358 research outputs found

    Fully automated grey and white matter spinal cord segmentation

    Get PDF
    Axonal loss in the spinal cord is one of the main contributing factors to irreversible clinical disability in multiple sclerosis (MS). In vivo axonal loss can be assessed indirectly by estimating a reduction in the cervical cross-sectional area (CSA) of the spinal cord over time, which is indicative of spinal cord atrophy, and such a measure may be obtained by means of image segmentation using magnetic resonance imaging (MRI). In this work, we propose a new fully automated spinal cord segmentation technique that incorporates two different multi-atlas segmentation propagation and fusion techniques: The Optimized PatchMatch Label fusion (OPAL) algorithm for localising and approximately segmenting the spinal cord, and the Similarity and Truth Estimation for Propagated Segmentations (STEPS) algorithm for segmenting white and grey matter simultaneously. In a retrospective analysis of MRI data, the proposed method facilitated CSA measurements with accuracy equivalent to the inter-rater variability, with a Dice score (DSC) of 0.967 at C2/C3 level. The segmentation performance for grey matter at C2/C3 level was close to inter-rater variability, reaching an accuracy (DSC) of 0.826 for healthy subjects and 0.835 people with clinically isolated syndrome MS

    Spinal cord gray matter segmentation using deep dilated convolutions

    Get PDF
    Gray matter (GM) tissue changes have been associated with a wide range of neurological disorders and was also recently found relevant as a biomarker for disability in amyotrophic lateral sclerosis. The ability to automatically segment the GM is, therefore, an important task for modern studies of the spinal cord. In this work, we devise a modern, simple and end-to-end fully automated human spinal cord gray matter segmentation method using Deep Learning, that works both on in vivo and ex vivo MRI acquisitions. We evaluate our method against six independently developed methods on a GM segmentation challenge and report state-of-the-art results in 8 out of 10 different evaluation metrics as well as major network parameter reduction when compared to the traditional medical imaging architectures such as U-Nets.Comment: 13 pages, 8 figure

    Development of an MRI Template and Analysis Pipeline for the Spinal Cord and Application in Patients with Spinal Cord Injury

    Get PDF
    La moelle épinière est un organe fondamental du corps humain. Étant le lien entre le cerveau et le système nerveux périphérique, endommager la moelle épinière, que ce soit suite à un trauma ou une maladie neurodégénérative, a des conséquences graves sur la qualité de vie des patients. En effet, les maladies et traumatismes touchant la moelle épinière peuvent affecter l’intégrité des neurones et provoquer des troubles neurologiques et/ou des handicaps fonctionnels. Bien que de nombreuses voies thérapeutiques pour traiter les lésions de la moelle épinière existent, la connaissance de l’étendue des dégâts causés par ces lésions est primordiale pour améliorer l’efficacité de leur traitement et les décisions cliniques associées. L’imagerie par résonance magnétique (IRM) a démontré un grand potentiel pour le diagnostic et pronostic des maladies neurodégénératives et traumas de la moelle épinière. Plus particulièrement, l’analyse par template de données IRM du cerveau, couplée à des outils de traitement d’images automatisés, a permis une meilleure compréhension des mécanismes sous-jacents de maladies comme l’Alzheimer et la Sclérose en Plaques. Extraire automatiquement des informations pertinentes d’images IRM au sein de régions spécifiques de la moelle épinière présente toutefois de plus grands défis que dans le cerveau. Il n’existe en effet qu’un nombre limité de template de la moelle épinière dans la littérature, et aucun ne couvre toute la moelle épinière ou n’est lié à un template existant du cerveau. Ce manque de template et d’outils automatisés rend difficile la tenue de larges études d’analyse de la moelle épinière sur des populations variées. L’objectif de ce projet est donc de proposer un nouveau template IRM couvrant toute la moelle épinière, recalé avec un template existant du cerveau, et intégrant des atlas de la structure interne de la moelle épinière (e.g., matière blanche et grise, tracts de la matière blanche). Ce template doit venir avec une série d’outils automatisés permettant l’extraction d’information IRM au sein de régions spécifiques de la moelle épinière. La question générale de recherche de ce projet est donc « Comment créer un template générique de la moelle épinière, qui permettrait l’analyse non biaisée et reproductible de données IRM de la moelle épinière ? ». Plusieurs contributions originales ont été proposées pour répondre à cette question et vont être décrites dans les prochains paragraphes. La première contribution de ce projet est le développement du logiciel Spinal Cord Toolbox (SCT). SCT est un logiciel open-source de traitement d’images IRM multi-parametrique de la moelle épinière (De Leener, Lévy, et al., 2016). Ce logiciel intègre notamment des outils pour la détection et la segmentation automatique de la moelle épinière et de sa structure interne (i.e., matière blanche et matière grise), l’identification et la labellisation des niveaux vertébraux, le recalage d’images IRM multimodales sur un template générique de la moelle épinière (précédemment le template MNI-Poly-AMU, maintenant le template PAM50, proposé içi). En se basant sur un atlas de la moelle, SCT intègre également des outils pour extraire des données IRM de régions spécifiques de la moelle épinière, comme la matière blanche et grise et les tracts de la matière blanche, ainsi que sur des niveaux vertébraux spécifiques. D’autres outils additionnels ont aussi été proposés, comme des outils de correction de mouvement et de traitement basiques d’images appliqués le long de la moelle épinière. Chaque outil intégré à SCT a été validé sur un jeu de données multimodales. La deuxième contribution de ce projet est le développement d’une nouvelle méthode de recalage d’images IRM de la moelle épinière (De Leener, Mangeat, et al., 2017). Cette méthode a été développée pour un usage particulier : le redressement d’images IRM de la moelle épinière, mais peut également être utilisé pour recaler plusieurs images de la moelle épinière entre elles, tout en tenant compte de la distribution vertébrale de chaque sujet. La méthode proposée se base sur une approximation globale de la courbure de la moelle épinière dans l’espace et sur la résolution analytique des champs de déformation entre les deux images. La validation de cette nouvelle méthode a été réalisée sur une population de sujets sains et de patients touchés par une compression de la moelle épinière. La contribution majeure de ce projet est le développement d’un système de création de template IRM de la moelle épinière et la proposition du template PAM50 comme template de référence pour les études d’analyse par template de données IRM de la moelle épinière. Le template PAM50 a été créé à partir d’images IRM tiré de 50 sujets sains, et a été généré en utilisant le redressement d’images présenté ci-dessus et une méthode de recalage d’images itératif non linéaire, après plusieurs étapes de prétraitement d’images. Ces étapes de prétraitement incluent la segmentation automatique de la moelle épinière, l’extraction manuelle du bord antérieur du tronc cérébral, la détection et l’identification des disques intervertébraux, et la normalisation d’intensité le long de la moelle. Suite au prétraitement, la ligne centrale moyenne de la moelle et la distribution vertébrale ont été calculées sur la population entière de sujets et une image initiale de template a été générée. Après avoir recalé toutes les images sur ce template initial, le template PAM50 a été créé en utilisant un processus itératif de recalage d’image, utilisé pour générer des templates de cerveau. Le PAM50 couvre le tronc cérébral et la moelle épinière en entier, est disponible pour les contrastes IRM pondérés en T1, T2 et T2*, et intègre des cartes probabilistes et atlas de la structure interne de la moelle épinière. De plus, le PAM50 a été recalé sur le template ICBM152 du cerveau, permettant ainsi la tenue d’analyse par template simultanément dans le cerveau et dans la moelle épinière. Finalement, plusieurs résultats complémentaires ont été présentés dans cette dissertation. Premièrement, une étude de validation de la répétabilité et reproductibilité de mesures de l’aire de section de la moelle épinière a été menée sur une population de patients touchés par la sclérose en plaques. Les résultats démontrent une haute fiabilité des mesures ainsi que la possibilité de détecter des changements très subtiles de l’aire de section transverse de la moelle, importants pour mesurer l’atrophie de la moelle épinière précoce due à des maladies neurodégénératives comme la sclérose en plaques. Deuxièmement, un nouveau biomarqueur IRM des lésions de la moelle épinière a été proposé, en collaboration avec Allan Martin, de l’Université de Toronto. Ce biomarqueur, calculé à partir du ratio d’intensité entre la matière blanche et grise sur des images IRM pondérées en T2*, utilise directement les développements proposés dans ce projet, notamment en utilisant le recalage du template de la moelle épinière et les méthodes de segmentation de la moelle. La faisabilité d’extraire des mesures de données IRM multiparamétrique dans des régions spécifiques de la moelle épinière a également été démontrée, permettant d’améliorer le diagnostic et pronostic de lésions et compression de la moelle épinière. Finalement, une nouvelle méthode d’extraction de la morphométrie de la moelle épinière a été proposée et utilisée sur une population de patients touchés par une compression asymptomatique de la moelle épinière, démontrant de grandes capacités de diagnostic (> 99%). Le développement du template PAM50 comble le manque de template de la moelle épinière dans la littérature mais présente cependant plusieurs limitations. En effet, le template proposé se base sur une population de 50 sujets sains et jeunes (âge moyen = 27 +- 6.5) et est donc biaisée vers cette population particulière. Adapter les analyses par template pour un autre type de population (âge, race ou maladie différente) peut être réalisé directement sur les méthodes d’analyse mais aussi sur le template en lui-même. Tous le code pour générer le template a en effet été mis en ligne (https://github.com/neuropoly/template) pour permettre à tout groupe de recherche de développer son propre template. Une autre limitation de ce projet est le choix d’un système de coordonnées basé sur la position des vertèbres. En effet, les vertèbres ne représentent pas complètement le caractère fonctionnel de la moelle épinière, à cause de la différence entre les niveaux vertébraux et spinaux. Le développement d’un système de coordonnées spinal, bien que difficile à caractériser dans des images IRM, serait plus approprié pour l’analyse fonctionnelle de la moelle épinière. Finalement, il existe encore de nombreux défis pour automatiser l’ensemble des outils développés dans ce projet et les rendre robuste pour la majorité des contrastes et champs de vue utilisés en IRM conventionnel et clinique. Ce projet a présenté plusieurs développements importants pour l’analyse de données IRM de la moelle épinière. De nombreuses améliorations du travail présenté sont cependant requises pour amener ces outils dans un contexte clinique et pour permettre d’améliorer notre compréhension des maladies affectant la moelle épinière. Les applications cliniques requièrent notamment l’amélioration de la robustesse et de l’automatisation des méthodes d’analyse d’images proposées. La caractérisation de la structure interne de la moelle épinière, incluant la matière blanche et la matière grise, présente en effet de grands défis, compte tenu de la qualité et la résolution des images IRM standard acquises en clinique. Les outils développés et validés au cours de ce projet ont un grand potentiel pour la compréhension et la caractérisation des maladies affectant la moelle épinière et aura un impact significatif sur la communauté de la neuroimagerie.----------ABSTRACT The spinal cord plays a fundamental role in the human body, as part of the central nervous system and being the vector between the brain and the peripheral nervous system. Damaging the spinal cord, through traumatic injuries or neurodegenerative diseases, can significantly affect the quality of life of patients. Indeed, spinal cord injuries and diseases can affect the integrity of neurons, and induce neurological impairments and/or functional disabilities. While various treatment procedures exist, assessing the extent of damages and understanding the underlying mechanisms of diseases would improve treatment efficiency and clinical decisions. Over the last decades, magnetic resonance imaging (MRI) has demonstrated a high potential for the diagnosis and prognosis of spinal cord injury and neurodegenerative diseases. Particularly, template-based analysis of brain MRI data has been very helpful for the understanding of neurological diseases, using automated analysis of large groups of patients. However, extracting MRI information within specific regions of the spinal cord with minimum bias and using automated tools is still a challenge. Indeed, only a limited number of MRI template of the spinal cord exists, and none covers the full spinal cord, thereby preventing large multi-centric template-based analysis of the spinal cord. Moreover, no template integrates both the spinal cord and the brain region, thereby preventing simultaneous cerebrospinal studies. The objective of this project was to propose a new MRI template of the full spinal cord, which allows simultaneous brain and spinal cord studies, that integrates atlases of the spinal cord internal structures (e.g., white and gray matter, white matter pathways) and that comes with tools for extracting information within these subregions. More particularly, the general research question of the project was “How to create generic MRI templates of the spinal cord that would enable unbiased and reproducible template-based analysis of spinal cord MRI data?”. Several original contributions have been made to answer this question and to enable template-based analysis of spinal cord MRI data. The first contribution was the development of the Spinal Cord Toolbox (SCT), a comprehensive and open-source software for processing multi-parametric MRI data of the spinal cord (De Leener, Lévy, et al., 2016). SCT includes tools for the automatic segmentation of the spinal cord and its internal structure (white and gray matter), vertebral labeling, registration of multimodal MRI data (structural and non-structural) on a spinal cord MRI template (initially the MNI-Poly-AMU template, later the PAM50 template), co-registration of spinal cord MRI images, as well as the robust extraction of MRI metric within specific regions of the spinal cord (i.e., white and gray matter, white matter tracts, gray matter subregions) and specific vertebral levels using a spinal cord atlas (Lévy et al., 2015). Additional tools include robust motion correction and image processing along the spinal cord. Each tool included in SCT has been validated on a multimodal dataset. The second contribution of this project was the development of a novel registration method dedicated to spinal cord images, with an interest in the straightening of the spinal cord, while preserving its topology (De Leener, Mangeat et al., 2017). This method is based on the global approximation of the spinal cord and the analytical computation of deformation fields perpendicular to the centerline. Validation included calculation of distance measurements after straightening on a population of healthy subjects and patients with spinal cord compression. The major contribution of this project was the development of a framework for generating MRI template of the spinal cord and the PAM50 template, an unbiased and symmetrical MRI template of the brainstem and full spinal cord. Based on 50 healthy subjects, the PAM50 template was generated using an iterative nonlinear registration process, after applying normalization and straightening of all images. Pre-processing included segmentation of the spinal cord, manual delineation of the brainstem anterior edge, detection and identification of intervertebral disks, and normalization of intensity along the spinal cord. Next, the average centerline and vertebral distribution was computed to create an initial straight template space. Then, all images were registered to the initial template space and an iterative nonlinear registration framework was applied to create the final symmetrical template. The PAM50 covers the brainstem and the full spinal cord, from C1 to L2, is available for T1-, T2- and T2*-weighted contrasts, and includes probabilistic maps of the white and the gray matter and atlases of the white matter pathways and gray matter subregions. Additionally, the PAM50 template has been merged with the ICBM152 brain template, thereby allowing for simultaneous cerebrospinal template-based analysis. Finally, several complementary results, focused on clinical validation and applications, are presented. First, a reproducibility and repeatability study of cross-sectional area measurements using SCT (De Leener, Granberg, Fink, Stikov, & Cohen-Adad, 2017) was performed on a Multiple Sclerosis population (n=9). The results demonstrated the high reproducibility and repeatability of SCT and its ability to detect very subtle atrophy of the spinal cord. Second, a novel biomarker of spinal cord injury has been proposed. Based on the T2*-weighted intensity ratio between the white and the gray matter, this new biomarker is computed by registering MRI images with the PAM50 template and extracting metrics using probabilistic atlases. Additionally, the feasibility of extracting multiparametric MRI metrics from subregions of the spinal cord has been demonstrated and the diagnostic potential of this approach has been assessed on a degenerative cervical myelopathy (DCM) population. Finally, a method for extracting shape morphometrics along the spinal cord has been proposed, including spinal cord flattening, indentation and torsion. These metrics demonstrated high capabilities for the diagnostic of asymptomatic spinal cord compression (AUC=99.8% for flattening, 99.3% for indentation, and 98.4% for torsion). The development of the PAM50 template enables unbiased template-based analysis of the spinal cord. However, the PAM50 template has several limitations. Indeed, the proposed template has been generated with multimodal MRI images from 50 healthy and young individuals (age = 27+/- 6.5 y.o.). Therefore, the template is specific to this particular population and could not be directly usable for age- or disease-specific populations. One solution is to open-source the templategeneration code so that research groups can generate and use their own spinal cord MRI template. The code is available on https://github.com/neuropoly/template. While this project introduced a generic referential coordinate system, based on vertebral levels and the pontomedullary junction as origin, one limitation is the choice of this coordinate system. Another coordinate system, based spinal segments would be more suitable for functional analysis. However, the acquisition of MRI images with high enough resolution to delineate the spinal roots is still challenging. Finally, several challenges in the automation of spinal cord MRI processing remains, including the robust detection and identification of vertebral levels, particularly in case of small fields-of-view. This project introduced key developments for the analysis of spinal cord MRI data. Many more developments are still required to bring them into clinics and to improve our understanding of diseases affecting the spinal cord. Indeed, clinical applications require the improvement of the robustness and the automation of the proposed processing and analysis tools. Particularly, the detection and segmentation of spinal cord structures, including vertebral labeling and white/gray matter segmentation, is still challenging, given the lowest quality and resolution of standard clinical MRI acquisition. The tools developed and validated here have the potential to improve our understanding and the characterization of diseases affecting the spinal cord and will have a significant impact on the neuroimaging community

    Segmentation and quantification of spinal cord gray matter–white matter structures in magnetic resonance images

    Get PDF
    This thesis focuses on finding ways to differentiate the gray matter (GM) and white matter (WM) in magnetic resonance (MR) images of the human spinal cord (SC). The aim of this project is to quantify tissue loss in these compartments to study their implications on the progression of multiple sclerosis (MS). To this end, we propose segmentation algorithms that we evaluated on MR images of healthy volunteers. Segmentation of GM and WM in MR images can be done manually by human experts, but manual segmentation is tedious and prone to intra- and inter-rater variability. Therefore, a deterministic automation of this task is necessary. On axial 2D images acquired with a recently proposed MR sequence, called AMIRA, we experiment with various automatic segmentation algorithms. We first use variational model-based segmentation approaches combined with appearance models and later directly apply supervised deep learning to train segmentation networks. Evaluation of the proposed methods shows accurate and precise results, which are on par with manual segmentations. We test the developed deep learning approach on images of conventional MR sequences in the context of a GM segmentation challenge, resulting in superior performance compared to the other competing methods. To further assess the quality of the AMIRA sequence, we apply an already published GM segmentation algorithm to our data, yielding higher accuracy than the same algorithm achieves on images of conventional MR sequences. On a different topic, but related to segmentation, we develop a high-order slice interpolation method to address the large slice distances of images acquired with the AMIRA protocol at different vertebral levels, enabling us to resample our data to intermediate slice positions. From the methodical point of view, this work provides an introduction to computer vision, a mathematically focused perspective on variational segmentation approaches and supervised deep learning, as well as a brief overview of the underlying project's anatomical and medical background

    Spinal cord volume quantification and clinical application in multiple sclerosis

    Get PDF
    Magnetic resonance imaging of the spinal cord is a valuable part of the diagnostic work-up in patients with multiple sclerosis and other neurological disorders. Currently, mainly signal intensity changes within the cord in MR-images are considered in the clinical management of disorders of the central nervous system. However, cross-sectional or longitudinal measurements of spinal cord volume may deliver additional valuable information. Hence, the overall goal of this doctoral thesis was twofold: i) to clinically validate methods for quantification of spinal cord volume and spinal cord compartments, which are suitable for longitudinal assessment of large patient cohorts and clinical practice and ii) to evaluate spinal cord volume as a potential valuable biomarker and provide new insights into the role of spinal cord damage in multiple sclerosis. The first part focuses on the validation of quantification methods for spinal cord volume and includes two projects. While several MRI-based approaches of semi- and fully automatic techniques for volumetric spinal cord measurements have been proposed, up to now no gold standard exists and only a few methods have been validated and/or evaluated on patient follow-up scans to demonstrate their applicability in longitudinal settings. One of the latter segmentation methods was recently developed in-house and showed excellent reliability for cervical cord segmentation (Cordial, the cord image analyzer). In a first project, we extended its applicability to the lumbar cord, since no other software has been tested so far within this anatomical region of interest. On a well-selected dataset of 10 healthy controls (scanned in a scan-rescan fashion) we were able to show that - even within this technically challenging region - this segmentation algorithm provides excellent inter- and intra-session reproducibility showing high potential for application in longitudinal trials. In a second project, we aimed at obtaining volumetric information on particular compartments of the spinal cord such as the cord grey and white matter, since recent studies in multiple sclerosis provided evidence that measuring spinal cord grey matter volume changes may be a better biomarker for disease progression than quantifying cord white matter pathology or even volumetric brain measures. We therefore implemented a novel imaging approach, the averaged magnetization inversion recovery acquisitions sequence, for better grey and white matter visualization within the cord and scanned 24 healthy controls in a scan-rescan fashion. Further we applied an innovative fully automatic variational segmentation algorithm with a shape prior modified for 3D data with a slice similarity prior to segment the spinal cord grey and white matter. This pipeline allowed for highly accurate and reproducible grey and white matter segmentation within the cord. In view of its features, our automatic segmentation method seems promising for further application in both cross-sectional and longitudinal and in large multi-center studies. The second goal of this thesis was the clinical application of the above-mentioned methods for the evaluation of spinal cord volume changes as a potential biomarker in multiple sclerosis patients. For this purpose, we quantified spinal cord volume change in a large cohort of 243 multiple sclerosis patients, followed over a period of 6 years with annual clinical and MRI examinations. Spinal cord volume proved to be a strong predictor of physical disability and disease progression, indicating that it may be a suitable marker for monitoring disease activity and severity in all disease types but especially in progressive multiple sclerosis. Spinal cord volume also proved to be the only MRI metric to strongly explain the clinical progression over time as opposed to brain atrophy and lesion measures

    Advanced MRI techniques in the study of cerebellar cortex

    Get PDF
    The cerebellum (from the Latin "little brain") is the dorsal portion of the metencephalon and is located in the posterior cranial fossa. Although representing only 10% of the total brain volume, it contains more than 50% of the total number of neurons of the central nervous system (CNS). Its organization resembles the one found in the telencephalon, with the presence of a superficial mantle of gray matter (GM) known as the cerebellar cortex, covering the cerebellar white matter (WM) in which three pairs of deep cerebellar GM nuclei are embedded. The number of studies dedicated to the study of the cerebellum and its function has significantly increased during the last years. Nevertheless, although many theories on the cerebellar function have been proposed, to date we still are not able to answer the question about the exact function of this structure. Indeed, the classical theories focused on the role of the cerebellum in fine-tuning for muscle control has been widely reconsidered during the last years, with new hypotheses that have been advanced. These include its role as sensory acquisition device, extending beyond a pure role in motor control and learning, as well as a pivotal role in cognition, with a recognized cerebellar participation in a variety of cognitive functions, ranging from mood control to language, memory, attention and spatial data management. A huge contribution to our understanding of how the cerebellum participates in all these different aspects of motor and non-motor behavior comes from the application of advanced imaging techniques. In particular, Magnetic Resonance Imaging (MRI) can provide a non-invasive evaluation of anatomical integrity, as well as information about functional connections with other brain regions. This thesis is organized as follows: - In Chapter 1 is presented a general introduction to the cerebellar anatomy and functions, with particular reference to the anatomical organization of cerebellar cortex and its connections with the telencephalon - Chapter 2 will contain a general overview about some of the major advanced MRI methods that can be applied to investigate the anatomical integrity and functional status of the cerebellar cortex - In Chapter 3 will be presented a new method to evaluate the anatomy and integrity of cerebellar cortex using ultra-high field MRI scanners - Chapters 4, 5 and 6 will contain data obtained from the application of some of the previously described advanced imaging techniques to the study of cerebellar cortex in neurodegenerative and neuroinflammatory disorders affecting the CNS

    Segmentation of Infant Brain Using Nonnegative Matrix Factorization

    Get PDF
    This study develops an atlas-based automated framework for segmenting infants\u27 brains from magnetic resonance imaging (MRI). For the accurate segmentation of different structures of an infant\u27s brain at the isointense age (6-12 months), our framework integrates features of diffusion tensor imaging (DTI) (e.g., the fractional anisotropy (FA)). A brain diffusion tensor (DT) image and its region map are considered samples of a Markov-Gibbs random field (MGRF) that jointly models visual appearance, shape, and spatial homogeneity of a goal structure. The visual appearance is modeled with an empirical distribution of the probability of the DTI features, fused by their nonnegative matrix factorization (NMF) and allocation to data clusters. Projecting an initial high-dimensional feature space onto a low-dimensional space of the significant fused features with the NMF allows for better separation of the goal structure and its background. The cluster centers in the latter space are determined at the training stage by the K-means clustering. In order to adapt to large infant brain inhomogeneities and segment the brain images more accurately, appearance descriptors of both the first-order and second-order are taken into account in the fused NMF feature space. Additionally, a second-order MGRF model is used to describe the appearance based on the voxel intensities and their pairwise spatial dependencies. An adaptive shape prior that is spatially variant is constructed from a training set of co-aligned images, forming an atlas database. Moreover, the spatial homogeneity of the shape is described with a spatially uniform 3D MGRF of the second-order for region labels. In vivo experiments on nine infant datasets showed promising results in terms of the accuracy, which was computed using three metrics: the 95-percentile modified Hausdorff distance (MHD), the Dice similarity coefficient (DSC), and the absolute volume difference (AVD). Both the quantitative and visual assessments confirm that integrating the proposed NMF-fused DTI feature and intensity MGRF models of visual appearance, the adaptive shape prior, and the shape homogeneity MGRF model is promising in segmenting the infant brain DTI
    • …
    corecore