ρρβ −+→ lnRR:  

with  f(0,0) = 0,  s(0) = 0,  h(0,0) = 0, 0)0( =β and  
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Denote by σ(F) and σ(S) the spectra of S and F respectively. 
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Assume: 

1) There exists a ( ) ( )lnln +×−+ ρ  matrix T such that BHAT
S

PF
T +=









0
 

and 








H

T
 is invertible.  

2) All the eigenvalues of A are non-resonant with )()( SF σσ ∪ , which means 

i.e. no eigenvalue λi of A is of the form ∑
+

=

=
ln

i
iij km

1

λ  where 

)()( SFk i σσ ∪∈  and mi nonnegative integers not all zero.  

3) 0 does not lie in the convex hull of )()( SF σσ ∪ . 

Then there exists a unique analytic solution ),( wxz θ=  to the partial differential 

equation (3.37) locally around )0,0(),( =wx . The solution has the property that 

T
wx
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θ
 is a local diffeomorphism.  

Assumptions 1 and 2 of Proposition imply that 
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 is an observable pair. 

On the other hand, if 
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PF
H

0
,  is an observable pair, it is always possible to 

find matrices A, B, T which satisfy the matrix equation of Assumption 1, with 








H

T
 

invertible and A having prescribed eigenvalues. It is important to note that the 

transformed estimation error mapped by θ  follows linear dynamics governed by the 

arbitrarily selected matrix A: 

[ ] [ ])~,~(),()~,~(),( wxwxAwxwx
dt

d
θθθθ −=−             (3.39) 

3.4.3. Simple Design for Nonlinear Reduced Order Observer  

As discussed above, an observer can have the same dynamic order as the plant they 

observe, irrespective of the number of observations. In the absence of the noise, the 

observations can be used to determine some of the state variables, thereby reducing 

the number of state variables that must be included in the observer.  

Some of the state variables can be measured directly and should be implemented to 

the control law, so they do not need to be estimate which might increase the cost in 
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computation. In practise, a control based on reduced-order observer can be more 

robust than one using full-order observer. Hence to develop the equations for 

reduced-order observer, it is convenient to assume the state variables in two groups 

one of which are observed directly and the other one not at all. All further 

simplification is that the observed quantities are themselves the state variables in the 

first group. In equations, this all means that 









=

2

1

x

x
x                 (3.40) 

where the observation is  

1xy =                   (3.41) 

This is scarcely less general than the case  

),( 1 uxgy =  

provided that this expression can be solved for x1 as a function of y and u: 

yuyx ~),(1 ==ψ  

y~  is used as the observation.  

Corresponding to the partitioning of the state vector as in (3.40), the dynamic 

equations can be written as: 

),,( 2111 uxxfx =&                (3.42) 

),,( 2122 uxxfx =&                (3.43) 

For the estimate of the substate x1 the observation itself can be used.  

yx =1
~                  (3.44) 

while the other substate x2 is estimated by using an observer in the form 

zKyx +=2
~                  (3.45) 

where z is the state of a dynamic system of the same order as the dimension of the 

subvector x2 and is given by 

),~,( 2 uxyz φ=&                 (3.46) 
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A block diagram representation of the observer having the structure of (3.44 – 3.46) 

is given in figure 3.3. 

 

φ

2
~x

z

y

u

  

Figure 3.3: Reduced-order nonlinear observer 

 

The object of the observer design is the determination of the observer gain matrix K 

and the nonlinear function φ . As the full-order state observer, these are to be 

selected such that: 

• The steady state error in estimating x2 converges to zero, independent of x 

and u. (The error in estimating x1 is already zero when yx =1
~ .) 

• The observer is asymptotically stable.  

As in the case of the full-order state observer, it will proceed with the equation 

(3.11). Using (3.42), (3.43) and (3.45), the following equation (3.47) is obtained. 

),,(),,(),,(~
2212222 uexyuxyfKuxyfxxe −−⋅−=−= φ&&&           (3.47) 

In order for the right-hand side of (3.47) to vanish when e = 0, it is necessary that the 

function φ  satisfies  

),,(),,(),,( 21222 uxyfKuxyfuxy ⋅−=φ             (3.48) 

for all values of y, x2 and u. To achieve asymptotically stability, the linearized 

system  

exAe ⋅= )( 2&                 (3.48) 

with 
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4. APPLICATION 

4.1. Dynamical Model of Active Magnetic Bearing System 

The schematic diagram of the single-axis magnetic bearing system used in the case 

application is illustrated in figure 4.1. The system consists of a magnetic levitation 

object and an electromagnet. The magnetically levitated object can be realised in 

physical application by a ping pong ball with a magnet attached on and hence can 

attractive force. The attractive force can be controlled by the electromagnet mounted 

directly above the levitated object where the electromagnet can be controlled any 

industrial controller or computer system.  

 

+

-

V(t)

imagnet

L(x)

R

Magnetically levitated 

object; M (mass)

Fem

Mg

 

 

Figure 4.1: Schematic diagram of single-axis magnetic levitation system 

A force balance analysis in the vertical plane implies the equation of motion in 

equation (4.1). In the equation, M is the mass of the levitation object in grams, x is 

the distance between the top of the levitation ball from a bottom point of electro 

magnet in millimetres, g is the gravity, and Fem is the magnetic levitation force in 

millinewtons.   

MgFxM em +−=&&                  (4.1) 
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The magnetic force between the solenoid and the permanent magnet can be 

determined by considering the magnet field between them as a function of the 

separation distance. The resistance of electromagnet is represented as R, and the self-

inductance in L(x). According to the electromagnetic field theory, the approximated 

self-inductance of the electromagnet’s coil is determined by the function (4.2) 

depending on the distance x. 

)1(
)( 0

1

a

x
L

LxL
+

+=                  (4.2) 

The relation with the function (4.2) is derived from the curve which is obtained by 

minimum square method of the measured values L(x) for different x. Since the air 

gap is large enough, the magnetic circuit is not saturated and the system is 

electrically linear. In electrically linear magnetic systems, the magnetic energy stored 

is shown in the function (4.3). 
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1
),( ixLxiW m =                  (4.3) 

The force in the positive magnetic direction of x is expressed in (4.4). 
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Using (4.4) in (4.1), the dynamic of active magnetic bearing system is obtained as in 

(4.5).  
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The nonlinearity of the system is seen in terms of the controlled current 2i  as 

multiplied factor and 
2

1 







+

a

x
 in the denominator in equation (4.5).  

The electromagnetic voltage of the model shown in figure (4.1) is denoted as 

i
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)()(                (4.6) 
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In the control system, the controlled current i is selected as control signal of the 

system (plant). In the physical system, the voltage V(t) is the unit used to compare 

the input reference signal and the output signal. The output distance x is measured by 

a photoelectric sensor and the information is sent in electrical voltage.  

In fluid dynamics, there is another effective force called as resistance (drag) that 

resists the movement of a solid object through the fluid (liquid or gas). Resistance is 

made up of friction forces, which act in the opposite direction parallel to the object’s 

surface and also pressure forces that act in the perpendicular direction to the object’s 

surface. Therefore, the levitation ball in the system shown in figure (5.1) is under the 

effect of resistance (air friction in the air, liquid friction in the liquid in the opposite 

direction of movement) denoted as  

dd AC
dt
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dt

dx
f
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ρ                  (4.7) 

where fd is the friction force, ρ is the density of the fluid, 
dt

dx
 is the speed of the 

object relative to the fluid, A is the reference area and Cd is the resistance coefficient 

[13].  

Moreover, the other disturbance based from the nature of electromagnetic power and 

unknown disturbance are assumed as additive terms to acceleration of gravity in 

disturbance function d(t). Adding (4.7) with other disturbance terms, (4.5) becomes 
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Denoting d(t) as  
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the system can be represented in state space equation as  
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This approach represents an active magnetic bearing system with one electromagnet 

and its dynamics is defined as in (4.8) 
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The system can be constructed by two electromagnet one of which is placed above 

and the other one below the levitated object shown in figure 4.2.   

 

 

Figure 4.2: Active magnetic bearing system with 2 magnets 

According to the movement direction, the dynamics is implied by 

MgFFxM −−= 21&&                (4.11) 
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where F1 and F2 are electromagnetic forces, H is the distance between two opposite 

magnets and x is the position of the levitated object away from the magnet (magnet 2 

in figure 4.2) below. In this model, the movement is considered to be in the opposite 

direction of the gravity.  
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4.2. Sliding Mode Controller Design 

4.2.1. Control of Asymptotically Stable Error Dynamics  

Define the error vector  
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In the same manner, 2xxe r &&&&& −=  implies 
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In order to make a form such as BUAXX +=& , the equation (4.14) can be rewritten  
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The sliding surface can be determined from the equation (4.15) and becomes as 

),(21 uxUekeke ee =++ &&&               (4.16) 

Let us decide the matrix [ ]21 eee kkK =  which makes the sliding surface 

asymptotically stable by assigning U(x, u) = 0.  

Substituting (4.14) in (4.15) gives 
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In (4.17), except the term including control signal (current of magnet), a control 

action uc can be suggested such as   

dxEKu rec −+= &&                (4.18) 

where 2)(

2
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The sliding mode control schema to make the error dynamics asymptotically stable is 

illustrated in figure 4.3.  
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Figure 4.3: Sliding mode control schema where error dynamics is supposed to be 

asymptotically stable 

The equation (4.19) satisfies 0),( =uxU  only when  
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It is obvious from the model with the self-inductance function defined in (4.2), that it 

is decreasing as time passes. 
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which implies also  

1)sgn( −=cu                 (4.22) 

(4.19) and (4.22) imply the control signal u(x1(t), x2(t))  
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Equation (4.23) gives the expression of control by one electromagnet in the system. 

Considering that the system has two electromagnets shown in figure 4.2; the control 

law relation will be denoted by the equation (4.24).  

2121

11
),,( F

M
F

M
uiixU c +−=              (4.24) 

Since the model of the system in figure (4.2) has the movement direction in the 

opposite of the gravity, the control signal is defined as   

dxEKu rec ++= &&                (4.25) 

The equation becomes as in (4.26) and (4.27) in terms of x1 and x2.  
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where xHx −=1  and xx =2  
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As mentioned before that the relation in equation (4.19) satisfies 0),( =uxU  only 

when  
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Then the following control laws are obtained; 
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For simulation, the following values are chosen for the system: 

L = 1 H; a = 0.008 

Mn = 0.01 kg (nominal mass) 

D = [-10; +10] m/s2 (randomized) 

The coefficients of PD controller are; 

Kp = 6e+6; Kd = 3 e+4 

Simulations are performed with initial conditions starting from the point 0 m where 

the top of the magnet below the object and point 0.1 m where the upper magnet is 

located. The reference position is determined as 0.04 m.  
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Figure 4.4: Position response of an object with nominal mass from 0 m 
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Figure 4.5: Position response in figure 4.4 under disturbance without observer 
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Figure 4.6: Position response in figure 4.4 under disturbance when it is estimated 

When the object is placed at point 0 m, the upper electromagnet requires a current 

value of 59 A. In simulation mode, neither saturation module nor circuit breaker is 

used. Using a limiter to push a maximum certain amount of current in realization is 
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recommended. In figure 4.7, and 4.8, the values of current flowing through the upper 

and lower magnets are given respectively.    
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Figure 4.7: Current of upper magnet for the load of nominal mass 
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Figure 4.8: Current of lower magnet for the load of nominal mass 
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Figure 4.9: Position response of an object with limited mass of 50 times heavier. 

There is no limiter for current. 
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Figure 4.10: Position response of an object with limited mass of 50 times heavier. 

There is limiter for current. 
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In order to realize in real world there is a limiter in the system so that the magnet do 

not pull current of large values. By limiting the current value, the oscillation around 

the reference does not exist any more.  
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Figure 4.11: Current of upper magnet for load of 50 times of nominal mass 

Time [s]  

Figure 4.12: Current of upper magnet for load where mass is increased 50 times at 

0.1 s 
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Figure 4.13: Current of lower magnet for load of 50 times heavier than nominal 

mass 

Time [s]
 

Figure 4.14: Transient response of overloaded system with 200 times heavier load 
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Figure 4.15: Currents for overloaded system whose response is shown in figure 4.14. 

Blue: upper magnet; green: lower magnet 

Consider that the object with nominal mass is let free fall down from the point 0.1 m.  
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Figure 4.16: Position response of an object with nominal mass falling down from the 

upper magnet (x(0) = 0.1 m) 
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Figure 4.17: Current of upper magnet for the load of nominal mass falling down 

from the upper magnet 
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Figure 4.18: Current of lower magnet for the load of nominal mass falling down 

from the upper magnet 
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4.2.2. Control with Linearization  

As mentioned in chapter 3.4, the active magnetic bearing system is desired to behave 

like a model of known dynamic system of second degree.  

Let xr be the reference state (position), x1m be the state (position) of the known 

dynamic reference system and x1 be the actual state (position) measured. x1m can be 

also considered as output of the model. Thus the transfer function of the system 

should be obtained as  
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The error dynamics is proposed the same as in section (4.2.1) being  
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Let one electromagnet be in the system shown in figure 4.1. Then )(uσ turns out to 

be 
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and the control signal uc can be denoted as  

dxxxu nrnc −−−= ξϖϖ 2)(2               (4.32) 

The control scheme can be seen in figure 4.19. Only with a difference in expression 

of control signal, the control law is similar and the equation (4.23) implies as well.  
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When there are two magnets in the system shown in figure 4.2, control signal 

expression )(uσ becomes 



 61 










∂

∂
−

∂

∂
+=

2
2

2

22
1

1

1
2

)(1)(11
)( i

x

xL

M
i

x

xL

M
uu c

nϖ
σ            (4.33) 

and the control laws are the same as in (4.29) 
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Figure 4.19: Sliding mode control schema for linearized system 

 

In this approach, the position response (figure 4.20) of the load with nominal mass 

and the current values (figure 4.21 and 4.22) of the control system are plotted for ɷn 

= 300 and ξ = 0.95. The reference position is set to 0.05 m.  
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Figure 4.20: Position response of an object with nominal mass  
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Figure 4.21: Current of upper magnet for the load of nominal mass 
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Figure 22: Current of lower magnet for the load of nominal mass 

When the load is increased 50 times in mass, the response of the system is obtained 

with a significant overshoot and steady state error (see in figure 4.22) which is 

subject to be suppressed. This can be achieved by using a regular PID controller. P-

control is already managed by multiplying the error signal with ɷn = 3000.  
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Figure 4.23: Position response for the load of 0.5 kg (50 times heavier) without PID 
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Figure 4.24: Position response for the load of 0.5 kg (50 times heavier) with PID 
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Figure 4.25: Current of upper magnet where the mass of the load is increased 50 

times more at 0.1 s. 
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Similarly when the mass of the load is increased by 200 times, the steady state error 

becomes significant nevertheless the system stays still stable (figure 4.26). 
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Figure 4.26: Overloaded system with 200 times heavier load 
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Figure 4.27: Current of upper magnet by overloaded system with 200 times heavier 

load at 0.1 s  



 66 

C
u
rr
e
n
t 
[A
]

 

Figure 4.28: Current of lower magnet by overloaded system with 200 times heavier 

load at 0.1 s  

 

4.3. Nonlinear Reduced-Order Observer Design 

The representation of the nonlinear magnetic levitation system denoted in (4.10) can 

be applied to estimate all of the states including disturbance that contains all 

unknown disturbance and the gravitational acceleration with full-order state 

observer. Hence the full-order state vector is written as 

















=

d

x

x

X
~
~

~
~

2

1

                (4.34) 

In reduced-order observer design, there will be two groups of states of full-order 

states. The first group is measured and denoted as Xm and the other group consists of 

the states that are estimated from the measured states and denoted as Xe.   
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where 
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Here, y = x1 and can be rewritten as y = g(x1, u) in a general form. As explained in 

section 3.4.3, the dynamic equations are written as in (3.42) and (3.43). 
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Assuming the position represented as state variable x1 is directly measured and the 

speed x2 and the acceleration including unknown disturbance d can be estimated 

from x1. Therefore, the equations regarding to the observation become 
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Deriving the state variables in (4.37) 
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z1 and z2 are the new state variables representing the reduced-order state dynamics 

where 
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for the system with one electromagnet placed above the levitated object. Using 

(4.39), the estimated state variables in (4.38) become  
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According to the design approach to obtain the observer gain matrix, the error 

dynamic is derived where Ac is linearized at the origin e = 0 

eAe
ec 0=

=&  

and Ac in (3.49) applied for active magnetic bearing system is denoted as  
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The structure of the reduced-order nonlinear observer is given in figure 4.26.  
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Figure 4.29: Schematic diagram of reduced-order nonlinear observer 

 

In the figure 4.26, F(.) represents the nonlinear term in the equation of observer and 

can include either one or two terms derived from the equation of magnetic force 
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respectively for the systems with one or two electromagnets. Due to the difference in 

the system with two magnets, the equations (4.39) and (4.40) become 
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4.4. Lyapunov Stability Analysis 

To investigate the stability, a candidate Lyapunov function is chosen according to the 

Lyapunov’s Second Method and denoted by 

 PEEEV T=)(                (4.44) 

satisfying that  

QPAPA T −=+                (4.45) 

where P and Q are positive definite matrices with P = PT and Q = QT > 0  

Considering (4.21) and differentiating V(E) by time 
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Denoting (4.31) by 

))(()( xUQEEEV T φ+−=&               (4.47) 

It is necessary to find out an 0))(( =xUφ  for t > 0 so that 

0)( <−= QEEEV T&  for every 0)( ≠te .            (4.48) 
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4.5. Constructing Control System  

As applied in Svoboda’s study [7], the disturbance will be applied to the control 

signal equation which consists of it as well in its expression. Differently from his 

study, there is the variable structure control based on a sliding surface and a 

disturbance to provide the unknown terms to the control equation in this control 

scheme without having any learning mechanism. The proposed control scheme is 

iluustrated in figure 4.27. 

On the other hand, similarly to the study of Gurleyen, Bahadir and Tekin [9], the 

estimated disturbance output of the nonlinear disturbance can be applied to the 

dynamic behavioural equation of the model reference based control, since the model 

still consists of an uncertain term disturbance (see figure 4.28).  
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Figure 4.30: The control system with design approach in 4.2.1 and the plant 
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Figure 4.31: The control system with design approach in 4.2.2 and the plant 
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5. CONCLUSION 

Two design approaches for sliding mode control are proposed to control the model of 

an active magnetic bearing system which consists of two electromagnets. The 

simulation results are observed to distinguish the control schemas by advantages over 

each other.  

Basically both of the approaches are similar in choosing a sliding surface for error 

dynamics where they give pretty close results. Since the design of the first approach 

is based on finding coefficients of the terms e  and e&  in sliding surface, the design 

turns out to find the coefficients of a PD controller where and Integral controller term 

can be inserted to improve the steady state error.  

Linearization in second approach provides rather fast rising time where it can cause 

an overshoot and steady state error for the same heavier loads. This can be improved 

by using PID controller to make the system asymptotically and this costs only adding 

Integral and Derivative factors since there is already a proportional controller in the 

system.   

In both systems, the disturbance is an issue which can disaffect the performance of 

the system. Therefore an observation of the system and estimation of the disturbance 

definitely has a positive effect on the performance. To decrease the computation in 

the observation system, the reduced order disturbance observer is very simplified to 

design.  

Nevertheless, the disturbance is only estimated and still remains difficult to obtain 

precisely. By going one step further, a fuzzy neural network can be adapted to 

estimate the error in estimation of disturbance as it is already applied in control of 

other types of nonlinear systems.  

 



 73 

REFERENCES 

[1] Aström, K. J., Wittenmark, B., 1989. Adaptive Control. Addison-Wesley 

Publishing Company.  

[2] Friedland, Bernard, 1996. Advanced Control System Design, Prentice Hall. 

Upper Saddle River, New Jersey. 

[3] Sarioglu, Kemal, 2000. Otomatik Kontrol - 1, Birsen Yayinevi. Istanbul. 

[4] Ogata, Katsuhiko, 2002. Modern Control Engineering, Prentice Hall. Upper 

Saddle River, New Jersey. 

[5] Edwards, C., Spurgeon, S. K., 1998. Sliding Mode Control: Theory and 

Application, Taylor and Francis Ltd. London. 

[6] Young, David K-K., 1993. Variable Structure Control for Robotics and 

Aerospace Applications, Elsevier Science Publishers B.V. 

Amsterdam.  

[7] Liu, Z. L., Svoboda, J., 2006. A New Control Scheme for Nonlinear Systems 

With Disturbance, IEEE Transactions on Control Systems 

Technology, Vol. 14. 

[8] Chen, X., Chun-Yi, S., Fukuda, T., 2004. A Nonlinear Disturbance Observer 

Design for Multivariable Systems and Its Application to Magnetic 

Bearing Systems, IEEE Transactions on Control Systems Technology, 

Vol. 12. 

[8] Kravaris, C., Savvoglidis, G., Kornaros, M., Kazantzis, N., 2005. A Nonlinear 

Reduced-Order Observer Design for State and Disturbance 

Estimation, Proceedings of the 13th Mediterranean Conference on 

Control and Automation, June 27-29. 

[9] Gürleyen, F., Bahadir, Ç., Tekin, Ö. A., 2006. Aktif Manyetik Yatakların 

Doğrusallaştırıcı ve Dayanaklı Kararlı Kılıcı Dinamik Geri Besleme 

Kontrolü, TOK, Istanbul. 



 74 

[10] Cho, D., Yoshifumi, K., Spilman, D., 1993. Sliding Mode and Classical 

Control of Magnetic Levitation Systems, IEEE Control Systems. 

[11] Yeh, T.-J., Chung, Y.-J., Wu, W.-C., 2001. Sliding Control of Magnetic 

Bearing Systems, Journal of Dynamic Systems, Measurement and 

Control, Vol. 123. 

[12] Hassan, I. M. M., Mohamed, A. M., 2001. Variable Structure Control of a 

Magnetic Levitation System, Proceedings of the American Control 

Conference, June 25-27. 

[13] Goodman, L. E., Warner, W. H., 2001. Dynamics, Courier Dover 

Publications. New York. 

[14] Mohler, R. R., 1991. Nonlinear Systems: Volume 1, Dynamics and Control, 

Prentice Hall. New Jersey. 

 

 



 75 

ÖZGEÇMİŞ 

Rüstem Tolga BÜYÜKBAŞ, 15.04.1980 İstanbul doğumludur. Orta okul ve lise 

eğitimini 1997 yılına kadar Bahçelievler Anadolu Lisesi’nde devam etmiş; ardından 

1998 yılında Bahçeşehir Koleji’nde tamalamıştır. Ocak 2004’te İstanbul Teknik 

Üniversitesi Elektrik-Elektronik Fakültesi, Elektronik ve Haberleşme Mühendisliği 

Bölümünden mezun olmuştur. Aynı yıl İ.T.Ü. Elektrik-Elektronik Fakültesi, Kontrol 

ve Otomasyon Mühendisliği Programında yüksek lisans eğitimine başlamıştır. 

 

 

  

 

 

 

 


