7 research outputs found

    Brain symmetry plane computation in MR images using inertia axes and optimization

    Get PDF
    International audienceDetection of the best symmetry plane in 3D images can be treated as a registration problem between the original and the reflected images. The registration is performed in a 3D space of parameters defining orientation and shift of a reflection plane. We use the normalized ¦ £ metric as the similarity measure between original and reflected images and investigate an algorithm for computation of the best symmetry plane. The algorithm computes first an initial position of the plane by analyzing principal inertia axes. We demonstrate on several MR brain images that the initial position is in the neighborhood of the global maximum. Therefore the downhill simplex method is further used for the computation of the best symmetry plane. The proposed algorithm was tested on simulated and real MR brain images

    Software para el estudio del volumen de estructuras corticales en imágenes de RMN cerebrales

    Full text link
    El estudio del volumen intracraneal requiere del uso de herramientas que permitan objetivar el diagnóstico y ofrezcan un rendimiento y precisión elevados. La segmentación automática del volumen cerebral es el primer paso hacia un estudio más completo del cerebro y supondrá una herramienta versátil en el estudio de diversas patologías. Propósito: Mejorar un método ya implementado que segmenta el volumen cerebral con una calidad aceptable pero en un tiempo de ejecución elevado basado en comparación de regiones contra una biblioteca de casos de ejemplo segmentada manualmente. Método: El método recorre uno a uno todos los voxels del cerebro a segmentar extrayendo la región que lo envuelve y comparándola con regiones de los casos de ejemplo de la biblioteca. Esto era ineficiente así que se han introducido mejoras que van desde la carga y preselección de los casos más semejantes para usarlos en la segmentación hasta introducir una estimación pre calculada del etiquetado de los voxels que no suelen variar para evitar tener que procesarlos. Resultados: Se parte de un método que obtiene segmentaciones con una 98% de fiabilidad y en un tiempo de ejecución de 160 segundos y se ha mejorado hasta una fiabilidad del 99% en un tiempo inferior a 40 segundos.Romero Gómez, JE. (2011). Software para el estudio del volumen de estructuras corticales en imágenes de RMN cerebrales. http://hdl.handle.net/10251/14239.Archivo delegad

    Automatic quantification of brain midline shift in CT images

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Fast, Accurate And Precise Mid-sagittal Plane Location In 3d Mr Images Of The Brain

    No full text
    Extraction of the mid-sagittal plane (MSP) is a key step for brain image registration and asymmetry analysis. We present a fast MSP extraction method for 3D MR images, based on automatic segmentation of the brain and on heuristic maximization of the cerebro-spinal fluid within the MSP. The method is robust to severe anatomical asymmetries between the hemispheres, caused by surgical procedures and lesions. The method is also accurate with respect to MSP delineations done by a specialist. The method was evaluated on 64 MR images (36 pathological, 20 healthy, 8 synthetic), and it found a precise and accurate approximation of the MSP in all of them with a mean time of 60.0 seconds per image, mean angular variation within a same image (precision) of 1.26° and mean angular difference from specialist delineations (accuracy) of 1.64°. © 2008 Springer-Verlag.25 CCIS278290Davidson, R.J., Hugdahl, K., (1996) Brain Asymmetry, , MIT Press/Bradford BooksCrow, T.J., Schizophrenia as an anomaly of cerebral asymmetry (1993) Imaging of the Brain in Psychiatry and Related Fields, pp. 3-17. , Maurer, K. (ed.) Springer, HeidelbergGeschwind, N., Levitsky, W., Human brain: Left-right asymmetries in temporale speech region (1968) Science, 161, pp. 186-187Wang, L., Joshi, S.C., Miller, M.I., Csernansky, J.G., Statistical analysis of hippocampal asymmetry in schizophrenia (2001) NeuroImage, 14, pp. 531-545Csernansky, J.G., Joshi, S., Wang, L., Haller, J.W., Gado, M., Miller, J.P., Grenander, U., Miller, M.I., Hippocampal morphometry in schizophrenia by high dimensional brain mapping (1998) Proceedings of the National Academy of Sciences of the United States of America, 95, pp. 11406-11411Styner, M., Gerig, G., Hybrid boundary-medial shape description for biologically variable shapes (2000) Proc. of IEEEWorkshop on Mathematical Methods in Biomedical Imaging Analysis (MMBIA), pp. 235-242. , IEEE, Los AlamitosMackay, C.E., Barrick, T.R., Roberts, N., DeLisi, L.E., Maes, F., Vandermeulen, D., Crow, T.J., Application of a new image analysis technique to study brain asymmetry in schizophrenia (2003) Psychiatry Research, 124, pp. 25-35Highley, J.R., DeLisi, L.E., Roberts, N., Webb, J.A., Relja, M., Razi, K., Crow, T.J., Sex-dependent effects of schizophrenia: An MRI study of gyral folding, and cortical and white matter volume (2003) Psychiatry Research: Neuroimaging, 124, pp. 11-23Barrick, T.R., Mackay, C.E., Prima, S., Maes, F., Vandermeulen, D., Crow, T.J., Roberts, N., Automatic analysis of cerebral asymmetry: Na exploratory study of the relationship between brain torque and planum temporale asymmetry (2005) NeuroImage, 24, pp. 678-691Hogan, R.E., Mark, K.E., Choudhuri, I., Wang, L., Joshi, S., Miller, M.I., Bucholz, R.D., Magnetic resonance imaging deformation-based segmentation of the hippocampus in patientswith mesial temporal sclerosis and temporal lobe epilepsy (2000) J. Digital Imaging, 13, pp. 217-218Wu, W.C., Huang, C.C., Chung, H.W., Liou, M., Hsueh, C.J., Lee, C.S., Wu, M.L., Chen, C.Y., Hippocampal alterations in children with temporal lobe epilepsy with or without a history of febrile convulsions: Evaluations with MR volumetry and proton MR spectroscopy (2005) AJNR Am. J. Neuroradiol., 26, pp. 1270-1275Csernansky, J.G., Wang, L., Joshi, S., Miller, J.P., Gado, M., Kido, D., McKeel, D., Miller, M.I., Early DAT is distinguished from aging by High-dimensional Mapping of the hippocampus (2000) Neurology, 55, pp. 1636-1643Liu, Y., Teverovskiy, L.A., Lopez, O.L., Aizenstein, H., Meltzer, C.C., Becker, J.T., Discovery of biomarkers for alzheimer's disease prediction from structural MR images (2007) 2007 IEEE Intl. Symp. on Biomedical Imaging, pp. 1344-1347. , IEEE, Los AlamitosArdekani, B., Kershaw, J., Braun, M., Kanno, I., Automatic detection of the mid-sagittal plane in 3-D brain images (1997) IEEE Trans. on Medical Imaging, 16, pp. 947-952Kapouleas, I., Alavi, A., Alves, W.M., Gur, R.E., Weiss, D.W., Registration of three dimensional MR and PET images of the human brain without markers (1991) Radiology, 181, pp. 731-739Liu, Y., Collins, R.T., Rothfus, W.E., Robust midsagittal plane extraction from normal and pathological 3D neuroradiology images (2001) IEEE Trans. on Medical Imaging, 20, pp. 175-192Talairach, J., Tournoux, P., (1988) Co-Planar Steriotaxic Atlas of the Human Brain, , Thieme Medical PublishersBergo, F.P.G., Ruppert, G.C.S., Pinto, L.F., Falcão, A.X., Fast and robust mid-sagittal plane location in 3D MR images of the brain (2008) Proc. BIOSIGNALS 2008 - Intl. Conf. on Bio- Inspired Syst. and Sig. Proc., pp. 92-99Junck, L., Moen, J.G., Hutchins, G.D., Brown, M.B., Kuhl, D.E., Correlation methods for the centering, rotation, and alignment of functional brain images (1990) The Journal of Nuclear Medicine, 31, pp. 1220-1226Minoshima, S., Berger, K.L., Lee, K.S., Mintun, M.A., An automated method for rotational correction and centering of three-dimensional functional brain images (1992) The Journal of Nuclear Medicine, 33, pp. 1579-1585Sun, C., Sherrah, J., 3D symmetry detection using the extended Gaussian image (1997) IEEE Trans. on Pattern Analysis and Machine Intelligence, 19, pp. 164-168Smith, S.M., Jenkinson, M., Accurate robust symmetry estimation (1999) LNCS, 1679, pp. 308-317. , Taylor, C., Colchester, A. (eds.) MICCAI 1999. Springer, HeidelbergPrima, S., Ourselin, S., Ayache, N., Computation of the mid-sagittal plane in 3D brain images (2002) IEEE Trans. on Medical Imaging, 21, pp. 122-138Tuzikov, A.V., Colliot, O., Bloch, I., Evaluation of the symmetry plane in 3D MR brain images (2003) Pattern Recognition Letters, 24, pp. 2219-2233Teverovskiy, L., Liu, Y., Truly 3D midsagittal plane extraction for robust neuroimage registration (2006) Proc. of 3rd IEEE Intl. Symp. on Biomedical Imaging, pp. 860-863. , IEEE, Los AlamitosBrummer, M.E., Hough transform detection of the longitudinal fissure in tomographic head images (1991) IEEE Trans. on Medical Imaging, 10, pp. 66-73Guillemaud, R., Marais, P., Zisserman, A., McDonald, B., Crow, T.J., Brady, M., A three dimensional mid sagittal plane for brain asymmetry measurement (1996) Schizophrenia Research, 18, pp. 183-184Hu, Q., Nowinski, W.L., A rapid algorithm for robust and automatic extraction of the midsagittal plane of the human cerebrum from neuroimages based on local symmetry and outlier removal (2003) Neuroimage, 20, pp. 2153-2165Volkau, I., Prakash, K.N.B., Ananthasubramaniam, A., Aziz, A., Nowinski, W.L., Extraction of the midsagittal plane from morphological neuroimages using the Kullback-Leibler's measure (2006) Medical Image Analysis, 10, pp. 863-874Bergo, F.P.G., Falcão, A.X., Miranda, P.A.V., Rocha, L.M., Automatic image segmentation by tree pruning (2007) J. Math. Imaging and Vision, 29, pp. 141-162Falcão, A.X., Stolfi, J., Lotufo, R.A., The image foresting transform: Theory, algorithms and applications (2004) IEEE Trans. on Pattern Analysis and Machine Intelligence, 26, pp. 19-29Otsu, N., A threshold selection method from gray level histograms (1979) IEEE Trans. Systems, Man and Cybernetics, 9, pp. 62-66Collins, D.L., Zijdenbos, A.P., Kollokian, V., Sled, J.G., Kabani, N.J., Holmes, C.J., Evans, A.C., Design and construction of a realistic digital brain phantom (1998) IEEE Trans. on Medical Imaging, 17, pp. 463-46
    corecore