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Abstract: 

Computer Tomography (CT) images of traumatic brain injury (TBI) are widely used 
for clinical diagnosis. Pathological features on these images such as the volume and 
type of hemorrhage regions, the amount of brain midline shift, and the volume of 
ventricle are important indicators based on which decision of treatment or prognosis is 
made. Among the various clinical features, brain midline shift (MLS) is a significant 
factor in TBI diagnosis, which is a major cause of death. It indicates the severity of 
injury and the chance of survival of patients. Many studies have been carried out to 
find the associations between MLS and the injury outcomes such as disability or 
mortality. However, in these studies, measurements of MLS are either quantitatively 
measured manually by experts or described qualitatively. Due to the lack of quantified 
data in large population, no precise or reliable statistical figures can be obtained. In 
addition, there may be many unknown associations to be discovered if large 
quantified datasets are available. Therefore, automatically quantifying the MLS in CT 
image has become an urgent task for TBI prognosis research. Once efficient 
quantifying methods are developed and applied to large brain image database, finding 
precise and reliable statistical figures and building fast and effective predictive 
models for TBI prognosis will become a much easier task. Techniques to be 
developed in this thesis will provide prognosis research in TBI with significantly rich 
amount of quantified image data, specifically, the quantified brain midline shift, 
which have never been available before to doctors and researchers. With the new 
methods and findings, new prototype online retrieval system is to be developed. It is 
hoped that outcomes from the present project will eventually benefit the traumatic 
brain injury clinical diagnosis, treatment, patients’ survival and recovery. 
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Chapter 1 

INTRODUCTION 

 

1.1 Motivation 

Clinical prognosis is doctor’s prediction on the possible development or likely 

outcome of an illness. Knowing the prognosis can help apply certain treatments in a 

more sensible way and avoid predictable crisis, thus shortening the recovery time or 

increasing the survival chance [Moons09]. Prognosis is usually based on doctor’s 

previous experience and knowledge of associations between clinical findings and 

possible illness outcomes. It may be inaccurate due to the limitation of individual 

doctor’s experience. Statistical figures on large populations, showing the relationships 

between important prognostic indicators and their associated outcome, help to 

overcome this limitation and increase the accuracy of prognosis. Using these figures, 

prognosis can be made based on the statistics gathered from a huge number of 

previous cases with similar prognostic indicators. Prognosis models have been built 

based on these statistics. For example, in intensive care unit (ICU), the APACHE II 

score, which is calculated from 12 routine physiological measurements, is an 

important indicator to measure the severity and predict the patient mortality [Knaus85] 
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[Knaus91]. However, in many areas, reliable and precise statistical figures for 

prognosis are still missing. 

In particular, in modern hospitals, medical imaging such as CT or MR has been 

playing an important role in clinical diagnosis. Pathological features found in medical 

images are used as important indicators for outcome prediction. Traditionally, medical 

image interpretation by radiologists has been mainly a qualitative perception process. 

Radiology reports describe findings in images by qualitative words such as ‘small’, 

‘large’, ‘mild’ etc. It is rare to see precisely quantitative measurements in those 

reports. In prognosis research, due to the lack of tools to quantify the pathological 

image features efficiently, current studies on the associations between clinical feature 

indicators in image and outcomes are mainly based on qualitative feature descriptions 

extracted from radiologist reports. Such feature descriptions, while being used for 

getting statistical figures from large population, suffer from reading inconsistency 

among different radiologists. 

To overcome the inconsistency, many studies are based on re-read feature 

descriptions by one expert. However, the re-reading process makes a large population 

study very time-consuming and expensive. More importantly, studies based on 

qualitative feature descriptions do not provide precise knowledge on the associations. 

A deeper understanding can only be obtained when the associations are quantitatively 

well estimated. 
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In another aspect, with the fast development of medical imaging devices and 

image processing techniques, the research community in medical imaging is 

prospecting that future radiological interpretation will be changing towards 

quantitative image assessment [Boone07][Daniel08]. This will require efficient 

methods to extract robust quantitative data from images. Such data, once available, 

might significantly change the current situation of clinical prognosis research. 

In particular, in traumatic brain injury (TBI) [Silver05], which is a major cause of 

death, brain CT images are widely used for clinical diagnosis. Pathological features 

on these images, such as the volume and type of hemorrhage regions, the amount of 

brain midline shift, and the volume of ventricle, are important indicators based on 

which decision of treatment or prognosis is made. Many studies have been carried out 

to find the associations between these findings from images and the outcomes; for 

example, on the relationship between brain midline shift and the recovery of 

consciousness [Ross89], on the relationship between brain midline shift and the 

chance of survival [Sucu06], on the relationship between hemorrhage location and 

patient mental status and motor function [Andrews88], on the relationship between 

Marshall CT classification (which is a combination of a group of qualitative findings 

in the brain CT image) and patient mortality [Maas05]. However, in these studies, 

findings of image features are either quantitatively measured manually by experts or 

described qualitatively. In the former case, studies are only based on datasets of small 

number of patients (less than 100) due to the time consuming labor work, despite the 
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fact that huge amount of brain image data and the associated outcome information is 

stored in the hospital database systems. In the latter case, datasets suffer from 

inconsistency as discussed. In both cases, due to the lack of quantified data in large 

populations, no precise or reliable statistical figures can be obtained. In addition, there 

may be many unknown associations to be discovered in large quantified datasets. 

Therefore, quantifying clinical features automatically in CT or MR image has 

become an urgent task for TBI prognosis research. Once efficient quantifying 

methods are developed and applied to large brain image databases, finding precise 

and reliable statistical figures and building fast and effective predictive models for 

TBI prognosis will become a much easier task.  

Among the various clinical features, brain midline shift (MLS) is a significant 

factor in TBI, which is a major cause of death. It has been related to the severity of 

injury and the chance of survival of patients [Quattrocchi91] [Marshall91] [Gruen02] 

[Maas08]. Many studies have been carried out to find the associations between MLS 

and injury outcomes such as disability or mortality. In brain CT images, the brain 

midline is a line connecting the centers of the attachment of the falx (Figure 1.1). It is 

not a human anatomical feature, but an imaginary line dividing the brain into two 

equal hemispheres. Ideally, the midline should be a straight line, called ideal midline 

(IML). Severe brain trauma will cause swelling inside the brain, which adds 

imbalanced pressures to the left and right hemispheres. The imbalanced pressure will 
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further deform the ideal midline to a curve, which is called the deformed midline 

(DML). 

  

Figure 1.1. Left: IML. Right: DML. 

Techniques reported in this thesis describe prognosis research in TBI with 

significantly rich amount of quantified image data, specifically quantified brain 

midline shift, which have never been available before to doctors and researchers. With 

the new methods and findings, new prototype online retrieval system is to be 

developed. It is hoped that outcomes from the present project will eventually benefit 

TBI clinical diagnosis, treatment, patient survival and recovery. 

1.2 Technical Challenges and Contributions of the Thesis 

The challenges and contributions of this work impact both computer science and 

clinical studies. 
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1.2.1 Challenges and contributions on medical image processing 

 Firstly, there are limited works addressing the problem of brain midline shift 

detection in CT images. This is mainly due to the following difficulties. Firstly, the 

midline is not a real anatomical feature, but an imaginary centerline dividing the brain 

into equal halves. Hence it cannot be segmented using conventional segmentation 

algorithms. Secondly, because of the noise and low contrast of CT images, brain 

tissues such as ventricles and brain matters are displayed with weakly defined 

boundaries. From Figure 1.2 we see that there is only a single peak in the intensity 

histograms of the brain CT slice. It is hence hard to separate the brain tissues based 

only on intensity histograms. Therefore it is difficult to identify the brain anatomical 

structures using this kind of intensity based method. Thirdly, because TBI is 

unpredictable, the damages can happen at random location of the brain with an 

arbitrary level of severity. Thus the brain structure is arbitrarily distorted. As a result, 

it is problematic to design a similarity function or probabilistic atlas to cope with 

these unpredictable variations and abnormalities [Liu.Jm10]. Therefore, to overcome 

these difficulties, the thesis proposes a new algorithm to automatically trace and 

quantify the brain midline shift from TBI CT images. Specifically, the work proposes 

an anatomical marker model (AMM) to model the brain midline shift. Instead of 

extracting of the brain midline directly from the image, the model attempts to find the 

midline shift markers. An algorithm based on the AMM is developed. The 
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experimental results show its advantage in accuracy, time efficiency and robustness 

comparing with the literature.  

 

Figure 1.2. The intensity histogram of a CT image. 

 Secondly, the thesis proposes a probabilistic spatial relationship model to 

improve the robustness of MLS marker detection and falx segmentation. The spatial 

relationship model is not only operated on brain CT slices, but also can be extended 

on MR images. 

 Thirdly, according to our literature review, there is no method presently available 

to extract the brain falx from brain CT images. This is because of the following 

difficulties. Firstly, the brain falx is normally weakly displayed in brain CT images. 

From Figure 1.3a, circled area, we can see that the falx is hard to visualize by human 

eyes. This is because of the noise and low contrast of the CT images. From Figure 

1.3b, we see that it is hard to segment using a standard edge detection algorithm such 

as sobel and canny edge detector. The edge texture is very complicated at the falx 
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regions. It is also hard to segment the falx using intensity histograms. For example, 

the intensity histogram of the lower falx (Figure 1.3c) has only a single peak which 

corresponds to the brain matter. The intensity of the falx is hard to separate from the 

brain matter. Therefore, the thesis proposes a brain falx segmentation algorithm using 

Directional Single Connected Chain (DSCC). The result is promising. This is the first 

work to segment brain falx on traumatic brain injury CT images. 

  
         a                 b                          c 

Figure 1.3. Left: The falx (circled). Middle: The edge map using Canny edge 
detector. Right: the intensity histogram of lower falx (circled area). 

1.2.2 Contribution on clinical study 

 Firstly, the work proposes a new measurement for MLS quantification, namely, 

the area ratio. It complements the traditional measurement, the maximum distance. 

The measurement has been proposed to doctors for clinical study. 

 Secondly, based on the proposed midline shift tracing and quantification 

algorithm, a content-based information retrieval (CBIR) system of TBI brain CT 

images is built. The system will retrieve patient data not only based on 
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meta-information such as age, gender, name, admission date/time, etc. but also on 

abnormalities such as the midline shift amount, and the hemorrhage size, etc.  

Thirdly, brain slice indexing helps doctors to retrieve images at the same height 

level (refer to Chapter 2 section 2.2.1) from large amount of different patient CT 

scans. It also helps doctors to retrieve images of the same height of one patient in 

multiple scans to monitor the evolution of the brain injury or the treatment process. 

Fourthly, the work provides a large amount of quantified brain midline shift data. 

This fills the gap between prognostic research and raw image data and between 

clinical research and raw CT images. Moreover, the quantified data make the clinical 

MLS measurements consistent. It gives accurate and objective numbers instead of 

qualitative statement such as “large”, “small”, “significant”, etc. which are 

inconsistently and subjectively used by different doctors. 

1.3 Overview of Problems and Solutions 

The proposed algorithm automatically quantifies MLS from TBI CT images. 

Technically, given a series of TBI CT images (Appendix) from a single patient, the 

expected output is: 

(a)  The deformed midline traced and delineated. 

(b) The quantification measurements of shifting amount of the MLS. 
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The proposed algorithm flow is shown in Figure 1.4. The input is firstly 

preprocessed. Then it is input to the AMM. The model has two components, the 

markers detection and the markers selection. The marker detection includes skull 

detection, ventricle detection and falx detection. The marker candidates from ventricle 

and falx detections are then input to the selection module. The midline is described by 

the selected markers and then quantified. The quantified value is finally output. Detail 

of each component will be explained systematically in later chapters. 

 

Figure 1.4. The proposed algorithm flow. 
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1.4 Thesis Structure 

The thesis is organized into 8 chapters as follows. 

Chapter 1 gives an introduction to the motivation and contribution. 

Chapter 2 introduces background knowledge used in the thesis. 

Chapter 3 reviews related work in brain midline shift detection. 

Chapter 4 presents the preprocessing step in the main algorithm. 

Chapter 5 presents the proposed model, the AMM for the midline tracing. The 

two components of the AMM, namely, the marker candidate detection and the marker 

candidate selection, are also presented in this chapter. Moreover, the quantification 

measurements of the midline shift are introduced. 

Chapter 6 reports the experiments based on the proposed evaluation methods. 

Results are compared with all current midline shift detection methods. 

Chapter 7 introduces further works carried out by the author, including work on 

brain slice indexing and on hemorrhage effect study. 

Chapter 8 gives the conclusion of the thesis. 
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Chapter 2 

BACKGROUND KNOWLEDGE 

 

This thesis investigates the automatic quantification of brain midline shift from brain 

CT scan images. Before stepping further into the main part of the thesis, relevant 

medical background such as CT, and brain anatomical structure, brain traumas are 

introduced first in this chapter.  

2.1 Computerized Axial Tomography 

Modern neuroimaging may be one of the greatest stories in medicine. The 

commercial availability of computerized axial tomography (CT) in the early 1970s 

heralded remarkable advances in the area of radionuclide brain scanning. CT is now 

recognized as one of the greatest advances to support diagnosis since the discovery of 

X-rays. Since its development in 1972, CT quickly became established as the 

foremost, and often the only technique required in diagnosing brain pathology. 

CT brain scan images are produced by computerized reconstruction of a slice of 

head tissues which has been analyzed by a moving X-ray beam. The patient lies 

comfortably on a bed with his head in the aperture of the gantry (Figure 2.1). This 
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contains the X-ray tube and detectors which generate digital information from each 

slice. This digital information is then processed by the computer to produce the 

images. Depending on the machine, processing data for each slice takes from 10 to 60 

seconds, and a full routine examination takes about 20-60 minutes [Orrison95]. 

 

Figure 2.1. CT Scanner. 

Particularly, in brain CT scans, each slice image represents a slice of brain tissue 

and the slices are presented in sequence from the bottom of the brain upwards. A slice 

is usually 5-10 mm thick. By reviewing a sequence of slices, one is able to build up a 

mental picture of the whole brain and 3-D CAD modules can be constructed. The 

standard position of the slices and their visual sequence are shown in Figure 2.2. 

Many machines are capable of scanning (or recalculating the data) into other planes, 

for example, sagittal or coronal. [Bradshaw87] 
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Figure 2.2. CT Slices. [Bradshaw87] 

CT brain scan captures the different densities of air tissues and bones. Indeed this 

range is presented on most images in clinical use. Air is shown as black and bone as 

white, with all the intervening densities as varying shades of grey. These intensities 

are quantified with the “Hounsfield Unit”, which was established by Godfrey 

Newbold Hounsfield, one of the principal engineers and developers of computed axial 

tomography. The Hounsfield unit (HU) is a linear scale quantifying the material. 

Mathematically, for a material X with linear attenuation coefficient μ, the 

corresponding HU value is given by the following formula: 

𝐻𝑈𝑥 =
𝜇𝑥 − 𝜇𝐻2𝑂
𝜇𝐻2𝑂 − 𝜇𝑎𝑖𝑟

× 1000                                               (2.1) 

The densities encountered in most scans are shown in Figure 2.3 (their 

approximate numerical values in Hounsfield units are given). Note that air and fat are 

difficult to distinguish visually, and so are calcification and bone. In this case, 

radiologists will check their Hounsfield unit value to differentiate them. Moreover, 
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the values of grayscales can be adjusted by varying the settings (known as window 

width and level) of the imaging systems. Typically, the brain CT scans use the brain 

window to see the blood clots and the bone window to see the fractures (Figure 2.4). 

 

Figure 2.3 Hounsfield units for body tissues, lesions, water and air. 

The intensity in Figure 2.3 gives valuable information for brain tissue 

segmentations. For example, skulls are bones and have HU 200-1000 according to 

Figure 2.3. The cerebrospinal fluid (CSF) is an organic liquid inside the brain space 

which has HU 0-10 according to Figure 2.3. Ventricles contain mostly CSF. 

Therefore, by intensity difference, we can separate skull and ventricles from other 

tissues. 
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Figure 2.4. Brain window (left) vs. bone window (right). 

2.2 Anatomical Structure 

2.2.1 The six height levels 

One axial brain CT scan consists of multiple 2D slices at different heights along 

the axial direction. An entire series of CT scans is illustrated in Appendix. Normally, 

there are 20 slices and the physical distance between each slice is around 5mm. Note 

that some slices have similar anatomical structure and appearance and can be grouped 

accordingly. For diagnostic purpose, the slices are normally grouped into 6 levels 

[Lin00] (Figure 2.5). 
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LEVEL 1            LEVEL 2           LEVEL 3 

   
LEVEL 4            LEVEL 5          LEVEL 6 

Figure 2.5. Anatomical structure of the slices. 

Level 1 is the nasal cavity region; level 2 is the transition from the nasal cavity to 

the encephalic region; levels 3 to 5 are the encephalic region, which contains the most 

important slices for TBI diagnosis; level 6 is the top region. Particularly, level 3 has 

remarkable dents (marked in red) along inner contour of the skull and basal cistern at 

the center; level 4 contains the frontal horn and the third ventricle; level 5 is the 

transition from the encephalic region to the top region. We call these three levels 

encephalic levels. The purpose of separation and renaming of encephalic levels is that 

the models and algorithms proposed in later chapters mainly process encephalic levels 

instead of the entire scan series. Some anatomical feature landmarks used in our work 

are also shown in Figure 2.5. 
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2.2.2 The middle slice (MS) 

One contribution of the thesis is proposing the concept of ‘middle slice’. Based 

on our observations on CT scans of hundreds of patients, it is observed that, in the 

encephalic region, the size of the bounding box of the skull varies following a regular 

pattern from the bottom slice upwards to the top slice. It firstly grows, and then 

shrinks (Figure 2.6). 

            

 
Figure 2.6. The bounding box of skulls through CT slices. Note that the fifth one has the 

maximum area, which corresponds to the lower image. 

We denote the slice with maximum skull bounding box size as ‘Middle Slice’ 

(MS) (Figure 2.7). Each CT scan series contains one MS. According to our 

observation on hundreds of CT scans 1

 The bounding box of the skull has maximum area. (by definition). 

, the MS has the following anatomical 

properties: 

 The skull is closed.  

                                                      

1 The data set is shown in Chapter 6 Section 6.1.1 
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 The attachments of falx are present. 

 The frontal horn and the 3rd ventricle are present. 

Note that the MS also falls in height level 4 in Figure 2.5.  

 

Figure 2.7. The middle slice (MS) from the sequence in Figure 2.6. 

The MS is used in midline shift detection. Clinically, the midline shift is observed 

on the 4th level. It is because the deformation of anatomical tissues is largest in this 

level. Moreover, the midline shift markers used in clinical study are the attachments 

of falx, the frontal horn, and the third ventricle. They all appear on this middle slice. 

Thus to detect the midline shift in an entire scan series, one could pick the MS and do 

midline shift detection on the MS. This saves computational resources and is 

consistent to the clinical diagnosis. 

2.2.3 The layers of the head and brain 

As one of the most important organs, human brain is protected by many layers. 

As illustrated in Figure 2.8, the outside layer is scalp, where human hairs grow. Below 

the scalp is the skull, the bone protecting the brain. The brain also has multiple layers. 
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The outside layer is the dura matter; there are vessels on its surface and also beneath it. 

Below the dura, from outside inwards, there are layers called arachnoid, pia mater, 

and brain tissue [Element]. 

 

Figure 2.8. The brain layers.  

2.3 Traumatic Brain Injury, Hemorrhage and Midline Shift 

Traumatic brain injury is defined as damage to the brain resulting from external 

mechanical force, such as rapid acceleration or deceleration, impact, blast waves, or 

penetration by a projectile [Maas08]. Brain function is temporarily or permanently 

impaired and structural damage may or may not be detectable with current technology 

[Parikh07]. TBI is one of two subsets of acquired brain injury (brain damage that 

occurs after birth or non-congenital). The other subset is non-traumatic brain injury, 

which does not involve external mechanical force (examples include stroke and 

infection) [Chapman99][Collins02]. All traumatic brain injuries are head injuries, but 

the latter term may also refer to injury to other parts of the 

head.[Blissitt06][Hannay04] [Jennett98]. However, the terms “head injury” and 

“brain injury” are often used interchangeably [McCaffrey97]. 

http://en.wikipedia.org/wiki/Blast_injury�
http://en.wikipedia.org/wiki/Traumatic_brain_injury#cite_note-Maas08-1�
http://en.wikipedia.org/wiki/Traumatic_brain_injury#cite_note-Parikh07-2�
http://en.wikipedia.org/wiki/Acquired_brain_injury�
http://en.wikipedia.org/wiki/Brain_damage�
http://en.wikipedia.org/wiki/Force�
http://en.wikipedia.org/wiki/Stroke�
http://en.wikipedia.org/wiki/Infection�
http://en.wikipedia.org/wiki/Traumatic_brain_injury#cite_note-McDonald99-3�
http://en.wikipedia.org/wiki/Traumatic_brain_injury#cite_note-McDonald99-3�
http://en.wikipedia.org/wiki/Traumatic_brain_injury#cite_note-Blissitt06-5�
http://en.wikipedia.org/wiki/Traumatic_brain_injury#cite_note-Blissitt06-5�
http://en.wikipedia.org/wiki/Traumatic_brain_injury#cite_note-Jennett98-7�
http://en.wikipedia.org/wiki/Traumatic_brain_injury#cite_note-McCaffrey97-8�
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The preferred radiological test in the emergency setting of TBI is CT [Barr07]. 

Magnetic resonance imaging (MRI) can show more detail than CT, and can add 

information about expected outcome in the long term [Valadka04]. It is more useful 

than CT for detecting injury characteristics such as diffuse axonal injury in the longer 

term [Maas08]. However, MRI is not used in the emergency setting for reasons 

including its relative inefficacy in detecting bleeds and fractures, its lengthy 

acquisition time, the inaccessibility of the patient in the machine, and its 

incompatibility with metal items used in emergency care [Valadka04]. Therefore, TBI 

patients are diagnosed using CT scans. 

Hemorrhages are typical features of traumatic brain injuries. Hemorrhage is 

bleedings inside the brain. The thesis will mention three types of the hemorrhages, 

namely extradural hemorrhage (EDH), subdural hemorrhage (SDH), and intracerebral 

hemorrhage (ICH). These three hemorrhages are introduced briefly next as 

background knowledge for the later chapters. The introduction is based on tutorials 

provided in [Dowine]. 

Extradural hematomas 

EDH arises between the inner layer of the skull and the dura matter. The 

expanding hematoma strips the dura from the skull. The bleeding is quite strong so 

that the hematoma is confined, giving rise to its characteristic biconvex shape with a 

well defined margin. The bleeding is usually acute and so high attenuation in CT 

images. EDH is caused by extremely strong strikes on the head. Based on prognostic 
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research, one large EDH is fatal. Therefore, there are extremely rare cases where 

multiple large EDHs are observed clinically. One example is shown in Figure 2.9. 

 

Figure 2.9. Acute extradural hematoma (circled area). 

Subdural hematomas 

 SDH arises between the dura and the arachnoid, often from ruptured veins 

crossing this space. The space enlarges as the brain tissue becomes atrophic and so 

subdural hematomas are more common in the elderly.  

SDH appearance in CT images is similar to that of the extradural hematoma. 

Differentiating the two is not so important in the acute situation. The blood generates 

again high attenuation, but may spread more widely in the subdural space, with a 

crescent appearance and a more irregular inner margin. We may compare it with the 

EDH. The bleeding of EDH is more towards the center of the brain so it is a convex 

shape, while the bleeding of SDH is more along the skull so it is a concave shape. 

Similar to the EDH, acute SDH is caused by strong strike on the head. Based on 

prognostic research, one large SDH is deadly. Therefore, there are extremely rare 
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cases where multiple large SDHs are observed clinically. One example is shown in 

Figure 2.10. 

 

Figure 2.10. Subdural hematoma (circled area). 

Intracerebral hemorrhage 

ICH is also called hemorrhagic contusion. It is located inside the brain, hence 

surrounded by brain matters, and always has high attenuation. There can be multiple 

ICHs occurring inside the brain. One example is shown below (Figure 2.11). 

 
Figure 2.11. Intracerebral hemorrhage (circled area). 

We have previously introduced the brain midline (Refer to Chapter 1 on page 4 

and 5). Note that the midline will always pass through the centers of attachments of 
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falx and certain anatomical tissues (Figure 2.12b). For example, in slices at encephalic 

level 2 (level 4 in Figure 2.5), it always passes through the center of the frontal horn, 

and the center of the third ventricle (Figure 2.12b). These tissues are used as the 

‘midline shift markers’ clinically. As the midline always passes through those markers, 

to trace the midline it makes sense to locate them. This is the anatomical marker 

model proposed in this thesis, which will be discussed in detail in Chapter 5. 

 
 a                     b 

Figure 2.12.The midline shift. a: the IML; b: encephalic level. 

 There are strong relationships between hemorrhages and the midline shift, the 

cause of which is mainly the unbalanced pressure caused by the hemorrhage. 

Different types of hemorrhages have different effects. The bleeding point of the EDH 

is out side the dura, so the EDH is generally not large and the midline is generally not 

shifted significantly. In case of SDH, the bleeding point is under the dura and the 

bleeding direction is along the skull where little resistance stops the flooding of the 

blood. Hence the bleeding will accumulate and generally forms a large hemorrhage 

along the skull. The accumulated blood greatly increases the pressure of the 

corresponding region of the brain, with great effect on the midline shift. The bleeding 

of ICH is inside the brain and the location is unpredictable. Due to the protection of 
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the skull and brain matter, strikes on the head normally do not cause large bleeding 

inside the brain matters. Hence, ICHs are small in traumatic brain injury. They 

normally do not have effect on midline shift except for single large ICH occurring 

around the ideal midline. 

2.4 Summary of the Chapter 

 This chapter has given a brief introduction to CT imaging, brain anatomical 

structure, traumatic brain injury, hemorrhages. It has also defined the brain midline 

shift and the middle slice, two crucial items for this work. Particularly, the brain 

anatomical structure and the relations between hemorrhage and the midline shift have 

been discussed. 
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Chapter 3 

RELATED WORK ON MIDLINE SHIFT DETECTION 

 

In this chapter, we review literatures on related topics. Firstly, the main topic, work on 

midline shift detection, is reviewed. Secondly, related work of intermediate steps is 

reviewed such as work on detection of attachments of falces and work on ventricle 

segmentation. 

3.1 Work on Midline Shift Detection 

Brain midline shift (MLS) is a significant factor in TBI diagnosis. It indicates the 

severity of injury and the chance of survival of patients [Quattrocchi91][Marshall91] 

[Gruen02][Maas08]. Automatic quantification of MLS helps to study the association 

between the amount of MLS and clinical outcomes such as mortality or morbidity. 

However, little work has been reported to measure MLS automatically. This is mainly 

due to two difficulties in this task. One is that the deformed brain midline is not a 

visible anatomical feature that can be segmented using conventional image 

segmentation algorithms. The other difficulty is that the brain structure may be 

arbitrarily distorted so the midline shift is unpredictable. Based on the literature 

review, there are only two papers presently addressing the problems of MLS detection: 
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the symmetry model [Liao06] [Liao10], and the ventricle shape matching model 

[Chen10]. 

3.1.1 The Symmetry Model 

The symmetry model is proposed by Liao et al. [Liao06][Liao10]. In Liao’s 

method, the deformed midline is modeled as a quadratic Bezier curve. The quadratic 

Bezier curve is defined by 3 points, P1, P2, and P3, particularly A, B, and C in Figure 

3.1. The task is to compute the 3 control points A, B, and C. Each point has two 

coordinates, x and y. Hence we have 6 parameters to determine, A (ax, ay), B (bx, by), 

and C (cx, cy). However, notice that ending points A and C always reside on the IML, 

which is defined as the intersection between the slice and the ideal middle sagittal 

plane (IMSP). Forcing the falx segments to overlap with the IML will align the 

midline along the coronal direction and make A and C have the same x value, which 

is also the same as the x value of the falx. Thus, assuming the falx and the vertical 

axis are located, only 4 parameters need to be estimated, ay, bx, by, and cy. According 

to the symmetry of the brain, the points should be located at the place such that the 

deformed curve is still the symmetrical axis of the brain (Figure 3.1). Practically, a 

symmetry score is constructed to estimate the 4 parameters, so that the result value of 

the 4 parameters should maximize the symmetry.  

A symmetry map is used for computing the symmetry scores. The score is 

defined as the weighted sum of squared difference of the 48 pixels at each side of the 

IML is calculated for each brain pixel. This corresponds to about 2.4cm laterally and 
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usually covers anatomical structures such as frontal horns and 3rd ventricle around the 

midline. Mathematically, we have the following symmetry function 

Si,j = ���Ii+k,j − Ii−k,j�
2

×
48 − k

48
� , 1 ≤ k ≤ 47                      (3.1) 

where Si,j is the symmetry score, Ii,j is the pixel located at position (i, j), and k is the 

distance from the pixel to the IML. The symmetry map is calculated on the brain 

content without skull. With the symmetry map in hand, the task now is to estimating 

the parameters ay, bx, by, and cy. The target function is minimizing the summed score 

of each point of the deformed midline on symmetry map. One point of the deformed 

midline is found for each Y coordinate. If the value of Y lies within the range of the 

control points of the Bezier curve, interpolation is used to find the corresponding X 

coordinate. Otherwise, X is set to the IML. A genetic algorithm is used for the search. 

 
Figure 3.1: The symmetry model: the midline shift is defined as a quadratic 

Bezier curve. [Liao06] 

The algorithm finds automatically the midline shift successfully in a number of 

brain CT images (experimental results are shown in Chapter 6 Section 6.2.1), which 
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was not reported before. It makes use of the brain symmetrical structure rather than 

attempting to extract the midline using conventional segmentation algorithm used on 

other brain tissues. 

However, the method fails in brain CT images of patients with single large 

spontaneous ICH around center of the brain. In contrast to the good results where 

hemorrhages often appear on the surface of the brain, spontaneous ICH often occurs 

around the IML. This is the case in which overall symmetry is destroyed. The 

algorithm fails on such case because the model assumes the symmetry exists despite 

of lesions (Figure 3.2). 

 

Figure 3.2. Large ICH around the IML 

Besides, the algorithm is developed solely on single 2D slice. It requires expert to 

manually go through each 2D slice and select certain slice with expected pathological 

information. Thus it is not fully automatic.  
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High computational cost comes from the exhaustive search of the control points 

of the Bezier curve. (A running time comparison is shown in Chapter 6, Section 6.2.1) 

This makes the method not practical to be used in real-time retrieval tasks. 

3.1.2 The Ventricle Shape Matching Model 

The ventricle shape matching model is proposed by Chen et al. [Chen10] to 

compute the deformation field of ventricle contours across CT images, which is an 

extension of their ventricle segmentation work in 2009 [Chen09]. The segmented 

ventricles are matched to the ventricle shape template to get the deformed vector 

fields around the ventricles (Figure 3.3). Finally the midline is deformed according to 

the deformation vector fields. 

 

Figure 3.3. The shape matching of ventricles. 

Chen uses “success rate” to evaluate the algorithm performance. The success rate 

is similar with “recall” or “sensitivity” which describes the ability of the algorithm to 

successfully identify the positive cases. Chen’s method effectively traces the 
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deformed midline with success rate 87.9% on patients presenting 5mm midline shift 

with 2.25mm tolerance. 

However, the method fails on large brain deformation cases where ventricles are 

compressed or absent on the image. Specifically, in the case of brain herniation 

[Barr07], the 3rd ventricle disappears on the image (Figure 3.4). The method will 

wrongly segment the ventricle at right side of the image as the 3rd ventricle, thus the 

midline is wrongly deformed. 

 

Figure 3.4. The missing of the 3rd ventricle. 

3.2 Work on Detection of Attachments of Falces 

Several algorithms have been proposed to address the problem of detection of 

attachments of falces. Liu et al. [Liu97] compute the two points in order to calculate 

the ideal midline. They measure the symmetry of the skull by rotating the entire scan 

series from -45 to +45 degrees with a 0.5-degree step. The symmetry is measured by 

the difference of pixel intensities between the left and right half of the skull. The 

rotation angle yields the smallest difference (most symmetrical) is chosen to rotate the 

entire scan. The center line of the bounding box of the skull is then the straight line 
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where the IML is located. Points A and B are thus the intersection points of the IML 

and the inner contour of the skull. It is time consuming because it operates on the 

entire series of scans. 

Liao et al. [Liao06] define the two centers of the attachments of the falx to be the 

points along the inner contour where the skull is thickest. This is an invalid 

assumption. For example, from Figure 5.2, we see that on the upper left part of the 

skull, around -30 degrees, the skull is thicker than the part where A is located. 

Both proposed algorithms fail to capture the features of the centers of attachments 

of the falces, which are protuberances along the skull inner contour. Therefore, we 

propose an algorithm based on the extractions of the protuberance points. (Please 

refer to Chapter 5 Section 5.2.1 for algorithm details) 

3.3 Work on Ventricle Segmentation 

Many studies have been carried out on brain ventricle segmentation. However, 

most of the methods focus on MR brain images rather than CT images. Typical 

ventricle segmentation methods in MR brain images include the thresholding methods 

[Worth98], region growing methods [Sonka96] [Schnack01] [Xia04] [Liu.Jm09], 

knowledge based methods [Xia04] [Liu.Jm09], data clustering approach [Pham00], 

model based methods such as atlas warping [Holden10], shape deformation 

[Baillard00] [Kaus01] [Shen01], and hybrid approaches [Liu.Jm07] [Liu.Jm08]. As 

remarked by [Lauric97] [Liu.Jm10], there is very limited on ventricle segmentations 

on brain CT images. This is because of the following difficulties. Firstly, the CT 



CHAPTER 3                                  RELATED WORKS ON MIDLINE SHIFT DETECTION 

33 

images contain much more noise than MR images and also have much lower contrast. 

As introduced in Chapter 1, Section 1.2.1, the intensity of brain tissues are hard to 

separate from each other. Secondly, anatomic variations in the shape and size of the 

ventricles are quite large [Liu.Jm10]. Thirdly, random traumatic brain injuries bring 

arbitrary distortions of the brain. Thus the ventricles are arbitrarily deformed. This 

gives rise to problems in designing a similarity function or probabilistic atlas to 

segment the ventricles. Due to these difficulties, it is hard to apply the segmentation 

techniques of MR images directly on CT images [Liu.Jm10]. We review five major 

approaches for brain CT image segmentation: (a) the active contour approach, (b) the 

threshold and region growing approach, (c) the knowledge based approach, (d) the 

data clustering approach, and (e) the hybrid approach. 

3.3.1 The active contour approach 

The first active contour model, also called “snake”, was initially proposed by 

Kass et al. [Kass88]. The idea is to model the image as a 2D function mapping the 

positions to the intensities and model the contours as peak or trough, which 

corresponds to the local maxima or minima of the function. An active contour, called 

the “snake”, is initialized near the contours and tries to minimize the energy of the 

function moving towards the peak or trough. Xu et al. improved the snake and 

proposed an improved model, the “Gradient Vector Flow (GVF)” [Xu97] [Xu98] in 

1997. It adds a momentum to avoid the snake being trapped into local maxima or 

minima. Snakes are widely applied on image segmentation tasks. Maksimovic et al. 

use snakes to segment brain tissues and do 3D reconstructions [Maksimovic00]. 
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Snakes are widely used in human tissue segmentation in medical imaging. However, 

their use is not fully automatic because it requires manual input to initialize the 

snake’s shape and location. Moreover, snakes are computed by iteratively finding the 

local minima and maxima of a complex energy function. This process can be very 

time consuming. In our problem, we need the algorithm to be fully automatic and 

efficient to (a) be embedded into the system as an intermediate step, and (b) support 

online queries. Therefore, the active contour approach is generally not proper in our 

case. 

3.3.2 The threshold and region growing approach 

The idea of the threshold and region growing method is straightforward. It uses 

thresholds on the image intensities to group pixels with similar gray levels. It then 

uses region growing to further group pixels with spatial constrains. Deleo et al. 

[Deleo85] can be considered as the first attempt to segment tissues from CT images. 

They use hard threshold to separate skull, brain matters, and CSF regions. Obviously, 

the hard threshold is not robust to handle the various cases. Therefore various 

methods have been proposed to make the threshold dynamic and adaptive. Ruttimann 

et al. [Ruttimann93] propose an automated thresholding method to segment brain 

cerebrospinal fluid (CSF). The threshold is obtained from the statistics of the intensity 

histogram. Hu et al. [Hu05] propose a method based on double thresholding and brain 

mask propagation. A reference image from atlas with skull removed is chosen as the 

brain mask. Then a high threshold is determined by fuzzy C-means clustering on the 

mask. A low threshold is determined from the statistics of the intensity histogram of 
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the mask. The thresholding and region growing method is efficient. However, all the 

work is proposed on normal scans. The methods are hard to be applied on cases of 

severe trauma, where the ventricles are largely deformed. Therefore, they are not 

applicable on our severe traumatic brain injury cases. 

3.3.3 The knowledge-based approach 

 The knowledge-based approach uses expert knowledge to describe ventricles 

anatomical property, such as the position, shape, and color. Li et al. [Li95] designs a 

generic blackboard system to organize tissue location information. The system loads a 

raw image and breaks the images into low level features, such as points, lines, and 

regions, so that each image contains multiple tissues and each tissue comprises 

multiple points, lines and regions. The tissues are then recognized based on the 

combination of the low level features according to rules. The knowledge-based 

approach is too complicated to be embedded in the TBI CT image analysis algorithms 

as an intermediate step, especially real-time online framework such as a TBI CT 

image retrieval system. The complexity of the algorithm comes from the complexity 

of knowledge representation and large amount of features used. Moreover, the 

knowledge is not able to predict the arbitrary distortion of the brain. Hence it is not 

applicable on severe trauma cases. 

3.3.4 The data clustering approach 

An image can be viewed as a collection of pixels. The ultimate goal is to classify 

each pixel into groups, i.e. segmenting regions. The first such algorithm was proposed 
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by Loncaric et al. [Loncaric97]. They use K-mean clustering and neural network to 

classify the pixels. Another typical work on ventricle segmentation using data 

clustering approach was proposed by Chen et al. [Chen09]. They first segment all 

types of tissues using a Gaussian mixture model (GMM) [Greenspan06]. Then 

template matching is used to detect the ventricle regions. The main drawback of the 

data clustering methods is the problem of initialization. The method is sensitive to the 

initial input of the clustering model. For example, K-mean requires the user to input 

initial cluster centers, and GMM requires the user to predefine the number of clusters 

before processing. Therefore, pre-processing and post-processing are normally 

required in clustering. For example, Loncaric [Loncaric97] use rule-based labeling 

after the ventricle segmentation. In this approach, both approaches do not handle large 

brain distortion. This limitation of Loncaric’s work [Loncaric97] comes from using  

rule-based labeling, where the rules are constructed using knowledge on standard CT 

scans. The limitation of Chen’s work [Chen09] comes from the template they use, 

which is generated from normal MR scans. The clustering approach is applicable to 

our case but requires robust post-processing to handle the severe brain distortions. 

3.3.5 The hybrid approach 

 Recently, Liu et al. [Liu.Jm10] proposed a hybrid approach using domain 

knowledge on the anatomy, shape variation, and intensity distribution of the ventricles 

in brain CT images for ventricle segmentation. This is the first work for automatic 

segmentation of the ventricular system from CT scans [Liu.Jm10]. The system is not 

only able to segment ventricles from a single CT slice, but also from the entire brain 
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volume. In their method, a region of interest (ROI) is firstly identified through CSF 

thresholding. Ventricles inside the ROI are then segmented using shape-template 

matching. The method is automatic and robust. It gives best performance on brain 

ventricle segmentation on CT images presently [Liu.Jm10]. However, this work is not 

applicable to our case. This is due to the following two reasons. Firstly, the work uses 

a model-based method. It is important to make sure the model contour of the ventricle 

falls near the corresponding ventricle region, so that the related ventricle is covered in 

the ROI after contour expansion. An expansion parameter, d, is empirically set to 

6mm. But in order to deal with large deformation, one may need a larger value of d. 

That will make the ROI include more non-ventricle region and decrease the ventricle 

segmentation performance. On the other hand, in our case, the significant midline 

shift is defined as larger than 5mm, and most cases have midline shift around 1cm or 

even larger. Recall that the midline shifts together with the ventricles. This means that 

in our case, the ventricle distortion is generally around or larger than 1cm. Therefore, 

using the same settings of the algorithm, [Liu.Jm10] is unable to find the correct 

contour of largely deformed ventricles (Figure 3.5). Secondly, this method is too 

complicated and time consuming to apply as an intermediate step of our model. 

According to the report, it takes 10 seconds to segment ventricles of one patient, while 

our proposed ventricle candidate segmentation method takes less than 3 seconds for 

each patient as shown in later sections. Thirdly, the goal of [Liu.Jm10] is different 

from ours. Theirs is the first work to automatically segment the ventricular system 

from CT images. On the other hand, ours is to find ventricle candidate regions instead 
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of segmenting the exact ventricle region. This allows for more tolerance to large 

deformation cases. 

 
Figure 3.5. The large ventricle distortion. The green line is the midline traced by 

our proposed algorithm. The red box is the expanding range of 6mm of Liu’s 
method. We can see the frontal horns are largely displaced and out of the range. 

In conclusion, current ventricle segmentation methods from brain CT images 

suffer from at least one problem which makes them not directly applicable as an 

intermediate step in our model. The problems are: (a) not fully automatic; (b) not 

robust to handle large brain distortion. Moreover, in our case, it is not necessary to 

exactly segment the frontal horn and the third ventricles. As introduced in the 

following sections, rough segmentation with multiple candidates output is enough. 

The candidates are further selected in the marker selection step. 

3.4 Summary of the Chapter 

This chapter reviewed current works on brain midline shift detection algorithms 

and also works related to the intermediate steps. Based on the literature review, there 

are current only two methods proposed on the midline shift detection algorithms. Both 

of them suffered at least one of following problems: (a) not fully automatic; (b) time 

consuming; (c) unable to handle unsymmetrical cases; (d) unable to handle cases with 
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missing ventricles. Therefore, in order to solve these problems and fulfill the research 

gap, we propose a novel midline shift quantification and measurement method in this 

thesis. 

There are many approaches proposed on ventricle segmentations. However, 

current proposed techniques are either not fully automatic or not robust to handle 

large brain distortion. Therefore, in order to solve our problem, we propose a 

fully-automatic and robust method to roughly segment the ventricles using GMM and 

candidates selection algorithm. Details of the proposed methods are discussed in 

Chapter 5. 
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Chapter 4 

PREPROCESSING 

 

In this chapter, the preprocessing step of the proposed algorithm will be introduced. 

The preprocessing step takes the input, which is a series of brain CT scans from a 

single patient, and outputs the Middle Slice (MS), the probability map of ventricles 

(PMV), the bone map, the blood map, and the cerebrospinal fluid (CSF) map. 

Specifically, the preprocessing module has two components, the encephalic region 

separation and the MS detection. 

4.1 The Encephalic Region Separation and Intensity Maps 

The purpose of the separation of the encephalic region is to focus the analysis on 

the encephalic region, because clinical brain trauma diagnoses focus on this region. 

After the separation, the CT images are grouped into two groups. Referring to Chapter 

2, Section 2.2.1, the encephalic region contains images from levels 3 to 5; the 

non-encephalic region contain images of the nasal cavity (level 1 and 2) and the top of 

the brain (level 6). The separation is done by employing wavelet transform (WT) and 
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texture analysis techniques. We introduce the basics of WT first, and then we show 

our algorithm of separation. 

4.1.1 Wavelet transform 

The Wavelet transform (WT) has been widely applied in image processing, 

especially texture analysis. The following introduces the basics of the WT.   

In signal processing, one signal has two types of descriptions, in the time domain 

and in the frequency domain. Signals are expressed in the time domain in their raw 

format: the signal is measured as a function of time. However, this way of representing 

signals does not make explicit frequency information, i.e., the rate of the signal varying. 

Therefore, frequency domain representation of signal was born. The frequency 

spectrum captures how signal changes. 

The Fourier transform (FT) effectively transforms a signal from its time domain 

representation to the frequency one and vice versa. This is achieved by expressing the 

signal as (possibly infinite) linear combinations of parametric basis functions. For 

example, if a signal is so regular that it is able to be expressed by only single function 

component after it is transformed from time domain to frequency spectrum, its 

frequency spectrum will be a single pulse. This means that it changes regularly with 

constant frequency. On the other hand, if a signal is so irregular that it is expressed as 

endless function components after the transformation, its frequency spectrum will 
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contain complicated and countless pulses showing that it changes irregularly with 

various frequencies. 

The WT applies the same idea as the Fourier transform: it provides a 

time-frequency transformation. Moreover, it is capable to represent time and frequency 

information simultaneously. This makes it superior to the FT. By WT, a time-domain 

signal is decomposed into a high frequency component and a low frequency component. 

Each component can be decomposed further. Thus we can use WT to split one signal 

into different frequencies and still preserve its temporal information. 

An image is a 2D signal. Using WT, we get high frequency components of the 

image and low frequency components. The high frequency components capture the 

textures. The low frequency components are quantized image where they contain major 

contents with pixels values down sampled. 

More details of WT and its time frequency representation and property can be 

found in [Mallat89] and [Chui92]. 

4.1.2 The separation algorithm 

From Section 2.2.1 we know that the texture of nasal cavity region is much more 

complex than that of the brain region. Texture is a good feature to distinguish them. The 

WT is able to separate textures and the homogeneous intensity field of the image. 

[Liu.R.ICPR08] Hence, we can describe the texture of the CT images using the 

coefficients of the high frequency components of the wavelet transform. 
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The first step is to decompose the image four times using the simplest wavelet - 

Haar wavelet transforms [Haar10] and then reconstruct the signal by only using the 

detail coefficients and obtain a texture map (Figure 4.1).  

  

Figure 4.1. Left: Brain CT Image. Right: Texture map. 

Secondly, we calculate the histogram of the intensity distribution, and record 4 

measurements: (a) the arithmetic mean, (b) the standard deviation, the skewness and 

the kurtosis [Kenney62] of the distribution. 

Thirdly, we employ a variation of Haralick’s model of texture descriptors 

[Haralick73] and add features vector such as entropy, energy, contrast, homogeneity, 

variance, maximum probability and the correlation. (Refer Equation 4.1 – 4.9) 

Mathematically, given a size of M by N image I (i, j) and denoting µ to be the mean and 

ó to be the variance of the intensities, those information are captured in (Equation 4.1 - 

4.9) below. 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −��𝐼(𝑖, 𝑗)log�𝐼(𝑖, 𝑗)�                                    (4.1
𝑁

𝑗

)
𝑀

𝑖
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𝐸𝑛𝑒𝑟𝑔𝑦 = ��𝐼2(𝑖, 𝑗)                                                           (4.2)
𝑁

𝑗

𝑀

𝑖

 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = ��(𝑖 − 𝑗)2𝐼(𝑖, 𝑗)                                             (4.3)
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𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 = ��
𝐼(𝑖, 𝑗)

1 + |𝑖 − 𝑗|
                                       (4.4)
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𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
1
2
���(𝑖 − 𝜇)2𝐼(𝑖, 𝑗) + (𝑗 − 𝜇)2𝐼(𝑖, 𝑗)�     (4.5)
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𝑀𝑎𝑥𝑖𝑚𝑢𝑚 = max𝑖,𝑗 𝐼(𝑖, 𝑗)                                                         (4.6) 

𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑀𝑜𝑚𝑒𝑛𝑡 = ��
𝐼(𝑖, 𝑗)

|𝑖 − 𝑗|𝑘
                  (4.7)
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𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝑇𝑒𝑛𝑑𝑒𝑛𝑐𝑦 = ��(𝑖 + 𝑗 − 2𝜇)𝑘𝐼(𝑖, 𝑗)                  (4.8)
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𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = ��
(𝑖 − 𝜇)(𝑗 − 𝜇)𝐼(𝑖, 𝑗)

𝜎2
                          (4.9)

𝑁

𝑗

𝑀

𝑖

 

Lastly, we use SVM with a linear kernel to learn the model. 

4.1.3 The experimental result: Separation 

The encephalic region separation is evaluated from a dataset consisting of 493 

patients, totally 11011 images. Each patient has 20 to 30 slices. Moreover, not all slices 

follow a sequential order. Different patients have different scanning starting or ending 

positions, and different scanning angles.  

The algorithm is implemented on a PC with 2.33 GHz Pentium 4 CPU using 

MATLAB. The average runtime per image is 0.26s. The ground truth is marked by 
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professional doctors. Using ten-fold cross validation, the recall is 89.48% and the 

precision is 96.27%.  

This work1

4.1.4 The intensity maps 

 effectively separates the nasal cavity slices and the encephalic slices. 

The separation can be further used in the brain indexing task. 

Medical images contain valuable anatomical information. The regions of different 

appearance represent different tissues. To detect anatomical features in TBI CT 

images, we firstly do a rough segmentation of different tissue regions based on 

intensities. The regions are skulls, hemorrhage regions, brain matters and CSF. 

Because the intensity values are densely distributed (Figure 4.2a), it is hard to 

segment the regions with hard thresholds. However, the low frequency components 

obtained in the previous steps from wavelet decomposition have discretized intensity 

levels (Figure 4.2b). This is because that the wavelet effectively captures the majority 

intensities and eliminates the heterogeneous components. 

                                                      

1 The work is published in [Liu.R.ICPR.08]. 
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a 

 
b 

Figure 4.2. Brain regions segmentation. a: left: original image, right: the 
continuous intensity histogram; b: left: image reconstructed using the 

approximate coefficients, right: the discretized histogram. 

Then thresholds are made on the discretized images to get the bone map (skull 

image), CSF map (CSF image), and blood map (hemorrhage image) respectively 

(Figure 4.3). 

   
Figure 4.3. Results of tissue region segmentation using wavelet method: Left: 

Skull; Middle: CSF; Right: Blood. 
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4.2 Middle Slice Detection 

 The input is an entire series of one patient’s CT scans. Clinically, the midline 

shift occurs at height level 4. One good representative slice among all level 4 slices is 

the Middle Slice (MS) because it contains all markers of the brain midline shift, the 

centers of attachments of falx, the frontal horn, and the third ventricle. Therefore, we 

shall pick the MS out of the entire scan, and detect and quantify the midline shift 

based on the MS. 

 The MS is determined by examining two features: the size of the bounding box of 

the skull and the probability of the slice contains frontal horn and lateral ventricle. 

 The bounding box of the skull is computed from the bone map separated from the 

previous step. The size of the bounding box of the skull is then the multiplication of 

the skull height with the skull width. 

 To compute the probability of the slice containing frontal horn and lateral 

ventricle, we build a posterior probability map of ventricle (PMV) (Figure 4.4). The 

PMV is the average image with frontal horns and lateral ventricles manually labeled. 

Totally 100 images are manually selected to be labeled so that they include various 

MLS cases. The label images are binary images where the labeled regions have pixel 

value one and other places zero. The map is constructed by adding all labeled images 

and normalize the summed image so that its pixel values are all from zero to one. 

Therefore, the brighter regions of the probability map indicate higher numbers of 

images with ventricles in the regions and thus higher probability that ventricles are 
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present. Then we compute the similarity of the PMV and the CSF map of current slice 

using (Equation 4.10). Note that the more similar the CSF map to the PMV, the higher 

similar score obtained, thus the higher chance the slice contains the frontal horn and 

the third ventricle. 

Similarity = � CSF(𝑥,𝑦)PMV(𝑥,𝑦)
𝑥,𝑦∈MS

                           (4.10) 

 

Figure 4.4. The probability map of ventricle. 

 Finally, the size of the bounding box, denoted as S, and the convolution score, 

denoted as p, through all slices, are normalized between 0 and 1. The MS is thus the 

slice has largest value of S + wp within the encephalic region, where w is a weighting 

factor and is set to 9 empirically. 

4.3 Summary of the Chapter 

 This chapter introduced the preprocessing step of the proposed midline shift 

quantification algorithm. The preprocessing step is the first step of the proposed 

algorithm. It takes raw input images, extracts the encephalic slices, and outputs the 

images and maps used for the main part of the algorithm. Specifically, the input of the 
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preprocessing step is the entire series of one patient’s brain CT scans. The outputs are 

the bone map, the CSF map, the blood map, the probability map, and the middle slice. 
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Chapter 5 

THE BRAIN MIDLINE SHIFT QUANTIFICATION 

 

The preprocessing step outputs the middle slice (MS) and several maps. The MS is 

then input to the main part of the proposed algorithm. In this chapter, we firstly 

introduce the proposed anatomical marker model (AMM). Then we present the main 

algorithm based on this model. Specifically, the algorithm contains two parts, the 

marker candidate detection and the marker candidate selection. 

5.1 The Anatomical Marker Model 

Recall that no matter how large the midline shift is, it always passes through the 

centers of attachments of the falces (Figure 5.1), and certain anatomical landmarks, 

which are the “midline shift markers”. Hence to trace a deformed midline (DML), it is 

crucial to locate those midline shift markers.  

Based on this observation, we propose AMM for tracing the DML on the MS.  
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a                              b 
 Figure 5.1. The anatomical marker model. a: the IML; b: the DML and 

markers. 

Refer to Figure 5.1. We define the two centers of attachments of falces to be A, 

B. Thus the ideal midline (IML) is the line segments AB. In case of DML, we define 

the center of the frontal horn1

5.2 Marker Candidate Detection 

 to be C. Define the center of the third ventricle1 to be 

D. DML in this level is then defined as the polyline A-C-D-B (Figure 5.1b). 

Moreover, the frontal falx starts at point A and ends at point E. The lateral falx starts 

at points B and ends at point F (Figure 5.1b). Points E and F are used as auxiliary 

points for deciding locations of C and D. We shall see the usages of these two 

auxiliary points in detail in Section 5.3.4. Therefore, to trace the midline, the problem 

is to accurately locate those markers A to F. 

 To make the marker detection robust, we first detect the marker candidates using 

various segmentation algorithms. Then we select the correct candidates based on the 

spatial constrains. In this section three algorithms are proposed to get markers and 

                                                      

1 Please refer to Section 2.2.1 “Anatomical Structure” Figure 2.5, level 4. 

A 

B 
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marker candidates. Specifically, the markers A and B are obtained from skull analysis. 

The marker candidates C and D are computed from possible ventricular region 

detection. The candidates for auxiliary markers E and F are calculated from falx 

extraction. In addition, hemorrhages are segmented for the selection process later. 

5.2.1 Detection of attachments of falces (markers A and B) 

The markers A and B are the centers of the attachments of the falces :(a) The 

central protuberance point in the upper skull boundary, denoted as A. (b) The central 

protuberance point in the lower skull boundary, denoted as B. 

To locate the protuberance, we trace the inner skull boundary contour and find 

the sharpest turning point (point with the biggest curvature) along the contour. The 

skull profile is obtained from the bone map in preprocessing step. We then do an 

exhaustive search to find the point with maximum curvature in the upper (for point A) 

or lower (for point B) part on the inner skull boundary. We do not need to search the 

entire boundary as the protuberances are always located around the most upper and 

most lower parts of the skull in the image. Thus, the search is limited to a -30 to +30 

degrees sector scan with a 0.5-degree step along the lower or upper parts of the inner 

skull boundary (Figure 5.2 Left). Curvature here is computed as magnitude of the 

change of edge geometrical gradient (Figure 5.2 Right). To deal with the discrete 

problem, five neighboring points is used to compute the gradient. 
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Figure 5.2. Protuberance points detection. Left: Sector scan search for point A 

and B; Right: change of the Gradient around point A, B. 

The detection is evaluated in Chapter 7 section 7.1.2. 

5.2.2 Detection of ventricles (markers C and D) 

Markers C and D are the centers of the frontal horn and the third ventricle 

respectively. Referring to Figure 5.3 below, the frontal horn (marker C) is located at 

the upper half of the brain, and the 3rd ventricle (marker D) at the lower half of the 

brain. Matter inside the ventricles is CSF. It appears as dark regions in the brain CT 

images, and it is modeled as regions with low intensity values. Note that some low 

intensity regions may not be ventricles but chronic hematomas or large fissures. They 

must be pruned. The challenge of this task comes from the following aspects. Firstly, 

CT images are low contrast and contain much noise. Secondly, for the midline shift 

cases, the brain is normally largely distorted. Thus the ventricles are arbitrarily 

deformed to a great extent. Therefore, it is hard to segment the ventricle using 

standard model-driven methods. 
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Figure 5.3. Brain ventricle. 

We propose a ventricle candidate segmentation algorithm using Gaussian mixture 

models (GMM) with spatial feature learning. Instead of segmenting the exact 

ventricle, the algorithm identifies possible ventricle regions. One advantage of using 

GMM to segment ventricles is that the method is fully automatic and does not need 

the user to provide the starting points, unlike the active contour model. Therefore, one 

GMM model is used as an intermediate step. 

Generally, GMM assumes the entire image is a mixed Gaussian distribution of 

pixel data. Each data point has 3 dimensions [x, y, i], where x and y are image 

coordinates and i is the intensity value. The parameters of the mixed distribution are 

learnt through EM algorithm [Dempster77]. Mathematically, suppose the mixed 

distribution is D, then D is composed of multiple Gaussians Gj with different weights 

wj: 

𝐷 = �𝑤𝑗𝐺𝑗(𝑥, 𝑦, 𝑖)
𝑗

                                                      (5.1) 
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Each pixel data p has probability pj under every Gaussian Gj. We say that pixel p 

belongs to Gaussian Gj if its probability pj under Gj is the maximum among all 

Gaussians. In this way, if we have n Gaussians, all pixels are able to be classified into 

n class where each class is a Gaussian distribution. In our case, we set number of 

Gaussians to be 6 empirically so that expected clusters are: one cluster for the frontal 

horn, one cluster for the third ventricle, one cluster for the possible blood regions, one 

cluster for the possible other CSF regions, and two clusters handling noise.  

The image is firstly smoothed by standard Gaussian filter [Szeliski10]. Then the 

CSF map is masked on the image so the masked image only contains CSF pixels.  

GMM is then applied to the masked image to segment the ventricles. As shown in 

Figure 5.4, each color represents one group of pixels clustered by GMM.   

  

Figure 5.4. The GMM segmentation result. 

The segmented regions image contains ventricles and noise regions (Figure 5.5). 

Our next step is to eliminate noise. The noise regions are typically of two types and 

pruned by connected component analysis according to the following two rules: (a) 

Single-pixel regions are considered as piecewise noise. By experiments, regions less 
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than 16 pixels are pruned; (b) Surrounding regions are regions wrapping around the 

ventricles. They are considered as noise. They are not ventricles because the 

ventricles are normally a solid region filled by CSF. 

   

Figure 5.5. Noise region pruning. 

They are thus pruned using solidity. Solidity is defined as the ratio of number of 

pixels over the area of the convex hull [Barber06]. By experiments, regions with 

solidity less than 0.3 are pruned. 

Moreover, the ventricles segmented may not be the lateral ventricle body or 

frontal horn as we expected. They may be regions of large Sylvain fissures, temporal 

ventricles or chronic hematomas. Such regions are pruned by employing the PMV. 

For each segmented regions R, a probability p of being the frontal horn or the third 

ventricle is calculated using (Equation 5.2): 

𝑝 = 1
𝑛
∑ 𝑃𝑀𝑉(𝑥,𝑦)sign�𝑅(𝑥,𝑦)�                                  (5.2) 𝑥,𝑦∈𝑅               

where n is the number of pixels in region R. The sign(x) function returns 1 if x > 0 

and 0 otherwise. 
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Finally, we pick the top five highest probability candidate regions (Figure 5.6 

right). 

  

Figure 5.6. The ventricle detection results after convolution. 

The purpose of picking multiple candidates is to make the midline shift detection 

algorithm robust. Because brain injury may unexpectedly deform the brain structure, 

it is impossible to define the best candidate using hard criteria without incorporating 

contextual information such as location of other anatomical landmarks. The selection 

of the best candidate will be introduced in Section 5.3. 

The detection is evaluated in Chapter 6, Section 6.1.2. 

5.2.3 Detection of auxiliary markers E and F 

Markers E and F are the two end points of the brain falces. Specifically, E is the 

lower end point of the upper falx, and F is the upper end point of the lower falx. 

Referring to the six height levels (Figure 2.5), brain falces are present in the height 4th 

and 5th levels only. There are two falces, the frontal falx and the lateral falx. They are 

modeled as two straight line segments located at the upper central and lower central 
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parts of the brain respectively (Figure 5.7). Therefore, the problem of brain falx 

segmentation is to extract the two line segments from brain CT images. Since falces 

always shift with the deformed brain midline, successful extraction of the falx will 

help to trace the deformed midline. The challenge to segment a brain falx comes from 

its weak appearance in CT scans. As shown in Figure 5.7, left, the falx is hard to 

visualize. The boundary is not clearly defined and the endpoints of the falx are blurred 

and faint somewhere in the brain matter. Therefore, a successful falx extraction 

algorithm should be able to trace the falx in noisy and low contrast images. Moreover, 

the algorithm should be robust to severe pathological deformation and at the same 

time efficient, so that it can be applied online. To our best knowledge, there are 

currently no algorithms to extract brain falces robustly from CT images in the 

literature.  

   

Figure 5.7. The falces. Left: original image; Right: falces marked. 

We propose an algorithm that employs vectorization [Ramachandran80] to 

analyze line segments obtained from the edge map of the image. The vectorization 

method is known as directional single connected chain (DSCC) [Zheng02]. Section 
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5.2.3.1 firstly introduces the DSCC model, in section 5.2.3.2 we apply DSCC on the 

edge map of brain CT image to extract falces. Results will be shown at the end of 

Section 5.2.3.2. 

5.2.3.1 Directional single connected chain 

Traditional straight line extraction methods are Hough transformation and 

vectorization methods [Ramachandran80]. Hough transformation [Duda72] does not 

require connectivity, unlike the vectorization method. However, because of the 

difficulty in computing the start and end point of the lines, Hough transformation has 

a high computational cost. One well-known vectorization algorithm is the directional 

single connected chain (DSCC) [Zheng02]. 

DSCC is applied on binary images. DSCC is composed by “run-lengths”, and it 

can be horizontal or vertical. A horizontal (vertical) chain is decided by doing a linear 

regression of the middle points of its run-lengths, and the line has a slope degree < 

(≥ ) π/4. A horizontal chain contains vertical run-lengths (Figure 5.8(b)) and a vertical 

chain contains horizontal run-lengths (Figure 5.8(c)). 

A vertical run-length is defined as 

𝑅𝑖(𝑥𝑖,𝑦𝑠𝑖,𝑦𝑒𝑖) = {(𝑥,𝑦)|∀𝑝(𝑥,𝑦) = 1, 𝑥 = 𝑥𝑖 ,𝑦 ∈ [𝑦𝑠𝑖, 𝑦𝑒𝑖] 𝑎𝑛𝑑 𝑝(𝑥𝑖,𝑦𝑠𝑖 − 1)    

= 𝑝(𝑥𝑖,𝑦𝑒𝑖 + 1) = 0}                                                                               (5.3) 
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where p(x, y) is the intensity of pixel with image coordinates (x, y), 1 is black 

(foreground), 0 is white (background). This run-length starts from (xi, ysi) and ends at 

(xi, yei). In a horizontal chain Ch, (Figure 5.8(b)) every vertical run-length Ri is 

arranged in a horizontal sequence, and any two run-lengths, Ri and Ri+1 connected 

horizontally. Except for the run-lengths at both ends of the chain, Rl and Rm, any Ri 

has one and only one run-length Rj connected on each side. For the left side of Rl and 

the right side of Rm, either there is no run-length or there are more than one 

run-lengths connected. The connection here refers to 8-neighbour connection. Also, 

the run-length in the chain should have length within some range. The range is set 

between half of the average length and twice of the average length. Otherwise, the 

chain is considered to be broken. The horizontal run-length is defined similarly as the 

vertical run-length described above. For a horizontal run-length Ri, 

𝑅𝑖(𝑦𝑖, 𝑥𝑠𝑖, 𝑥𝑒𝑖) = {(𝑥,𝑦)|∀𝑝(𝑥, 𝑦) = 1, 𝑦 = 𝑦𝑖, 𝑥 ∈ [𝑥𝑠𝑖 , 𝑥𝑒𝑖] 𝑎𝑛𝑑 𝑝(𝑥𝑠𝑖 − 1,𝑦𝑖)    

= 𝑝(𝑥𝑒𝑖 + 1,𝑦𝑖) = 0}                                                                             ( 5.4) 

This run-length starts from (xsi, yi) and ends at (xei, yi). Similarly, a vertical chain Cv 

is formed by horizontal run lengths (Figure 5.8(c)).   
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a 

    

b                                        c 

Figure 5.8. The run-lengths and DSCCs. a: real lines, ROI: red circled; b: 
enlarged: vertical run-lengths in the circled area in a; horizontal chains: 
C1={R1,R2}; C2={R3,R4}; C3={R5,R6}; C4={R7,R10,R12,R14}; 
C5={R8,R11,R13,R15}; C6={R9}; c: enlarged: horizontal run-lengths in the 
circled area in a; vertical chains: C1={R1,R2,R3}; C2={R4}; C3={R5}; 
C4={R6}; C5={R7}; C6={R8,R9}; C7={R10}; C8={R11,R15,R18}; 
C9={R12,R16,R19}; C10={R13}; C11={R14,R17}. 
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In our early work2

5.2.3.2  Falx extraction using DSCC 

 on document image process, we used DSCC to extract 

straight lines and curves from scientific charts. 

In this section, DSCC is applied to segment the falces, both frontal and lateral. 

Both falces are detected from the edge map of the image.  

The image is firstly smoothed by standard Gaussian filter [Szeliski10]. Then the 

CSF map is masked on the image so the masked image only contains CSF pixels.  

Canny edge detector [Canny86] is applied on the filtered image to obtain the edge 

map firstly (Figure 5.9). 

  

Figure 5.9. Left: The filtered image. Right: The edge map. 

The edge map is then smoothed using morphological operators such as open and 

close [Forsyth02]. The frontal and lateral falces locate at the central part of the upper 

and lower half of the image respectively. Therefore, to make the computation more 

                                                      

2 The work has been published in [Liu.R.ICDAR.07]. 
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efficient, we apply an ROI on the image to restrict the falces searching range (Figure 

5.10). 

  

Figure 5.10. Left: The edge map. Right: The ROI of smoothed edge map. 

In the windowed edge map, we call each connected component a segment. Falces 

may contain multiple segments; segments may have irregular shapes; the falx and the 

skull may be connected together. DSCC is used to solve these problems. We firstly 

decompose the image into DSCC chains. Then for each chain we fit a straight line 

segments (Figure 5.11). 

  

Figure 5.11. The DSCC chains fitted. 

We then process the line segments by the following three rules (Figure 5.12): (a) 

Remove line segments that only have less than five run-lengths as they are very likely 



CHAPTER 5  THE BRAIN MIDLINE SHIFT QUANTIFICATION 

64 

to be piecewise noise; (b) Remove line segments with slope less than 45 degrees as 

falces tend to be vertical in CT images; (c) Join nearby line segments which have 

distance less than 20 pixels and with slope difference less than 10 degrees, since they 

are treated as the same line segment. The numbers in this step are obtained from 

experiments. 

  

Figure 5.12. DSCC after postprocess. 

Finally we pick the top 5 longest line segments with one end point near the skull 

point A to be frontal falx candidates. We also pick the top 5 longest line segments 

with one end near skull point B to be lateral falx candidates (Figure 5.13). The 

expected falces are among these candidates. The candidates will be further processed 

as auxiliary markers in the midline shift detection model introduced in the next 

chapter. The purpose of picking multiple candidates and selecting the best candidate 

in the later stage is to improve algorithm robustness. The best candidate will be 

selected by incorporating the spatial information of other anatomical landmarks. This 

is the first work to successfully extract the falx from brain CT images.  

The detection is evaluated in Chapter 6, Section 6.1.2. 
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Figure 5.13. Final results of falx extraction. Left: Input image. Right: Output 
candidates falces (red line segments starting from green points and ending at 

blue points), Red points are points A and B obtained in Section 5.2.1 

5.2.4 Hemorrhage Detection 

There is a strong relationship between hemorrhages and the midline. A 

hemorrhage is useful to select midline marker candidates. Hemorrhage regions are 

blood clots. The blood clot in acute hemorrhage is relatively fresh. Hence they appear 

as bright regions in the brain CT images. The blood clot in chronic hemorrhage is 

relatively aged, and the blood is diluted by CSFs. Hence it appears as dark regions in 

the brain CT images, which have similar intensity with ventricles. The major 

difference between the chronic hemorrhage regions and ventricle regions is that 

ventricles are normally located around certain places as they are anatomical human 

tissues. However, hemorrhages can occur at any part of the brain. Therefore, it is not 

proper to use a location probability map to get the hemorrhages. Fortunately, 

hemorrhages can be identified from their intensities. The acute hemorrhages have 

unique high intensity values. Although chronic ones have the same intensities as that 

of the ventricles, they can be handled after the ventricles have been identified. 
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Here we propose a hemorrhage segmentation algorithm based on background 

removal. The proposed segmentation algorithm consists of three steps. Step 1 

removes the gray and white brain matter. Step 2 uses a wavelet decomposition to 

reduce noise and sets a threshold automatically to identify the hemorrhage regions. 

The last step generates a binary image locating the hemorrhage regions. 

Algorithm Summary 

Input: A CT brain image with skull removed, denoted as T0 (Figure 5.14). 

 

Figure 5.14. Image T0 – the inner-skull region; left: image; right: intensity 
histogram. (Horizontal axis: intensity, Vertical axis: number of pixels) 

Step 1: Remove the gray and white matter 

Most parts of the content inside the skull are the gray and white matter. In the 

histogram of intensity of T0, the peaks correspond to the gray and white matter 

(Figure 5.14). Hence, a simple subtraction of the peak intensity from T0 will give us 

an image with the gray and white matter removed. We call the image after the 

subtraction T1 (Figure 5.15). 
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Figure 5.15. Image T1, gray matter removed; left: the image; right: intensity 
histogram. (Horizontal axis: intensity, Vertical axis: number of pixels) 

Step 3: Reduce noise 

From Figure 5.15, left, we can see that there are noise as white dots or tiny 

fragments in T1, because we subtract only a single intensity value from various parts 

of the brain matter. A wavelet noise filter is used to reduce the noise. We finally get 

the image with noise reduced and more distinguishable hemorrhage regions. We 

denote the result image T2 (Figure 5.16). 

 

Figure 5.16. Image T2, noise reduced; left: image; right: intensity histogram. 
(Horizontal axis: intensity, Vertical axis: number of pixels) 

Step 4: Generate a binary image of hemorrhage 
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After the preprocessing, we can define thresholds according to the intensity 

distribution of image T2. We set the hemorrhage threshold to be the value 

corresponding to the middle of the spikes obtained from the wavelet transform. 

(Figure 5.16 right) Finally we get a binary image T3 (Figure 5.17). The largest 

hemorrhage is picked from the binary image to estimate the hemorrhage effect, for 

further candidate selection (Refer Section 5.3). 

 
Figure 5.17. Image T3, each white pixel group represents a possible hemorrhage 

region of the image. 

This work3

5.3 Marker Candidate Selection 

 successfully segments the hemorrhage regions. The regions can be 

used to compute the hemorrhage effect, which is introduced in Chapter 6. 

From the previous steps, we have obtained markers A and B; 5 candidates of 

markers C and D and 5 candidates of auxiliary points E and F. Note that C and D 

candidates may be absent due to the deformation of certain ventricles. We select these 

                                                      

3 This work has been published in [Gong.T.PRIB.07] and [Li.S.SPIE.10]. 
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candidates by learning the spatial relationships from ground truth data. The data 

profile is introduced in Chapter 6, Section 6.1.1. 

5.3.1 Pruning the candidates 

To make the selection faster and more accurate, we firstly prune the marker 

candidates according to anatomical and pathological constraints. 

 Firstly, we apply an ROI on the image to restrict the candidates searching range. 

The ROI will remove the candidates locating at the most left 1/4 and most right 1/4 

parts of the image. 

 Secondly, recall that the midline shift is due to the pushing behavior of the 

hemorrhage. If the hemorrhage locates at the left side the candidates of C is expected 

to be pushed to the right and vice versa. Therefore we prune the candidates of C 

which locates at the same side of the hemorrhage.  

 After the pruning step, the candidates of C are restricted to the central half of the 

image located in the opposite direction of the hemorrhage. 

5.3.2 The spatial relationship features 

The spatial relationships among the markers are characterized by geometrical. 

Since a large hemorrhage affects the spatial relationships among the markers, the 

shape and size of hemorrhage are also included in the spatial relationship features. 
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Before stepping into the detail of the algorithm, we give an intuitive overview of the 

spatial relationship features in Figure 5.18 below. 

Refer to Figure 5.18, where the hemorrhage lies on the left of the DML. We 

define the following notations. ∠BAC is the angle formed by line segments AB and 

AC at point A. ∠ABD is the angle formed by line segments AB and BD at point B. 

|AC| is the distance from point A to C. |BD| is the distance from point B to D. The 

hemorrhage ellipse H is an ellipse fitted into the hemorrhage region. Note that the 

angles and distances are all positive values. We do not consider directions here. The 

above notation applies also for a mirror image of Figure 5.18 when the hemorrhage 

lies on the right of the DML. 

 

 
∠BAC 
 
|AC| 
 
 
 
Hemorrahge 
Ellipse H 
 
 
|BD| 
∠ABD 
 

Figure 5.18. Spatial relationships illustration. 

 Hemorrhages do affect the midline shift. Hence, we should include the effect of 

hemorrhage to learn the spatial relationships among markers. This effect is mainly a 
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pushing behavior of the hemorrahge affected by (a) the thickness of the hemorrhage, 

and (b) the shape of the hemorrhage. 

 The thickness of the hemorrhage is measured by the length of the minor radius of 

the ellipse fit on the hemorrhage. The thicker the hemorrhage is, the larger its minor 

radius is. Therefore, we first fit an ellipse on the contour of the hemorrhage using 

directed ellipse fitting [Fitzgibbon99]. We then calculate its minor radius and denote 

it b. 

 The shape of the hemorrhage is expressed by the solidity (defined in Section 

5.2.2.2) of the hemorrhage region. This is because hemorrhages are typically of 

regular shapes: round, cresent, and some shape in between. Note that the radii 

measured by the ellipse fitting are different from the radii of the raw hemorrhage 

region where the shape of the hemorrhage is convex. The solidity adjusts this 

difference. For example, if the hemorrhage is concave, the radii of the ellipse fitted 

and the radii of the hemorrhage are almost equal. Then the solidity is close to one 

with no adjustments. On the other hand, if the hemorrhage is convex, the radii of the 

ellipse fitted will be larger than the radii of the hemorrhage itself. Then the solidity is 

less than one and has adjustment effect. We denote the solidity s. 

 We combine both measurements to quantify the hemorrhage effect HE using a 

weighted minor radii length defined by HE = s·b.  
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There are two assumptions for the hemorrhage effect. Firstly, the location of the 

hemorrhage is not included in the hemorrhage effect. Recall that whether the 

hemorrhage locates at the left or the right half of the brain is already considered in the 

pruning step. Therefore, we do not consider the side of the hemorrhage here. 

According to our hemorrhage effect study which will be discussed in Chapter 7, 

Section 7.2, the location of the hemorrhage has little effect on the midline shift. 

Secondly, as introduced in Chapter 2 Section 2.3, it is extremely rare that there 

are more than one such large hemorrhage that results in siginificant MLS clinically. 

Often multiple large hemorrhages result in the death of the. Hence, in case of multiple 

hemorrhages, only the largest hemorrhage is picked. We assume that the rest can be 

ignored in the present study. 

5.3.3 Learning the spatial relationships among the markers  

For all candidates of marker C, we want to find the best candidate according to 

the spatial relationship distribution. Formally, we denote the hemorrhage effect 

feature with HE, the spatial feature of the ith candidate of C to be Ci, and the spatial 

feature of the ith candidate of D to be Di. We would like to find the best candidate 

among all candidates of C by maximizing the probability p: 

𝑪𝑏𝑒𝑠𝑡 = arg max
0≤𝑖≤5

�𝑝�𝑪𝒊|𝑫𝑗 ,𝑯𝑬��                                         (5.5) 

The probability p is learnt from ground truth data containing 200 partients, total 

2479 images. Each image has a feature vector containing 5 parameters: 

(a) The spatial feature of point C, ∠BAC and |AC|. 
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(b) The spatial feature of point D, ∠ABD and |BD|. 

(c) The hemorrhage effect HE. 

The joint distribution of the 5 variables of all training data forms an unknown 

multivariate distribution. We model this distribution as a Gaussian mixture model 

(GMM).  

There is a challenge to the probability learning due to limited volume of data. In 

clinical practice, there are few patients with significant midline shift than normal or 

insignificant shift patients (Figure 5.19). There are two problems with the data profile. 

Firstly, the data is imbalanced. From the data profile in Figure 5.19, we can see 

that there are 61% cases with insignificant MLS while MLS in each level is around 

9%. The question now is: do we need to rebalance the data sets? The answer is 

negative because of the following two reasons. Firstly, the data set is randomly 

selected from the entire population of TBI patients. Thus it reflects the clinical 

patients’ distributions. Rebalancing the data either downsample the majority data, 

which are insignificant MLS cases, or upsample the minority data, which are 

siginificant MLS cases by duplication or synthesis [Yin10]. Either way changes the 

prior probability, such as p(HE), p(|AC|), and p(|BD|) used in the Equation (5.7) and 

(5.9). The distribution then cannot represent the population any more. Because the 

prior probability in the model is different from the one in the population, the model is 

ill learnt and problematic to apply clinically. Secondly, rebalancing the data does 

improve the performance of classifiers [Yin10]. However, our goal is not 

classification but model the probability distributions of the 5 MLS parameters 
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modeling spatial relationships. It should be no problem if the true costs and class 

distributions are known precisely when learning the probability distributions. As 

remarked by [Provost00], rebalancing is not always applicable or helpful in some 

machine learning tasks. Our present work is one example. Our data obtained clinically 

reflects the true distributions of the patients from hospital.  

 

Figure 5.19. Profile of the midline shift distances. 

Secondly, the datasize of the significant MLS is small. This will cause overfitting 

for high dimensional probability models. To avoid the overfitting problem on the 

limited number of data, we further decompose the joint distribution according to the 

cause of the midline shift based on anatomical constraints. 

1st Anatomical Constrain: the frontal horn and the third ventricle are deformed 

by the hemorrhage effect. The effects between the two tissues are neglectable (i.e, 

Marker C and D are conditionally independent given HE). 
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2nd Anatomical Constrain: the distance from the frontal horn (or the third 

ventricle) to the skull propertuberance is only determined by the anatomical structure 

of the brain. It is independent from the hemorrhage effect (i.e, |AC| is independent 

from HE, so is |BD|). 

3rd Anatomical Constrain: The distance of the frontal horn (or the third 

ventricle)is independent from the angle it deivates from the normal position due to the 

hemorrhage effect (i.e, ∠BAC and |AC| are indpendent, so are ∠ABD and |BD|). 

Based on the 1st constraint, C and D are conditionally independent given HE. 

Therefore, the probability p in Equation (5.5) can be computed by:  

𝑝�𝑪𝒊|𝑫𝒋,𝑯𝑬� = 𝑝(𝑪𝒊|𝑯𝑬) = 𝑝(∠𝑩𝑨𝑪, |𝑨𝑪|  | 𝑯𝑬)                       (5.6) 

By 2nd constraint, the length |AC| is independent from the hemorrhage effect. It is 

determined by the anatomiacal nature of the brain. By Assumption C, the length |AC| 

is independent from the angle ∠BAC. Therefore, the probability Equation (5.6) can 

be further refined as 

𝑝�𝑪𝒊|𝑫𝒋,𝑯𝑬� =  𝑝(|𝑨𝑪| | 𝑯𝑬) × 𝑝(∠𝑩𝑨𝑪|𝑯𝑬) =
𝑝(|𝑨𝑪|) × 𝑝(∠𝑩𝑨𝑪,𝑯𝑬)

𝑝(𝑯𝑬)    (5.7) 

By decomposition, the dimension of the Equation (5.5), which contains five 

paramaters, is reduced from 5 to 2 (Equation 5.7). Therefore, learning from limited 

significant MLS data is achieved. Similarly, the best candidate of D is calculated as 

𝑫𝑏𝑒𝑠𝑡 = arg max
0≤𝑖≤5

�𝑝�𝑫𝒊|𝑪𝑗 ,𝑯𝑬��                                       (5.8) 
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The probability of spatial features of D can be computed by: 

𝑝�𝑫𝒊|𝑪𝒋,𝑯𝑬� =
𝑝(|𝑩𝑫|) × 𝑝(∠𝑨𝑩𝑫,𝑯𝑬)

𝑝(𝑯𝑬)                              (5.9) 

Finally, we take the candidate among all candidates of C and D, which gives the 

highest probability calculated from Equation (5.7) and (5.9) respetively. 

5.3.4 Missing candidates 

 There is still a problem that there may be cases in which no candidate of point C 

or D is found during the marker detection phase. This could happen if there is 

significantly large deformation of the brain that the ventricles are compressed and fail 

to present in the images. We solve this problem by employing auxiliary points E and 

F which are the end points of the falces. 

 From observation, the end of the falx is near the ventricle. Because we do not 

know whether valid candidates of C or D will be detected, we simply treat the 

candidates of E (F) to be the candidates of C (D). Thus we combine the E (F) 

candidates to the C (D) candidates list. Obviously, the combinination introduces 

errors. Therefore, we discourage the combination by penalizations. Recall that the 

best candidate is selected because it gives the highest spatial probability. The 

penalization is achieved by multiplying a penalty factor to discount the spatial 

probability learnt using E (F) candidates instead of candidates of C (D). The factor is 

learnt empirically, so that if there is a proper C (D) candidate, the algorithm will not 

select any of the E (F) candidate. Moreover, if all the C (D) candidates are outliers, 



CHAPTER 5  THE BRAIN MIDLINE SHIFT QUANTIFICATION 

77 

the algorithm will pick the best E (F) candidate to replace C (D). We shall see from 

the experimental results in next section that the algorithm successfully handles the 

missing third ventricle case, which previous methods can not handle. 

 Finally, we connect all the best candidates to delineate the deformed midline. 

(Figure 5.20) 

  

a                   b 
Figure 5.20. Final result: a: all the candidates; b: the best candidates and the 

traced midline 

5.4 Quantification of the Midline Shift 

 In previous steps, we have traced the deformed midline in TBI CT images. The 

next step is to quantify the amount of the shift. 

A traditional measurement is the maximum distance by which the DML deviates 

from the IML. The maximum distance measurement is normally used daily in clinics. 

It is the largest distance of all points on the deformed midline (DML) to the ideal 

midline (IML). The sign of the distance indicates the direction of shift. Negative sign 

indicates shift to the left while positive sign indicates shift to the right (Figure 5.21, 

parameter d). 
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Figure 5.21. MLS quantification measurements. 

However, the maximum distance only captures the shift at one single point. It 

does not consider other points and the shape of the deformed midline. For example, 

consider the two cases in Figure 5.22: both MLS shown in the left and right 

illustrations have same maximum distance deformed. However, they have different 

shapes and different deformations at the lower part. The right case has deformed more 

than the left case by the area shaded in the checker-board pattern. Hence, we also 

proposed the area ratio measurement instead of maximum distance alone. The 

deformed midline divides the brain into two halves. The ratio between the volumes of 

the two halves can be used as a measurement of the shifting amount. In the case 

shown in Figure 5.22, although the MLS in both images have same maximum 

distance d, the deformed areas of both MLS are different and they are captured by the 

area ratio measurement.  
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Figure 5.22. Two cases with the same maximum distance but different area 
ratios. 

The area ratio measurement has been proposed to doctors for clinical study and 

practice and waiting for feedbacks. 

5.5 Summary of the Chapter 

In this chapter, we have proposed an anatomical marker model to model the brain 

midline shift, and algorithms are developed based on the model. The model takes as 

input the middle slice. It outputs markers A and B, at most 5 candidates of markers C, 

D and auxiliary markers E and F respectively. Note that there may not be any 

candidates detected. The hemorrhage is also a factor affecting the candidate selections. 

It is also considered in the selection process. 

The selection process selects the best candidates for markers C and D, which are 

centers of the frontal horn and the third ventricle. The process is fully automatic and 

robust against arbitrary brain distortions. In the extreme case that the ventricle is 

absent in the image, it is not possible to segment the ventricle using any segmentation 
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algorithm. The approximation using falx endpoints is still able to estimate the location 

of the ventricle.  

The deformed midline traced by the anatomical marker model is then quantified 

using two measurements: the maximum shift distance and the area ratio. 

We also propose a novel technique to locate the brain falx in brain CT images. 

Brain falx is an important anatomical feature for TBI diagnosis. However to our best 

knowledge, there is no algorithm currently available to extract brain falx. The 

proposed algorithm is the first falx segmentation algorithm for brain CT images. 

Importantly, the proposed algorithm successfully uses spatial relationships on 

midline shift detection, and imaginary object on CT images. The leant probability of 

the spatial relationships makes the algorithm robust to various brain distortions. The 

learning also helps in the ventricle and falx identification. 
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Chapter 6 

EXPERIMENTAL EVALUATION 

 

In previous chapters, we have introduced our proposed method of tracing and 

quantification of the deformed midline in TBI CT images. In this chapter, experiments 

have been carried out to show that the proposed MLS tracing method outperforms 

current methods in literature. We also show that the proposed method is able to 

handle cases in which the state-of-the-art methods fail. Moreover, a patient retrieval 

system is constructed as an application of the proposed algorithm. 

 The chapter is organized as follows. Firstly, we show the performance of one 

MLS tracing method using quantative measurements. Secondly, we compare our 

methods with the state-of-the-art methods. Thirdly, we discuss cases in which our 

method succeeds while other methods fail. Finally, we show a patient retrieval system 

as an application of the proposed algorithm. 

6.1 Performance of the Proposed Algorithm 

In this section, we show the performance of the proposed MLS quantification 

algorithm and compare it with the performance of the algorithms in the literature. 

Firstly, we shall show the performance of the detection of each marker in AMM.  
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Then quantitive results of our proposed algorithm using our proposed quantification 

measurements are presented. 

6.1.1 Experimental dataset description 

The experimental data set contains totally 565 patients with 7040 brain CT 

images (slices). Each patient has around 12 scan slices. Each CT image has resolution 

512 by 512, with each pixel covering 0.5mm. 

The patients have traumatic brain injury with MLS to different extent. The profile 

of the data regarding to various amount of midline shift distances is illustrated in 

Figure 6.1 below.  

 

Figure 6.1. Profile of the midline shift distances. 

Note that most patients have either no shift or slight shift within 5mm, due to the 

high mortality of patients with significant MLS in clinical admission.  
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 The data were collected from the National Neuroscience Institute and Tan Tock 

Seng Hospital during 2007 to 2009. All patients were admitted return 2002 and 2006. 

Due to legal issues, the patients’ identities are anonymized. 

6.1.2 Evaluations of detection of individual markers 

 The proposed algorithm detects marker A and B, candidates of markers C, D, E, 

and F. To evaluate the performance of the detection algorithm, we calculate the 

Euclidean distance between the marker detected by the algorithm and the ground 

truths marker with 5 pixels’ tolerance. For candidates detection evaluation, if any of 

the candidate has distance to the ground truth point less than 5 pixels, the candidate is 

considered successfully detected. We then measure the sensitivity of the detection 

algorithm by the “success rate”, which equals to the number of successfully detected 

cases divided by the total number of cases. The performance is then shown below 

(Table 6.1). 

Table 6.1. The sensitivity of detection algorithms. 

Markers A B C D E F 

Success Rate 75.22% 86.90% 98.41% 95.75% 93.63% 92.39% 

6.1.3 Experimental results using proposed measurements 

We evaluate the performance of our proposed MLS tracing algorithm using the 

two criteria proposed in Chapter 5, namely, the volume ratio and the maximum 
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distance of the MLS. Therefore, we conduct our experiments in a way that each test 

image has two pairs of values for evaluation: the estimated value versus the ground 

truth value of volume ratio, and the estimated maximum distance versus the ground 

truth maximum distance. The ground truth data are generated from deformed midline 

marked by professional radiologists. We compute the MLS estimation error as the 

absolute difference between the estimated value and the ground truth value for each 

criterion. The distance is expressed in millimeters. The distributions of the errors are 

shown in Figure 6.2 and evaluated using mean and standard deviation in Table 6.2. 

Table 6.2. The experimental results statistics. 

 Mean Standard deviation 

Area ratio error 0.0765 0.0883 

Maximum distance error 4.7317mm 5.1408mm 
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Figure 6.2. The error distributions of the MLS quantification results using the 

proposed algorithm. 

From Figure 6.2 we see that the error distribution has approximately a half 

normal distribution shape. 80% erros are distributed within 0.1 for area ratio and 5mm 

for the maximum distance.  

The running time is 7.93 seconds per patient and 0.57 seconds per image. The 

complexity of the algorithm is O(mn) where m is the number of patients and n is the 

average number of slices per patients. 
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Some detection results are shown below (Figure 6.3). 

 

Figure 6.3. Sample results of MLS quantification 

6.1.4 Results analysis and discussion 

In this section, we shall analyze the errors and failure cases. 

The small error within a few pixels mainly comes from the ventricle candidate 

point generation. The methods simply pick the center of the ventricle region as the 

candidate point. However, in some cases of deformed ventricle, the center of the 

anatomical ventricles is different from the geometrical ventricle regions. As shown in 

the circled area in Figure 6.4, the frontal horn is deformed. The areas segmented are 

marked as red regions. The centers are marked as green dots. We see that the center is 

misplaced more on right side. The correct candidate point should between the left and 

right parts of the frontal horn (Figure 6.4, blue star). Fortunately, this difference is not 

large. Empirically, the difference is within two or three pixels. The difference can be 

improved by employing shape analysis on the ventricle regions. However, it will 

sacrify computational time. Our suggestion is that the shape analysis method will be 

only employed when doctors want to extensively analyze single case. Otherwise, the 
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method will only pick the center of the ventricle regions as candidates to save 

computational time on large amount of cases. This difference is also one of the 

reasons of the underperformance of the algorithm on the insignificant cases where 

MLS is within several pixels. 

 

Figure 6.4. Ventricle center: anatomical vs. geometrical. 

Some failures are due to the failure of normalizing the image and locating the 

skull points A and B. From Figure 6.5, we see that the skull is rotated. Thus the skull 

points A and B (red points) are wrongly calculated. So does the ideal midline AB. 

Because A and B are wrongly calculated, the spatial relations of other candidates with 

A and B are not valid any more. Thus the algorithm fails to select the correct 

candidate points. 
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Figure 6.5. Failure to calculate the skull points. 

We know that the midline shift is mainly due to the pushing behavior of the 

hemorrhages. However, in some clinical cases, even large hemorrhage may not shift 

the midline. For example, in Figure 6.6, an intracerebral hemorrhage is correctly 

identified, with its center marked as a red point in the upper half of the image. The 

candidate points are also selected (green points). By learning from the training data, 

the hemorrhage will push the midline toward the right of the image. Thus it selects the 

candidates fulfilling this pushing effect. However, as there is actually no shift 

presented, the correct candidate should be the golden point locating at the central part 

of the image. 

 

Figure 6.6. Hemorrhage fails to shift the midline. 
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6.2 Experimental Results Comparison 

6.2.1 Comparison with the symmetry model 

We have compared our method with Liao’s symmetrical model [Liao06] (see 

Chapter 3, Section 3.1) following Liao’s experimental design. 

Liao’s experiments [Liao06] were run on 81 images. The images were manually 

picked from CT scan series of patients with MLS. The result reported by Liao et al. 

includes sensitivity to retrieve midline shift larger than 5mm, which they call “success 

rate”. The sensitivity is the ratio of the positive cases identified. 

To make the experimental results convincing, we implement Liao’s method and 

test it on our data set and use the same evaluation metric. Within the same data set as 

described in Section 6.1.1, the success rate under Liao’s method reaches 94.09%, 

while ours is 95.91% which is 1.82% higher.  

Another comparison factor is the running time. Running both algorithms on the 

same computer, our running time is 7.93 per patient, while Liao’s method is about 

three minutes per patient. This is mainly due to the genetic algorithm takes longer 

time to converge to local optima. Ours is around 22 times faster than Liao’s method. 

Moreover, Liao’s method cannot handle the cases that the symmetrical structure 

is destroyed by large intracranial hemorrhage (ICH), while our method is able to 

handle such case. This is discussed in Section 6.2.4.1. 
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6.2.2 Comparison with the ventricle shape matching model 

We have compared our method with Chen’s ventricle shape matching model 

[Chen10] (see Chapter 3, section 3. 2) following Chen’s experimental design. Here 

we shall show the indirect and direct comparison results. 

Chen’s method [Chen10] operates on data of 264 images from 40 patients while 

our dataset contains 7040 images from 565 patients.  

For comparison, we implement Chen’s model was tested it on our data set. Chen 

also uses Liao’s evaluation metric, known as the “success rate”, which is the 

sensitivity to retrieve patients with MLS larger than 5mm. In addition, Chen gives a 

tolerance threshold of 2.25mm. Within the same data set and using the same 

evaluation metric, the sensitivity of Chen’s method reaches 91.36%, while ours is 

95.91%. 

Another comparison factor is the running time. Running both algorithms on the 

same computer, our running time is 7.93 per patient and 0.57 seconds per image, 

which is three times faster than Chen’s model. The longer computational time in 

Chen’s method is mainly spent on the shape matching process, which is mainly a 

registration process. 

Moreover, Chen’s model cannot handle the case of missing ventricles, while our 

method is able to trace the midline even the ventricles are in large deformation or 

even disappeared. This is discussed in Section 6.2.4.2. 
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6.2.3 Comparison using the proposed evaluation criteria 

We have also done comparisons of all the three methods (Liao’s [Liao06], Chen’s 

[Chen10], and ours) using our proposed evaluation criteria, i.e, the area ratio and the 

maximum distance. The result statistics are illustrated in Table 6.3 and Figure 6.7. 

The error distributions are shown in Figure 6.8 and 6.10. Figure 6.8 displays the 

comparison of the distribution of maximum distance error generated by the three 

methods. Figure 6.9 illustrates the comparison of the distribution of area ratio error 

generated by the three methods.  

Table 6.3. The results comparison of all the three methods. 

 Area ratio Maximum distance 

Mean Standard 
deviation Mean Standard 

deviation 

Liao’s method 0.2083 0.3111 14.07mm 16.67mm 
Chen’s method 0.1109 0.1495 7.093mm 10.35mm 
Our method 0.0766 0.0883 4.738mm 5.141mm 

 

 

Figure 6.7. Comparison of all methods. 
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Figure 6.8. Comparison of the distribution of maximum distance error. 
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Figure 6.9. Comparison of the distribution of volume ratio error. 
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To test the significance of our algorithm, we have run a pair-wise hypothesis test 

(t-test) [Fisher25] on the means of errors obtained from both measurements. The 

purpose of the test is to check whether our method significantly reduces the errors 

comparing with Liao’s and Chen’s method, between automatic and manual 

quantification of MLS using the two measurements, namely, the area ratio and the 

maximum distance. The test should be single-tail on the left because we test whether 

our errors are less than the comparing methods. We use 5% significant level. 

Therefore, the critical t value should be 1.645. Thus we conclude the error reduction 

is significant. The computed statistics are shown in Table 6.4 below. 

Table 6.4. The statistics of the hypothesis testing. 

 Area ratio Max distance 

Compare with Liao’s method 2.5160 12.8925 

Compare with Chen’s method 1.6441 4.2599 

 

From Table 6.4 we see that, regarding to the maximum distance measurement, 

our method significantly reduced the error comparing with Liao’s method and the 

Chen’s method. Regarding to the area ratio measurement, our method improves the 

results comparing with Liao’s method but reaches comparable performance with 

Chen’s method (Fail to reject null hypothesis). 
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6.2.4 Comparison on difficult cases 

The proposed algorithm can handle special MLS cases which the state-of-the-art 

algorithms fail to handle. We call those special cases “difficult”. In this section, we 

shall discuss the two types of hard cases which previous algorithms fail to handle. 

6.2.4.1 Non-symmetric brain structure 

Large ICH may destroy the symmetrical structure of the brain (Figure 6.10). 

Spontaneous ICH occurs mostly around the midline at the basal ganglia, and the 

ventricles are also frequently involved. Moreover, large MLS will also deform the 

brain severely and cause the loss of symmetry (Figure 6.10). 

 
Figure 6.10. MLS tracing in non-symmetrical brain. Left: Liao’s result; Middle: 

Chen’s result; Right: our result; Circled area: large ICHs. 

Hence, Liao’s method based on the symmetrical brain structure fails on this case. 

Our method is based on anatomical structure rather than the symmetrical structure. 

Hence, our method is still able to trace the midline under non-symmetrical brain 

(Figure 6.10, green lines). 
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6.2.4.2 Absent ventricle 

Severe brain injury may cause large deformation of the brain. Ventricles may be 

compressed and fail to present on the CT scans (Figure 6.11). Chen’s method does not 

consider cases in which one side of the lateral ventricle is missing or the ventricles are 

not visible [Chen10]. Because the method traces midline based on ventricles 

segmented, it fails to detect midline in such cases. 

 

Figure 6.11. Missing ventricles. Left: Liao’s result (fail to detect); Middle: 
Chen’s result; Right: our result; Circled area: Missing the third ventricle 

Our proposed algorithm estimates the absent ventricles from the falx. It uses the 

end points of falx as candidates to estimate the missing ventricle centers (Figure 

6.11).  

From Figure 6.11, we see that the question marks circled in red represent the 

missing ventricles. The green dots are centers of the ventricle regions segmented and 

the blue dots are the ending points of the falx. We see that the algorithm fails to 

segment the ventricles as there are no green dots. However, it uses ending points of 

falx to estimate the center of the third ventricles. 
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6.3 Application: A Patient Data Retrieval System 

Nowadays, a huge amount of CT images is produced in modern hospitals. For 

example, the Neuroradiology Service at the National Neuroscience Institute (NNI), 

Tan Tock Seng Hospital, performed over a thousand CT scans, with each scan 

consisting of around 20 slices, in the two-year period of 2003 to 2005 as a result of 

hospital admission for mild head injuries. This provides us with a gold mine which 

contains precious knowledge valuable to us to discover for medical study. However, 

today, the CT scan images are in the standard DICOM (Digital Imaging and 

Communication in Medicine). They are displayed and retrieved via PACS (Picture 

Archives and Communication Systems), which can only be retrieved by patient ID or 

patient name, which are stored in the DICOM header. Hence to retrieve an image 

based on anomaly without the patient name or ID is a hard task. Effective and 

efficient content-based retrieval techniques are required to access the huge amount of 

data. In this chapter, we build a patient data retrieval system based on symptoms such 

as hemorrhage position and size, and midline shift amount, and other Meta-data such 

as patients’ age, gender, admission information and outcomes. 

6.3.1 The System Framework 

The architecture of the patient data retrieval system is illustrated in Figure 6.12.  
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Figure 6.12. The structure of the proposed retrieval system. 

Generally, the system processes each patient’s CT data offline, where it traces and 

quantifies the MLS, and constructs XML document for retrieval purpose. The retrieval 

process is achieved through Xquery on the XML documents outputted offline. 

The offline processing has three components, namely, the Pose Corrector (slice 

indexing, explained in Chapter 4), the Anatomical Marker Detector (AMM model, 

anatomical feature detection and selection, explained in Chapter 5), and the MLS 

Quantifier (MLS quantification, explained in Chapter 5). The input CT data are in 

DICOM format. Since the size and scanning angle vary among patients, the system first 

passes the input data into the pose corrector. The corrector computes and picks out the 

MS, and does a pose correction on the MS. During the pose correction, the IML is 

found. The corrector will output the slices around MS to the detector, and output the 

IML to the quantifier. The detector detects anatomical markers based on those slices. 

The DML is then described by the anatomical markers in the detector and outputted to 

the quantifier. With the IML and DML, two measurements are employed by the 

quantifier to quantify the MLS, namely, area ratio and maximum distance of 

deformation. These two measurements are then output to an XML file for retrieval. 
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A sample XML is shown below: 

<Patient id=“12345”> 
 <DOB>19290315</DOB> 
 <AGE>74</AGE> 
 <SEX>MALE</SEX> 
 <DATE>20040119</DATE> 
 <TIME>093028</TIME> 
 <OUTCOME> 
  <Death_date>NA</Death_date> 
  <Death_time>NA</Death_time> 
  ... 

</OUTCOME> 
<MLS> 

<Direction>LEFT</Direction> 
<Area_ratio>1.1081</Area_ratio> 
<Max_dist>2.2608</Max_dist> 

</MLS> 
</Patient> 
<Patient id=“22222”> 

As we can see in the above example, the system also integrates other information 

such as patient’s age, clinical outcomes such as death information, etc. in the XML. 

Each patient currently has attributes such as date of birth, age, gender, scanning date 

and time, outcome information and the MLS information. Query can be made based on 

any of these attributes. The attributes are extendible. For example, users may also input 

other attributes such as discharge information in the outcome information. In the online 

processing, text queries are passed to a query parser and transformed to an Xquery. 

We ask specialists to give 3 typical queries on the system. The queries are 

illustrated in Table 6.5. Some results are shown in experiment part in Section 5. 
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Each query is parsed into an Xquery and processed using standard XML query 

methods. Here we choose XML because it efficiently supports reverse query (i.e. query 

the roots based on information of leaves in the XML tree data structure). 

Table 6.5. Sample queries. 

 Query 

1 Patients without significant MLS (less than 5mm) 

2 Patients with MLS larger than 1cm to the right. 

3 Surviving patients with MLS to the left larger than 1cm scanned in 

2005. 

6.3.2 System Performance 

The queries are evaluated following Chen’s proposed evaluation criteria 

[Chen10], which uses 2.25mm tolerance in the maximum distance measurement. The 

performances on the three queries in the previous section are shown in Table 6.6. 

Table 6.6. Query results. 

 Q1 Q2 Q3 Avg. 

Recall 1.0000 1.0000 0.9934 0.9978 

Precision 0.6106 0.8071 0.8025 0.7401 

F-score 0.7582 0.8932 0.8878 0.8464 
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The results are promising in all measurements such as recall, precision, and 

F-score. We can see that the results present a higher recall than precision. The system 

tends to give more false positives. However, false positives are generally preferred in 

clinical study as further post-processing is normally required by doctors. This is 

because: 

(a) Legal issue. A normal patient is diagnosed to be abnormal will not suffer 

from the disease and surely will not die. However, an abnormal patient is 

diagnosed to be normal will miss the healing opportunity and this may be 

fatal. A fatal case can destroy a doctor’s future due to a lawsuit. 

(b) Humanity issue. People normally will not miss any chances to survive. Even 

the chance is a false positive. 

Therefore, the high recall is normally preferred in the medical retrieval system. 

Currently there is no such kind of benchmark on the retrieval of patients’ 

information based on the MLS. Although Liao et al. [Liao06] and Chen et al. [Chen10] 

have given the “success rate” which is the sensitivity, they do not give F-score and 

specificity. This is the first work of its kind, the results are promising and we envisage 

that it will lead to further work in the community. 

Some sample query results are shown in Figure 6.13 below. 
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Sample results of query 1 

 

Sample results of query 2 

 

Sample results of query 3 

Figure 6.13. Sample query results. 

6.5 Summary of the Chapter 

 This chapter has presented the experimental results on the proposed algorithms. 

The results show that the proposed MLS tracing method outperforms current methods 



CHAPTER 6  EXPERIMENTAL EVALUATION 

103 

in literature. Moreover, the results show that the proposed method is able to handle 

cases in which the state-of-the-art methods fail.  

 A patients’ data retrieval system is constructed based on the proposed brain 

midline shift quantification algorithm. Unlike the current system, the system can 

retrieve patients’ information not only based on patients’ name or id, but also the 

symptoms such as hemorrhage position and size, and midline shift amount, and other 

Meta data such as patients’ age, gender, admission information and outcomes. The 

system is expected to facilitate current clinical study and prognostic research. 
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Chapter 7 

FURTHER WORKS 

 

We have done some further works to extend or support the proposed algorithm. In this 

chapter, two items are discussed. The first one is brain slice indexing, which is an 

extension of the middle slice selection in the preprocessing step. The other is the 

study of the hemorrhage effect. The study supports the hemorrhage effect parameter 

used in the marker candidate selection algorithm (Chapter 5, Section 5.3). 

7.1 Brain Slice Indexing 

 One axial brain CT scan consists of multiple 2D slices of different heights along 

the axial direction (Appendix). Practically, these slices are sometime disordered and 

unaligned. In cases of re-scanning, even the ordering of the slices is not correct. In 

computer-assisted diagnosis (CAD), correctly ordering and aligning the slices is an 

important preprocessing step before further pathological feature analysis. Such 

ordering and aligning process is called the indexing of brain slices (or sections) 

[Gefen08]. Moreover, with the increased amount of medical image data, 

content-based image retrieval (CBIR) has been proposed as a promising approach in 
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the new-generation hospital database management system [Műller04]. In CBIR, 

queries are often made by providing image examples. Indexing of slices is important 

if a single CT slice is provided by the user as a query example. 

7.1.1 Related work on the indexing of brain CT slices 

Current work in the literature for indexing of slices from brain imaging is based on  

image registration [Gefen08]. Work exists on MR images [Kim00] [Liu.J04]. 

Specifically, Kim et al. [Kim00] perform non-rigid registration of postmortem brain 

slices to MRI volume. In their method, a polynomial transformation was used to 

parametrically represent the deformation field. Later in 2004, Liu et al. [Liu.J04] 

proposes a non-linear deformable registration method for ultrasound spatial 

compounding. In their method, they apply a multi-resolution cubic B-spline 

registration to determine global and local nonlinear deformations following rigid 

registration from a position sensor. Then 2D slice images are divided into partly 

overlapped sub-images to estimate the residual local deformations. However, very 

limited work has been found presently to index brain CT slices. The most relevant 

work is proposed by Gefen et al. in 2008 [Gefen08] on mice brain CT scans rather 

than human brain. Their method is to register 2D image into a 3-D atlas. The tasks 

was carried out in two main steps, namely, image to planar surface matching (IPSM) 

and image to curved surface matching (ICSM). The first step (IPSM) is to find a slice 

in the 3D atlas that best matched the section to be indexed through affine registration. 

The normalized mutual information (NMI) score [Studholme99] [Pluim03] is used to 
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measure the similarity of the matching. The affine registration parameters are then 

computed through maximizing the NMI by genetic algorithm [Whitley93]. Once a 

matching image from atlas is found, the algorithm further refines the alignment by 

searching for a better matching image through ICSM. In this step, the atlas volume is 

deformed according to a 3-D displacement field such that the voxels overlay the 

indexing slice resulting on a new image. The displacement field is computed through 

maximizing a local 3-D similarity between (a) the atlas volume and (b) the volume 

extended from the indexing slice. 

However, the registration process is usually too slow to be used in real-time CAD 

or CBIR system due to the non-linear deformation procedures involved. A fast 

method for indexing is urgently in need. In another aspect, indexing slices is generally 

a pre-processing step of further image study. Precise alignment of multiple slices is 

not necessary in most diagnosis or image retrieval tasks. A real-time CAD or CBIR 

system can adopt a fast indexing method with correctly ordered but only roughly 

aligned slices. Therefore, we need a fast algorithm to index brain slice into correct 

height levels operating on human brain CT scans. 

 In this thesis, we define the indexing of brain CT slices as follows. Given an 

arbitrary brain CT slice, we want to decide the height level of the slices. So the slice is 

“indexed” to certain height level for retrieval. The height level is one of the six levels 

introduced in Chapter 2 Section 2.2.1. Therefore, the indexing of brain CT slices can 

be viewed as a classification problem, in which each height level of the six is a class.  
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 The method proposed for the indexing of brain CT slices mainly comprises two 

steps. Firstly, the same preprocessing step as introduced in Chapter 4 is used to obtain 

the middle slice (MS) and separate the encephalic region with the non-encephalic 

region (Chapter 4 section 4.1). Secondly, within each region, we further classify slices 

into different height levels in the region. Since the preprocessing step has already 

been introduced in Chapter 4, only the second step is presented in this section. 

Specifically, the second step contains three sub-steps: (a) feature extraction in the 

encephalic region; (b) feature extraction in the non-encephalic region; and (c) 

classification. 

7.1.2 Feature extraction in the encephalic region 

The encephalic region is from height level 3 to 5 (see Chapter 2, Section 2.2.1). 

We extract five features from slices in this region to further classify images in this 

region to different levels. These features are described as follows. 

Feature 1: The size of the basal cistern.  

The basal cistern is a wide cavity below the ventricle (Figure 7.1a). For 

calculation, it is located at the central block of I if we divide I into 3 by 3 blocks 

evenly. The area of basal cistern is calculated as the amount of CSF (cerebrospinal 

fluid) pixels inside this region. CSF pixels have intensity value 80~120. Because the 

total amount of CSF varies among different age groups, we calculate the ratio of the 

basal cistern area and the total area of CSF in the slice as the size of the basal cistern. 
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Figure 7.1. The anatomical structure of the encephalic region. 

Feature 2: The size of the frontal horn. 

The frontal horn is the front part of the lateral ventricle. It appears as ‘a horn of a 

bull (Figure 7.1b). For calculation, we define the frontal horn window as the lower 1/2 

part of upper half of I. The frontal horn area is computed as the amount of CSF pixels 

in the frontal horn window. The size of the frontal horn is calculated as the ratio of the 

frontal horn area and the total CSF area in the slice. 

Feature 3: The size of the skull. 

The area of the skull is the area bounded by the outer skull boundary. Because the 

area of the skull varies among different patients, we compute the ratio between the 

skull area and the skull area in the MS of the patient as the size of the skull in the 

slice. Recall that the MS is obtained from beginning using methods proposed in 

Chapter 4. 

Feature 4: The size of protuberances along the inner contour of the skull. 
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The skull has protuberances inward around height level 3 (Figure 7.1a). To 

measure the size of the protuberances, we first calculate the inner contour of the skull, 

denoted as C. We also calculate the convex hall H of the contour using Q-hull 

algorithm [Barber96]. Then we compute the ratio of the area bounded by C and H as 

measurement of the size of the protuberances. The larger the protuberances are, the 

smaller area C has, and thus the smaller ratio obtained. 

Feature 5: The correlation with the MS. 

We calculate the correlation of the slice with the MS. The higher the correlation 

is, the more similar the two slices are. Thus the slice is more probable to be at height 

level 4. 

The feature distribution histograms on 802 slices of the 3 levels are plotted in 

Figure 7.2. There are 82 slices in level 3, 302 slices in level 4, and 418 slices in level 

5. We see that the three lines representing the three levels have different peak for all 

features. For example, for feature 5, level 3 has peak around feature value 0.8, while 

level 4 has peak around feature value 0.9, and level 5 has peak around feature value 

0.3-0.6. 
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                                   Feature 1 

 

  Feature 2                           Feature 3 

 

  Feature 4                          Feature 5 

Figure 7.2. Feature histograms of encephalic region. 

7.1.3 Features extraction in the non-encephalic region 

The non-encephalic region contains height levels 1, 2, and 6. To separate these 

three levels, we extract three features according to their anatomical and image 

characteristics. The features are calculated as follows. 
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Feature 1: The area of the bounding box of the bone image. 

The bone image is obtained by thresholding the slice using highest intensity 

value. The bounding box of the bone image is the smallest image that contains all the 

bone pixels.  

Feature 2: The area of CSF in the eye region.  

The eye region is defined as the upper 1/3 part of I. The amount of CSF pixels in 

the eye region is computed. CSF pixel has HU 0~15.  

Feature 3: The area of bone in the eye region 

Similar to feature 2, the area of bone in the eye region is computed as the number 

of bone pixels in the eye region. 

The feature distribution histograms on 757 slices of 3 levels are plotted in Figure 

8.3. There are 251 slices in level 1, 195 slices in level 2, and 311 slices in level 6. 
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                                    Feature 1 

 

Feature 2                          Feature 3 

Figure 7.3. Feature histograms of non-encephalic region. 

7.1.4 Classification 

For classification in the encephalic region, we gather the five features into a 5 by 

1 feature vector. For classification in the non-encephalic region, we gather the three 

features into a 3 by 1 feature vector. Based on these feature vectors, the two 

classification processes are done by SVM with linear kernel. 

7.1.5 Experiments 

The proposed indexing method is evaluated using CT images from 80 study 

cases. Each study case has around 20 CT slices. There are totally 1559 slices. Each 

slice belongs to one of six height levels. There are 251 slices in level 1, 195 slices in 
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level 2, 82 slices in level 3, 302 slices in level 4, 418 slices in level 5, and 311 slices 

in level 6. All experiments are done in 10-fold cross validation using MATLAB. We 

record the performance in all the 6 levels as shown in Table 7.1. The average runtime 

is 7.59 seconds for each study case and 0.38 seconds for classifying each test slice 

using Pentium 4GHZ CPU. Some indexed image results are shown in Figure 7.4. 

Table 8.1. Results of the proposed indexing method. 

Level Precision Recall Accuracy F-score 

1 84.76% 70.92% 86.13% 77.22% 

2 62.07% 73.85% 81.64% 67.45% 

3 80.68% 57.72% 85.71% 67.30% 

4 72.83% 83.44% 85.09% 77.78% 

5 81.98% 87.08% 86.13% 84.45% 

6 90.16% 91.32% 92.34% 90.73% 

Overall 79.73% 81.42% 86.58% 80.22% 

 

From the Table, we can see that our indexing algorithm is able to classify 80% 

the images into correct height level. The errors normally come from the transition 

levels, for example, level 3, and images at the boundary of the height levels because 

they share common anatomical information from both neighboring levels. 
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Level 1:  

Level 2:  

Level 3:  

Level 4:  

Level 5:  

Level 6:  

Figure 7.4. Sample results 

7.2 Study of the Hemorrhage Effect 

In this section, we study the hemorrhage effect. The effect is applied in the 

marker candidate selection as an important feature. Firstly, we show our observations 

on the linear relationship of the hemorrhage and the midline shift. Secondly, we 

propose a Hemorrhage-Midline shift (H-MLS) model to investigate the relationship. 

Thirdly, we study the relationship using the H-MLS model. Finally, we give our 

experimental results and show that the linear relationship of the hemorrhage and the 

brain midline holds. 
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7.2.1 The observations of the linear relationship of the hemorrhage 
and the brain midline shift 

We manually marked hemorrhage regions and midlines of 200 traumatic brain 

injury patients. We plot (a) the size of the hemorrhage versus (b) the midline shift 

amount (Refer Chapter 6, Section 5.4 “maximum distance”). We observe that there is 

a linear relationship between the size of the hemorrhage and the midline shift distance 

(Figure 7.5). The larger the hemorrhage is, the more “pushing power” it has, and thus 

the larger distance it “pushes” the midline, i.e, the larger midline shifts. 

 

Figure 7.5. Plot of the hemorrhage size and the midline shift distance. 

7.2.2 The H-MLS model 

Based on the observation and the cause of the MLS introduced in previous 

section, we propose the H-MLS model to investigate the linear hemorrhage effect. 
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From large number of CT images presenting MLS (Figure 7.6), we observe that, 

generally, the amount of midline shift caused by hemorrhage is influenced by the 

following factors: 

(a) The size of the hemorrhage: the larger the size is, the larger the amount of 

midline shifts. 

(b) The distance between the hemorrhages to the IML: the longer the distance is, 

the smaller the amount of midline shift. 

(c) The midline elastic property: points on the IML further apart from the skull 

are easier to be displaced.  

  
Figure 7.6. Examples of brain CT images presenting MLS caused by 

hemorrhages. 

From these observations, we build up a heuristic model, to model the influence of 

the various factors on the amount of midline shift.  

In our H-MLS model, each hemorrhage H is represented as an ellipse E that best 

fits the hemorrhage boundary (Figure 7.7). For each point P on E, we trace a ray R 

from P along the normal direction N at P. If ray R intersects the IML at point B, it is 
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called an effective ray, which means it affects the deformation of the midline. Denote 

the intersection of effective ray R with the deformed midline (DML) as B’. Extend R 

backward to let it intersect with E at P’. Therefore, the amount of midline shift of 

point B is the image distance between B and B’, denoted as d = |BB’|.  

We assume the amount of midline shift of each point B on the IML is related to 

the effective ray R passing through it. On each effective ray R, we use r = |PP’| to 

measure the size of the hemorrhage, and use s = |BP| to measure the distance between 

the hemorrhage and the IML. Let M be the middle point of the IML, then ä = |BM| 

measures the position of B on the IML. 

 

Figure 7.7. The H-MLS model. 

Including an error term to handle noises, then the H-MLS model is constructed as 

a simple linear equation: 

𝑑 = 𝑎𝑟 + 𝑏𝑠 + 𝑐𝛿 + 𝑒𝑟𝑟𝑜𝑟                                            (7.1) 
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Given a number of points B on the IML, the corresponding effective ray R (thus 

corresponding r, s) and the amount of midline shift d, the coefficient a, b and c in 

Equation (7.1) can be solved using the linear regression method. Therefore, our 

H-MLS model is identified by a linear regression which models the relationship 

between intracranial hemorrhage and the MLS caused by it. 

7.2.3 Study using the H-MLS model 

We study the relationships between the hemorrhage and the midline by simply 

estimating the deformed midline based on the H-MLS model proposed in Section 

7.2.2. Then we calculate the difference between the estimated midline and the ground 

truth midline. The study consists of three steps. 

Firstly, we segment the hemorrhage using a segmentation method proposed in 

Chapter 5 Section 5.2.4. 

Secondly, we fit an ellipse E into the boundary of the hemorrhage H segmented 

out in Step 1. Ray R is traced from each point P on E. For each effective ray R, 

compute the corresponding point B on IML, and the corresponding r, s and ä. (Figure 

7.7) 

Thirdly, given the H-MLS model, use Equation (7.1) to compute the amount of 

midline shift d for each point B on IML which is also on the effective ray. Thus a 

corresponding point B’ on the predicted DML is found for each B. After connecting 
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the points B’ and applying a simple curve smoothing process, we get the predicted 

DML. 

7.2.4 Experimental results 

We then compare the predicted DML in previous section to the ground truth 

midline. Because the algorithm calculates the midline point wise, i.e., it predicts each 

point on the midline and forms the midline using those points, the experiments are 

also constructed in a point level. 

 
Figure 7.8. The histogram of midline points deformation distance (in pixel) 

distribution. 

We have performed experiments on 11 CT images with 423 midline points using 

10-fold cross validation. To present an overall result of all the 11 test images, a 

normalized histogram of the midline points deformation distance (in pixel) 
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distribution is shown in Figure 7.8. There are 5 bins in the histogram. Each bin 

indicates different distance between the estimated midline (marked ground truth 

midline) and the IML. Negative means the shifting direction is to the left of the IML 

and positive means to the right. The histograms for the ground truth and for the 

estimated result are generally consistent. 

The parameters obtained from the regression is d = 39.4790*r – 0.1082*s – 

0.0772δ – 0.1591. It indicates that there is a strong relationship between the size of 

the hemorrhage and the midline shift distance. It also shows that the location, decided 

by the distance s and the position δ, has much less effect on the midline shift 

comparing with the size. 

7.3 Summary of the Chapter 

This chapter has introduced the work on brain slice indexing, and the study on 

hemorrhage effect. 

The work on brain slice indexing1

                                                      

1 The work has been published in [Liu.R.ICIP.10] 

 effectively orders and aligns the slices. The 

indexing is achieved using classification approach based on the anatomical features of 

the image. The work is useful as a preprocessing step for further processing of brain 

CT images. With the height level known, one can process a 2D image in a 3D level. 

The indexing work also helps doctors to order the slice automatically. Moreover, with 

the index, doctors are able to search slices within one height level in a large amount of 

patients. 
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The work on hemorrhage study2

                                                      

2 This work is published in [Liu.R.ICIP.09] 

 suggests that the linear hemorrhage effect holds. 

It also shows that the location has much less effect on the midline shift comparing 

with the size. We have also proposed this observation to doctors and it shall be 

studied clinically. 
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Chapter 8 

CONCLUSION 

 

8.1 Summary of the Challenges 

The main challenges of the brain midline shift quantification are three. Firstly, the 

midline is not a human tissue, but an imaginary center line dividing the brain 

normally into equal halves. Hence it cannot be segmented using its appearance. 

Secondly, because of noise and low contrast between soft tissues, brain tissues such as 

ventricles and brain matters are displayed with weakly defined boundaries. Thus it is 

difficult to identify the brain’s anatomical structures using traditional intensity based 

method. Thirdly, because the traumatic brain injury is unpredictable, the damages can 

happen at random location of the brain with arbitrary level of severity. Thus the brain 

structure is arbitrarily distorted. As a result, it is problematic to design a similarity 

function or probabilistic atlas to cope with these unpredictable variations and 

abnormalities. Moreover, there is a very limited literature on midline detection. 

 In addition, there is a challenge on the segmentation of the brain falx. The falx 

appears weakly in CT images. It is hard to extract it using standard segmentation or 
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edge detection algorithms. No work have been reported to segment the falx in CT 

images according to our literature review. 

8.2 Summary of Work and Contributions 

Firstly, the thesis has proposes an anatomical marker model (AMM) and a novel 

algorithm using a candidate selection approach to automatically quantify the midline 

shift. The experimental results show that the proposed algorithm effectively traces and 

quantifies the midline shift. Compared with the only current two methods, the 

proposed method reduces quantification error significantly. Moreover, the run time of 

the proposed method outperforms current methods. 

Secondly, the thesis proposes a method for segmentation of the brain falx from 

brain CT images using directed single connected chains (DSCC). This is the first 

work proposed on segmentation of brain falces.  

Thirdly, the thesis proposes a probabilistic spatial relationship learning model to 

improve the robustness of midline shift markers detection, and of falx segmentation in 

brain CT images. 

Fourthly, a MLS quantification measurement is proposed to complement current 

MLS measurement, namely, the area ratio. It also has been proposed to doctors for 

clinical practice. 

 Fifthly, the thesis proposes a patient’s data retrieval system based on the MLS 

quantification results. Doctors are able to retrieve patients based on not only the 
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patients’ meta information such as age, gender, and etc., but also on pathological 

information such as hemorrhage size, midline shift and etc.. 

Lastly, a fast brain indexing method is proposed. The efficient run time of the 

method makes method able to be embedded in online brain CT image applications as 

a preprocessing step.  

8.3 Future Work 

8.3.1 Improving the current algorithm 

 More sophisticated shape analysis algorithm may be also employed (a) on the 

skull to improve the accuracy of locating skull points A and B; (b) on the ventricle 

regions to improve the accuracy of location candidate points C and D in the AMM 

model. 

8.3.2 Extending the current algorithm 

 Further work can extend the current algorithms based on the midline traced and 

quantified by the proposed algorithm. 

Relations between the trauma and the midline shift can be further studied. For 

example, during the algorithm development, we find that the size of the hemorrhage is 

linearly related with the midline shift distance. 
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The quantification results of the midline shift can be further integrated with other 

meta-data such as patients’ gender, age and admission information. Patients’ data 

retrieval system can be build and statistical mining can be carried out based the 

integration. 
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APPENDIX 

A CT SCAN EXAMPLE 

 

One CT scan contains multiple slices. In this appendix, we illustrate the slices of a 

healthy brain CT scan in axial scanning direction. The order is from bottom upwards. 

Hence the nasal cavity comes first, and the last one is the top of the head. The scan 

contains 19 slices. Each slice has dimension 512 by 512. 

 

Slice 1 
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Slice 2 

 

Slice 3 



APPENDIX  A CT SCAN EXAMPLE 

128 

 

Slice 4 

 

Slice 5 
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Slice 6 

 

Slice 7 
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Slice 8 

 

Slice 9 
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Slice 10 

 

Slice 11 
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Slice 12 

 

Slice 13 
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Slice 14 

 

Slice 15 
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Slice 16 

 

Slice 17 



APPENDIX  A CT SCAN EXAMPLE 

135 

 

Slice 18 

 

Slice 19 
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