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Abstract

Background: Accurate and precise detection of brain lesions on MR images (MRI) is paramount for accurately
relating lesion location to impaired behavior. In this paper, we present a novel method to automatically detect brain
lesions from a T1-weighted 3D MRI. The proposed method combines the advantages of both unsupervised and
supervised methods.

Methods: First, unsupervised methods perform a unified segmentation normalization to warp images from the
native space into a standard space and to generate probability maps for different tissue types, e.g., gray matter, white
matter and fluid. This allows us to construct an initial lesion probability map by comparing the normalized MRI to
healthy control subjects. Then, we perform non-rigid and reversible atlas-based registration to refine the probability
maps of gray matter, white matter, external CSF, ventricle, and lesions. These probability maps are combined with the
normalized MRI to construct three types of features, with which we use supervised methods to train three support
vector machine (SVM) classifiers for a combined classifier. Finally, the combined classifier is used to accomplish lesion
detection.

Results: We tested this method using T1-weighted MRIs from 60 in-house stroke patients. Using leave-one-out cross
validation, the proposed method can achieve an average Dice coefficient of 73.1 % when compared to lesion maps
hand-delineated by trained neurologists. Furthermore, we tested the proposed method on the T1-weighted MRIs in
the MICCAI BRATS 2012 dataset. The proposed method can achieve an average Dice coefficient of 66.5 % in
comparison to the expert annotated tumor maps provided in MICCAI BRATS 2012 dataset. In addition, on these two
test datasets, the proposed method shows competitive performance to three state-of-the-art methods, including
Stamatakis et al., Seghier et al,, and Sanjuan et al.

Conclusions: In this paper, we introduced a novel automated procedure for lesion detection from T1-weighted MRIs
by combining both an unsupervised and a supervised component. In the unsupervised component, we proposed a
method to identify lesioned hemisphere to help normalize the patient MRI with lesions and initialize/refine a lesion
probability map. In the supervised component, we extracted three different-order statistical features from both the
tissue/lesion probability maps obtained from the unsupervised component and the original MRl intensity. Three
support vector machine classifiers are then trained for the three features respectively and combined for final
voxel-based lesion classification.
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Background

Accurate detection of lesions in the brain is critical to
both clinical practice and neuropsychological research.
For example, every year more than 795,000 people in the
United States suffer a new or recurrent stroke (http://
www.strokeassociation.org) and the identification and
analysis of the brain lesions resulting from a stroke can
help understand the lesion-deficit relationship [1, 2], pre-
dict patient diagnosis and prognosis [3], and chart the
development of brain pathology over time [3]. In the
past two decades, Magnetic Resonance Imaging (MRI)
has become a reliable and increasingly popular tech-
nique for identifying brain damage and pathologies [4].
To study brain lesions using MRI, the first step is to
accurately detect the lesion from different-modality MRIs
(e.g. Diffusion-weighted imaging, T1-MRI, FLAIR, or T2-
MRI). Here we focus on T1-weighted images in chronic
stroke, as this modality is generally available, provides
high spatial resolution and good contrast between gray
matter (GM), white matter (WM) and cerebral spinal
fluid (CSF). The goal of the research presented here is to
develop a fully automatic algorithm for accurately detect-
ing lesions from T1-MRI scans in chronic stroke patients.

Traditionally, the gold standard for lesion detection
relied on manual delineation by one or more trained
neurologists/radiologists creating a binary lesion mask
[5]. These methods show high reliability (e.g. 0.86—0.95)
between raters [4, 6]. However, manual labeling is labo-
rious and subjective. In recent years, several automated
methods have been developed for brain lesion detection
[7-13]. However, automated brain lesion detection from
MR images is still a very challenging problem, particularly
when only the T1-MRI is available. First, it is sometimes
difficult to separate the lesion from the surrounding tis-
sues that is relatively structurally intact based only on
image intensity since the intensities of the lesion and
healthy tissues may be similar, not to mention that the
intensity of the lesion may not be homogeneous. Sec-
ond, lesions are often non-rigid and complex in shape and
vary greatly in size and position across different patients.
Therefore it is difficult to construct a compact and infor-
mative geometric ‘prior’ to guide lesion detection.

In general, existing automatic lesion detection meth-
ods can be divided into two categories: (1) unsupervised
methods based on prior knowledge [9-21]; (2) supervised
methods based on machine learning [7, 22—-29].

For unsupervised methods, general knowledge or
assumptions (priors) derived from healthy controls, such
as spatial locations of different brain tissues, are used to
guide the brain segmentation and the lesion detection —
the presence of a lesion usually breaks such general priors
derived from healthy controls. In [13], a statistical method
based on the Markov random field is developed to iden-
tify the lesion by comparing the image of a patient and
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the images of a group of healthy controls. Shen et al. [18]
found that, in the lesion regions, the intensity-based seg-
mentation and the location of the tissues are inconsistent
with these in healthy controls. They use a fuzzy c-means
algorithm to quantify such inconsistencies and then apply
a threshold to obtain a binary lesion segmentation. This
method was further improved in [19] by introducing
1) a normalized inconsistency measurement, which
enables the use of a better threshold, and 2) an extra
step that can better distinguish the ventricles from the
lesions. Seghier et al. [11] extend a widely used brain-
segmentation algorithm [30] to handle lesion detection by
introducing a new tissue class for lesions. This extended
segmentation algorithm iteratively performs nonrigid
atlas-based registration to refine the probability maps of
gray matter (GM), white matter (WM), cerebrospinal fluid
(CSEF), and subject-specific lesions. After that, the refined
probability maps of GM and WM are fed into a fuzzy clus-
tering procedure [31] for final lesion classification. This
algorithm was further improved by Sanjuan et al. [20] by
introducing a new procedure for updating the probability
map of subject-specific lesions. Without using lesion sam-
ples manually annotated by experts, these unsupervised
methods may not accurately capture the subtle difference
between the lesion and its surrounding healthy tissues.
For supervised methods, a set of (training) image sam-
ples, on which lesions have been manually annotated by
experts, are used to train a classifier, which can then
be used for lesion detection on a new image by classi-
fying each voxel on this image as lesion or healthy tis-
sue. In Anbeek et al. [7], a K-Nearest Neighbor (KNN)
classifier is trained for white matter lesion detection by
combining intensity information from T1-weighted, T2-
weighted, proton density-weighted (PD), and fluid atten-
uation inversion recovery (FLAIR) MR scans. Based on
the same features, Lao et al. [26] suggest the use of sup-
port vector machine (SVM) instead of KNN to improve
the accuracy of white matter lesion detection. Quddus
et al. [28] combine SVM with a boosting technique to
detect lesions in PD scans. Morra et al. [27] train a SVM
classifier for multiple sclerosis (MS) lesion detection by
using Haar-like wavelet features, which are extracted from
T1-weighted, T2-weighted, FLAIR, mean diffusivity, and
fractional anisotropy MR scans. Schneell et al. [29] extract
voxel-based features by measuring each voxel’s likelihood
to be located in the five selected brain areas and the back-
ground from a high angular resolution diffusion imaging
(HARDI) scan. Based on these features, a SVM classifier
is then trained to distinguish voxels from lesion and those
from healthy tissues. Geremia et al. [25] propose a ran-
dom decision forest method [32] for MS lesion detection
by using local and context-rich features [33] from T1-
weighted, T2-weighted and FLAIR MR scans. Jiang et al.
[34] extract Gabor features [35] from multimodal MRIs
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and then use a distance metric learning [36] to train a
classifier to classify each voxel, followed by a graph-cut
operation for final segmentation of tumors. To achieve
accurate lesion detection, these supervised methods usu-
ally require the use of multimodal MRIs, especially the
T2-weighted, PD and FLAIR MRIs on which the lesion
and healthy tissues show higher intensity difference than
on the T1-weighted MRIs [37, 38].

In this paper, we propose a new lesion detection method
based only on T1-weighted MR images by combining
the advantages of unsupervised and supervised methods.
Specifically, we first conduct a modified enantiomorphic
normalization [39] to warp the native T1-weighted MRI
into the MNI standard space [40] and construct an ini-
tial lesion probability map (LPM) by comparing the nor-
malized MR image with the healthy controls. Then we
perform non-rigid and reversible atlas-based registration
to refine the template of gray matter probability map,
the template of white matter probability map, the tem-
plate of external CSF probability map, the template of
ventricle probability and initial LPM. These probability
maps are combined with the original MR image intensity
to construct high-dimensional voxel-based features, with
which we supervisedly train a combined SVM classifier
for final lesion detection. The unsupervised lesion prob-
ability map endues more anatomic/spatial information to
the voxel-based features, which increases the discrimina-
tions of the lesion and the healthy tissues on the T1-MRIs.
For the final supervised lesion detection, we formulate
the problem as a feature-set classification where different
SVM classifiers are learned for different features. Using
the leave-one-out cross-validation, the proposed method
can achieve an average Dice coefficient of 73.1 % on in-
house stroke patients and an average Dice coefficient of
66.5 % on MICCAI BRAT'S 2012 dataset, when compared
to expert annotated lesion maps.

Methods

Study design

This study adhered to human experimentation guidelines
of the U.S. Department of Health and Human Services
and Helsinki Declaration. The CDC Institutional Review
Board approved the study protocols (IRB # Pro00005458).
All participants were volunteers who gave a written and
verbal consent to be included in the study and were not
required to give informed consent to allow us to show the
images in published figures.

Method overview

The proposed method detects lesions on T1-weighed MR
images by two sequential components: an unsupervised
component to construct an LPM, followed by a super-
vised component to detect the final lesion areas. As shown
in Fig. 1, the unsupervised component consists of four
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sequential steps: 1) detection of lesion-hemisphere and
enantiomorphic normalization that normalizes the input
T1-weighted MRI into a standard space, 2) comparing
the normalized MRI to a group of normalized healthy
controls and identifying an initial probability map of the
lesion (LPM) by using the fuzzy clustering pipeline (FCP),
3) amending the template probability maps of GM, WM,
external CSF and ventricle using the initial LPM, and
4) refining the LPM and constructing the probability maps
of GM, WM, external CSF and ventricle from the input
(normalized) MRI by mapping to the amended template
[30]. Note that, in Step 3) a new amended template,
including four tissue probability maps, needs to be con-
structed for each input T1-weighted MRI separately.

As shown in Fig. 2, the supervised component also con-
sists of four sequential steps: 5) at each voxel, extracting
zero-order, 1st-order, and 2nd-order statistical features
from the probability maps of GM, WM and external CSF
and the refined LPM resulted from the unsupervised com-
ponent, and the original T1-weighted MRL; 6) training
three binary SVM classifiers that recognize each voxel to
be part of lesion or not, by using the three types of sta-
tistical features, respectively; 7) combining the three SVM
classifiers into a single SVM classifier and applying the
combined SVM classifier to detect the lesion voxels; and
8) performing inverse normalization to get the lesions in
the original T1-weighted MRI. In this paper, we normalize
the brain to the MNI standard space for lesion estimation,
feature extraction and final lesion classification to make
the parameter setting of proposed method insensitive to
the different-size brains and different-resolution images.

Besides the basic idea of combining the unsupervised
and supervised components, we also make technical con-
tributions in several of the steps. In Step 1), we auto-
matically detect the lesion hemisphere and only use the
healthy hemisphere for enantiomorphic normalization.
This step improves the accuracies of enantiomorphic nor-
malization and the final lesion detection. We will discuss
it in detail in Section “Step 1): Lesion hemisphere detec-
tion and enantiomorphic Normalization” In Step 2), we
extend the FCP [31] to construct the initial LPM. This
step will be briefly discussed in Section “Step 2): Initial
estimation of LPM” In Step 3), we amend the template
probability maps of the four brain tissues and refine the
initial LPM, which will be elaborated in Section “Step
3): Amendment to normalization-segmentation template
tissue maps” From Step 5) to Step 7), we apply statisti-
cal feature based supervised learning algorithm to further
improve the lesion detection accuracy. We briefly discuss
this algorithm in Section “Step 5): Feature extraction” In
this paper, Step 4) simply follows the six-tissue unified
segmentation normalization (USN) pipeline [30] in SPM8
[41] (‘new segment’ in SPMS, referred to as ‘segment’ in
SPM12) and Step 8) first follows the inverse normalization
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in SPM8 [41] and then binarizes the lesion likelihood map
into a binary lesion mask.

Unsupervised component

As mentioned in Section “Method overview’; in the unsu-
pervised components, we focus on Step 1) detecting the
lesioned hemisphere and enantiomorphic normalization,
Step 2) constructing initial LPM using FCP and Step 3)

amending the template tissue probability maps and refin-
ing the initial LPM.

Step 1): Lesion hemisphere detection and enantiomorphic
Normalization

To spatially align the brains of a patient and a set of
healthy controls and make them comparable, we normal-
ize all the brain MRIs (i.e., both the patient and the healthy
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Fig. 2 An illustration of the supervised component

controls) to the MNI standard space. For the healthy con-
trols, we can use the USN pipeline [30] in SPM8 [41] for
this purpose. USN is a probabilistic framework based on
a mixture of Gaussian distributions that enables nonlinear
image registration, tissue classification,and bias correc-
tion. However, note that the patient’s T1 scan has an
unusual appearance at the location of the lesion (the fea-
ture we are trying to detect), while the template images
used for normalization are based on healthy individuals.
The difference in intensity between the lesion and corre-
sponding locations in the template can disrupt the auto-
mated normalization process [42]. This step is inspired
by the previously developed enantiomorphic normaliza-
tion procedure [39], where the lesion region is manually
delineated and replaced by its mirror region from the

counter hemisphere prior to normalization. Because the
lesion region is not priorly known here, we estimate the
healthy brain underlying a lesioned brain by first identify-
ing the healthy hemisphere and then using its mirror copy
to replace the lesioned hemisphere.

It is important to note that brains are by nature asym-
metric, even the healthy brains are not perfectly symmet-
ric [43]. Without knowing the ground-truth lesion mask,
here we assume the brain symmetry to construct a rough
estimate of the healthy brain underlying a lesioned brain,
for enantiomorphic brain normalization to the standard
space. While we know both the estimated healthy brain
and the enantiomorphic normalization are not perfect,
we only use them to estimate an initial LPM and expect
that the later steps will further refine the initial LPM.
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In Section “Discussion’, we conduct experiment to ana-
lyze the impact of the brain asymmetry to the proposed
method.

As illustrated in Fig. 3, the proposed normalization
procedure consists of the following steps.

a) Estimate the symmetry axis/plane, i.e., the middle
plane that separates the two hemispheres, as shown by the
red line in Fig. 3. In this paper, we use the tool developed
by Rorden [44] for the symmetry axis estimation. Specif-
ically, let I; be the source MRI of the patient, with size
Xmax X Ymax X Zmax» and we construct a reference image
I, by flipping I; over the x — z plane, i.e., I,(x,y,2) =
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Ls(%, Ymax — ,2) for all the voxels (x,y,z). We then use
SPMS8 coregistration routine [41, 45] to rigidly register
I; and I, using an affine transformation Ty, i.e., Ts(Is)
is spatially aligned with 7. This registration is achieved
by maximizing the mutual information metric. By apply-
ing half of this transformation to the source image,
we construct a half-way image, as illustrated in Fig. 3.
I, = %TS,(IS) and the symmetry axis of I is the plane
y = % Ymax- This plane can be mapped to the source image
by using the inverse transform 27!, which is the desired
symmetry axis in the source image, as shown by the red
line in Fig. 3.
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Fig. 3 An illustration of the symmetry axis estimation and enantiomorphic normalization
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b) Identify the lesioned hemisphere. Since the intensity
of a lesion on T1-MRI is usually lower than its counter
region in the other hemisphere without a lesion, we calcu-
late the intensity-weighted center of mass of I; as

Z(x,y,z) *x,9,2) - Is(x,9,2)
Z(x,y,z) IS (xr Y, Z)

This center of mass would be biased towards the healthy
hemisphere. Therefore, by assuming that the lesioned
hemisphere is darker than the healthy hemisphere we can
detect the lesioned hemisphere. Note that this step could
be modified to process other modality MRIs. For exam-
ple, in the T2-weighted MRIs, lesion regions tend to show
higher intensities than the healthy tissues.

c) Estimate the underlying healthy brain. This can be
achieved by replacing the lesioned hemisphere using the
mirror of the healthy hemisphere, flipped over the sym-
metry axis.

d) Normalize the patient MRI. We first use the nonlin-
ear USN in SPMS8 to warp the estimated healthy brain to
the MNI standard space and then apply the same transfor-
mation to the native patient image for normalization.

(1)

Step 2): Initial estimation of LPM

In this step, our goal is to construct an initial lesion prob-
ability map (LPM) based on the normalized patient image.
In the standard space, we compare the intensity of each
voxel between the patient and the healthy controls to esti-
mate the lesion likelihood of the voxel in the patient image.
For each brain T1-MRI, we take the healthy hemisphere
for estimating the intensity distribution and then normal-
ize this distribution [1, 46, 47] to calculate the Z-score for
all the voxels in the brain.

Similarly, each healthy control T1-MRI is converted to
Z-scores based on the whole brain mean and standard
deviation. To suppress image noise, we further perform
a Gaussian smoothing, with a kernel of 8 mm full-width-
half-maximum (FWHM), to each image [13, 48]. Let
Ii(x, 9,2) and I,(x,9,2z) be the intensity of the patient
image and the average intensity over all the healthy con-
trols at voxel (x,y,z) — be reminded that both patient
image and healthy-control images have been normalized
to the standard space and their intensities have been
unified to z-scores.

First, we calculate the dissimilarity (distance in intensi-
ties) [31] between the patient and healthy controls at voxel
(x,,2) by

j XY, Z) — j XV Z
Al(x,y,z):mnh<5( »2) = In@y )>, )
o

where o controls the sensitivity in detecting the lesion
voxels. As mentioned in Step 1): Lesion hemisphere detec-
tion and enantiomorphic Normalization Step b), on T1-

weighted MRIs, the intensity of lesions is usually lower
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compared to the intensity of the healthy tissues at the mir-
rored locations across the symmetry axis. This way, it is
expected that the lesion voxels show negative Al(x,y, z).
We therefore define an initial lesion probability Py (x, y, z)
as

(—Al(xy,2)"  ifAIGxy,2) <0
0 otherwise

Pr(x,y,2) = { , (3)

where the exponent 1 > 0 is the weighting parameter
that comprises the fuzzy set [31]. As shown in Table 1, we
empirically select « = 0.4 and A = 5 to achieve the best
performance in our experiment.

Step 3): Amendment to normalization-segmentation
template tissue maps

As shown in Fig. 1, the initial LPM estimated based only
on voxel intensity is inaccurate — some healthy tissues may
show high probability in LPM. To alleviate this problem,
we further derive the probability maps of the non-lesion
tissues, such as GM, WM, and external CSF of the patient.
Typically, these tissue maps can be derived by applying
USN pipeline [30]. However, this typical routine requires
the input MRI to be from a healthy control subject, as the
template does not include a lesion probability map. In this
section, we propose a method to amend the templates by
introducing an additional lesion probability map - based
on the initial LPM — for each patient MRI. Particularly, we
amend the templates of GM, WM, and external CSF prob-
ability map and the initial LPM. Note that this amendment
is conducted independently for each patient image.

Let PgM(x, ¥, 2), P@M(x, ¥, 2), PeTCSF(x, ¥,z) be the tem-
plate probability maps of GM, WM and external CSF
respectively — we do not amend the template probability
maps of soft tissue, bone, and air because they are usually
not affected by lesion. The basic idea of the amendment
is to reduce the template probability value of GM, WM,
external CSF at voxels with high lesion probability in
terms of the initial LPM estimated in Step 2) and intro-
duce a new template probability map Pg(x, y,z) for the
lesion. Specifically, at a voxel (x,y,z), if Pr(x,y,2) > y, we
simply set Pg % 9, 2), P‘QM x,9,2), PeTCSF (x,7,2) all to be
zero and the new template lesion probability PLT xy,2) =
1. Otherwise (i.e.,Pr(x,7,z) < y), we update the template
probability maps by

Pr(x,9,2)

%%@%@‘—O—;/>'ﬁw@%@
Pr(x,y,2)

P@M(x,y,Z) <« <1 - y) ~P€VM(x,y,z)
P2 @

L i ’
PECSF(x’y’Z) <~ <1 - V) : chgp(x:yyz)
PL(x’y’ Z)

PLT x,9,2) <
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Table 1 Directly taking the initial LPM, i.e,, up to Section “Step 2): Initial estimation of LPM" of the proposed method, for performance

evaluation, under different & and A

o A Accuracy Precision Recall Dice
1 0953 £0012 0321 £0.195 0.784 £0.165 0430 £0.166
02 3 0.959 +£0.012 0.392 +£0.198 0.726 £ 0.164 0478 +£0.168
5 0.961 £ 0.011 0427 £0.199 0.694 £ 0.156 0497 £0.165
7 0963 £0.011 0446 £ 0.199 0.673 £0.158 0.508 £ 0.164
1 0.965 £0.011 0.502 £0.199 0.639 £0.154 0.532£0.170
04 3 0.968 £ 0.012 0.552£0.198 0.582 £0.153 0547 £0.169
5 0.964 £ 0.012 0.555£0.196 0.589 £ 0.151 0548 £0.168
7 0.940 £ 0.011 0.553 £0.201 0.601 £0.151 0547 £0.168
1 0.967 £0.012 0.547 £0.198 0.596 £ 0.155 0.545£0.170
06 3 0.954 +£0.012 0.553 +0.200 0.591 £ 0.154 0.547 £0.174
5 0.940 £ 0.011 0.559 4+ 0.203 0.592 £ 0.159 0.546 £ 0.169
7 0941 £0.011 0572 £0.203 0.574 £0.158 0541 £0.165
1 0967 £0.011 0.549 £ 0.207 0.593 £0.154 0.546 £+ 0.169
08 3 0.940 £ 0.011 0.559 £ 0.204 0.596 £ 0.155 0.546 £ 0.173
5 0.941 £ 0011 0.584 £ 0.201 0.557 £0.151 0543 £0.172
7 0.941 £0012 0.623 £0.198 0.500 £ 0.151 0503 £0.168

where y indicates the confidence to the initial LPM -
the smaller the value of y, the more confident to
the initial LPM Pr(x,9,z). In this paper, as shown in
Section “Results’, we empirically select y with the highest
Dice coefficient score, y = g. Figure 1 shows the amended
template probability maps for a patient image.

Step 4): LPM refinement

Based on the amended template, we apply the USN
pipeline [30, 41] to process the corresponding patient
image. This way, we can obtain the probability maps of
GM, WM, external CSF and lesion for this patient and
we denote them by Pgur(x, ¥, 2), Pwat (%, ¥, 2), Pecse (%, 9, 2),
and Pr(x,y,z) respectively. We further apply a Gaussian
smoothing using a kernel with FWHM of 8 mm to help
reduce the noise in the lesion probability map. A sample
result of these probability maps is shown in Fig. 4, where
the amended template leads to better-estimated probabil-
ity maps than the original template. In this step, we also
follow the pipeline to derive Py (x,y,z), the probability
map of ventricle, which is part of the CSF. Later, after both
unsupervised and supervised components, we will use the
derived Py (x, y, z) to exclude ventricle.

Supervised component

In the supervised components, we take a set of train-
ing images of the patients, where experts have manually
labeled what we defined as the “ground-truth” for brain
lesions. We then extract image and structure features from
these training images and use them to train two-class

classifiers where each voxel is recognized as either lesion
or non-lesion tissues. With the trained classifiers, we can
extract the same features from new test images and clas-
sify their voxels to get the final lesion detection. Please
note that both training images and testing images were
acquired using the same MR scanner.

In the feature extraction, we take advantage of both its
T1-MRI intensity information, the probability maps of the
each brain tissue and lesion derived in the unsupervised
component. Specifically, based on the 5 x 5 x 5 sliding
blocks in the normalized T1-MRI, the probability maps
of GM, WM, external CSF and lesion (LPM), we extract
three types of features. Based on each of these three
types of features, we train three linear kernel SVM clas-
sifiers for lesion detection. We combine these three SVM
classifiers to achieve the lesion detection. Finally, we auto-
matically select an optimal threshold t* to the SVM output
(taking values in [ —1,1]) for the binary lesion classifica-
tion. We will discuss the selection of optimal threshold
in Section “Experiment results on in-house dataset and
analysis”.

Step 5): Feature extraction

To capture the subtle differences between lesion and
healthy tissues, at each voxel we consider a5 x 5 x 5 slid-
ing block centered at this voxel for extracting the features
of this voxel. For each voxel, features are extracted from
five equal-size maps — the T1 image, and the probability
maps of GM, WM, external CSF, and lesions (LPM) inde-
pendently. Specifically, we extract three types of features:
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(e) (f) (8) (h) (i)

Fig. 4 Probability maps of main tissues (and lesions) derived using original SPM templates and the amended templates. (a) Normalized patient
image without considering lesion using original SPM template. (b-d) Probability maps of GM, WM, and CSF derived by using original templates.
(e) Normalized patient image using amended template. (f-i) Probability maps of GM, WM, external CSF, and lesions derived by using the amended
templates

1) zero-order features, 2) 1st-order features, and 3) 2nd- maps, where each dimension takes the value
order features and use each type of features for training a (intensity in the T1 image and probability value in the
separate classifier, as illustrated in Fig. 2. other four maps) of the corresponding voxel in the
block. In this block, we further calculate 13 Haar-like
a) Zero-order features: At each voxel, the features [49] as shown in Fig. 5, where each feature
corresponding 5 x 5 x 5 block provides a dimension is the average voxel-value difference
125-dimensional feature vector in each of the five between the black and white regions within the
P A 4 1 A A—— 7

(2) (h) (i) ) (k) M (m)
Fig. 5 Calculation of 13 3D Haar-like features. (a-f) are the vertical/horizontal features, (g-m) are diagonal features. They only compare sums of the
same regions in temporal coordinate. Such features are used to describe the lesion edge information
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5 x 5 x 5 sliding block. By concatenating voxel

features and Haar-like features from all five maps, the

zero-order features have a total dimension of

(125 4+ 13) x 5 = 690 and we denote it as fy(x, ¥, 2).
b) 1st-order feature: At voxel (x, y, z),we extract its

1st-order features as

1 1 1
1 ‘ .
hwy =) ), ) fo+iy+jz+h. ()

i=—1j=—1k=—1

The 1st-order feature is also a 690-dimensional
feature vector.

c) 2nd-order feature: At voxel (x,y,z), we extract its
2nd-order features as

fr(x,9,2) = (fo(x3,2) — f1(x,9,2))
x (fo(x,9,2) — f1(x,y,2) 7, (6)

which is a 690 x 690 = 476, 100-dimensional feature vec-
tor. Compared with the traditional zero-order features,
the 1st-order features are less sensitive to false-positive
detection of the lesions and the 2nd-order features
emphasize the lesion boundary features by taking the local
covariance of the zero-order features, as illustrated in
Fig. 2.

Step 6): Individual SVM classifiers
SVM [50] is one of the most popular machine-learning
methods used in neuroimaging applications for lesion
detection [26-29]. It is a kernel-based machine-learning
method designed to construct a hyper-plane as the deci-
sion plane, which separates two different classes with
the largest margin [50]. The use of SVM consists of two
phases: training and testing. During the training phase,
the algorithm finds statistical properties in the training
data that discriminate between healthy tissues and lesion
tissues. After the training, during the test phase, the algo-
rithm can classify the lesions in a test data.

In this paper, for each of the above three types of fea-
tures, we train a linear SVM classifier that estimates the
probability of each voxel to be lesion. Here, we use the
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linear-kernel SVM for these three individual classifiers.
Based on these three trained classifiers, we can estimate
three lesion probability maps po(x,y,2), p1(x,y,2), and
p2(x,y,z) for a voxel (x,7,2) in a test patient image (nor-
malized to standard space), based on the three types of
features respectively. These three probability maps take
value in the range of [ —1, 1].

Note that, besides the benefits of the supervised learn-
ing (with manually labeled lesion by one expert, the subtle
difference between healthy tissue and lesion are further
described), features extracted from the T1-MRI, and the
probability maps of GM, WM, external CSF, and lesion
(LPM) can increase statistical power on classifying lesion
from healthy tissue, as shown in Tables 2 and 3.

Step 7): Combined classification

In this step, we combine the lesion probability maps
Po, p1, and p; generated in Section “Step 6): Individual
SVM classifiers” estimated from three individual classi-
fiers into a unified lesion probability map. Specifically, at
voxel (x,7,z) of a patient image, the final unified lesion
likelihood is computed by

p(x,9,2) = w1 X po(%,y,2) + wa X p1(*,,2) (7)
+(l)3 X pQ(x,yyZ) - Pv(x,y,z),

where w1, wy and w3 are the weights for the likelihood
estimated by three individual classifiers and Py is the
ventricle probability map derived in Section “Step 4):
LPM refinement”. Table 4 provides the details of choos-
ing parameters w;, wy and ws. Based on the results, we
empirically select w; = 0.1, w, = 0.3 and w3 = 0.6. Addi-
tionally, as shown in Table 3, the combined classification
results increase the accuracy, precision, recall and dice
coefficient in comparison to lesion detection results using
single type of features. Further detailed discussion will be
held in Section “Experiment results on in-house dataset
and analysis”. Note that, as shown in Fig. 2, this lesion like-
lihood map is estimated in the standard space, we perform
inverse normalization transform to map this lesion likeli-
hood map back to the original native space. Final binary
lesion classification is then achieved by thresholding this

Table 2 Lesion detection performance after applying each main step of the proposed method

Accuracy Precision Recall Dice
Initial LPM 0.964 £ 0.012 0.555 £+ 0.196 0.589 £ 0.151 0.548 £ 0.168
Unsupervised classification 0.981 £0.012 0.665 4 0.183 0.671 4+ 0.140 0.663 £ 0.161
Only zero-order features 0983 +£0.011 0.747 £0.151 0.646 +0.145 0.681 +0.143
Only 1st-order features 0.983 £0.011 0.754 £0.149 0.649 £ 0.142 0.687 £ 0.144
Only 2nd-order Features 0.970 £0.012 0.526 £0.170 0.641 £0.152 0.547 £0.160
Combine zero- & 1st-order features 0.983 £ 0.011 0.755 £ 0.147 0.649 £ 0.140 0.694 £ 0.126
Combined classification (all 3 features) 0.983 £ 0.011 0.783 £0.143 0.685 £ 0.131 0.731 £0.106
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Table 3 The performance of the unsupervised component only and the performance of the proposed method (combining both
unsupervised and supervised components)when using different features for supervised training

Unsupervised classification

Accuracy Precision Recall Dice
0.981 £0.012 0.665 £ 0.183 0.671 £ 0.140 0.663 £ 0.161
Supervised classification
Inputs Classifiers Accuracy Precision Recall Dice
zero-order 0952 £0.015 0.150£ 0313 0.402 £ 0.203 0.202 £0.302
MR Tst-order 0957 £0.014 0.162 £ 0306 0.389 £ 0.241 0.214 £ 0301
2nd-order 0.954 £ 0.015 0.144 4+ 0.347 0377 £0.272 0.193 £ 0.342
All combined 0.956 £ 0.014 0.187 £ 0.291 0421 4£0.198 0.258 £ 0.291
zero-order 0981 £0.012 0.696 £0.178 0.637 £0.146 0.665 £ 0.164
Prob. maps
1st-order 0.981 £0.012 0.702 £0.177 0.621 £0.157 0.659 £ 0.166
of WM, GM

2nd-order 0.968 £ 0.013 0.503 £0.192 0.609 £ 0.159 0.551£0.173

external CSF, LPM
All combined 0983 £0.012 0.781 £0.144 0.681 £0.142 0.728 £0.112
zero-order 0.983 £ 0.011 0.747 £ 0.151 0.646 £ 0.145 0.681 £ 0.143

T1 MRI & prob.

1st-order 0.983 £ 0.011 0.754 £ 0.149 0.649 £ 0.142 0.687 £ 0.144

maps of WM, GM,
2nd-order 0.970 £0.012 0526 £0.170 0.641 £0.152 0.547 £ 0.160

external CSF, LPM
All combined 0.983 £0.011 0.783 £0.143 0.685 £ 0.131 0.731 £0.106

lesion likelihood map and the selection of optimal thresh-  Results

old will be discussed in Section “Experiment results on
in-house dataset and analysis”

An alternative way is to combine all three features and
train a single SVM classifier. We choose not to do this
because the three features are of different orders and sub-
stantially different dimensions. Simply combing them and
feeding them into a single SVM may make one feature to
dominate the others. In particular, the 2nd-order feature
has a dimension of 476,100 and both the zero-order fea-
ture and 1st-order feature only have dimensions of 690. In
such cases, the use of multiple SVMs for different-order
features has been shown to be more effective in other
applications [51].

To justify the proposed method, in this paper we com-
pare its performance with several other state-of-the-art
lesion detection methods. Stamatakis et al. [13] compare
the patient brain to a set of normal controls without
segmentation for lesion detection. The T1-MRIs of nor-
mal controls and patients are normalized to a standard
space. After a spatial smoothing, they are statistically
compared voxel-by-voxel to identify regions outside the
normal range established by the controls. Instead of using
whole brain, Seghier et al. [11] compare the GM/WM
between the patient image and normal controls for lesion
detection. This algorithm [11] is performed recursively in
Sanjuan et al. [20] for enhancing the lesion detection.

Experiment data and setting

For our experiments, we compare the proposed method
with state-of-the-art lesion detection methods on: 1) in-
house dataset, and 2) MICCALI brain tumor image seg-
mentation (BRATS) challenge 2012 dataset. The in-house
data and BRATS-2012 data were produced by different
scanners with different image size.

For in-house dataset: MRI was acquired with a 3T
Siemens Trio system fitted with a 12-channel head-coil.
All subjects were scanned with the same 3D T1-MRI
sequence using a MP-RAGE (TFE) sequence: FOV =
256 mm x 256 mm, 160 sagittal slices, 9-degree flip angle,
TR = 2250 ms, TI = 900 ms, TE = 4.2 ms, 1 mm reso-
lution image. We collected T1-MRI for 60 stroke patients
(29 females and 31 males) with an age mean of 61.6
years and a standard deviation of 12.27 years. The aver-
age time post-stroke was 39.86 months with a standard
deviation of 49.24 months. For the healthy controls used
in the unsupervised component, in total we collected 115
brain images from normal subjects without brain damage
using the same hardware and sequence. The average age of
healthy controls was 70.2 years with a standard deviation
of 10.8 years.

For constructing the ground-truth lesion delineation,
all patients were also scanned with a high-resolution T2-
MR, yielding a 1 mm isotropic image. This sequence used
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Table 4 Lesion-detection performance using the full version of the proposed method, i.e., up to Section “Step 7): Combined

classification”, under different w1, wy, and w3

w1 w) w3 Accuracy Precision Recall Dice

0.1 0.1 08 0982 £0.012 0.785 £ 0.139 0.669 £ 0.138 0722 +0.118
0.1 0.2 0.7 0.983 £ 0.011 0.780 £ 0.144 0.684 £+ 0.136 0.728 £0.112
0.1 0.3 0.6 0.983 £ 0.011 0.783 £ 0.143 0.685 £ 0.131 0.731 +£0.106
0.1 0.4 0.5 0983 £0.011 0.789 £0.138 0.680 £0.133 0730 £0.111
0.1 0.5 0.4 0983 £0.011 0.792 £0.137 0.675£0.135 0729 £0.112
0.1 0.6 03 0.983 £ 0.011 0.787 £ 0.140 0675+£0.134 0.727 £0.113
0.1 0.7 0.2 0.982 £ 0.011 0.787 £0.139 0672 £0.135 0.725+£0.112
0.1 0.8 0.1 0.983 £ 0.011 0.787 £ 0.141 0.665 £ 0.147 0.721+£0.114
0.2 0.1 0.7 0.982 +0.011 0.776 £ 0.149 0.685 £ 0.133 0728 £0.112
0.2 0.2 0.6 0.983 £ 0.011 0.783 £ 0.141 0.684 £+ 0.133 0.730+£0.112
0.2 0.3 0.5 0.983 £ 0.011 0.788 £ 0.138 0.679 £ 0.133 0.729 +£0.112
0.2 0.4 0.4 0983 £0.011 0.792 £0.136 0.673 £0.134 0.728 £0.112
0.2 0.5 03 0983 £0.011 0.788 £0.137 0.674 £0.134 0.727 £0.113
0.2 0.6 0.2 0.983 £ 0.011 0.787 £0.137 0.669 £ 0.139 0723 £0.113
0.2 0.7 0.1 0.983 £ 0.011 0.785£0.139 0.666 £ 0.148 0721 £0.114
03 0.1 0.6 0.983 £ 0.011 0.782 £ 0.140 0.684 £ 0.135 0.730£0.112
03 02 0.5 0.983 £ 0.011 0.788 £0.136 0677 £0.134 0728 £0.112
0.3 0.3 0.4 0.983 £ 0.011 0.790 £ 0.135 0.673 £ 0.135 0.727 £0.112
0.3 0.4 03 0.982 £ 0.011 0.787 £0.136 0.673 £0.137 0.726 £0.113
0.3 0.5 0.2 0983 £0.011 0.787 £0.135 0.668 £ 0.141 0723 £0.114
0.3 0.6 0.1 0982 £0.011 0.784 £0.138 0.665 £ 0.137 0720 £0.114
04 0.1 0.5 0.983 £ 0.011 0.786 £0.137 0678 £0.133 0.728 £0.111
04 0.2 04 0.983 £ 0.011 0.787 £0.137 0675+0.134 0.727 £0.112
04 03 03 0.983 £ 0.011 0.787 £0.139 0672 £0.134 0.725+£0.112
04 04 0.2 0.983 £ 0.011 0.786 £ 0.139 0.668 £ 0.141 0722 +0.114
0.4 0.5 0.1 0.983 £ 0.011 0.783 £ 0.140 0.664 £ 0.143 0719+0.114
0.5 0.1 0.4 0.983 £ 0.011 0.787 £ 0.139 0.674 +£0.136 0.726 £0.113
0.5 0.2 0.3 0983 £0.011 0.785 £ 0.140 0.672 £0.137 0724 £0.112
0.5 0.3 0.2 0983 £0.011 0.784 £ 0.141 0.668 £ 0.143 0721 £0.114
0.5 04 0.1 0.983 £ 0.011 0.783 £0.143 0.662 £ 0.145 0717 £0.117
06 0.1 03 0.983 £ 0.011 0.783 £0.142 0672 £0.137 0723 £0.112
06 0.2 0.2 0.983 £ 0.011 0.782 £0.142 0.668 £ 0.144 0721 £0.114
06 03 0.1 0.983 £ 0.011 0.782 £ 0.142 0.662 £ 0.146 0.717 £0.120
0.7 0.1 0.2 0.983 £ 0.011 0.781 £ 0.144 0.668 £ 0.142 0.7204+£0.113
0.7 0.2 0.1 0.983 £ 0.011 0.782 £ 0.144 0.661 4 0.150 0716 £0.123
0.8 0.1 0.1 0983 £0.011 0.781 £0.146 0.660 £ 0.153 0.715£0.129

a 3D SPACE (Sampling Perfection with Application opti-
mized Contrasts by Using different flip angle Evolutions)
protocol with the following parameters: FOV = 256 x
256 mm, 160 sagittal slices, variable flip angle, TR =
3200 ms, TE = 352 ms, using the same slice position-
ing and angulation as the T1 sequence. All the ground-
truth lesions are manually delineated on the T2-MRIs,

using the MRIcron software [52], since lesions show bet-
ter contrast in T2-MRI [53]. We then co-register the T1-
and T2-MRI using the routine in SPM8 and map the
delineated ground-truth lesion from T2-MRI to the T1-
MRI as the ground truth for performance evaluation in
the experiments. For the in-house data, lesions on T2-
MRI were delineated by three co-authors Guo, Fillmore,
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and Fridriksson, all with sufficient pathology knowledge
and training. All the delineation results were further
validated by Fridriksson who is a highly experienced
pathologist. As a result, each image only has one ground
truth.

For MICCAI BRATS 2012 dataset: Brain tumor image
data used in this work were obtained from the MICCAI
2012 Challenge on Multimodal Brain Tumor Segmenta-
tion (http://www.imm.dtu.dk/projects/BRATS2012) orga-
nized by B. Menze, A. Jakab, S. Bauer, M. Reyes, M.
Prastawa, and K. Van Leemput. The challenge database
contains full-anonymized images from the following insti-
tutions: ETH Zurich, University of Bern, University of
Debrecen, and University of Utah. The data consists of
multi-contrast MR scans of 30 glioma patients (both
low-grade and high-grade, and both with and with-
out resection) along with expert annotations for ‘active
tumor’ and ‘edema’ For each patient, T1, T2, FLAIR
and post-Gadolinium T1 MR images are available. All
volumes were linearly co-registered to the T1 contrast
image, skull stripped, and interpolated to 1 mm isotropic
resolution. Please note that we only use T1-MRI for
experiments.

Evaluation metrics

In this paper, we evaluate the performance of a lesion-
detection method using a leave-one-out cross validation
strategy. In each testing round, all but one patient images
are taken for training while the remaining one is used for
testing. All the performance measures are averaged over
all the 60 testing rounds. For the evaluation criteria, we
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follow [11, 13, 20] by using the Accuracy, Precision, Recall
and Dice coefficient.

TP+ TN
Accuracy = ,
TP+ TN + FN + FP
. P
Precision = ———,
TP + FP
P
Recall = ——,
TP + FN
. 2x TP
Dice =

2x TP+ FP+ FN’

where TP, FP, and FN represent the number of true pos-
itives, false positives, and false negatives respectively. For
example, a voxel is classified as lesion, but not lesion in
the ground truth segmentation, is counted as a false posi-
tive. We apply different threshold ¢ to the lesion likelihood
(from the combined classification, see Eq. (8)) to obtain a
two-class classification, with which we can draw curves of
the Dice’s coefficient.

Figure 6 shows the Dice coefficient at different thresh-
old ¢ when testing the proposed method on the 60 patient
images — each curve corresponds to one patient (and one
round of the leave-one-out testing). We can see that, for
most patients, we need to select ¢ < 0.5 for binary classi-
fication to better separate the lesions from the remaining
tissues. Without specific claims, in the remainder of the
paper all the reported Accuracy, Precision, Recall and Dice
coefficient values are obtained by selecting an optimal ¢*

09
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Fig. 6 Curves of Dice coefficient (by varying the threshold t) for the 60 stroke patients
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Table 5 Directly taking the refined LPM, i.e,, up to Section “Step 4): LPM refinement”) of the proposed method, for performance

evaluation, under different y

y Accuracy Precision Recall Dice

% 0976 £0.012 0470 £0.197 0611 £0.154 0516 +0.178
% 0978 £0.012 0510 £0.194 0.624 £ 0.151 0.550 £ 0.174
% 0979 £0.011 0.550 £ 0.189 0.631 £0.148 0.582 £0.169
% 0.980 £ 0.011 0.600 £ 0.186 0.634 +0.143 0.612+0.166
g 0981 £0.012 0.665 £ 0.183 0.671 £ 0.140 0.663 £+ 0.161
1 0.981 £0.012 0.645 £ 0.187 0.590 £ 0.157 0611 £0.166

for each MRI that leads to the highest Dice coefficient, for
both the proposed method and the comparison methods.

Experiment results on in-house dataset and analysis

First, we conduct experiments to show the usefulness
of each step proposed in this paper. Table 2 shows the
performance (averaged over all rounds of the leave-one-
out tests) of the proposed method after each main step.
Specifically, the initial LPM is the result after Section “Step
2): Initial estimation of LPM” and we threshold this ini-
tial LPM, using the optimal threshold ¢ for each image
that leads to the highest Dice coefficient as described
above, to derive the performance after this step. Simi-
larly, the refined LPM is the result in Section “Step 4):
LPM refinement” and we use the similar technique to
threshold it for a performance evaluation. The rows of
‘Only zero-order features; ‘Only 1st-order features’ and
‘Only 2nd-order features’ show the performance of the
proposed method by using only one of the three types of
the statistical features described in Section “Step 5): Fea-
ture extraction’; respectively. The Accuracy of the lesion
detection is always high (above 90 %) because brain MRIs
always contain large areas of dark background outside the
brain and these areas can be easily classified correctly as

non-lesions. From Table 2, we can see that each main
step of the proposed method contributes further per-
formance improvement, in terms of Accuracy, Precision,
Recall and Dice coefficient. Additionally, the combination
of different order statistical features leads to better lesion-
detection performance than using only one type of these
features.

In particular, from Table 2, we can see that that the SVM
with the 2nd-order feature shows lower performance than
the SVMs with the zero-order and 1st-order features in
terms of Precision, Recall, Dice and Accuracy. However,
if we only combine zero-order and 1st-order features, the
Dice coefficient is 0.694 + 0.126, which is still lower than
the combination of all three classifiers (0.731 =% 0.106).
This shows that the 2nd-order features still provide com-
plementary information to the other features and help
improve the final lesion classification.

Two main free parameters in the initial LPM estima-
tion are « in Eq. (2) and X in Eq. (3). Table 1 shows the
lesion-detection performance based on the initial LPM
after Step 2) under different o and A. Based on these
results, we select « = 0.4 and A = 5. Table 5 shows the
lesion-detection performance based on the refined LPM
after Step 4) under different y. Based on these results, we

Table 6 The performance of the proposed method and the three comparison methods on the in-house data

Accuracy Precision Recall Dice
(a) Threshold t is selected to maximize the Dice coefficients against the ground truth
Stamatakis et al,, 2005 0.954 £0.016 0498 £ 0.179 0511 £0.174 0.504 £+ 0.152
Seghier et al., 2008 0.969 £0.012 0.568 £ 0.169 0.539£0.153 0.546 £ 0.151
Sanjuan et al. 2013 0971 £0.011 0.616 £0.148 0.599 £0.133 0.607 £0.122
Proposed Method 0.985 £ 0.011 0.783 £0.143 0.685 £ 0.131 0.731 £0.106

(b) Threshold t is selected by following Eg. (8) without using the ground truth for the proposed method,

while the thresholds for the comparison methods are the ones suggested in their respective papers

Stamatakis et al., 2005 0.954 £0.016 0478 +£0.182 0.5134+0.177 0489 + 0.154
Seghier et al,, 2008 0.969 £ 0.012 0471 £0.179 0.542 £0.157 0.506 £ 0.153
Sanjuan et al. 2013 0.971 £0.011 0.526 £0.163 0.604 £0.134 0.557 £0.131
Proposed Method 0981 +£0.011 0.717 £0.151 0.707 £0.134 0698 +£0.118
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select y = g. Table 4 shows the lesion-detection perfor-
mance based on the combined classification after Step 7)
under different wi, wy and ws. Based on these results, we
select w1 = 0.1, wy = 0.3 and w3 = 0.6.

Second, we conduct experiments to show the effec-
tiveness of combining both unsupervised and supervised
components. From Table 3, we can see that, if we directly
feed the MRI intensity into the supervised classification,
the lesion detection performance is very poor. On the
other hand, if we feed the probability maps of brain tissues
and lesions estimated from the unsupervised component,
i.e., the results after Step 4) in Section “Step 4): LPM
refinement’, into the supervised classification, we achieve
substantially improved performance. If we combine both
intensity and probability map features, we achieve fur-
ther performance improvements. This shows that the
combination of both unsupervised and supervised com-
ponents boosts the lesion detection performance. In this
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experiment, we also try the use of each type of the fea-
tures, i.e., zero-order, 1st-order and 2nd-order statistical
features, and the results in Table 3 further confirms that
the combination of all three types of features leads to bet-
ter performance than using only one of them. We also per-
form a paired-sample one tailed ¢-test to compare lesion
detection results after the unsupervised and supervised
components. Based on their Dice coefficients, the one-
tailed p-value for this ¢-test is p = 6.4e — 11, and t = 8.19.
This shows that there is a significant performance
improvement by including the supervised component.
Finally, we compare the performance of the proposed
method with three state-of-the-art lesion detection meth-
ods [11, 13, 20] on our collected 60 patient images. From
Table 6a, we can see that, the proposed method achieves
a substantially better lesion detection performance than
these three comparison methods in terms of all the four
evaluation criteria, each of which is the average over all 60

| Patient 01 | Patient 02 |

Patient 03 |

Patient 04 | Patient 05 |

Fig. 7 Sample results of lesion detection on selected 2D slices of different patients. Red and green contours indicate the detected lesion boundaries

and the ground-truth lesion boundaries, respectively
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Proposed Sanjuan et al. Seghier et al. Stamatakis et al.

Fig. 8 Sample results of lesion detection using the proposed method and the three comparison methods on selected 2D slices. Red and green
contours indicate the detected lesion boundaries and the ground-truth lesion boundaries, respectively. Columns 1-4 are the lesion-detection
results from the proposed method, Sanjuan et al,, Seghier et al,, and Stamatakis et al. respectively. Rows 1-4 are the lesion-detection results from
in-house dataset. Rows 5-8 are the lesion detection results from MICCAI BRATS 2012 dataset
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rounds of leave-one-out tests. Figure 7 qualitatively shows
the detected lesions on selected 2D slices of different
patients (from three views), where red contours denote
the detected lesion boundaries and the green contours
denote the ground-truth lesion boundaries. Figure 8 qual-
itatively shows the lesion-detection results produced by
the proposed method and the three comparison methods
on selected 2D slices, where red and green contours indi-
cate the detected lesion boundaries and the ground-truth
lesion boundaries, respectively.

The performances reported in Table 6a, for both the
proposed methods and the comparison methods, are
based on the threshold ¢ optimized for each test image
(corresponding to a round of leave-one-out cross valida-
tion) in terms of the Dice coefficient with the ground
truth. In practice, we do not have ground truth lesion
detection for new test images and cannot find such an
optimal threshold ¢ for each image. Instead, we propose a
simple strategy to select a threshold ¢ for each test image
such that it maximizes the structural consistency of the
detected lesion. Specifically, considering the 2D serial-
sections along the horizontal direction from the top to the
bottom, denote the lesion detected (using threshold ¢) on
slice i to be Rf. We calculate the overlap between neigh-

. . IRIOR | . . .
boring slices as —® with | - | to be the area. With this,
we select the threshold ¢* as

IREM\RE |
t* = arg max o 8
& 0<t<1 Z |Rf| ®)

L IRE|£0

Table 6b shows the performance of the proposed
method using this strategy of threshold selection which is
independent of the ground truth. For fairer comparison, in
this experiment, ground-truth independent thresholds are
also used for the three comparison methods when bina-
rizing the lesion likelihood map for lesion regions. For the
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three comparison methods, the thresholds are chosen to
be the ones as suggested in their original papers and their
performances are also reported in Table 6b. We can see
that while the performance is lower than the one when
using the optimal threshold ¢ in terms of the ground truth,
the proposed strategy of theshold selection still leads to a
Dice coefficient of 69.8 %, which is much higher than all
three comparison methods.

Experiment results on MICCAI BRATS 2012 dataset

We also test the proposed method on MICCAI BRATS
2012 dataset. The dataset contains 30 glioma patients
(both 24 low-grade MRIs and 6 high-grade T1-MRIs)
along with expert annotations for “active tumor” and
“edema”. As in the in-house dataset, we use leave-one-out
cross validation to train and test the proposed method on
MICCAI BRATS 2012 dataset. The values of the parame-
ters «, ¥, A, w1, wy, and ws are the same as those used for
the in-house dataset.

Quantitative comparisons are shown in Table 7a and b.
Some examples of lesion/tumor detection from the
database are given in Fig. 8. Table 7a reports the per-
formance where the threshold ¢ is selected to maximize
the Dice coefficients against the ground truth. Table 7b
reports the performance where the threshold ¢ as in Eq. (8)
without using the ground truth.

Discussion
In this section, we further discuss several issues and limi-
tations of the proposed method.

In Step 1), we assume brain symmetry to construct a
rough estimate of a healthy brain underlying the input
lesioned brain for enantiomorphic normalization. How-
ever, in practice, brain is by nature asymmetric and the
assumption of perfect brain symmetry is not held. In
this section, we first conduct an experiment to assess

Table 7 The performance of the proposed method and the three comparison methods on MICCAI BRATS 2012 data

Accuracy Precision Recall Dice
(a) Threshold t is selected to maximize the Dice coefficients against the ground truth
Stamatakis et al.,, 2005 0.987 £0.012 0401 £0.217 0532 £0.168 0457 £0.221
Seghier et al., 2008 0.987 £0.011 0.623 £0.179 0.484 £ 0.151 0.545 £ 0.157
Sanjuan et al. 2013 0.990 £ 0.011 0.696 £ 0.157 0.523 £0.130 0.597 £0.119
Proposed Method 0.992 £0.011 0.830 £ 0.086 0.555 £ 0.131 0.665 £ 0.120

(b) Threshold t is selected by following Eg. (8) without using the ground truth for the proposed method,

while the thresholds for the comparison methods are the ones suggested in their respective papers

Stamatakis et al., 2005 0.987 +£0.012 0.395 +0.224 0.530+0.174 0453 +£0.233
Seghier et al,, 2008 0.987 £0.011 0.601 +0.184 0485 £ 0.149 0.537 £0.163
Sanjuan et al. 2013 0.990 £ 0.011 0.686 £+ 0.161 0.524 £0.129 0.594 £0.124
Proposed Method 0.991 +£0.011 0.792 £ 0.104 0.559+£0.127 0654 4+0.123
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Table 8 The impact of brain assymmetry to the proposed method

Accuracy Precision Recall Dice
Using the proposed enantiomorphic normalization
Initial LPM 0964 £ 0.012 0.555 £ 0.196 0.589 £ 0.151 0.548 £ 0.168
Unsupervised classification 0.981 £ 0.012 0.665 4 0.183 0.671 4 0.140 0.663 £ 0.161
Combined classification 0983 £0.011 0.780 £ 0.144 0.684 £ 0.136 0.731 £0.106
Using the ground-truth lesion mask for USN

Initial LPM 0971 £0.012 0.608 £ 0.193 0.587 £0.147 0.595 +£0.163
Unsupervised classification 0.981 +£0.012 0.691 +0.174 0.678 +0.138 0.677 £0.164
Combined classification 0.985 £0.010 0.794 £ 0.141 0.701 £0.127 0.743 £ 0.101

the impact of brain asymmetry to the proposed method.
Specifically, we assume that the ground-truth lesion mask
is known and we use the USN pipeline with cost function
masking in SPM8 [42] for brain normalization. We then
use this normalization result to replace the proposed
enantiomorphic normalization result in the proposed
method and the results on the in-house dataset are
reported in Table 8. We can see, by using USN, the Dice
of the initial LPM increases by 0.047, the Dice of refined
LPM (after unsupervised component) increases by 0.014,
and the Dice of the final lesion detection increases by only
0.012. These results show that the assumption of the brain
symmetry in the proposed method does not introduce
too much impact to final performance of the proposed
method. Note that, in practice, the ground-truth lesion
mask is unknown and it is impossible to achieve such
USN.

Another issue in the proposed method is the selection
of the block size for feature extraction. In all the pre-
vious experiments, we choose block size of 5 x 5 x 5.
We further conduct an experiment to examine the
lesion-classification performance using different block
sizes and the result on the in-house data is shown in
Table 9. We can see that the use of block size 5 x 5 x 5
leads to a better performance than the use of block size
3 x 3 x 3. Furthermore, the use of block size 7 x 7 x 7
can further improve a little the performance (from 0.731
to 0.733 in terms of Dice coefficient). However, we found
that the use of 7 x 7 x 7 block size takes much more com-
putation time, because of the substantial increase of the
feature dimensions. The most time consuming step is to
generate the different order features. When increasing the
block size from 5 x 5 x 5to 7 x 7 x 7, the CPU time
to generate features on an image from the in-house data
will increase from 133 min to 388 min on a MAC 10.10.5
computer with a 2.2GHz Intel Core i7 CPU and 16GB

estimation. Brain normalization was also important for
accurate tissue segmentation, which provides the input
to the supervised component. Therefore, the presence of
brain atrophy may seriously affect the performance of the
final lesion classification. An example is shown in the first
row (patient 11) of Fig. 9, where ventricle of the patient is
dilated and twisted — the structures surrounding the left
occipital lobe is warped towards its counterparts on the
right. For this patient, the proposed method only achieves
a lesion classification with a Dice coefficient of 0.491.

Partial volume effect changes the voxel intensity and
makes it more difficult to capture the tissue boundaries
in the segmentation. The proposed method takes tissue
segmentation for feature extraction and supervised clas-
sification. Therefore, partial volume effect may also affect
the performance of the proposed method. Many methods
and tools have been developed to identify and correct the
partial volume effect [43, 54]. Using these methods and
tools to preprocess the images may help reduce its effect
to the proposed method.

Another issue may fail the proposed method is that SPM
may confuse lesion and CSF since they share similar inten-
sities. But in most cases, this is not a serious issue when
lesion is in GM and WM and can be separated with CSF
in the normalized standard space. However, when lesion is
near CSF or ventricle is substantially deformed, SPM may
have troubles in distinguishing the lesion and the CSE. As
a result, the proposed method may confuse the lesion and
CSF in the classification. An example is shown in the row 2
(patient 12) of Fig. 9, where part of the left lateral ventricle
adjacent to the lesion is misclassified as the lesion by the
proposed method. For this patient, the proposed method
achieves a Dice coefficient of 0.532.

Table 9 Lesion detection performance using different block size
for feature extraction in Section “Step 5): Feature extraction”

memory. Block size Accurac Precision Recall Dice
Y: y
The presence of brain atrophy will further break the 3, 3,3 (98340011 072240153 068340133 0701 £0.112
symmetry of the brain and increase the difficulty of . . o o0s) 01 078310143 068420131 073140106
brain normalization. The proposed method assumes the
7x7x7 098440011 078540142 069140127 0733+ 0.106

brain symmetry for brain normalization and initial lesion
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| Axial ‘ Coronal | Sagittal

Patient 11

Patient 12

Fig. 9 Two failure cases of lesion detection using the proposed method. Red and green contours indicate the detected and ground-truth lesion
boundaries, respectively

Fig. 10 The impact of bias field inhomogeneity to the symmetry axis estimation. (a) Original T1-MRI. (b) Simulated bias field. (c-e) samples slices
from the simulated T1-MRI with bias field, where red and green lines indicate the detected and ground-truth symmetry axes
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Bias field inhomogeneity may fail the proposed method
because it will affect the correct identification of the
lesioned hemisphere. In addition, the symmetric axis esti-
mation is very sensitive to the bias field inhomogeneity.
An example is shown in Fig. 10, where an artificial bias
field is added to each slice of a T1-MRI, following the
strategies in [55, 56]. Let X and Y be the size of row and
column. Centered at (%, %), the added bias field at each
2D slice is a 2D Gaussian with 40 mm FWHM and the cen-
ter intensity of Ip is 10 times of the maximum intensity in
the original 3D MRI. Following [55, 56], we first evaluate
the estimated symmetry axis against the ground truth axis
using the yaw and roll angles between them. Without the
added bias field, the yaw and roll angles are 1.788 &+ 0.137
and 2.281 =+ 0.244 respectively over all the in-house data.
With the added bias field, the yaw and roll angles are
2.211 £ 0.154 and 14.899 =+ 4.647, respectively, which are
much larger than those without the added bias field.

Another failure case of the proposed method is when
both hemispheres contain lesions. In this case, the under-
lying healthy brain cannot be estimated using a hemi-
sphere for brain normalization in Step 1).

Conclusions

In this paper, we introduced a novel automated pro-
cedure for lesion detection from T1-weighted MRIs
by combining both an unsupervised and a supervised
component. In the unsupervised component, we devel-
oped new approaches to identify the lesioned hemisphere
and used it to help normalize the patient MRI with lesions
and initialize/refine a lesion probability map. In the super-
vised component, we combined different-order statistical
features extracted from both the tissue/lesion probabil-
ity maps obtained from the unsupervised component and
the original MRI intensity and applied three SVM clas-
sifiers for final voxel-based lesion classification. In the
experiments, we evaluated each main step of the proposed
method and verified its effectiveness. Lesion detection on
a set of 60 stroke patient MRIs showed that the proposed
method could achieve superior performance compared to
three state-of-the-art lesion detection methods in terms
of four different evaluation criteria. In particular, using
the leave-one-out cross validation, the proposed method
achieved an average Dice coefficient of 73.1 % on the 60
patient MRIs against the ground truth lesions that were
manually labeled by trained neurologists. Also, we used
the proposed method to detect brain tumor on 30 real
tumor T1-MRIs on MICCAI BRATS 2012 dataset and the
proposed method achieved an average Dice coefficient of
66.5 %.
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