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Möri, Dr. Natalia Chicherova, Peter von Niederhäusern, Robin Sandkühler, Samaneh
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Foreword

I started this work with a mathematical background and therefore tried to analyze
and understand image segmentation from a mathematical point of view. Soon, I
realized that real, non-academic problems, such as segmentation of medical images,
are difficult to accurately reformulate with computable abstract mathematical objects.

While it would have been interesting to experiment even more on the many different
segmentation approaches and also to dive deeper into their theoretical understand-
ing, the collaboration within the Ph.D. project urged me to find the first solution.
Following the footsteps of the preliminary work of Pezold et al. at segmenting the
whole spinal cord, we successfully continued applying similar variational frameworks
for segmenting the inner structures of the spinal cord. Meanwhile, supervised deep
learning became more and more popular and reached impressive performance in image
segmentation, which led me to jump on this accelerating train. Having adapted the
variational model for many, many months by hand, it was stunning to see a neural
network outperform the hand-crafted model within only a few hours of training time.

Besides the project, this evolution in practice gave me reasons to describe some
basic concepts from my own point of view to emphasize their ambiguity and how
they are used and denoted in the different related fields. This thesis could have been
written in a considerably shorter version; however, at some point during the writing, I
aimed to describe things without presuming many terminologies to meet the different
backgrounds of potential readers. Therefore, concise terms sometimes are paraphrased
concerning different viewpoints to increase the likelihood of understanding.
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Summary

This thesis focuses on finding ways to differentiate the gray matter (GM) and white
matter (WM) in magnetic resonance (MR) images of the human spinal cord (SC).
The aim of this project is to quantify tissue loss in these compartments to study their
implications on the progression of multiple sclerosis (MS). To this end, we propose
segmentation algorithms that we evaluated on MR images of healthy volunteers.

Segmentation of GM and WM in MR images can be done manually by human
experts, but manual segmentation is tedious and prone to intra- and inter-rater vari-
ability. Therefore, a deterministic automation of this task is necessary. On axial
2D images acquired with a recently proposed MR sequence, called AMIRA, we ex-
periment with various automatic segmentation algorithms. We first use variational
model-based segmentation approaches combined with appearance models and later
directly apply supervised deep learning to train segmentation networks. Evaluation
of the proposed methods shows accurate and precise results, which are on par with
manual segmentations. We test the developed deep learning approach on images of
conventional MR sequences in the context of a GM segmentation challenge, resulting
in superior performance compared to the other competing methods. To further assess
the quality of the AMIRA sequence, we apply an already published GM segmentation
algorithm to our data, yielding higher accuracy than the same algorithm achieves on
images of conventional MR sequences.

On a different topic, but related to segmentation, we develop a high-order slice
interpolation method to address the large slice distances of images acquired with the
AMIRA protocol at different vertebral levels, enabling us to resample our data to
intermediate slice positions.

From the methodical point of view, this work provides an introduction to computer
vision, a mathematically focused perspective on variational segmentation approaches
and supervised deep learning, as well as a brief overview of the underlying project’s
anatomical and medical background.
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1 Introduction

Capturing medical images is a standard procedure for medical diagnoses and research.
For imaging, many different modalities exist, such as ultrasound, radiography (e.g.
CT), and magnetic resonance (MR). After the acquisition, such images usually are
analyzed by an expert, for example, by a radiologist. To extract higher-level infor-
mation from the images, such as areas or volumes of specific regions, the relevant
objects need to be identified and separated into different regions [1]. This process of
separation is called image segmentation and is a basic and necessary step for further
analysis.

In this project, we analyze axial MR images of the human spinal cord (SC) by
segmenting the SC’s gray matter (GM) and white matter (WM). We aim to improve
our understanding of multiple sclerosis (MS), a chronic inflammatory and disabling
disorder of the central nervous system, which includes the brain and the SC. It is one of
the most common neurological disorders and is affecting more than 2 million people
worldwide [2]. Typical symptoms can be visual, sensory, and motor impairments.
Later in the disease progress, cognitive thinking may be affected as well. Usually,
the first symptoms already show between the second and fourth decade of life, and
unfortunately, the disease is currently incurable. Today, it is unclear, which factors
act as a cause or origin of MS, but both genetic and environmental factors seem to
play a principal role. Chief environmental risk factors are found to be vitamin D
deficiency, cigarette smoking, and obesity [3], whereas the human leukocyte antigen
gene cluster DRB1*15:01 is the most strongly associated genetic risk factor [4].

MS literally means multiple hardening, referring to CNS regions where harder, non-
functional plaques, called lesions, replace the nerve cells and the supporting glial cells,
following a focal inflammatory event in that region. Another well-known manifesta-
tion of MS is atrophy, which represents neural tissue loss leading to shrinking CNS
structures. Atrophy is a long term effect, difficult to observe, and is thought to be
both the aftermath of the inflammatory lesions and an independent diffuse neurode-
generative process [5]. It most likely represents neuronal, axonal, and myelin loss [5].
It has been shown that the progression of the disease correlates with neural atrophy
as well as with the appearance of lesions in the spinal cord [6, 7, 8, 9, 10]. The
presence of hypo- and hyper-intense spots representing such lesions, however, do not
correlate well with the patient status regarding symptoms, which is known as the
clinicoradiological paradox [11].

MR imaging is convenient for visualizing in a non-invasive way a human’s SC in
vivo. Compared to other conventional medical imaging modalities in radiology, such
as CT, MR imaging uses non-ionizing radiation and is considered harmless, following
the MR safety protocols [12]. MR is suitable for capturing the contrasts between
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1 Introduction

different soft tissues, including GM, WM, and the SC’s surrounding and protecting
cerebrospinal fluid (CSF) [13]. However, one of the main problems in imaging the SC
GM and WM are the similar MR characteristics of the two tissues. Thus designing new
MR imaging protocols with optimal contrast is still part of ongoing research. Besides,
the SC is small and bent in various degrees, and therefore a fine imaging resolution
is needed to capture its delicate inner structures. Nowadays, with standard MR
devices (with 1.5–3 Tesla magnetic flux density) and applicable acquisition duration
the resulting SC images regarding GM-WM contrast are still noisy and blurry, see for
example Figure 3.5. As a consequence, post-processing of such images, in particular,
GM-WM segmentation, is challenging – as is demonstrated, for example, in the SC
GM segmentation challenge [14].

This study aims at comparing axial MR images of the same patient at different time
points during the disease to enable longitudinal studies. Comparing images acquired
in different sessions is difficult, because of varying positioning of the subject in the
scanner, and because each imaging attempt captures slightly different noise levels.
The differences of the acquisitions and the subsequent tissue segmentations therein
ultimately should reflect only anatomical or pathological changes. Therefore, segmen-
tation errors due to imaging noise and the variability in patient positioning should be
minimized. While the quality of such images probably is not enough for single-case
studies, we first aim for large-scale studies, where segmentation errors should cancel
out in a statistical sense for a large number of samples. If such conditions are met,
it is possible to extract average atrophy rates of the GM and WM compartments
for different populations and MS subtypes, as was already demonstrated for the SC
[15, 16].

Many different segmentation approaches exist and new methods are still proposed.
Roughly speaking, two classes of segmentation algorithms exist: the shallow model-
based approaches and the deep learning-based approaches. In this thesis, we first
start developing classic model-based methods where we tried fitting mathematical
models with only a few parameters to the task of segmenting GM and WM on axial
SC images. During these attempts, however, simultaneously with the increasing per-
formance of graphics processing units (GPU), supervised deep learning approaches
got more and more popular. Deep learning approaches are easily applicable and out-
perform many classic segmentation approaches, thus setting a new state of the art in
image segmentation. We, therefore, move from the classic segmentation approaches
to the supervised deep learning frameworks. We start investigating whether the pro-
posed automatic methods can assist or even replace human expert segmentation. As a
first and necessary step, the goal of this work is to validate the developed segmentation
methods on MR images of healthy volunteers.

1.1 Motivation

It is already known, that spinal cord cross-sectional areas correlate strongly with the
disability progression of MS [6]. SC atrophy has been observed throughout all stages

2



1.2 Contribution

of the disease, from early phases to chronic progressive MS, and can quantify the
pathology of the SC [17]. Thus atrophy has important implications for the treatment
of all MS patients. Furthermore, there has already been some research on the seg-
mentation of the spinal cord as a whole, for example the Spinal Cord Toolbox (SCT)
project1 [18] and this project’s preceding Ph.D. project of Pezold et al. [19] with the
cord image analyzer cordial2.

On the topic of segmenting the SC’s inner GM and WM structures, however, not
much research has been conducted, since only recently image acquisition methods have
been developed that offer a high enough resolution and contrast of the GM and WM
for internal segmentation [13]. Nevertheless, separating GM and WM in MR images
is of great interest in research to enable studying their implications of the disease in
vivo. A postmortem study shows that SC atrophy in MS primarily manifests in the
WM of the upper cervical cord levels [20]. Thus it could be hypothesized that WM
pathology would better reflect clinical disability than whole-SC measurements. On
the other hand, another study shows, that SC GM atrophy correlates more strongly
with the clinical disability than any other MRI metric, including WM atrophy [8].

State-of-the-art in-vivo SC images currently are acquired with 3 T MR machines,
although machines with 7 T already exist which acquire images with higher quality
[21]. Therefore, it is of utmost interest to analyze the vast amount of data being
produced with current 3 T machines and to help in improving MR imaging sequences
for such devices.

This project is part of a larger SNSF project3 that aimed at finding appropriate
image acquisition techniques and post-processing pipelines to assess GM and WM
atrophy as well as detecting lesions in images of MS patients for longitudinal clinical
and pharmaceutical studies. To quantify atrophy, the respective tissues have to be
segmented in each scan in an accurate and precise manner. Manual segmentations
of human expert raters, however, are prone to intra- and inter-rater variability, and
need a lot of time to be performed for large datasets. Deterministic algorithms, in
contrast, have zero intra-rater variability and can process large datasets with one
and the same formula. Therefore, automatic segmentation algorithms play a crucial
role in the assessment of medical images, which motivates the search for appropriate
GM-WM segmentation algorithms.

1.2 Contribution

In this work, we analyze and use axial SC images acquired with the AMIRA sequence
of healthy volunteers in multiple ways: we develop and validate automatic GM-WM
segmentation algorithms; we develop a manual segmentation app to segment and
visualize the different AMIRA channels comfortably (we refer to the AMIRA inversion
images and their average projections as the AMIRA channels); we analyze the AMIRA

1https://github.com/neuropoly/spinalcordtoolbox (last accessed on Sept. 10, 2019)
2https://github.com/spezold/cordial (last accessed on Sept. 10, 2019)
3SNSF grant number: SNF 320030-156860/1

3

https://github.com/neuropoly/spinalcordtoolbox
https://github.com/spezold/cordial


1 Introduction

sequence’s average images and propose another set of averages with optimal contrasts;
and furthermore, we propose an interpolation technique to resample intermediate
AMIRA slices.

We propose adaptations of established image segmentation frameworks to specifi-
cally segment GM and WM on axial images of the cervical SC, through (a) manually
engineering variational segmentation models and (b) by using supervised deep learn-
ing.

a) We use continuous cuts extended with appearance models [22] and propose to
solve such models with the augmented Lagrangian multiplier-based maximal-
flow algorithm [23]. For segmentation robustness, we include distance map-
based non-terminal capacity functions, multi-channel capacity functions to in-
clude the individual AMIRA channels and additional image features, ellipsoidal
rotational vector fields for anisotropic total variation, a slice similarity prior for
3D flows between the stack of AMIRA slices, and posterior appearance recon-
structions based on trusted iterated pixelwise label predictions.

b) We use a recurrent neural network with multidimensional, multi-directional,
and convolutional gated recurrent units [24] and propose to combine the model’s
cross-entropy loss with a generalized Dice loss. We train deep GM-WM segmen-
tation networks that directly learn to leverage the AMIRA sequence’s tissue-
specific MR relaxation curves. To test the proposed network architecture, we
participated in an earlier SC GM segmentation challenge [14], which includes
axial cervical slices acquired with conventional MR sequences. Official online
evaluations yielded superior performance compared to the results of all the com-
peting methods and other subsequently reported methods, setting a new state
of the art in SC GM segmentation.

We evaluate the two developed segmentation algorithms on AMIRA images that
are acquired in a scan-rescan scheme for intra- and inter-session comparisons, with
and without repositioning of the subject in the scanner. On a cohort of 24 healthy
subjects, our analysis yields accuracy, precision, and reproducibility scores, as well as
additional data on SC GM-WM cross-sectional areas located at several positions of
the cervix, which to date are rarely reported in the literature.

To simplify the generation of manual segmentations, we developed an application
for manual segmentation in web browsers, which we implemented in JavaScript. In
this application, drawing by mouse or with a pen on a touchscreen enables comfort-
able creation of manual segmentations. Completed segmentations are quickly and
directly sent to a database through a client-server architecture, bypassing conven-
tional data transfer means such as transport via USB drive. We specifically designed
this application to enable the user to browse the different channels of the AMIRA
sequence while simultaneously drawing segmentations. With this application, we also
enable views together with the protocol’s additionally provided T1- and T2-weighted
3D sequences.
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1.3 Outline

With a principled, compressed sensing inspired approach, we verify that the naive
uniform averages of the AMIRA inversion images proposed in [25] are already close-
to-optimal.

We propose to modify the registration-based slice interpolation technique [26], by
including third-order Hermitian spline interpolation to estimate pixelwise location
trajectories along the stack of slices with subsequent intensity interpolation along
these trajectories. This method enables the creation of SC cross-sectional views at
arbitrary locations.

1.3 Outline

In Chapter 2, we introduce the reader to the medical and technical background of this
thesis, and in Chapter 3, we provide a more detailed overview of the SNSF project that
this thesis is part of. Chapters 4 to 8 comprise our publications that originate from
our work so far, with Chapter 4 describing a slice interpolation technique, Chapter 5
analyzing the AMIRA average images, Chapter 6 presenting our initial continuous
cut model, Chapter 7 introducing adaptations to the initial model and demonstrating
results on the CGM dataset, and finally Chapter 8 describing our contribution with
supervised deep learning. We complete the thesis with a discussion and conclusion in
Chapter 9.
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2 Background

In this chapter, we first provide a brief introduction to the medical aspects of this
work, and second, we give an extended view on several technical topics we encountered
during this Ph.D. thesis. While the medical background is essential for understanding
the direct application of this thesis, with the technical background, we clarify mathe-
matical notations, provide an overview of variational segmentation models, introduce
supervised deep learning, and address philosophical aspects on automation of image
processing.

2.1 Medical and Clinical Background

In this section, we first describe the spinal cord’s anatomy and then briefly summa-
rize the neurological disease called multiple sclerosis without going into biochemical
details.

2.1.1 Anatomy

The spinal cord (SC) is the longitudinal rostrocaudal structure that connects the
brain with most parts of its periphery, where the SC and the brain together build
the central nervous system. The SC is surrounded and protected by the vertebral
column, which consists of multiple connected vertebrae. On each vertebral level,
the SC reaches through the vertebral foramen which lies in the center of the six basic
vertebral components: the ventral vertebral body, the two lateral vertebral arches and
their lateral transverse processes, and the dorsal spinous process. Inside this bony
cage, the SC, like the brain, is immersed in cerebrospinal fluid (CSF), which builds an
additional mechanical and also immunological protective measure. The CSF circulates
in the so-called subarachnoid cavity between the outer arachnoid mater and the inner
pia mater that tightly covers the SC surface. Furthermore, between the vertebral
arches of two subsequent vertebrae, spinal nerves are exiting and entering through
the intervertebral foramen. Each intervertebral opening is associated with specific
regions, called dermatomes and myotomes, to which sensory and motoric axons are
connected.

Location To visualize the SC’s location, axial slices as well as a mid-sagittal slice of
the neck, acquired with magnetic resonance imaging (MRI), are shown in Figure 2.1.
In the neck region, also called the cervical region, the vertebrae are labeled as C1 to
C7, where the first two are called atlas and axis. Atlas and axis together form an

7



2 Background

 1

2

3
8

4

5

6

7

9

 

a

b

C2

C5

Figure 2.1: Top left : median slice of a T2-weighted turbo spin echo sequence scan
of the neck with slice locations of the mid-column images in green; mid-columns:
axial slices acquired with the AMIRA sequence at C2 and C5 level, respectively;
right column: histological drawings of SC cross-sections at C1 and C5 level, re-
spectively (reproductions of [27, p. 754], public domain); bottom left : schematic
cross-section (reproduction of [28]) displaying GM in anterior horn (1), posterior
horn (2), commisure (3), and WM in anterior funiculus (4), lateral funiculus (5),
posterior funiculus (6), anterior root (a), posterior root (b), and parts filled with
CSF in anterior median fissure (7), central canal (8), posterior median sulcus (9).

elongated structure, visible in the mid-sagittal slice on the top left image in Figure 2.1
near the upper green rectangle. Therefore, starting from the top, the first vertebral
body after the first intervertebral disc, below the upper green rectangle, is already
labeled as C3.

Inner Structure The SC’s ellipsoidal cross-section, as well as its inner structure,
gradually varies rostral to caudal, yet its axial slices morphologically share a common
structure. There exist two visual enlargements in the cervical and the lumbar regions
of the SC, with the cervical enlargement starting on C5 level and ending at the begin-
ning of the thoracic part. While the transversal and the anteroposterior diameters at
C2 level are approximately 11 mm and 8 mm, respectively, the cervical enlargement
causes corresponding diameters at C5 level of around 13 mm and 7 mm [29, Table 5].
The SC mainly is divided into white matter (WM) and the butterfly-shaped gray
matter (GM), as depicted and labeled in more detail in a cross-sectional schematic in
Figure 2.1. To underline the gradually varying SC structure, we included two axial
MR images as well as corresponding histological drawings in Figure 2.1 that represent
the slightly thinner anterior and posterior horns at C2 level and the enlarged anterior
horns at C5 level.

Aside from glial cells, synapses and blood capillaries, GM mainly consists of neu-
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2.1 Medical and Clinical Background

ronal cell bodies with dendrites and axons. In a 3D view, the GM is separated into
three (respectively five) rostrocaudal columns; the two anterior and the two posterior
columns, and the lateral column which together form the axially symmetric shape
of the letter ”H” or of a butterfly. In the anterior column, mainly motor neurons
are interconnected through axons that are traveling down from the top which are
responsible for the movement of the muscles, whereas in the posterior column sensory
neurons are gathering signals from the periphery and are transmitting such infor-
mation upwards through the SC. The third lateral column, or also called the gray
commissure, wraps around the CSF filled central canal and bidirectionally connects
the left and right side. An axial cross-sectional view of the anterior and the posterior
column motivates their second names, which are ventral and dorsal horn, respectively.

In contrast to GM, WM is mainly made up of myelinated axons, which render
the histological white color through the myelin’s high lipid content. Freshly cut
WM, however, appears pinkish because of the presence of capillaries; and even more
abstract, the intensity differences between WM and GM on images acquired with
MRI can vary with respect to different sequences. In the exemplary axial MR images
in Figure 2.1, GM appears brighter than WM. Myelinated axons are axons covered
by functioning oligodendrocytes or, more peripheral, by Schwann cells that form a
myelin sheath and support nerve regeneration. Through saltatory conduction, the
myelin sheath increases the velocity and the amplitude of the electric nervous signal,
where compared to an unmyelinated axon, the velocity is up to 10 times faster.

Cerebrospinal fluid The CSF in the subarachnoid space is mainly composed of water.
It is performing a pulsating fluid motion that corresponds to the pressure waves
generated in the blood vessels through the systolic pulses of the heart [30]. This
CSF movement is called CSF pulsation and influences MR imaging with so-called
CSF pulsation artifacts, where CSF that is not pulsating may reveal higher signal
than pulsatile CSF [31]. Therefore, when imaging regions where CSF is involved, MR
sequences need to be carefully designed to reduce CSF pulsation effects.

The high water content of CSF can be exploited for MR imaging to produce images
with well visible CSF contrast, which is particularly useful for SC segmentation.
However, because of the freely moving SC inside the bony cage, CSF may be pressed
aside. This looseness of the SC may result in axial MR images without a ring-shaped
CSF structure, see Chapter 6, Fig. 2, which is caused for example when a subject
is positioned in the MR device with a strongly extended (backward bent) neck such
that the SC touches the posterior part of the vertebral foramen. Such images may
have impaired contrast between the SC and its background at locations where the SC
touches the foramen. Such cases need to be considered in developing SC segmentation
algorithms and may reduce the segmentation accuracy.

2.1.2 Multiple Sclerosis

Multiple sclerosis (MS) is a chronic inflammatory and disabling disorder of the central
nervous system. It is one of the most common neurological disorders that has not been
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2 Background

caused by trauma and is affecting more than 2 million people worldwide [2]. Because
MS typically involves injury of nerve tissue in the brain, the SC, as well as the optic
nerves, typical symptoms are impaired sensory, motor, and cognitive skills, such as
monocular visual loss, double vision, coordinative disorders, locomotion problems,
bladder dysfunction, equilibrium impairment, limb weakness, lack of attention [32],
and deficient reasoning. Usually, the first symptoms already show between the second
and fourth decades of life, and unfortunately, the disease is currently incurable. MS
may have a high impact on the patient’s quality of life because of the mentioned
severe physical and neuro-psychological disadvantages. From a socio-economic point
of view, MS causes high health-care costs which rise with increasing disability.

Statistics of Pathogenesis Today, it is unclear, which factors act as a cause or origin
of MS and whether triggers are intrinsic or extrinsic to the central nervous system,
but both genetic and environmental factors seem to play a principal role [3]. Main
environmental risk factors are found to be vitamin D deficiency, cigarette smoking,
and obesity; genetic risk factors include an increased probability in relatives of MS
patients, female sex with a ratio between women and men higher than 2:1, and human
leukocyte antigen (HLA) gene clusters with the most influential associated genetic
risk factor in HLA-DRB1*15:01 [4]; virus infections with an increased probability
for carriers of for example the Epstein-Barr virus; and geographic latitudes with a
higher incidence in more temperate climates, which however may reflect in the region’s
varying vitamin D levels, or different pathogens and genetic distributions prevalent
in these regions. Moreover, male sex, older age, and higher disability state at disease
onset are associated with a worse prognosis.

Diagnosis Several updates in the diagnostic criteria for clinically definite MS have
been proposed to improve true positive and true negative rates, as by Poser et al.
in 1983 [33], McDonald et al. with the so-called McDonald criteria in 2001 [34], and
Thompson et al. with the currently newest update of the McDonald criteria in 2017
[35]. The revised McDonald criteria rely on a combination of data, including patient
history, clinical examination, paraclinical findings such as CSF analysis, and more.
The key principle of the criteria is ”dissemination of lesions in space and time”, which
means that characteristic MS-lesions need to be identified in various parts of the CNS
together with lesions of different age. Over the years revisions of the diagnostic criteria
have also come to increasingly involve the value of MRI findings to assist the space-
time analysis of characteristic MS-lesions disseminated in the CNS. To quantify the
severity of the neurologic impairment in MS, physicians use the expanded disability
status scale (EDSS) [36] with a rating from 0 (”normal neurological exam”), through
5 (”severe to maximal impairment”), to 10 (”death due to MS”).

Pathology, Symptoms and Disease Course The main features of MS are axonal and
neuronal loss through degeneration, demyelination, and astrocytic gliosis occurring in
the CNS, which manifests in characteristic lesions that are distributed over multiple

10
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regions in the CNS [3]. While the loss of nervous tissue, called atrophy, is a slow
process with yearly atrophy rates of roughly estimated 1% volume loss [37, 15, 16],
the disease embodies in the visually more prominent lesions that give the disease
multiple sclerosis its name.

MS lesions occur at characteristic locations in the CNS and are spots with vary-
ing degrees of demyelination, inflammation, and glial reaction, which also includes
blood-brain barrier anomalies. In the SC, the lesions mainly arise in the SC circum-
ference, the dorsal WM tracts, the lateral corticospinal tracts, and do not respect
the GM-WM borders [38]. Demyelination is assumed to be an immune attack on the
myelin-oligodendrocyte complexes along the axons, and this immune reaction once
activated may provoke further massive inflammatory destruction. As has been ob-
served but poorly understood, surviving axons in a lesion may be remyelinated by
a thin sheath, may be partially healed by other regenerative processes, may remain
chronically inactive without remyelination, or may turn into a so-called smoldering
lesion with persisting slow inflammation and demyelination [2]. As mentioned in Sec-
tion 2.1.1, missing myelin nodes along axons are weakening and slowing down the
electric signal conduction. Axonal disruption or axonal loss as a result of an acute
focal inflammatory event or a slow degenerative process leads to complete stop of
signal conduction.

MS patients show symptomatic phases with periods of stability, recovery, and re-
lapses and based on the disease course, three clinical subtypes of MS have been
proposed in 1996 [39]: the relapsing-remitting phase of MS (RRMS) with alternating
and variable periods of stability, relapses, and remissions; secondary progressive MS
with a final, gradually increasing worsening of the disease, often 10 to 20 years after
the onset of the RRMS phase; and primary progressive MS (PPMS) with direct pro-
gressive worsening after disease onset without distinctive remissions or relapses with
around 15% of all patients [2]. However, as suggested in [40, 41], the clinical subtypes
do not reflect the actual disease heterogeneity, and therefore potential other subtypes
have to be construed to develop more diversified and better matching patient-specific
treatments.

Compared to the lesion development, also not well understood is the mentioned,
slow and diffuse process of neuronal atrophy or degeneration, which is thought of as
the aftermath of MS lesions, but might also occur independently of inflammation [42].
Estimated atrophy rates for the SC as well as the brain were found to be significantly
higher for MS patients as compared to healthy controls, but among the clinical sub-
types, these rates do not allow differentiation [43, 37, 15], though progressive forms
show slightly accelerated atrophy rates. Increased rates with mean annual atrophy
of around 2% were found in a small cohort of PPMS patients [16], and interestingly,
the SC volume loss of this cohort progressed independently of total brain volume and
brain lesion measurements, suggesting that lesions and atrophy may occur indepen-
dently.
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Treatment Disease-modifying medications are available to reduce the frequency and
amplitudes of the MS episodes, such as the antiviral interferon beta and glatiramer ac-
etate; the monoclonal antibodies natalizumab, alemtuzumab, daclizumab (not used
anymore), and ocrelizumab [44]; the chemotherapeutic therapy with mitoxantrone
(rarely used nowadays); as well as the small-molecule agents fingolimod, dimethyl
fumarate, and teriflunomide [2]. However, no medication entirely prevents progres-
sive neurologic deterioration in all patients or reverses the already acquired neuronal
injury, yet. The classification of MS currently is too coarse to design patient-specific,
causal treatments.

As a general conception, regular physical and cognitive training may lead to im-
proved long-term health by positively affecting inflammation and neurodegeneration,
and by establishing new neuronal pathways and preserving the CNS’s plasticity. As
examined in [45], training, therefore, has meaningful consequences in MS patients,
yet is not the only treatment. Recent longitudinal pharmaceutical studies show sig-
nificant effects in delaying clinical progression [44, 46]. However, whether the clinical
progression of MS can be delayed or even reversed is quite a controversial field of the
disease [2, 46].

MRI in MS As suggested in the McDonald criteria for the diagnosis of MS, MRI is
used to assist decisions based on the patient history by visualizing and monitoring the
CNS in-vivo and in space and time. A pioneering work [43] tried to find correlations
between MR images and the patient’s EDSS values of the different MS subtypes,
but revealed considerable heterogeneity, pointing to the so-called clinicoradiological
paradox [11]. In some individual cases, newly appearing lesions did not necessarily
imply a clinical worsening of the disease and in the opposite logical direction, no
changes between the baseline and follow-up scans did not imply an unchanged status
of the disease.

With the improving quality in MRI and therefore also improving quality in detection
of anatomic structures as well as pathologic tissue, however, more detailed and specific
studies can be conducted to find reliable MRI biomarkers. So far, marking locations
with hyper- and hypo-intense MRI intensity changes reflecting lesional tissue did not
serve as a reliable biomarker. Since lesion segmentation is not as reproducible as the
segmentation of anatomic structures, however, technical limitations [47] cannot be
excluded.

Brain MRI is well-established and brain atrophy can be accurately and reproducibly
measured [37]. It has turned out, however, that also brain atrophy does not reliably
correlate with the patient’s disability measured as EDSS [48]. Among the different
markers in the brain, GM atrophy has shown the best correlations with the disease
progression [48]. In contrast to brain MRI, SC MRI has shown to provide better
biomarkers for the disability progression of MS [38], although imaging the SC is
not as reproducible as imaging the brain. SC cross-sectional areas provide strong
correlations to the disability progression of MS [6], and SC atrophy indeed is starting
from the early phases of the disease. Thus, it has important implications for the
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treatment of all MS patients [17]. Furthermore, in 2012, Yiannakas et al. [13] showed
the feasibility for internal GM-WM segmentation of the SC on MR images, allowing
for even more detailed studies. Although SC atrophy primarily manifests in the WM
compartments of the upper cervical cord levels, as shown in a postmortem study [20],
later in 2014, Schlaeger et al. [8] discovered, that cerebral SC GM atrophy correlates
more strongly with EDSS than WM atrophy with – similar to the finding in [48],
where GM atrophy provided best correlations in the brain.

2.2 Technical Background

In this section, we describe some of the basic concepts and frameworks used dur-
ing this project. Since this text is written from a mathematical viewpoint, different
mathematical concepts are thought of as prerequisites to understand this text. Never-
theless, the most important terms like a set and a function and how they are denoted
in this thesis are carried out in the following section.

After giving the mathematical foundation, we start with how the human visual
recognition could be modeled via energy functions, continue with variational princi-
ples, give an overview of variational segmentation algorithms, and finally introduce
supervised deep learning.

2.2.1 Mathematical Terminology and Notations

In this section, we superficially describe some important concepts, putting a focus on
the notations. It is not self-contained and we refer the reader to standard literature
such as [49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59] for more complete information.
The aim is to introduce the terms to non-technicians while trying to remain exact
and mentioning relations to more advanced topics that would be necessary to analyze
the approaches presented in this work numerically. This introduction also endows
the reader with an overview to better understand related topics from the literature.
However, as already mentioned, the primary goal is to familiarize the reader with the
notations. Throughout this work, representing objects in multiple similar ways should
not confuse but help the reader by offering different perspectives. In the literature
of the applied fields, mathematical terms are overloaded and sometimes only vaguely
defined in a way that the local community understands but outsiders first have to get
a feeling for to understand.

On the one hand, terms can be defined explicitly through construction, or implicitly
by defining their properties. On the other hand, there are two extreme forms in
understanding: the non-interpreting form, where one doesn’t understand if the term
is not well-defined, or a syntactic or semantic error is present; and the interpreting
form, where one tries to assume the most probable meaning while keeping in mind the
whole set of possible fits. Failing communication, therefore, could be due to explicit
constructions being too abstract, implicit properties being not well-defined or too
vague, or the interpreter not using or not having the needed information.

13



2 Background

Sets Without mentioning modern axioms, a set is a collection of distinct elements.
To gather the distinct elements, e.g. a, b, c, to a set, say S, we denote

S = {a, b, c},

using the curly brackets {·}. Sometimes all the properties of an element are encoded
by using a specified symbol, for example, as is often done by using x as a real number.
In doing so, the symbol lets one automatically assume the intrinsic properties of that
object. Using this idea, if m is the specified symbol for elements in a set M , sometimes
the set of all the elements in M is denoted in a short and handy notation

M = {m},

which could easily be mistaken with a singleton set containing only one element
instead of all possible elements of that type.

When referencing elements of a set but choosing only a part of it, we often define
subsets. For example, a subset T of S can be denoted as T ⊂ S, and to specify which
elements do belong to T , we can write

T = {e ∈ S | e fulfills a specified condition} ,

which reads as ”T is the set of all elements e in S, such that e fulfills a specified
condition”. Moreover, a subset T ⊂ S does not need to be a proper subset. It could
also be equal to S.

Sequences By adding an order to the elements of a set, we end up with a sequence,
which we denote with round brackets (·). For example, in the sequence

S = (a, b, c),

b follows a, and c follows b. Using 0-indexing, i.e. 0 as a starting index, one could
write the latter example as S0 = a, S1 = b, and S2 = c. We can also use an index set,
e.g. Ω, and denote a sequence as

S = (Si)i∈Ω = (Si)i,

where the outer index indicates, that one has to iterate over all possible indices i in Ω.
Putting a second subscript i outside the brackets, (Si)i, is a clever way to handle the
ambiguity whether Si refers to the i-th element in S or to the sequence S itself. To
this end, identifying Si as the whole sequence S could be realized by interpreting i as a
symbolic variable placeholder which accounts for all possible indices. This ambiguity
is comparable to identifying f(x) as the value of f at x or as the whole function, see
next paragraph of this section.

Furthermore, the sequence notation in round brackets may also be used for arrays
such as vectors and matrices by indexing each dimension.
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Functions A mathematical function f can be denoted as

f : D −−−−−→ C
x 7−−−−−→ f(x),

(2.1)

where f maps elements x from its domain D to elements f(x) in its codomain C [60].
The element f(x) is the value of f at position x. In the above notation, x appears
below D, which means that x is in D, in short: x ∈ D. One may interpret x as an
arbitrary but specific element in D, or as a variable/placeholder, and then f(x) is
either an element in C or f(x) represents the whole function, respectively. On the
right side of the arrows, f(x) appears below C, which means f(x) ∈ C. The symbol
7→ specifies how an element is mapped to another one, and the symbol → indicates a
mapping between two sets.

In the applied field, often only the function expression ”f(x) = . . .” is denoted,
leaving out the top part in (2.1), specifying the domain as well as the codomain only
implicitly. In many cases, declaring the domains helps to understand, to calculate
derivatives, and to analyze convergence properties of the mapping. Thus the domain
and codomain should be specified if contextually not clear. Moreover, sometimes
the position x in f(x) is being suppressed by only writing f , but meaning the value
f(x). In other words, sometimes f is used as a variable value, without indication or
knowledge of its dependency on other variables.

Finally, a function actually is a set of assignments x 7→ y, such that each element
x ∈ D exactly has only one element y ∈ C with f(x) = y. This does not mean that
different x1 6= x2 ∈ D cannot map to the same y ∈ C with f(x1) = f(x2) = y. It only
means that for x ∈ D, f(x) is in C and that there do not exist different y1 6= y2 ∈ C
with f(x) = y1 and f(x) = y2. In other words, this means that for every x, f(x) is
well-defined.

This definition leads to the following effect that the set of all inverted assignments
– which would be a candidate for a function inverse – is not a function anymore if
the set of assignments is not injective and surjective. f being injective means, that
different x1 6= x2 cannot map to the same value f(x1) = f(x2), whereas f being
surjective means that all values in the codomain can be reached by elements from the
domain. Furthermore, a function which is injective and surjective is called bijective
or invertible.

Figure 2.2 illustrates a typical 1D function and also introduces two mathematical
terms that help us to better understand functions in context: the image of a function
and the graph of a function. The image, also called the range, of a function f is the
set of all reached values, i.e.

Image(f) = {f(x) | x ∈ D} ⊂ C,

and is a subset of the codomain C. On the other hand, the graph of f is a hyperspace
in the Cartesian product space D × C of the domain and the codomain and consists
of all position-value tuples, i.e.

Graph(f) = {(x, f(x)) | x ∈ D} ⊂ D × C.

15



2 Background

f : R −−→ R
x 7−−→ x2

R −−−→ R
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Image(f ) = R≥0
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Figure 2.2: Illustrations of f : R→ R with f(x) = x2.

Also often used, the preimage or inverse image f−1(M) of a subset M in C is defined
as

f−1(M) = {x ∈ D | f(x) ∈M} .
The preimage of M consists of all elements in the domain that map to M . It even
exists if the element-wise inverse function f−1(y) does not exist. The inverse image has
many notations, such as the short notation [f ∈M ] used for example for probability
measures P [f ∈ M ] or {f > 0.5} for super-level sets. In such cases, they all declare
a set {x | f(x) ∈M}.

Furthermore, the mathematical image of f is a subset of the codomain (2nd image
from the left in Figure 2.2) and should not be confused with a digital image. In a
digital image, as described in Section 2.2.3, the assignment of each element in the
domain is essential. In other words, the digital image is a pixel-intensity function
itself or, more precisely, a representation of its graph. A graph could for example be
represented using the canonical visualization of the Cartesian product space D × C
(3rd image in Figure 2.2), or the codomain could also be shown using a color space
(4th image in Figure 2.2). There the colored graph of f illustrates a 1D image.

However, to give reason for the mathematical term ”image”, actually also a dig-
ital image can be interpreted as an Image(f), if for example the function f is the
acquisition process that maps the voxels from the imaging scene to the pixels in the
image.

Last but not least, two functions can be concatenated or composed if the codomain
of the first applied function is a subset of the domain of the second applied function.
For example, composing the two functions f1 : D → M and f2 : M → C results in
f = f2 ◦ f1 : D → C and can be denoted as

D
f1−−−−−→ M

f2−−−−−→ C
x 7−−−−−→ f1(x) 7−−−−−→ f2(f1(x)) = (f2 ◦ f1)(x).

The other way round, one can also try to decompose the function f : D → C into parts
f1 : D →M and f2 : M → C. The concept of decomposition is particularly important
because partitioning of a mapping process is necessary for understanding and creating
algorithms that can mimic a certain process – compare with Section 2.2.10.
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Discrete vs Continuous The set of the natural numbers N = {0, 1, 2, . . .} is discrete
and the set of the real numbers R is continuous (with respect to their standard
topology). Intuitively speaking, a discrete set has a minimal distance between its
elements, and in a continuous set every point can be approximated arbitrarily well by
other points from the set.

In the mathematical field of topology, a set is discrete if every point is isolated,
i.e. if every point has an open set that contains itself but none of the others. Going
the other direction, a set could be called continuous if there are no isolated points.
For such a definition, one first has to define what an open set is. Openness actually
depends on the chosen topology, which is simply the set of all open sets (and some
other properties for this system of sets) – if a set is part of the chosen topology, then it
is open, otherwise, it is not open [61]. In this abstract but not necessarily meaningful
concept, every set can be ”made” discrete by choosing the discrete topology, where all
sets containing only one element, also called singletons, are elements of the topology.
In many applications, however, we usually deal with sets that are equipped with a
distance metric, a norm, or a scalar product, where these metrics already induce a
topology in a more meaningful way [57].

For example, the real numbers R together with the Euclidean distance |· − ·| build
the standard topology TR. There, all intervals ]x0− ε, x0 + ε[ = {x ∈ R | |x− x0| < ε}
with x0 in R and ε > 0 in R are open, and actually they build a topological basis for
TR. It follows that singletons {x0} are not open since it is not possible to draw an
open set around a point x0 without including other points from the line, and thus R
with the standard topology is continuous.

The set of the natural numbers N as a subset of R together with the subspace
topology TN = {S ∩ N | S ∈ TR} of the real standard topology TR is discrete, since for
example with ε = 1/2, we realize, that all singletons {n} = ]n − 1/2, n + 1/2[∩N are
actually open because they are by construction in TN.

Further examples are digital images that might be discretized during their acquisi-
tion process. A digital image’s domain is discrete because such an image typically is
defined on a countable grid (which is bijective to a subset of the natural numbers N).

In the mathematical field of analysis, continuity is a property of a function and
usually is not defined as a property of a set. Therefore, in contrast to our above
definition of a continuous set, in the applied field, one probably assumes even more
conditions than just the absence of isolated points. One might also add closedness,
i.e. that the limits of all converging sequences inside the set again belong to the set.
A set with absence of isolated points together with closedness then would be called
a perfect set; however, such definitions would be given ad hoc for a specific problem.
With simple words, a continuous set shall be similar to a real-valued vector space
(equipped with a standard distance, norm or scalar product).

Nevertheless, the differentiation between discrete and continuous is essential be-
cause the literature on variational approaches uses both languages: discrete formu-
lations are closer to implementable algorithms, and with continuous formulations,
many infinitesimal concepts of the continuous analysis are imported [50, 49]. Model-
ing a discrete problem in a continuous domain comes along with additional problems
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though, where one has to interpolate the information between the discrete data points,
which can lead to further discretization errors. Problems that arise in the infinitesi-
mal calculus are not problems a priori present in the discretized world. Nevertheless,
inferring a continuous model from discrete data that originates from an actually con-
tinuous problem can obviously be advantageous since it models the original problem
more closely. In the following, we list a few basic differences between discrete and
continuous math that appear in practice, cf. [50, Sec. I.1.5]:

1. Sums are used in the discrete setting and integrals for continuous spaces.

2. Finite differences are encountered in the discrete case and differential quotients
in the continuous analysis. For a given resolution, finite differences can also be
calculated for a continuously non-differentiable function.

3. The non-differentiability of the absolute function |·| at the origin can cause
problems in optimization and thus usually is smoothed out.

4. The jump discontinuity of the sign function, as the variational derivative of the
absolute function |·|, is often replaced by a smooth approximation.

5. The delta Dirac distribution, as the distributional derivative of the sign func-
tion, can be described precisely in the continuous domain but is problematic to
discretize for arbitrary resolutions.

6. The probability for a continuous random variable to realize a single value is
arbitrarily small, i.e. 0, even if its density is larger than 0. This cannot occur
in a discrete setting.

7. And finally, from a topological viewpoint, a function on a discrete domain is
always continuous, but without assumptions, it cannot be determined whether
its analytic continuation or its continuous source is smooth or not. For example,
a function defined on the natural numbers could be extended non-continuously
as a step function onto the real numbers, or it could also be interpolated as a
smooth continuation on the real numbers.

Among other occasions, these aspects were considered in Section 2.2.8 and led to the
choice of the continuous max-flow min-cut framework (2.74).

Differentials In the mathematical field of analysis, a differential of a function de-
scribes the slope of a function at each position.

If you find yourself at a position in a graph and ask yourself how the situation
changes when you move a tiny step away from your current position, then you can
use the differential of the situation. The differential defines the ratio of how much
your situation changes with respect to the step size of your tiny step. In abstract
terms, for a smooth function f : D ⊂ R → R on an open set D, if ∆x is the step
size from the current position x to the new position x+ ∆x, and ∆y is the change of
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the function’s values from f(x) to f(x + ∆x), then one can write ”by expanding by
1 = ∆x/∆x”

f(x+ ∆x) = f(x) + ∆y = f(x) +
∆y

∆x︸︷︷︸
≈f ′(x)

∆x. (2.2)

Note that these ratios may vary at different positions x and for different step sizes
∆x, and thus we should define the derivative f ′ of f at position x as

f ′(x) =
df

dx
(x) =

∂f

∂x
(x) = ∂xf(x) := lim

∆x→0

f(x+ ∆x)− f(x)

∆x
, (2.3)

using the important concept of a limit lim∆x→0 to construct infinitely small step sizes
[51, 53]. Note that in the literature, the term f ′ (spoken “f prime”) may have different
notations such as df

dx , ∂f
∂x , or simply ∂xf (spoken: “del x of f”). In this thesis, we

mainly use the latter, which indicates the differential variable as a subscript of the
short notation ∂. For the definition above, smooth or smooth enough usually means
that the limits and thus the involved derivatives exist. From a geometrical point of
view, the derivative exists, whenever you can uniquely place a tangent (or a tangential
hyperspace) to its graph at the specific location. The slope of the tangent then is the
same as the local derivative. If a function has a jump from one location to its next
location or if there is a kink, it is not well defined how to place such a tangent.

The notation for a derivative with f ′, as proposed above, is mainly used if the
variable x is one-dimensional. If, however, the function’s domain is multidimensional,
then the concept of directional derivatives becomes essential. The derivative of f at
position x can be taken with respect to a certain direction v through the following
construction

∂vf(x) = lim
t→0

f(x+ t v)− f(x)

t
, (2.4)

where v is an element of the tangent space of f at location x. Since in a multidimen-
sional domain there are infinitely many directions, one usually collects the directional
derivatives towards the linearly independent directions in the following manner: For
a finite, n-dimensional domain D and a smooth function f : D → Rm, n directional
derivatives towards n linearly independent directions can be calculated and repre-
sented in the following matrix-valued function Df : D → Rm×n:

Df(x) =
(
∂x1f(x), · · · , ∂xnf(x)

)
=



∂x1

f1(x) · · · ∂xnf1(x)
...

. . .
...

∂x1
fm(x) · · · ∂xnfm(x)


 ∈ Rm×n, (2.5)

using the tangent space’s canonical basis directions xi = (δij)j=1,...,n, with the Kro-
necker delta symbol δij = 1 if i = j and 0 otherwise. The derivative Df(x) in (2.5)
is also known as the Jacobian, denoted as Jf(x). The capital letter version Df(x) is
used together with the presence of a basis for the tangent space, i.e. the codomain of
the derivative, which allows representing the derivative as a matrix. In the absence
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of such a basis, we usually use the small letter version df(x) to symbolize a more
abstract differential between domain and tangential space. This is for example the
case for infinite-dimensional domains (n =∞), where we refer to Section 2.2.5.

Derivatives can also be applied multiple times, and as an example, we shed light
on the second derivative D(Df) of a smooth real-valued function f : D ⊂ Rn → R:
This object Hf = D(Df) is called the Hessian and has the following structure:

Hf(x) =



∂x1

∂x1
f(x) · · · ∂x1

∂xnf(x)
...

. . .
...

∂xn∂x1
f(x) · · · ∂xn∂xnf(x)


 ∈ Rn×n. (2.6)

It is symmetric, i.e. ∂xi∂xj = ∂xj∂xi , if the second derivative of f is continuous.
Furthermore, the matrix Hf(x) at position x gives important information on the
local curvature – cf. the constraints in Equation (2.18) – and can be analyzed through
spectral analysis by calculating eigenvalues and eigenvectors. The benefits of using
Hessian information are for example to achieve algorithms with a convergence rate of
second-order, or to make sure that a critical point x? with Df(x?) = 0 is not a saddle
point, cf. Figure 2.6.

Going back to first derivatives, if we can define a scalar product or a duality between
derivatives and normalized displacements ∆x with ‖∆x‖ = 1, we find the following
important connection:

∂∆xf(x) = df(x) ∆x. (2.7)

The derivatives df(x) actually are cotangents, meaning that they are (linear) func-
tions from the tangent spaces (where ∆x live in) to the value space of f , as seen in
(2.7): starting with the derivative df(x) of a smooth function f : D → C at loca-
tion x ∈ D, one needs to evaluate the (linear) function df(x) at location ∆x to get
∆y = df(x)(∆x). However, there are different concepts of applying derivatives and
by using, for example, duality brackets, scalar products or matrix products, or the
representation with the nabla operator ∇f = DfT , one finds some of the following
different notations:

∆y = ∂∆xf(x) = df(x)(∆x)

= df(x) ∆x = 〈df(x), ∆x〉 = df(x) ·∆x = ∇f(x)T∆x = Df(x) ∆x.
(2.8)

Furthermore, scalar products may be represented as sums or integrals (cf. next para-
graph)

df(x) ∆x =
∑

i∈D
(df(x))i∆xi =

∫

D

df(x)(i)∆x(i) di, (2.9)

using the sum for finite or countably infinite domains, and the integral notation for
uncountably infinite domains.

Going back to our initial situation described in (2.2), one can linearly approximate
the change towards a step ∆x with

f(x+ ∆x) = f(x) + df(x) ∆x+ O(|∆x|) ≈ f(x) + df(x) ∆x. (2.10)
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This linear description of the tangent is also called first-order Taylor expansion at
position x.

At positions where the function of interest has jumps or kinks, such Taylor expan-
sions fail because it is not clear how to place the tangent space or how to calculate the
derivative. However, for a non-differentiable point surrounded by a smooth setting,
as is, for example, the case at the origin of the absolute function |·|, it is still desir-
able to define such a derivative. A straightforward construction would be to take the
mean value of the left and the right-sided differential quotients. It turns out that this
idea, together with the following idea for a so-called weak derivative is very useful:
inside an integral over a continuous domain, changes at one location (or countably
many locations) of a function do not change the integral’s value. Thus one considers
defining derivatives inside integrals. These ideas lead to the definitions of weak or
distributional derivatives δf of functions or distributions f , where the property

〈δf, h〉 = −〈f, dh〉 (2.11)

needs to hold for every smooth and compactly supported test function h [62]. The
equality in (2.11) is basically integration by parts, where the boundary part

∫
∂Domain(h)

δf dh dx vanishes since h is compactly supported. This construction enables the cal-
culation of weak derivatives of functions with kinks and distributional derivatives of
functions with jumps by leveraging integration by parts. It also introduces the set of
distributions, which enlarges the set of functions with, for example, the famous Dirac
δ distribution as the distributional derivative of the Heaviside step function.

Finally, Sobolev spaces are used to analyze weakly differentiable functions concern-
ing different kinds of smoothness and integrability degrees [63, Ch. 4]. The concepts
established for Sobolev spaces are fundamental to examine mathematical problems in
image processing, such as to calculate estimations, and to design proofs for robustness
[62]. However, it is beyond the scope of this work to integrate its analysis, wherein
this work it was more important to show the empirical and statistical performance
of the different approaches. Furthermore, it is debatable, into which Sobolev space a
distribution of real-world data such as medical MR images can be embedded.

Derivatives need not be calculated via the limits in their definitions since many
applicational rules exist. For elementary functions, the derivatives are already known,
and the derivatives of combinations of known functions can be calculated using the
linearity, the product rule, and the chain rule. Application of these rules leads to the
term of automatic differentiation, where the derivative of a process can be calculated
exactly (except for numerical errors) using the knowledge of the process’s elementary
functions. Also widely used are finite differences, where a finite ∆x or t is used to
approximate the derivative.

As a direct connection to image processing, the derivative of an image can be used
to highlight edges, since edges are regions with high derivative [50, Sec. III.12.1].
To this end, one usually convolves the image with derivatives of a Gaussian to get
slightly smoother values that depend less on noise. This works, because convolutions
and derivatives commute.

21



2 Background

N

R

1 2 3 4

•
• •

•
4∑

i=1

fi

Rn

R Graph(f)

∫

Ω

f dx

︸ ︷︷ ︸
Ω

Figure 2.3: Integral as the area under the graph on a discrete and a continuous do-
main.

Derivatives are also used to optimize energies, as described in Section 2.2.4, since
they locally point towards the steepest ascent and thus the negative gradient points
towards the steepest descent. Therefore, when locally following the derivatives, one
walks along a trajectory towards a local maximum.

Integrals The summation is not only a binary operation as in the term a + b, but
one can also add three or more summands together. A summation over n summands
(ai)i=1,...,n ⊂ A is denoted as

a1 + · · ·+ an =

n∑

i=1

ai. (2.12)

Here (ai)i is a sequence, and a a function between the indices i and the sequence’s
values. Visualizing the sequence (ai)i in the product space between the indices and
the values, one can interpret the above sum as the area under the function’s graph as
in Figure 2.3.

What happens if we add even more summands together, say infinitely many?
Whether the sum

a1 + a2 + a3 + · · · =
∞∑

i=1

ai (2.13)

exists or not, depends on the summands and the set A in which these summands live.
The sum on the left side of (2.13) can be interpreted as the limit of partial sums

a1 + a2 + a3 + · · · =
∞∑

i=1

ai = lim
n→∞

n∑

i=1

ai. (2.14)

This limit has the following possibilities: it may converge to an existing element in
A, it can diverge to multiple accumulation points, or it can also diverge to elements
outside of A [53]. For applications, we usually take care, that summations converge.
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The cardinality of the index domain in the above construction may have different
kinds of infinities. The discrete sequence (ai)i above was supposed to have countably
infinite summands. What happens if we choose a continuous, uncountably infinite
domain Ω? For i in Ω, a summation like a1 + a2 + a3 + · · · would not make sense
since Ω is uncountable and thus there might be missing values ai between a1 and a2.
Therefore, let us choose a slightly different notation for the continuous case. We use x
in Ω instead of i, and a function f : Ω→ A with the bracket argument notation f(x)
instead of the subscript notation fx. Now recall, that in Ω we do not have a minimal
distance between elements as compared to the natural index set. Thus in analogy to
the discrete summation, where for example the distance between i and i + 1 is 1, to
denote a summation over all values f(x), we introduce the arbitrarily small element
dx and change symbol

∑
to the symbol

∫
:

∞∑

i=1

ai 1 in analogy to

∫

Ω

f(x) dx. (2.15)

The sum
∫

Ω
f(x) dx of the values f(x) over the continuous domain Ω is called an

integral. The integral is the entire area under the graph of the integrand f , as
visualized in Figure 2.3. Ultimately, to define such integrals as well as the arbitrarily
small element dx through mathematical constructions, many different concepts have
been introduced by Riemann, Stieltjes, Lebesgue, and others [55, 64]. The concepts
of the above-mentioned mathematicians deal with the existence of the integral as a
limit, and interpret dx as a symbolic necessity, as a differential form, or as a measure,
respectively.

Indeed, the integral is a generalization of the sum: discrete sums can be seen as
integrals by interpreting them as a Lebesgue integral using dx as the counting measure
or by merely realizing the discrete sequence (ai)i as a piecewise-constant continuation
with the discrete index set embedded in a continuous domain.

Integrals are often reformulated to different representations such that they offer
simple calculations. For this purpose, a huge calculus has been developed over cen-
turies, such as (a) integration by substitution, and (b) integration by parts using
Stokes’ theorem [55, pp. 100–124]:

a) Some domains have a very complex structure. To integrate over complex do-
mains, one either has to embed the domain into a flat real dimensional vector
space or locally parametrize it with a part of a real dimensional vector space.
For this purpose, the terminology of a manifold has been developed [65]. Simi-
lar as on a sphere’s surface, a manifold is a set where one can draw a local flat
map everywhere. In other words, if we can parametrize a part of the domain
via a function whose derivatives are injective (e.g. full rank Jacobian matrix
everywhere), then we can reformulate the integral of the domain as an integral
over the parameters via integration by substitution.

b) When trying to get rid of unwanted derivatives in an integrand, one can, if
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possible, use Stokes’ theorem,
∫

Ω

dω =

∫

∂Ω

ω, (2.16)

to ”push the derivative to the boundary”. Here only formally mentioned, Ω is
a manifold, ∂Ω the boundary or surface of Ω, ω a special kind of a differential
form, and d the exterior derivative [65]. As a special case of (2.16), we state
Gauss’s theorem or the divergence theorem as follows:
∫

Ω

div(u p) dx =

∫

Ω

∇· (u p) dx =

∫

Ω

u∇· p+∇u · p dx =

∫

∂Ω

u p ·n(s) ds, (2.17)

where u : Ω → R is a scalar valued function, p : Ω → Rdim Ω is a vector field
of the same dimension as the manifold Ω, and n(s) is the normal vector of the
surface ∂Ω at the surface location s. Equation (2.17) includes the practical
product rule for divergence,

div(u p) = udiv(p) + grad(u) · p,

where div(p) = ∇ · p = trace(Dp) is the divergence operator, ∇ is the nabla
operator, and ”·” is the scalar product in Rdim Ω.

Finally, for many digital applications integrals on continuous domains – if not solv-
able analytically – at some point will boil down to a finite summation, since infinitely
many values of f(x) cannot be stored in digital memory. To this end, continuous
domains have to be discretized, and functions have to be sampled on a discretization.

Properties of Functions In this paragraph, we mention important analytical prop-
erties of functions such as continuity, differentiability, smoothness, integrability, and
convexity. These properties, and also many others, are important for analyzing and
describing optimization problems.

• A function f has a local minimum in x?, if f(x?) is the lowest value in an
open/local neighborhood of x?. For smooth function f we find the following
sufficient and necessary conditions for a local minimum x?:

Df(x?) = 0

Hf(x?) is PD

}
⇒
6⇐,x4

x? is a local minimum of f ⇒
6⇐,x3

{
Df(x?) = 0

Hf(x?) is PSD,

(2.18)
where Df is the first, and Hf the second derivative, PD means positive def-
inite, i.e. ∆xTHf(x?)∆x > 0 ∀∆x 6= 0, and PSD positive semi-definite, i.e.
∆xTHf(x?)∆x ≥ 0∀∆x 6= 0. Note that the left implication is sufficient only,
and the right implication is necessary only, since f(x) = x4 is a counterexample
with x? = 0 as a minimum with curvature 0 and thus not PD, and f(x) = x3 is
a counterexample with a PSD curved saddle point in x? = 0.
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• In topological terms, a function is continuous if the inverse images of all open
sets of the codomain’s topology again are open in the domains’ topology, and
in other words, a function is continuous if small changes of the parameters x
only cause small changes in the values f(x) (but this depends on how ”small
changes” are defined).
In contrast to the above topological definition, from an applicational point of
view, where data is usually stored in a discretized form, a continuous func-
tion simply refers to the data’s possible analytic function expression, ignoring
whether its source actually is continuous or non-continuous – cf. Page 18 Item 7.

• A function is called lower semi-continuous at a point x0 if all function value
accumulation points of sequences that converge to x0 are larger than or equal
to f(x0), i.e. if

lim inf
x→x0

f(x) ≥ f(x0), (2.19)

which means, that all accumulation points of (f(xn))n of all sequences (xn)n
with limn→∞ xn = x0 are larger than or equal to f(x0). This setting corresponds
to, for example, functions with a jump in x0 and the value f(x0) being on the
lower end. Similarly also upper semi-continuity is defined.

R

R

•
•◦

x0

f(x0)

Figure 2.4: An upper semi-continuous function with a jump at x0. The minimum
does not exist.

Lower semi-continuity is a property involved in guaranteeing the existence of
minimal values [49, Sec. 2.1.2]: if for example f is not lower semi-continuous
at x0, and x0 indeed would be the only candidate for an argument minimum
as in Figure 2.4, then the minimum does not exist because the infimal value
lim infx→x0

f(x) is not accepted by any x, since infinitely close to x0 there are
function values lower than f(x0), but all higher than lim infx→x0 f(x). In the
discrete case, where x0 would be an isolated point, this scenario, of course, could
not take place.

• A function is differentiable in the strong/classical sense, if for every point in
the interior of the domain a (linear) map exists that represents the tangent
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space (Fréchet/Gateaux differential) [51]. If a function is differentiable, then
all the partial derivatives (2.4) exist for every point in the domain. For some
applications, for example, when modeling an energy functional with an integral,
the derivatives of the involved functions under the integral do not necessarily
need to exist for every point. Therefore less strong conditions such as the weak
or distributional differentiability (2.11) exist [62]. Furthermore, if a putative
weak differential cannot be expressed with a locally integrable L1 function one
generalizes with a distribution, as is the case for example with the Dirac delta
distribution as the distributional derivative of the Heaviside function.

• From continuous to differentiable to many times differentiable, a function is
called smooth if it is arbitrarily many times differentiable. For formal calcula-
tions, one can also lazily assume a function to be smooth enough to ensure that
all involved limits exist.

• A function is called integrable if its integral over the whole domain exists as a
real number. The function is called locally integrable if it is integrable on ev-
ery compact subset of the domain. Many theorems help to determine whether
integrals exist or not, such as the monotone convergence or the dominated con-
vergence theorems [55, pp. 54–69] or [59, Appendix E]. In the applied field,
however, we often formally integrate without thinking of convergence. In many
cases, however, we simply are summing bounded functions on a finite set, which
always leads to a finite sum.

• Intuitively speaking, a function is called convex if it looks similar to a positively
curved parabola, cf. with graphs on the right side of Figure 2.6 on Page 33.
More precisely, a real-valued function f : Ω → R is convex if the straight line
between any two different points on the graph of f does not fall below the graph
between those points [49, Sec. 2.1.2], i.e. if

∀x1, x2 ∈ Ω, ∀λ ∈ ]0, 1[, λ f
(
x1

)
+ (1− λ) f

(
x2

)
≥ f

(
λx1 + (1− λ)x2

)
.

(2.20)
In other words, the function is convex, if everything that is above the graph,
called the epigraph or supergraph, is convex as a set; where a set is said to be
convex, if straight lines between any two points in the set are contained in the
set. Furthermore, a function is called strictly convex, if the straight line between
two points, excluding the points themselves, is above the graph, i.e. if

∀x1, x2 ∈ Ω, ∀λ ∈ ]0, 1[, λ f
(
x1

)
+ (1− λ) f

(
x2

)
> f

(
λx1 + (1− λ)x2

)
.

(2.21)
Moreover, for a differentiable function f , convexity and strict convexity can
very elegantly be expressed using the second derivative: if the second derivative
(the Hessian matrix) is non-negative definite everywhere, then the function is
convex, and if the second derivative is positive definite everywhere, then f is
strictly convex.
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For minimization, convexity is a very important property, since a convex func-
tion guarantees a unique minimal value [49, Sec. 2.1.2], also called a unique
global minimum. If also the function is strictly convex, then the unique min-
imal value is also realized by a unique location, also called the unique global
argument minimum. If the objective function is not convex, it may have differ-
ent local minima, which would complicate the search for a global minimum. (In
analogy, the same holds for maximization with concave functions.)

• A coercive function is a function that reaches arbitrarily high values towards
any direction of the boundary of the domain [49, Sec. 2.1.2], i.e.

∀ (xn)n with lim
n→∞

xn = +∞ we have lim
n→∞

f(xn) = +∞. (2.22)

This simply corresponds to functions like the top right curve in Figure 2.6 on
Page 33. It is a natural condition we often use when designing a functional with
a centrally arranged argument minimum, as is the case when using, for example,
the Euclidean norm on Rn.

2.2.2 Computer Vision

To mimic human visual understanding, many models exist in computer vision [66].
Computer vision categorizes and studies the process of abstracting or projecting in-
formation out of a signal or an image [67, Sec. 1]. Roughly said, it is an inverse
process of painting, wherein painting some (higher-level) information is instantiated
by an exemplary image.

In the following graph, we see a typical pipeline of the computer vision task of
image segmentation:

reality image abstraction

acquisition preprocessing → feature extraction → segmentation

After the acquisition of an image, usually a preprocessing step is applied. Prepro-
cessing steps could be, for example, re-sampling to a higher or lower resolution, noise
reduction, contrast enhancement, or edge enhancement. Next, to clarify an actual
segmentation, in the feature extraction phase, the characteristics of the different ob-
jects or regions are being identified. Then, with the identified different characteristics,
the image domain can be segmented into the different regions. And finally, using the
segmented regions, further steps can be conducted to formulate a statement. One
could, for example, give the regions their names, calculate their areas, or make any
kind of conclusion. The output of this process is an abstraction or a projection of the
image, meaning that the output may be better understood but only includes parts of
the information of the initial data. For us, most importantly, ”at some point in the
processing, a decision is made about which image points are relevant for further pro-
cessing” [68]. Moreover, the processing steps from image to abstraction, which here
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are displayed in a serially distinct manner, actually often are mixed or are applied
recursively.

Segmentation The goal of segmentation is to identify regions, called segments,
where the pixels share a specific uniformity criterion. Depending on the task, the
different classes are preferred to have as few segments as possible. This way the in-
formation of the image is represented such that it is easier to use for further analysis.

In computer vision, there is also the notion of classification, which refers to object
classification or object recognition, giving the whole image or parts of the image a
label. Note that segmentation in this sense is a pixelwise classification.

The word segmentation is ambiguous and stands for the process as well as its result.
However, this is the same ambiguity as to whether with a mathematical function f(x)
we mean the function itself or the value of the function at location x. In context, it
is usually semantically clear to which meaning we refer.

In Sections 2.2.6 and 2.2.7 we describe in more detail how such segmentations can
be represented and generated on computers, and in Section 2.2.8 we give examples
for variational-based segmentation algorithms.

Modeling In modeling such algorithms, we can identify a sequence of three inclu-
sions of implicitly defined philosophical domains, depicted in Figure 2.5. In these
domains, similar research problems may be formulated differently, and the arrows
reflect their connection or development steps. Note that in practice, a step from

reality

problem
understandings

in humans’
minds

mathematical
abstractions

approximations
for discrete
algorithms

Figure 2.5: Philosophical domains of modeling a problem.

left to right involves approximations, and the approximated problem probably does
not necessarily describe the same as the initial problem anymore. Using reality as
a container for everything, the modeling process could be seen as a sequence of in-
clusions or projections into subspaces. Now, while mathematical abstractions in this
conception are seen as objects from the reality, a computer engineer typically makes
several iterations with the pipeline in Figure 2.5 to realize and implement a computer
vision algorithm. Implementing an algorithm mainly focuses on the last step between
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mathematical abstractions and approximations for discrete algorithms. The conduct
for the last inclusion in Figure 2.5 could be denoted as: ”Math looks nice, but for
real-world applications, a lot of engineering hacks are needed.” We hypothesize that
often the most significant errors occur between reality and its first models. It proba-
bly won’t make an already incorrect model catastrophically more incorrect by making
computable assumptions.

Examples in Modeling The ultimate aim of medical research, to better understand
and treat pain, is a difficult task: while a patient may complain about a specific
feeling (which could be seen as ground truth), it can be very difficult to understand
its origin. To this end, already inside the second bubble of Figure 2.5 countless many
theories may exist for observations such as the signal of pain.

As an example, we refer to the clinicoradiological paradox [11]. In case of this
paradox in MS, it may seem reasonable that patients with MR imaging abnormalities
are worse off than patients without, with e.g. hypo- and hyper-intense spots indicating
the presence of lesions at certain locations. However, MR imaging abnormalities and
the patient status regarding symptoms do not correlate accordingly. Moreover, a
recent study [41] described cases, where such spots were apparent in MR images,
which, however, were even not identifiable on the same histological slices. Associations
between clinical and radiological findings, therefore, generally are poorly understood.

As another example, we are interested in area and volume measurements of specific
structures in the SC. While the correct morphology is hidden in the reality, we derive
methods to abstractly represent images of the SC in-vivo and develop post-processing
tools to analyze such images. In each step, approximations are involved, and thus
we can never be entirely sure that projective calculations such as areas or volumes of
these structures correspond to reality.

Therefore, although it lies in our nature to make simplifications to understand
observations better, we should not rely on simple abstractions but should take advan-
tage of the full information, as was also clarified by the authors in [11]. And indeed,
computer vision is going towards the direction of making full use of given informa-
tion. This tendency is demonstrated, for example, when comparing segmentation
algorithms that only use pixelwise thresholding to segmentation networks such as
MDGRU [24] that use the whole image content for their receptive field. Furthermore,
systems that combine several task-specific networks may further advance towards this
direction of taking full advantage of the given information.

2.2.3 Digital Images

A digital image I is a finite and ordered set, sequence, or array of picture elements
[49, Sec. 1.2], called pixels, and can be denoted as (Ix)x∈Ω (spoken: the series of all
intensities I at location x such that x is in the domain Ω), cf. Section 2.2.1. Here Ω
is a set of pixel locations and is called the image domain.

The image I can also be represented or denoted as a mathematical function I :
Ω→ I, where Ω is a finite subset of the d-dimensional Euclidean space Rd, and I is
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a set of possible intensity values. For gray-valued images, I could be a subset in R,
and for colored images, we need to choose a color model in I ⊂ R3.

However, the two definitions above are equivalent, as the pixel elements with the
index notation Ix and bracket notation I(x) can be identified.

Furthermore, a digital image I : Ω → I should not be confused with the math-
ematical image of a function I, which would be the unordered set of all occurring
intensities. To clarify, the image of I,

Image(I) = I(Ω) = {I(x) | x ∈ Ω} ,

is a subset of the codomain I, and a (painted) image I actually is the graph of I,

Graph(I) = {(x, I(x)) | x ∈ Ω} ,

consisting of tuples (x, I(x)), where the intensities I(x) or Ix at locations x are usually
visualized as gray or color values. As demonstrated in Figure 2.2, graphs can be
represented differently as with displaying 1D intensities as heights in the canonical
product space, or by displaying 1D intensities as gray values. Similarly, 2D or 3D
intensities could be represented as typical vector fields or as colors using a color model,
depending on whether colors or vectors are more meaningful.

Digital images I are discrete, which means, that their domains and hence also their
mathematical images Image(I) are discrete. Therefore, creating a digital image deals
with sampling and quantization. Sampling is concerned with an adequate discretiza-
tion of the domain, and quantization with the discretization of the codomain. In
conjunction with Fourier analysis, the Nyquist–Shannon sampling theorem becomes
essential. This theorem states that if a function I contains no frequencies higher than
B, it is completely determined by representing its values on a domain with a pixel
spacing smaller than 1/(2B) [69], otherwise aliasing effects might occur.

Basic Image Manipulations An image I : Ω → I can be manipulated in the fol-
lowing ways: purely by deforming its domain with a deformation d : Ω̂ → Ω by
concatenating d before I as

I ◦ d : Ω̂
d−−−−→ Ω

I−−−−→ I
x 7−−−−→ d(x) 7−−−−→ (I ◦ d)(x) = I(d(x));

(2.23)

purely by adjusting the intensities with a function f : I → Î by concatenating f after
I as

f ◦ I : Ω
I−−−−→ I f−−−−→ Î

x 7−−−−→ I(x) 7−−−−→ (f ◦ I)(x) = f(I(x)),
(2.24)

or actually through any kind of process I 7→ Î(x, I, λ) that depends on any kind of
parameter λ. Here Ω̂ and Î represent some image domain and intensity range, that
could also be the same as Ω and I, respectively.
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A typical example where image deformations (2.23) are used, is image registra-
tion between two images. During registration of two images, their domains Ω are
transformed such that corresponding image landmarks of both images coincide [70].
Furthermore, changing the domain to Ω̂ can also be useful to represent the image on
another domain: for example, to embed a plane Ω̂ onto the surface of some object Ω.
On the other side, pure intensity manipulations (2.24) are mainly used, for example,
to adjust the contrast with gamma correction, thresholding, or more generally with a
lookup table.

For adding or removing image noise [71], or applying image segmentation, additional
knowledge needs to be included in mapping. To this end, simple concatenations
as (2.23) or (2.24) might not be enough to describe image manipulations like I 7→
Î(x, I, λ) that depend on the whole image I and additional information λ.

2.2.4 Variational Principle

A powerful tool to model a problem or an algorithm is the variational principle,
where a solution is found as an extremum, e.g. maximum or minimum, of an objective
function using the calculus of variation [72, 49] [59, Sec. 8.1]. To this end, we define a
function space V containing the admissible solutions, and a functional E : V → R that
scores every admissible solution with a real-valued number. Here, the term functional
indicates a real-valued function with a vector space or function space as the domain.
If we look for a solution with a minimal score, this functional E is often called energy,
cost, loss, or objective functional. Conversely, it could be called a profit, fitness, or
again energy function, if it is being maximized. We denote such optimization problems
as

argmin
v∈V

E(v) or argmax
v∈V

E(v). (2.25)

For a correctly modeled problem, the desired solution(s) should be among the argu-
ment(s) of the minimum argmin (or the argument(s) of the maximum argmax), where
the energy is minimal (or maximal), i.e. where the energy cannot be decreased (or
increased) anymore. Mathematically, there is no big difference between maximiza-
tion and minimization, apart from a sign, since every maximization problem can be
reformulated to a minimization problem via

max
v∈V

E(v) = −min
v∈V

(−E(v)). (2.26)

This principle is motivated from physics, where the extrema often describe a stable
state into which systems converge after a settling time. The same principle can be
used to derive image processing algorithms, as demonstrated in Section 2.2.8.

Solving an Optimization Problem In simple cases, minima can be calculated analyt-
ically (this means, with algebraic transformations), but in more complex cases, often
only some of the minima can be found using numerical methods. For this purpose,
many numerical methods have been proposed: with global optimization methods such
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as the naive approach exhaustive search or DIRECT [73]; and with local optimization
methods such as line search descent methods in various discretizations [49, 50, 52].
Choosing a suitable method depends on the properties of the energy functional E.
However, this work does not focus on applying the different optimization methods,
and for simplicity, we stick to gradient descent in this section. Moreover, there is
nothing wrong with gradient descent in combination with proper initialization and
mainly convex energy functionals, as explained in the next paragraph.

From an abstract point of view, the gradient descent method applied to the energy
E is a numerical approximation of the gradient descent differential equation

∂tu = −δE
δu
, (2.27)

where δE
δu represents the variational derivative of E, defined in Section 2.2.5. The

derivatives, or also called the gradients of the energy, locally are pointing towards the
steepest ascent, and conversely, the negative gradients are pointing towards the steep-
est descent. Therefore, the gradients can be used to stepwise improve the currently
guessed solutions until all directional derivatives at that position are zero. Using the
concept of iterations, we initialize the sought solution with a first guess, denoting it
in the super-script notation u0, and then use the algorithm’s formula A to derive the
next iteration uk+1 = A(uk) for any k ≥ 0. As an example for A, we can discretize
the gradient descent equation (2.27) with the explicit Euler method to derive

uk+1 = A(uk) = uk −∆t
δE

δu
(uk), (2.28)

where ∆t is the discretization of the artificially introduced time parameter t, cf.
[50, 52].

Designing an Energy Function Defining the function space V and the functional E
is, of course, problem-specific; however, certain regularizations have to be considered
to simplify the optimization process. For this purpose, we introduce basic terms
regarding the well-posedness of a problem and therefore depict in Figure 2.6 different
sorts of extrema. As already mentioned with Equation (2.18) for the smooth case,
extrema might appear where the derivatives are 0, but they can also be located on
the boundary of V . Therefore, to apply gradient descent methods more easily and
robustly, energies should be designed as smooth and as convex as possible, and the
points of interest should not lie towards the boundary of V . A captious but important
fact is that for an interior point the extremality condition on the gradient,

δE

δu
(uk) = 0, (2.29)

is only a necessary but not a sufficient condition to provide maxima or minima, cf.
(2.18). A point satisfying the condition in (2.29) is called a critical or stationary
point, which includes among maxima and minima also saddle points, as depicted in
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Figure 2.6: Examples of energies’ extrema.

Figure 2.6. A saddle point has a zero gradient, but the curvature may be positive
towards one direction and negative towards another, and such a point thus would
not describe a correct solution for a minimization problem. The existence of saddle
points poses an additional hurdle for gradient descent algorithms as their goal is to
find critical points only. Nevertheless, in practice gradient descents almost always
converge to minima [74]. As exemplified in the bottom left illustration in Figure 2.6,
the probability to randomly initialize a starting point for a trajectory that converges
to a saddle point is zero, since the paths of bad initial points (drawn in black) are
zero-measure sets with respect to the area measure. In terms of gradient fields, saddle
points are often attracting only along a few trajectories but are otherwise unstable.

In an ideal case, a variational formulation would be formulated such that

1. a solution exists,

2. the solution is unique, and

3. the solution continuously depends on the given data and parameters.

If these three conditions are met, the given problem is said to be well-posed, otherwise
ill-posed [49, Sec. 2.5.6]. To this end, the following sufficient conditions are useful and
are often considered when designing variational formulations:

• If E is continuous on a compact domain V then a minimum of E exists.

33



2 Background

• If E is lower semi-continuous (2.19) and coercive (2.22) then a minimum of E
exists [49, Sec. 2.1.2].

• If E is convex and has a minimum, then the minimum (the minimum value of
E) is unique.

• If E is strictly convex and has a minimum, then the argument v ∈ V of the
minimum value is unique.

Unfortunately, problems such as segmentation and registration of medical images
naturally are ill-posed problems [75]: in many cases, it is unclear whether an optimal
solution exists; some cases have many different optimal solutions; and sometimes
already small changes in the data lead to unpredictably large differences in the result
[76].

Therefore, the following fundamental idea is essential in designing a variational
model: energies are composed of two terms, the data term and the regularization
term. The data term is some distance between the input data and the admissible
solutions, and the regularization term includes a prior assumption that is not already
present in the space of the admissible solutions. Using only the data term often
leads to highly ill-posed formulations, and therefore further conditions are included
to regularize the formulation. From another point of view, regularization terms are
conditions from the space of the admissible solutions included into the energy in the
form of a Lagrangian.

In our case, the input data are medical images, and the space of admissible solu-
tions would be a model space, for example, the space of segmentations. The distance
between an image and a segmentation could be, for example, the sum of squared
differences (SSD). A typical regularization of the solution would include, for example,
the Euclidean norm of latent variables to avoid numerically diverging values, smooth-
ness constraints such as total variation (TV)-regularization to deal with image noise,
or distances to a statistical shape model for staying close to realistic representations.

As a thought experiment, we could model the human visual understanding as a
variational problem: the input images are the visual information coming from the
optic nerves, the function space is the set of all possible visual 3D interpretations in
one human’s mind, the data term is some intensity-based distance between the optical
input and its interpretation, and the regularization term includes prior knowledge
from the cerebral cortex as a weighting function that favors more plausible admissible
solutions. With such a model, optical illusions, for example, would be explained
with the regularization term misleading us to an illusory visual interpretation from
the brain. Dreams, for example, could be modeled with noisy close-to-zero inputs
from the eye’s photoreceptor cells that are regularized to the scenery that reflects the
current state of mind. This setup, however, is not meant to describe the human visual
understanding accurately, but to provide an example of how variational formulations
may be used for computer vision tasks, as is addressed with so called human visual
system models [66].
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Connection to Bayesian Inference From a mathematical point of view, variational
formulations are direct applications of the mathematical field of functional analysis
and show via the Euler-Lagrange equations (2.27) and (2.40) an interesting connection
to differential equations, as depicted on the right side of Figure 2.7. On the other

Bayesian inference functional optimization PDE
(modeling an energy) −→ (variational analysis) −→ (critical points)

E(u|I)=−logP (u|I)P (I) min
u∈V

E(u) ∂tu = − δEδu

Figure 2.7: Pipeline of the variational modeling framework.

hand, objective functions can be derived using Bayesian inference models, as depicted
on the left side of Figure 2.7. Bayesian inference links statistics to optimization [77],
and we therefore briefly introduce in this paragraph the construction of energies via
negative logarithms of posterior probability maps, following [78].

Let Â : Ω1 → S1 and B̂ : Ω2 → S1 be two random variables of two probability spaces
(Ω1,F1, P1) and (Ω2,F2, P2) from the reality into two probability spaces (S1,A1, PS1

)
and (S2,A2, PS2) from the measurement space. Exemplarily here for Â, we define the
probability that the random variable Â takes on an event A of the σ-algebra A by

P1(A) := P1(Â ∈ A) := P1

({
x ∈ Ω1

∣∣∣ Â(x) ∈ A
})

. (2.30)

Furthermore, conditional probabilities of events A ∈ A and B ∈ B are defined as

P (B|A) :=
P (B ∩A)

P (A)
, (2.31)

using the joint probability distribution P of P1 and P2 and the intersection A ∩B in
the joint probability space S. The use of the joint probability also allows dropping
the indices of P1(A) and P2(B) to P (A) and P (B), respectively, in interpreting them
as marginals. The relation between P (A|B) and P (B|A) is given by Bayes’ formula

P (B|A) =
P (A|B)P (B)

P (A)
. (2.32)

These notations make sense for discrete random variables, however for continuous
random variables, singleton events most probably have the probability 0, and therefore
probability densities are used: for singletons A = {a}, we identify the notations

P (Â ∈ A) = P (A) = P (a) = P (Â = a), (2.33)

though, for continuous random variables, the probability P (a) instead has to be in-
terpreted as a probability density (oversimplified, to not introduce further variables).
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Table 2.1: Overview of the prior, likelihood, and posterior densities; MLE, and MAP.

P (I), P (u) prior probability density functions
P (I|u) likelihood density function

P (u|I) = P (I|u)P (u)
P (I) posterior probability density function

uML = argmax
u

P (I|u) Maximum Likelihood Estimation (MLE)

uMAP = argmax
u

P (u|I) Maximum A Posteriori Probability Estimation (MAP)

Let us now assume we want to infer the most likely segmentation u given an image
I. We want to infer information u ∈ S1 out of some measurement I ∈ S2. Finding the
most probable inference means that we are abstractly searching for the most likely
real 3D scene in Â−1({I}) ⊂ Ω1 and the most likely true anatomical differentiation
in the 3D scene in B̂−1({u}) ⊂ Ω2. However, since we cannot perform this in the
spaces Ω1 and Ω2 from the reality, we, therefore, use the imaging process Â and the
segmentation process B̂ to represent the real objects as u and I.

We introduce further important density functions and their maximum estimations
in Table 2.1. The maximum a posteriori probability estimation uMAP can be refor-
mulated as follows:

uMAP = argmax
u

P (u|I) = argmax
u

P (I|u)

a prior enters︷ ︸︸ ︷
P (u)

���P (I)︸ ︷︷ ︸
constant w.r.t. u

= argmin
u
− logP (I|u)P (u),

(2.34)
where the prior P (I) in the denominator can be discarded, because it is a constant
with respect to the segmentation u and thus inside the maximum, the posterior can
be represented as the likelihood times the prior of the segmentation. Furthermore,
using the monotonously increasing property of the logarithm and the min-to-max
conversion (2.26) we end up with the right side of (2.34). Because of the linearity of
the logarithm, the negative log posterior can be rewritten as

− logP (u|I)P (I|u)P (u) = − logP (I|u)− logP (u), (2.35)

and indeed, the right hand side of (2.35) has the form of

E = likelihood + prior, (2.36)

as suggested before in the fundamental design on Page 34.
Being aware of the involvement of Bayesian inference in modeling an energy, prior

knowledge can indeed simply be added to the energy function. Conversely, we often
indirectly use Bayesian inference when adding a regularization term on u to the energy.
Moreover, if prior information is available then one should use it because assuming
a uniformly distributed prior P (u) results in the equality between MLE and MAP,
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yet uniform distributions are rarely the case. Finally, note that many densities are
designed using an exponential function such that the negative logarithm of the density
directly extracts the negative exponent, as demonstrated in Section 2.2.8, Such models
are called log-linear models.

2.2.5 Variational Derivative

René Gâteaux generalized the directional derivatives for a wide range of vector spaces
also in the infinite-dimensional case, and these derivatives were used to formalize the
variational derivatives. We only formally present definitions for variational deriva-
tives, without going into detail whether the limits exist.

The functional or variational derivative of E in the direction h ∈ V is the Gâteaux
derivative

δE(u)(h) = lim
ε→0

E(u+ εh)− E(u)

ε
=

d

dε
E(u+ εh)

∣∣∣∣
ε=0

= 〈δE(u)

δu
, h〉 = 〈δuE(u), h〉 = 〈δE(u), h〉

=

∫

Ω

δE(u)

δu
(x)h(x) dx =

∫

Ω

δE(u)h(x) dx

= projection of the gradient
δE(u)

δu
on the dimension in direction h.

(2.37)

We think of the operator δE(u) = δE(u)
δu as the gradient of E at the point u, and of

〈 δE(u)
δu , h〉 as the directional derivative.
With the fundamental lemma of the calculus of variations and density arguments

of compactly supported smooth test functions in V , the extremality principle for the
directional derivative and the gradient itself become equivalent:

〈δE(u)

δu
, h〉 = 0 ∀ h ∈ V ⇔ δE(u)

δu
= 0. (2.38)

Energies are often formulated using integrals which results in the variational deriva-
tive having a particular structure described by the Euler-Lagrange equations [59,
Sec. 8.1]. Let us, therefore, assume an energy of the following form:

E(u) =

∫

Ω

F (x, u(x), du(x)) dx. (2.39)

For image processing, Ω typically is the image domain, F in this case a pixelwise
smooth objective function, u an admissible solution that one is searching for, and
d a differential operator, for example the nabla operator ∇. With the concept of
distributional derivatives, i.e. with integration by parts and a boundary condition
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(BC)
∫
∂Ω

∂F
∂du h dσ = 0, the Euler-Lagrange equation (in green) looks as follows:

δE(u)(h) = lim
ε→0

1

ε

∫
F (x, u(x) + ε h(x), du(x) + ε dh(x))− F (x, u(x), du(x)) dx

= lim
ε→0

1

ε

∫
F (x, u, du) + ε ∂uF · h+ ε ∂duF · dh+ o(ε)− F (x, u, du) dx

=

∫
∂F

∂u
· h+

∂F

∂du
· dh dx

=

∫

Ω

∂F

∂u
· h+ d?

∂F

∂du
· h dx −

∫

∂Ω

∂F

∂du
h dσ

=

∫ (
∂F

∂u
+ d?

∂F

∂du

)

︸ ︷︷ ︸
=δE(u)

!
=0

·h dx,

(2.40)
where d? is the dual operator of d, found using integration by parts, e.g. ∇? = −div
(2.17). Finally, the extremality condition on the functional derivative is equivalent to
the following differential equation

δE(u)(h) = 0 ⇔





δE

δu
=
∂F

∂u
+ d?

∂F

∂du
= 0 in Ω̊

∂F

∂du
h = 0 on ∂Ω.

(2.41)

Two extreme cases of the BC ∂F
∂du h = 0 in ∂Ω are the

homogeneous Dirichlet BC
∂F

∂du
= 0 on ∂Ω and the

homogeneous Neumann BC h = 0 on ∂Ω.
(2.42)

In an image such conditions hold, if for example the image has a uniform boundary
(e.g. air in MR images) or is all around zero-padded.

2.2.6 Segmentation Representations

Given a digital image I : Ω→ I, a segmentation assigns a label to every pixel x ∈ Ω.
Let us denote the set of labels or classes with L. We differentiate between binary
segmentation, where the number of labels |L| is 2, and multi-label segmentation,
where |L| is larger than 2.

Focusing on binary segmentation, where we differentiate between the object of
interest and the background, we denote the set of object pixel locations as O and the
background as B = Ω\O. For implementation purposes, we usually use L = {0, 1}
with 0 corresponding to the background pixels and 1 to the object pixels. If, for
example, the objective were to segment GM, 1 would map to GM and 0 to background,
which here would be WM and everything else that is not GM.
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Segmentation

probability maps

relaxed label map

label map

explicit boundaries

implicit boundaries

super-level set

weak

hard

Figure 2.8: Different representations of segmentations.

Depending on the task and the imaging contrasts, a multi-label segmentation would
be for example to assign 3 to all GM pixels, 2 to WM pixels, 1 to CSF pixels, and 0
to the rest.

In the following, we describe different ways to represent a segmentation, which
we visualize in Figure 2.8. Representing a segmentation as a label map, as explicit
boundaries, or as implicit boundaries, creates hard, discrete, and final boundaries
that leave no room for uncertainties and further thresholding. Weak representations
with relaxed label maps, super-level sets, and probability maps, in contrast, allow for
uncertainties.

Label Map A label map is an elegant and straightforward way to represent a seg-
mentation. It is simply a function u : Ω → L. In this representation, the axioms of
the mathematical function make sure, that every pixel is labeled, and that every pixel
only has one label. Therefore, a segmentation represented by a label map is complete
(all pixels labeled), and its regions are non-intersecting.

Notice that we can also choose L = I, which would make the image itself a segmen-
tation. Given a medical MR image, however, taking the image itself as a segmentation
would not be meaningful if the task were to segment anatomical structures.

Explicit Boundary Another way of representing a segmentation is to explicitly para-
metrize the boundaries Γ` between the different segments as curves ψ` : [0, 1] → Ω
with ψ`([0, 1]) = Γ`, where ` corresponds to the classes in L [79]. Objects that are
fully contained in the image domain have closed boundaries, whereas objects leaving
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the image domain may disjoin the parametrizations. Thus, for image segmentations
using this representation, the objects are preferred to be fully contained in the domain,
to not being concerned with joining and disjoining of curves during optimization. For
the same reason, it is also preferred that one class region does not have multiple
connected components.

In the case of binary segmentation only one curve ψ : [0, 1] → Ω is necessary to
parametrize the object boundary ψ([0, 1]) = ∂O. If the object only has one connected
component that is fully contained in the interior of the image domain, the boundary
is a closed, non-self-crossing, continuous curve, which is topologically equivalent to a
circle.

Implicit Boundary A popular way of representing a segmentation is to implicitly
define the boundaries Γ` as equations [50]. By introducing signed distance functions
φ` : Ω→ R for each class, the boundary of an object then is the kernel of φ`, or also
called the 0-level set or just level set of φ`,

Γ` = kernel(φ) = φ−1
` ({0}) = {x ∈ Ω | φ`(x) = 0} . (2.43)

A signed distance function φ`

1. has positive values outside the object O`,

2. has negative values inside the object O`,

3. has, as already described, 0-values along the boundary Γ`, and

4. since it shall be a distance, the magnitude of its derivative has to be 1 almost
everywhere except on the boundary itself.

Almost everywhere means, everywhere except to a 0-measure subset with respect to
the measure used in Ω. The measure in Ω would refer, for example, to the area
measure in 2D or the volume measure in 3D.

These conditions for a signed distance function often cause problems in segmen-
tation algorithms that use an implicit representation, because update steps for φ`
usually do not preserve the necessary conditions. Therefore, so-called reinitialization
steps have to be conducted regularly during optimization [50, Sec. II.7.2]. Without
reinitializations, different slopes arise in the graph of φ`, and the update’s force vector
fields are unequal along the boundary, which can lead to divergence. Several kinds
of resorts to this problem have been proposed [80], among them a clever way that
completely replaces the gradient descent equation with a simpler update rule [81], see
also (2.83).

Compared to the explicit boundary parametrizations, level sets can easily change
the object’s topology during optimization. The noninvariance in topology can be
beneficial if the number of connected components of the object is a priori unclear.
At the same time, it can also be a curse because an intentionally single connected
component could split up into several segments during optimization.
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A combinatorial way of using signed distance functions may save memory and
computation time for problems with more than 3 labels [82]. For example, with only
2 signed distance functions φ1 and φ2, already 4 label-regions can be reproduced using
a mapping similar to (`1, `2, `3, `4)↔ (−−,+−,−+,++), where +− symbolizes φ1(x)
being positive and φ2(x) being negative. This way, L signed distance functions can
already represent 2L classes.

Relaxed Label Map Suppose the set of class labels is finite and suppose we update a
label map u with an update ∆u, then u+∆u again should be a valid label map. This
setup would imply that ∆u can only make integer label changes, which presents a con-
flict with real-valued update steps, according to (2.28). As described in Section 2.2.4,
convexity is a much desired property of an optimization algorithm and does not only
demand the convexity of the functional, but also of the object’s representation, as we
just realized above: if u1 and u2 are two segmentations with valid representations,
then for every λ ∈ [0, 1] also every linear combination λu1 +(1−λ)u2 between u1 and
u2 has to be a segmentation with a valid representation. In variational algorithms,
usually the updates are real-valued, and therefore label maps need to be relaxed, i.e.
convexified.

A label map u : Ω→ {0, 1, ..., L−1} could be relaxed, for example, to a relaxed label
map u : Ω→ [0, L], where the set of L discrete labels {0, ..., L−1} is convexified to the
interval of all real numbers between 0 and L, including 0 and L− 1. This completely
makes sense for binary segmentations, where {0, 1} simply is extended to [0, 1]. For
multilabel problems, however, the label map u : Ω → {0, 1, ..., L − 1} is often split
into several relaxed one-vs-all binary label maps u` : Ω → [0, 1] [83], which is called
one-hot encoding. Furthermore, the same combinatorial trick as explained before for
the signed distance functions can be utilized to reduce the L binary one-vs-all label
maps to only dlog2 Le binary label maps [83].

Moreover, many functionals fulfill a certain thresholding theorem, which guarantees
that globally optimal relaxed segmentations can (again) be thresholded to globally
optimal discrete segmentations, see Figure 2.10 on Page 54.

Super-Level Set Another relaxation technique is realized by functional lifting, us-
ing the set of all super-level sets, as is demonstrated by Pock et al. [84, 85], who
lifted functionals similar to the piecewise-constant Mumford-Shah model (pcMS) and
proposed a thresholding theorem for such representation. Nosrati et al. [86] used the
same technique directly on the pcMS, and managed to incorporate even geometrical
constraints to the segmentation in a globally optimal way. This technique, however,
comes at a slightly higher computational cost, since individual super-level sets have
to be calculated, and since it introduces another parameter that regulates how many
super-level sets are used.

A θ-super-level of u is the set of all points x ∈ Ω that have a value u(x) higher than
θ, i.e.

[u > θ] = {x ∈ Ω | u(x) > θ} , (2.44)
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and can be represented using the characteristic set function

φ(x, θ) = 11[u>θ](x) =

{
1 if u(x) > θ, and

0 otherwise.
(2.45)

The ”super-level set” then is the set of all super-levels

{[u > θ] | θ ∈ [0, L]} , (2.46)

and can be represented as

(φ(x, θ))θ∈[0,L]. (2.47)

The functional’s integral then is not only integrated over the image domain Ω, but
also over the lifted domain part [0, L]. Furthermore, the super-level set representations
(φ(x, θ))θ∈[0,L] need to be regularized, such that the super-levels [u > θ] are growing
with larger θ, i.e. [u > θ1] ⊂ [u > θ2] for arbitrary θ1 > θ2 [86].

Probability Map Finally, weak label maps can also be read with probabilistic inter-
pretation as categorical distributions. For each class label ` ∈ L, probability maps
p` : Ω→ [0, 1] with

p`(x) = P [x belongs to class `] (2.48)

can be estimated. Such representations especially are used as an output in neural
networks and are normally calculated with the softmax [87]

p`(x) = softmax(z`)x = σ(z`)x =
ez`,x∑
l∈L e

zl,x
, (2.49)

where the function σ : R|Ω| → R|Ω| is a symbol for the softmax, and z ∈ R|Ω| is the
output state of the net before the softmax calculation. Here, |Ω| is the number of
data points in the finitely discretized domain Ω.

Probability maps again can be thresholded in the end for binary segmentations. A
straightforward way to generate a label map u : Ω→ L, given the L = |L| probability
maps (p`)`=1,...,L, is calculated through the argmax construction,

u(x) = argmax
`∈L

p`(x). (2.50)

Probability maps have the same range as relaxed binary label maps, but are used
in a slightly different context: while the probability maps’ values can be interpreted
as probabilities, it is not directly clear how the relaxed binary label maps’ values
between 0 and 1 correspond to uncertainty – or whether they do so in the first place –
if used in combination with continuous cuts (2.86). To achieve binary segmentations
with high accuracy, in both cases, however, optimal thresholds are problem-specific.
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2.2.7 Segmentation Algorithms

How to get to a segmentation and what the optimal segmentation differentiates is
formulated within the segmentation process.

A segmentation can be manually drawn by hand with a pen directly onto a printed
image, for example, by explicitly delineating the boundaries or by filling out the
regions. Manual segmentations are very complex and are defined within the ”neural
networks” of the experts’ brains that include a lot of prior knowledge. Furthermore,
manual segmentations depend on the experts’ motor controls and their end effectors.

To teach this process to a computer, a set of operations have to be implemented,
that transform a digital image I to a segmentation by using one of the representations
described in Section 2.2.6. There are many image segmentation techniques in the
literature [88, 89, 90, 91] and a complete review is beyond the scope of this thesis. They
vaguely can be separated into two important classes: shallow model-based algorithms
and the supervised deep learning algorithms. Other separation attempts differentiate
between automatic and semi-automatic algorithms or try to differentiate based on the
used energy function or the segmentation’s representation.

Automatic or Semi-Automatic An automatic algorithm simply needs to be exe-
cuted, whereas a semi-automatic algorithm needs more manual intervention such as
selecting a seed point at a specific location in the data or manually choosing a field of
view. Typical examples for semi-automatic segmentation algorithms are interactive
graph cuts [92, 93], where one iteratively marks down a representative part of the
foreground. In [92], for example, Gaussian mixture models of the supervised fore-
ground and background are iteratively re-estimated, and graph cuts (2.84) are used
to calculate the foreground-background segmentations.

Energy-based Differentiation This differentiation focuses on variational segmenta-
tion algorithms and divides energy terms into pixel-based, edge-based, region-based,
and texture-based formulations [77]. These terms do not distinctively distinguish seg-
mentations, because energy terms can be based on a combination of them. Pixel-based
algorithms, such as pixelwise thresholding (2.67), use the information of each pixel
separately without including neighbor information; edge-based algorithms mainly use
first- or second-order derivative information of the image, such as edge-based active
contours [79], cf. equations (2.76), (2.77), and (2.79); and region- and texture-based
energies incorporate different intensity distributions of the segments, as is carried out
with the Chan-Vese model [94], cf. Equation (2.82) with C ≡ 1. The Chan-Vese
model (with arbitrary C) as well as graph cuts [93], cf. left side of the equations in
(2.95), already represent combinations of above classes.

Representation-based Differentiation The representation used for the segmenta-
tion, cf. Section 2.2.6, builds a classification from an implementational point of view.
The chosen representation strongly influences the segmentation algorithm’s advan-
tages and drawbacks: in the ability to change the topology, in numerical robustness,
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computational parallelizability, memory usage, and implementational simplicity. To
mention a few: active contours with explicit boundaries preserve their initialized
topology [79], cf. Equation (2.76), at least with the naive implementation without
enabling joining and disjoining of curve elements; active contours with explicit or im-
plicit boundaries have critical instable stopping criteria [79, 94]; implicit boundaries
that use signed distance functions need reinitializations and need to approximate ab-
solute and sign functions as well as delta distributions [50, 80], cf. equations (2.77)
and (2.79); large neighborhood connections with graph cuts may need more memory
than continuous versions [86], cf. Equation (2.96) and the paragraph about metri-
cation errors on Page 53; continuous max-flow min-cut algorithms only need a few
lines of code with simple operations and are pleasingly parallelizable [23], cf. Equa-
tion (2.103); variational formulations with convex regularization through functional
lifting introduce an additional discretization parameter [85, 84, 86]. Moreover, this
differentiation also shows beautiful connections between segmentation algorithms and
their variational formulations, as presented in Section 2.2.8 on Page 55 for variations
of the piecewise-constant Mumford-Shah model.

Shallow or Deep The boundary between the two classes shallow model-based algo-
rithms and supervised deep learning algorithms is blurry, because the model-based
algorithms may include supervised learning, and the supervised learning algorithms
themselves are also modeled. Therefore the differentiation lies in the ”deepness” of
the algorithms, which depends on how ”deep” a process is being decomposed into its
constituent subprocesses. The deepness reflects the algorithm’s complexity and ap-
proximation power and could be measured, for example, in how many real-dimensional
linearly independent, effective parameters are used [95]. In terms of neural networks,
the deepness also depends on how many abstract layers between the input and the
output layers are used [95], see also Section 2.2.10.

Without giving a specific threshold between shallow and deep models, among shal-
low segmentation algorithms we have the classic segmentation algorithms such as
simple intensity thresholding (2.67), split and merge algorithms [96], atlas-based seg-
mentation approaches [97, 98, 99], active contours [50], graph cuts [93], and continuous
cuts [23, 100]. Further variational segmentations use formulations similar to energies
used in active contours, graph cuts, and continuous cuts with first- and second-order
clique potentials but additionally include statistical information such as appearance
and shape models [101, 90, 102], see Section 2.2.9. Including statistical information
through addition of an additional energy term makes a variational segmentation some-
what deeper; however, this addition probably does not reach the same connectedness
between the data term and the statistical information as deep neural networks can
learn during training, see Section 2.2.10. In contrast to shallow models, the many
parameters of deep models are hard to tweak by hand, and therefore training in the
form of a supervised learning framework is necessary, cf. Section 2.2.10.
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In Figure 2.9 on Page 45, we show abstractions of the two pipelines: manual mod-
eling for a variational formulation and supervised learning for deep neural networks.
For manual modeling, we select a segmentation framework {Fλ | λ parameters}, where
Fλ represents a segmentation algorithm, and λ a set of parameters. Typically, the
number of parameters increases during modeling, when adding new subprocesses,
and is in the range of 10 to 1000. These parameters involve the modeling of the
energy, the algorithm, and the stopping criteria for the descent method. Tweak-
ing the parameters is conducted during the manual modeling part on selected images
from a training/validation dataset before the actual segmentation of the target image.
Though, some of the parameters are also automatically adapted during the segmenta-
tion process to adjust to the target image. This adaptation, however, could be seen as
part of the segmentation algorithm itself. Depending on how much and how often the
training/validation data are being used to optimize the parameters, we can say that
pure model-based approaches are unsupervised. Finally, the daily business comprises
testing the designed model on unseen test data to check if it generalizes well.

The big difference, computation-wise, between shallow model-based variational seg-
mentation and supervised deep learning lies in where we use energy optimization, as
is clearly visualized and marked with the red ellipses in Figure 2.9. To calculate a
segmentation of a target image, the classic approach uses a descent method on an
energy that depends on the target image, whereas a neural network simply applies a
forward pass. The variational optimization phase for the neural network, in contrast,
is applied during the training phase over a whole set of training data and moves the
manual modeling part to the next level, as indicated with the green ellipses. Moving
the gradient descent has the following advantage: whereas variational segmentations
struggle with the stopping criteria for each target image anew, the critical task of ap-
plying the stopping criteria during supervised training has to be executed only once.
To this end, we usually take a small validation dataset to check the quality of the
network iterations and can use this validation to design stopping criteria.

The neural network’s parameter set θ has a cardinality in the range of millions which
typically is much larger than the parameter set used for classic approaches. However,
as indicated with the green arrow, there exists a similar modeling experience for
supervised deep learning, where one has to set up a loss function for training and
several other parameters for the network’s architecture. The resulting parameters
of this modeling phase are gathered with so-called hyperparameters λ and can be
manually tweaked or themselves optimized by another network. To this end, ideas for
recursively learning to learn have already been proposed [103]. For such ”deepness”,
however, the need for computational power increases even more.

Philosophical Discussion In this paragraph, we accumulated some inexact philo-
sophical thoughts, ideas, and hypotheses on the contention of variational segmentation
approaches and deep learning neural networks.

It took several years for people to build confidence in applying deep neural networks
for real-world problems [104]. We believe the prevailing notion was, that trained neu-
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ral networks are difficult to understand, because of their cryptic way of approximating
a problem, and therefore neural networks are not trustworthy. At that time, when
the hardware was not ready for practical neural network approaches, referring to the
AI winter [105], people preferred classic model-based approaches which at that time
probably also seemed more principled. Regarding the confidence on using neural net-
works, however, we simply have to spend time dealing with an abstract object and we
automatically build up a confident perception – quoting John von Neumann1: ”Young
man, in mathematics you don’t understand things. You just get used to them.”.

With variational segmentation approaches, the goal is to model functionals with
their global minima being ”globally optimal solutions”. At that point, we have to
keep in mind that a segmentation being an optimal solution does not mean it is the
correct optimal solution of the real problem. It merely is an optimal solution to the
formulated problem and whether this problem accurately represents the real problem
is another question. Here, with a real problem, we understand problems that involve
processes of nature (and the human population) which are not necessarily already
accurately formulated within abstract human languages. Such problems typically
are very complex, and it is questionable whether they can be accurately simulated.
Nevertheless, it lies in our nature to try to approximate and understand such problems
with simpler models, and this is why model-based approaches seem more principled.

As a vantage point for deep learning, one could hypothesize that the simpler a
formulation gets (e.g. being convex), the rougher and the more unsubtle it is in rep-
resenting the complex real problem. A possible interpretation is that approximations
of processes with neural networks are not necessarily mathematically unprincipled –
since obviously, the network is a mathematical construction – however, the network’s
trained weights may be as puzzling as the real problem itself. If one would interpret
that ”the inability of simple models exactly representing a complex model” is an in-
variant between complex natural phenomenons and abstractions from our minds, then
neural networks that accurately do their job but are challenging to understand poten-
tially are closer to the real problem than models designed with simpler mathematical
formulas. However, the possibility to discover a simple and computable model that
describes a complex problem is still present. Finally, depending on the point of view,
trained neural networks anyhow can be seen as relatively simple models.

2.2.8 The Mumford-Shah Functional

Some of the variational methods we introduced in Section 2.2.7 are described in more
detailed in this section. Not all of these methods are part of this thesis’s publications;
however, they were commonly used in medical image analysis during the last two
decades and are therefore worth mentioning here. In this section, we show connec-
tions to the Mumford-Shah functional, which as an envelope closely connects many
variational algorithms: where the algorithm’s implementations might be completely

1Reply, according to Dr. Felix Smith of Stanford Research Institute, to a physicist friend who had
said ”I’m afraid I don’t understand the method of characteristics”.
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different because of different used representations for their segmentations, their vari-
ational formulations indeed are similar to each other.

In particular, we motivate the choice of the continuous max-flow min-cut algorithm
of Yuan et al. [23] in the following. In short: with this algorithm, the piecewise-
constant Mumford-Shah functional is put to an optimization algorithm in a straight-
forward way; and the duality between the min-cut and the max-flow shows a familiar
connection to the well-established graph cut methods.

Definitions The Mumford-Shah functional [106] was introduced in 1989 and is an
energy formulation to simultaneously construct an optimal piecewise smooth approx-
imation of an image together with an optimal discontinuity set of the image and its
approximation. Given an image I : Ω ⊂ R2 → I ⊂ R on a bounded domain Ω, we
simultaneously optimize for a piecewise smooth approximation u : Ω→ I of I and a
discontinuity set K:

min
u,K

∫

Ω

(u(x)− I(x))2 dx+

∫

Ω\K

‖∇u(x)‖2 dx+

∫

K

dσ, (2.51)

where
∫
K
dσ is the length of K and dσ is its appropriate Hausdorff measure. In the

following, we suppress the dependence of u and I on x to shorten the notation. Also,
for the sake of notational simplicity, we left out the weighting parameters of the three
additive terms. As explained in [106], the first term,

∫
Ω

(u− I)2 dx, is a coupling term

and asks that u is an approximation of I; the second term,
∫

Ω\K ‖∇u‖
2
dx, asks that

u does not vary much on each connected component on Ω\K, and in combination with
the first term, the second term ensures also that the intensities of I are similar for
each connected component; and the third term,

∫
K
dσ, asks that the boundary of the

discontinuity set K is as short as possible, yielding an optimal number of connected
components with piecewise smooth boundaries. Note that in the second term, the
classic derivatives ∇u need not be calculated on the discontinuity set K, which makes
sense because u has discontinuous changes across K.

This functional has been studied extensively, and a survey is given in [49, pp. 153–
173]: different analytic approximations were suggested for which existence and unique-
ness were analyzed; and also the behavior of the discontinuity set has been construed.
In a special analytic setting where K is a finite union of smooth curves, it has been
shown, for example, that triple-junctions have to meet in a 60◦ angle, and quadruple
junctions would need to split into two triple-junctions. Such analytic observations
are interesting, however for applications on discrete images they are not directly rel-
evant, especially for images with only one object of interest that consists of only
one connected component. Furthermore, we focus on a reduced special case of the
Mumford-Shah functional where the discontinuity set is directly given by the approx-
imator u – namely the piecewise-constant Mumford-Shah model (pcMS):

min
u,K 6=∅

∫

Ω

(u− I)2 dx+

∫

K

dσ, (2.52)
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where we additionally force that the function u is piecewise-constant, i.e. ∇u = 0 on
Ω\K, and K ⊂ Ω is a non-empty set K 6= ∅.

A fundamental observation is that u’s piecewise-constant parts take on the mean
values of the connected components. That is: if R ⊂ Ω is a connected component,
surrounded by K, then

u(x) ≡ mean
(
(I(y))y∈R

)
∀x ∈ R. (2.53)

Therefore, u can be encoded by K. Conversely, K can also be encoded by u, by
simply extracting the discontinuities of the piecewise constant u, and thus the pcMS
(2.52) becomes an optimization problem solely on u or on K.

Already in the full Mumford-Shah model (2.51), u and K are somewhat coupled,
however, there is more freedom than in the piecewise-constant version. In the initial
version, a discontinuity line may be added to K or may be mollified by u because of
allowed smooth transitions in u. Imposing, however, that u needs to be piecewise-
constant rather than just piecewise smooth, simplifies optimization, as mentioned
above, through the mutual coupling between K and u. In practice, however, the
mentioned ambiguity between u and K in the piecewise smooth version is not taken
away entirely in the piecewise-constant version, as u could be optimized with a jump
across a smooth transition in the image, or the smooth transition could be left as one
region, resulting in the adjustment of the respective constant of u to the mean value
of the combined connected component. Moreover, in the piecewise-constant version,
the different values of u can be directly used to represent different labels.

Normalization of the Segmentation Model The approximation u of the pcMS can
further be normalized such that u’s piecewise-constant mean values realize integer
values {0, ..., L − 1}. For the sake of visual simplicity, we demonstrate this transfor-
mation in the binary case L = 2. As explained in (2.53), a solution u? of the pcMS
(2.52) realizes the two constants mO = mean((I(x))x∈O) and mB = mean((I(x))x∈B),
where O is the object surrounded by K, and B = Ω\O denotes the background. To
use the mapping

mB 7→ 0,

mO 7→ 1,
(2.54)

we reformulate (2.52) to

min
u: Ω→{0,1}

∫

Ω

u(x) (I(x)−mO)2

︸ ︷︷ ︸
=CO

+(1− u(x)) (I(x)−mB)2

︸ ︷︷ ︸
=CB

dx+

∫

∂O

dσ, (2.55)

where the mean values, mO and mB, and the object O itself depend on the seg-
mentation u with O = [u = 1] = {x ∈ Ω | u(x) = 1}. Furthermore, instead of the
mean intensity differences (I(x)−mean(I(region)))2, one can generalize the pcMS by
choosing any kind of model functions CO and CB.

Another way to denote the segmentation model (2.55) is to introduce the mapping

Imodel = mO u+mB(1− u), (2.56)
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as done in [22], with which the pcMS (2.52) intuitively reads as

min
u: Ω→{0,1}

∫

Ω

(I(x)− Imodel(x))2 dx+

∫

∂O

dσ. (2.57)

Connection to the ROF model The model of Rudin, Osher, and Fatemi (ROF),
which was introduced in 1992 [107], describes an image denoising model based on
total variation (TV) minimization, which is similar to the pcMS (2.52):

min
u: Ω→I

∫

Ω

(u− I)2 dx+

∫

Ω

‖∇u‖ dx. (2.58)

For the sake of visual simplicity, we left out the weighting parameters between the
two integral terms. Comparing this model to (2.52), only the first integral term∫

Ω
(u−I)2 dx is the same, whereas the second term,

∫
Ω
‖∇u‖ dx, called TV for smooth

functions (e.g. in W 1,1-Sobolev spaces), does not appear in (2.52) nor in (2.51). More
importantly, u is simply a denoised approximation of I and is not directly a segmen-
tation, as the ROF model does not force u to be piecewise-constant.

Using the ROF model but imposing u to be piecewise-constant, and assuming that
w.l.o.g. u realizes the mean values 0 and 1, we actually reproduce the pcMS (2.52)
for the binary case. To show the similarity, the coarea formula for bounded variation
functions [63, Theorem 5.9],

∫

Ω

‖∇u‖ dx =

1∫

0

∫

∂[u≥θ]

dσ dθ, (2.59)

shows that the boundary integral term
∫
∂O dσ =

∫
K
dσ and the TV term

∫
Ω
‖∇u‖ dx

actually are the same if u is regular enough [108], e.g. u ∈ W 1,1 2. This is because
the discontinuity set K coincides with the jump-set ∂[u ≥ θ] for almost all θ ∈ [0, 1]
and thus the perimeter of the foreground object [u = 1] fulfills (using the mean value
theorem for integrals)

∫

K

dσ =

∫

∂[u≥0.5]

dσ = (1− 0)

∫

∂[u≥0.5]

dσ =

1∫

0

∫

∂[u≥θ]

dσ, (2.60)

and therefore we have ∫

K

dσ =

∫

Ω

‖∇u‖ dx. (2.61)

Indeed, the TV regularization which is used for denoising with the ROF model has a
similar effect as denoising with the Mumford-Shah model.

2 W 1,1 is used to express the total variation
∫
Ω |Du| [49, p. 45] by means of the weak derivative

∇u; |Du| is the distributional derivative measure [63, Sec. 5.1].
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Bayesian Inference In Figure 2.7, we mentioned that energy functionals could be
generated through Bayesian inference, and indeed, the pcMS can be derived as a log-
linear model. We demonstrate its construction in the discrete and in the continuous
setting, following [109].

Let I = (I1, . . . , Im) be the pixel intensities of the given image I and u = (u1, . . . , um)
be the desired piecewise-constant image u, and let us furthermore assume the follow-
ing two properties:

1. all measurements I1, . . . , Im are mutually independent (m.i.); and

2. we can use the first-order Markov approximations (MA) for the segmentation
prior P (u):

P (u) = P (u1, . . . , um) = P (um)

m−1∏

i=1

P (ui|ui+1) ∝
m−1∏

i=1

P (ui|ui+1).

Now, modeling the likelihood P (I|u) and the prior P (u) with the following functions

P (I|u)
m.i.
=
∏

i

P (Ii|ui) ∝
∏

i

exp

(
− (ui − Ii)2

2σ2

)
= exp

(
−
∑

i

(ui − Ii)2

2σ2

)
,

P (u)
MA
= P (um)

m−1∏

i=1

P (ui|ui+1) ∝
m−1∏

i=1

P (ui|ui+1)

∝
m−1∏

i=1

exp(−λ |ui − ui+1|)

(2.62)

results in the negative log maximum likelihood estimation (MLE) being the discrete
Mumford-Shah energy:

E = − log (P (I|u)P (u)) =

m∑

i=1

(ui − Ii)2

2σ2
+ ������

log
(√

2πσ
)

︸ ︷︷ ︸
irrelevant for min

+λ

m−1∑

i=1

|ui − ui+1| . (2.63)

The energy E coincides with the Ising model [110] if we rescale E, by multiplying 2σ2

into λ.
With similar steps but utilizing a product integral, one can directly generate the

pcMS in the continuous case [77]. For notational simplicity, we again choose the
binary-labeling case; and to formulate a slightly more general framework, we use an
arbitrary regional intensity likelihood P (I|u). To this end, let the regional likelihood
and segmentation prior be modeled with

P (I|u) =
∏

x∈Ω

P (I(x)|u(x)) =

(∏

x∈O
PO(I(x)|u(x))

)(∏

x∈B
PB(I(x)|u(x))

)
,

P (u) = exp


−λ

∫

Ω

‖∇u‖ dx


 .

(2.64)
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Furthermore, let the product integral for a suitable function f be defined as

∏

Ω

f(x)dx := exp



∫

Ω

log f(x) dx


 , (2.65)

then we can find the negative log MLE to be

E(u) = − log(P (I|u)P (u)) = − log

(∏

Ω

P (I(x)|u(x))dx

)
− log(P (u))

=

∫

O

logPO(I(x)|u(x)) dx+

∫

B

logPB(I(x)|u(x)) dx+

∫

Ω

λ ‖∇u‖ dx.
(2.66)

If the model functions PO and PB are unknown, they can be estimated using some
kind of density estimation technique on local or more global regions, e.g. histograms
on selected regions, Gaussian mixture models, or kernel density estimation techniques
[93, 80].

History As explained in [106, p. 581], the pcMS in a discretized two-label case is
closely related to the Ising model [110]. Therefore, in a sense, Ising proposed a seg-
mentation model as early as 1925 by modeling the natural clustering of magnetization
spins under the influence of an external magnetic field, arranged on a discrete lattice.
There, the spins align with the magnetic field, where neighboring spins regularize
each others’ direction.

In 1943, Ashkin and Teller reformulated the Ising model for four configurations,
and later, in 1951, Potts proposed in his dissertation to generalize the model to
arbitrary many configurations.A complete review of the physics-related development
of the Potts model is given in [111]. Comparing our field with statistical physics,
digital images take on the place of the external magnetic fields in the Ising model.
Furthermore, from a more theoretical, statistical point of view, Markov Random
Fields can be used to represent discrete segmentation models like the Ising or the
Potts model [88, 93, 102].

Important to mention is the fundamental difference in complexity between the Ising
model, which differentiates between two classes, and the Potts model, which differ-
entiates between more than two classes. The binary-label problem can be efficiently
solved with, for example, the polynomial-time algorithm of Ford and Fulkerson [112],
which uses the max-flow min-cut Duality. The multi-label problem, in contrast, is
known to be NP-hard, and therefore only near-optimal solutions can be found in
polynomial time, e.g. [85].

Finally, Markov Random Fields with interactions between immediate neighbors, like
in the Ising model, can be represented in a continuous setting with the pcMS (2.52).
This analogy between discrete and continuous models introduces many more solvers.
While discrete models are solved with graph-based discrete optimization algorithms
such as the Ford-Fulkerson algorithm, continuous models can also be solved via partial
differential equations and their numerical discretizations, following Figure 2.7.
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Metrication Errors As mentioned in [23], one major drawback of discrete methods is
the grid bias which leads to discretization errors, or sometimes called metrication er-
rors: curved boundaries that should be smooth appear with staircase artifacts. While
such staircase artifacts naturally appear in visualizations of binary segmentations, the
discrete interaction regularization in the Ising model reinforces such artifacts during
segmentation if the interaction potentials between neighboring pixels penalize some
spatial directions more than others.

This discretization error can be reduced by including larger discrete neighborhoods
and thus more complex interactions between non-direct neighbors, as shown for exam-
ple in [86, Fig. 5]. However, solving such models comes with a higher computational
cost and memory usage.

Another way to reduce the visual staircases is to relax the binary segmentation by
including gray values through relaxed label maps, as is typically done for continuous
models, see Page 55. In the end, when we need a binary segmentation, we have to
threshold the relaxed label map again, and this way the natural staircase artifacts
reappear, but without the artifacts caused through the discrete interaction regular-
ization, explained above. An example is shown in [86, Fig. 5], where the thresholded
relaxed segmentations have a similar visual appearance as binary segmentations that
are calculated with large interaction neighborhoods.

Relaxation and Thresholding Theorems As mentioned in the previous paragraph,
relaxing the segmentation’s binary values to gray values allows dealing with metrica-
tion errors. However, if we want to reproduce a binarized segmentation, we have to
threshold the relaxed segmentation again.

Reducing metrication errors is not the only motivation for relaxation. More im-
portantly, often the whole energy formulation needs to be relaxed to create a convex
problem, which guarantees that globally optimal solutions are found. This reformu-
lation involves the relaxation of the energy functional E to a convex energy Ẽ, the
relaxation of the domain of admissible solutions V to Ṽ , and therefore also the relax-
ation of the range of the admissible solutions u. The latter also guarantees that an
admissible solution stays an admissible solution after a descent step, as explained on
Page 41. Relaxation to a convex problem is sometimes also called convexification.

In the following, let us denote the threshold of a function u : Ω → [0, 1] at level
θ ∈ [0, 1] with

11u≥θ(x) =

{
1 if u(x) ≥ θ, and

0 otherwise.
(2.67)

Note, the thresholded function 11u≥θ : Ω→ {0, 1} is basically the same as the θ-super-
level set function in (2.45).

Ultimately, the question arises, whether an optimal solution of the convexified prob-
lem is an optimal solution of the initial problem after thresholding at level θ – as
depicted in Figure 2.10. Surprisingly, there exist such thresholding theorems which
guarantee that almost all threshold levels lead to an optimal solution, at least for the
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min
u∈V

E(u)
convexify V and E−−−−−−−−−−−−→
and the range of u

u? = argmin
u∈Ṽ

Ẽ(u)
thresholding−−−−−−−−→
u?→11u?≥θ

Ẽ(11u?≥θ)
=?

≥ Ẽ(u?)

Figure 2.10: Relaxing a problem and thresholding an optimal relaxed solution.

convexified functional Ẽ. This way, continuous cuts can be seen as complicated, fil-
tered thresholding, where the TV regularization avoids the segmentation of noise. As
an advantage, TV regularization allows sharp discontinuities in the solutions, leading
to near-binary results [108].

To show such theorems for a given energy Ẽ, one typically uses the layer-cake
formula

u(x) =

∫ 1

0

11u≥θ(x) dθ (2.68)

and a coarea formula (such as (2.59)) to devise a property as follows: (cf. (2.73))

Ẽ(u) =

1∫

0

Ẽ(11u≥θ(x)) dθ ∀u in a neighborhood of u?. (2.69)

Using this property (2.69), the optimality of u?, and the continuity of
∫ 1

0
Ẽ(11u?≥θ(x)) dθ

in θ one can show via contradiction that

Ẽ(u?) = Ẽ(11u?≥θ) ∀ θ ∈ (0, 1). (2.70)

We now demonstrate convexification of the pcMS for the use of binary segmenta-
tion. With equations (2.59) and (2.60), the reduced Mumford-Shah version for binary
segmentation (2.55) can be rewritten to

min
u: Ω→{0,1}

∫

Ω

uCO + (1− u)CB + ‖∇u‖ dx. (2.71)

Let us assume fixed CO and CB during optimization that are independent of any iter-
ations of u. This assumption is generally not the case during optimization; however,
we assume that we can model CO and CB such that they do not change much at some
point during convergence, referring to Γ-convergence [49, p. 40]. Hence, in a simplified
view, at some point during convergence, the functional in (2.71) is convex because
the point-wise additions and multiplications, as well as the ∇ operator, are linear and
the Euclidean norm ‖·‖ is convex. However, incorporating the optimization of CO
and CB to the problem, as in the pcMS, generally leads to non-convex problems.

The space of admissible solutions V = {u : Ω → {0, 1}} is not convex, since two
admissible solutions in V cannot be convexly combined, because for some λ ∈ ]0, 1[,
the combination λu+(1−λ) v between u and v is not in V anymore. This combination
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generally is not in V , because for example for some x, where u(x) = 1 but v(x) = 0,
the value of the combined function at that position is λu(x)+(1−λ) v(x) = λ, which
is not in {0, 1}. Therefore V needs to be relaxed to Ṽ = {u : Ω→ [0, 1]}, and we end
up with the relaxed segmentation model

min
u: Ω→[0,1]

∫

Ω

uCO + (1− u)CB + ‖∇u‖ dx

︸ ︷︷ ︸
=E(u)

. (2.72)

Finally, we can indeed derive the sufficient condition (2.69) as follows:

E(u)
(2.68)

= E

(∫ 1

0

11u≥θ dθ

)

=

∫

Ω

(∫ 1

0

11u≥θ dθ

)
CO +

(
1−

∫ 1

0

11u≥θ dθ

)
CB +

(2.59)︷ ︸︸ ︷∫ 1

0

∫

∂[u≥θ]

dσ dθ

=

∫ 1

0

∫

Ω︸ ︷︷ ︸
Fubini

11u≥θ CO + (1− 11u≥θ)CB dx dθ +

∫ 1

0

∫

Ω

∇11u≥θ dx

︸ ︷︷ ︸
(2.59) & (2.60) on [u≥θ]

dθ

=

∫ 1

0

E(11u≥θ) dθ.

(2.73)

Moreover, the thresholding theorem also holds if the TV-regularization
∫
‖∇u(x)‖ dx

is modified with anisotropic total variation (ATV) to
∫ √

u(x)TA(x)u(x) dx. To this
end, Olsson et al. [113] proved a coarea formula that works for ATV if the anisotropic
matrix field A : Ω→ Rdim Ω×dim Ω is strongly positive definite.

Representations In this paragraph, we demonstrate how to generate different algo-
rithms based on the pcMS-inspired binary segmentation model

min
u

∫

O

CO dx+

∫

Ω\O

CB dx+ Length(∂O, C) (2.74)

by using different representations. In this model (2.74), Length(∂O, C) calculates
the weighted length of the object boundary, given a weighting function C. The term
Length(∂O, C) is present, for example, as the external edge force (2.75) in active
contours [79, 114, 94] or as the TV regularization in graph cuts and continuous cuts
[23]. In the following, we merely focus on the form of the functionals and their
variational derivatives and do not go into detail for implementations.

We start with the geodesic active contour model [114] or [49, p. 176],

J2(c) = Length(∂O, C) =

∫

K

C dσ =

∫ 1

0

C(c(s)) c′(s) ds, (2.75)
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where c : [0, 1] → Ω is an explicit parametrization of the object boundary ∂O = K
with K = c([0, 1]) = Image(c), and C : Ω → R weighs the contour length, such that
the optimal curve c follows along the desired delineation in the image. A typical
example for the model function C is to invert the image gradient magnitudes, e.g.
C(x) = 1/(1+‖∇I(x)‖) [50, Sec. III.12.1]. Indeed, this model represents the length term
in (2.74) and is part of the Mumford-Shah functional (2.51) if C ≡ 1 (which then
would, however, not make sense without regional information). The following curve
evolution converges to a local minimum of J2 (2.75) and is called snakes:

∂tc = (κC − 〈∇C,N〉)N, (2.76)

where κ is the curvature, N(s) is the normal vector to c at position c(s), and t is the
numerical evolution time parameter. Moreover, κC N represents the so-called mean
curvature motion, and 〈∇C,N〉N represents the edge force.

Instead of an explicit parametrization, Caselles et al. [115] use a signed distance
function φ : Ω→ R to reformulate the curve evolution of snakes (2.76):

∂tφ =

(
κC +

〈
∇C, ∇φ‖∇φ‖

〉)
‖∇φ‖ = κC ‖∇φ‖+ 〈∇C,∇φ〉 . (2.77)

With this representation, the curvature and the unit inward normal are given by
κ = div (∇φ/‖∇φ‖) and N = −∇φ/‖∇φ‖, respectively.

The curve evolutions (2.76) and (2.77), so far, have been derived through geometric
considerations. If, however, we calculate the gradient descent equation (2.27) with
the variational derivative of (2.75) formulated for the level set H(φ),

J̃2(φ) =

∫

Ω

C ‖∇(H(φ))‖ dx, (2.78)

where H is the Heaviside function, we end up with the following equation,

∂tφ =

(
κC +

〈
∇C, ∇φ‖∇φ‖

〉)
δ(φ), (2.79)

where we recognize the mean curvature motion and the edge force but instead of
∇φ the Dirac delta function δ is used. These two forces are split up through the
application of the product and chain rule on the variational derivative:

−δJ̃2

δφ
= div ∂∇φ (C ‖∇(H(φ))‖) chain rule

=
on TV

div ∂∇φ (C δ(φ) ‖∇φ‖) (2.80)

chain
=
rule

div

(
C δ(φ)

∇φ
‖∇φ‖

)

product
=
rule

〈
∇C, ∇φ‖∇φ‖

〉
δ(φ) + C div

(
δ(φ)

∇φ
‖∇φ‖

)

︸ ︷︷ ︸
=���∇δ(φ)κ+δ(φ)κ

,
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using ∇δ(φ) = 0. If C ≡ 1, then the edge force vanishes. This approach, with C ≡ 1,
is utilized in the Chan-Vese model [94] as an ”active contour without edges”, where
the Chan-Vese model is the pcMS represented with level sets H(φ):

min
φ,mO,mB

∫

Ω

H(φ) (I −mO)2 + (1−H(φ)) (I −mB)2 + C ‖∇(H(φ))‖ dx, (2.81)

where the according gradient descent equation is given by

∂tφ =

(
κC +

〈
∇C, ∇φ‖∇φ‖

〉
− (I −mO)2 + (I −mB)2

)
δ(φ). (2.82)

Actually, Chan and Vese [94] added a balloon force to (2.81) and (2.82) to accelerate
convergence. This force, however, can easily mess up convergence if set too high
compared to the regional terms and the edge force. In such cases, the active contours
vanish completely through divergence towards the empty set or the whole image
domain.

The two different curve evolutions (2.77) and (2.79) ((2.82), respectively) differ
in ∇φ and δ(φ), yet, depending on the numerical discretizations of δ, δ(φ) can be
smoothed to a similar shape as ‖∇φ‖, cf. Page 18, [50, p. 16] and [94]. Leaving out
the length regularization term

∫
Ω
C ‖∇(H(φ))‖ dx in (2.81) completely, Chan and

Zhu [81] developed a very simple update scheme by replacing the gradient descent
equation as follows:

∂tφ = Aδ(φ)
replacing−−−−−−→ φ(x, t) =

{
1 if A(x, t) ≥ 0,

−1 if A(x, t) < 0,
(2.83)

where A represents the respective forces. This update rule works, because the energy
without length regularization only depends on H(φ) and not directly on φ. The length
term, however, is crucial for image segmentation, for which reason Chan and Zhu [81]
chose this update rule in combination with (length) regularization through coupling
with a shape model.

Representations – Max-Flow Min-Cut Duality Indeed, the curvature calculation of
the signed distance functions and the need for their reinitializations contain numerical
complications [50, Sec. II.7.2], cf. Page 18. Therefore, from our point of view, the use
of label maps u : Ω→ {0, 1} and their relaxed versions u : Ω→ [0, 1] lead to the more
stable segmentation algorithms: graph cuts and continuous cuts.

For graph cuts [93], the theory of flow-networks and the duality between min-cuts
and max-flows from graph theory is used. In short, the pixels are represented with
vertices V of a graph, and the edges E ⊂ V × V between neighboring vertices are
equipped with non-terminal capacities C : V ×V → R. Two additional virtual source
and sink/target vertices s and t are also connected with all pixel vertices, yielding
the terminal capacities Cs : {s} × V → R and Ct : {t} × V → R. These terminal and
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non-terminal capacities are the framework’s model functions. The goal is then to find
a cut K ⊂ Ê = E ∪ ({s} × V ) ∪ ({t} × V ) such that the sum over the capacities of
the cut edges (2.84) is minimal. In Figure 2.11, we provide a minimal simplification
of a graph cut. In (2.84) and (2.85), we directly compare the discrete graph cut with

s

v1 v2

v3 v4

t

O B

Figure 2.11: Simplified illustration of a graph cut: non-terminal capacities (black),
source capacities (blue), sink capacities (orange), and the cut (zigzag line).

the continuous cut for understanding their common ground:

min
K⊂Ê

∑

e∈K
C(e) = min

O⊂V

∑

v∈B
Cs(v) +

∑

u∈O
Ct(u) +

∑

(u,v)∈O×B
C(u, v), (2.84)

min
O⊂Ω

∫

B

CO(x) dx +

∫

O

CB(x) dx +

∫

∂O

C(x) dσ(x), (2.85)

whereas Cs, Ct and C are functions on edges, in the continuous case, CO, CB, and C
live on the domain Ω.

For both graph cuts and continuous cuts, dually formulated representations exist,
e.g. max-flow and continuous max-flow, respectively, which do not directly minimize
the minimal cut energy (2.84) or (2.85), respectively. As already mentioned in the
paragraph of the pcMS’s history on Page 52, the discrete duality is established through
the max-flow min-cut theorem [116], and similarly, a continuous max-flow min-cut du-
ality can be shown using L2-functions and the Cauchy-Schwartz inequality as follows:
Starting again with the generic relaxed min-cut segmentation model (2.72) endowed
with the model functions C

min
u: Ω→[0,1]

∫

Ω

uCO + (1− u)CB + C ‖∇u‖ dx, (2.86)

we use the Cauchy-Schwartz inequality, also known as the cosine formula, between
two vectors p and q in Rdim Ω, to formulate a non-terminal saturation property similar
to the discrete max-flow:

max
‖p‖≤C

p · q = max
‖p‖≤C

‖p‖ ‖q‖ cos(^(p, q)) = C ‖q‖ .
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With this saturation property for q = ∇u(x), we can rewrite (2.86) to

min
u

∫

Ω

uCO + (1− u)CB +

(
max

‖p(x)‖≤C(x)
p(x) · ∇u(x)

)
dx, (2.87)

and moving the maximum out of the integral by interpreting ‖p‖ ≤ C as a point-wise
comparator and the involved functions as L2-functions, we arrive at the saddle point
problem

max
‖p‖≤C

min
u

∫

Ω

uCO + (1− u)CB + p · ∇u dx. (2.88)

With integration by parts we can pass the derivative over to p, which results in a
model that can produce algorithms without the need of differentiating the desired
segmentation,

max
‖p‖≤C

min
u

∫

Ω

uCO + (1− u)CB − udivp dx. (2.89)

The negative sign of the linear term −udivp can be stashed by redefining p 7→ −p,
and thus with the linearity of the divergence we have

max
‖p‖≤C

min
u

∫

Ω

CB + u (CO − CB + divp) dx. (2.90)

We now introduce the flow variables pO and pB and formulate the terminal saturation
properties,

max
pO≤CO

pO = CO, (2.91)

max
pB≤CB

pB = CB, (2.92)

which we use to formulate the continuous max-flow min-cut formulation

max
‖p‖≤C
pO≤CO
pB≤CB

min
u

∫

Ω

pB + u (pO − pB + divp) dx, (2.93)

through moving the maxima out of the integral and interpreting pO and pB as L1-
functions.

Finally, the flow variables p : Ω → Rdim(Ω), and ps, pt : Ω → R can be seen as
Lagrangian dual variables of the continuous min-cut (2.86), and thus the continuous
max-flow model is given by





max
pB

∫

Ω

pB dx

s.t. pB ≤ CB, pO ≤ CO, ‖p‖ ≤ C,
divp− pB + pO = 0.

(2.94)
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Conversely, if we interpret the max-flow model (2.94) as the primal model, then the
max-flow min-cut model (2.93) is its Lagrangian dual formulation and the segmenta-
tion u can be seen as the max-flow’s Lagrange multiplier.

As in the comparison of (2.84) and (2.85), comparing the discrete max-flow with
the continuous max-flow (2.94) again yields striking similarities:





max
ps

∑

v∈Ω

ps(v)

s.t. 0 ≤ ps ≤ Cs, 0 ≤ pt ≤ Ct, ‖p‖ ≤ C,( ∑

v′∈Nv
p(v, v′)

)
− ps + pt = 0,





max
pB

∫

Ω

pB dx

s.t. pB ≤ CB, pO ≤ CO, ‖p‖ ≤ C,

divp− pB + pO = 0.

(2.95)
Both last lines of (2.95) represent flow conservation constraints, where in the discrete
case Nv represents the neighborhood of the vertex v. The main differences are given
in the non-terminal capacities and flows since their domains and codomains differ as
follows:

discrete: continuous:
C : E ⊂ V × V → R≥0, C : Ω→ R≥0,

p : E ⊂ V × V → R≥0  




p(v,v+dx1)/dx1

...
p(v,v+dxdim Ω)/dxdim Ω


  p : Ω→ Rdim Ω.

(2.96)

In the discrete case, the capacities and flows are values on the graph’s edges. In
the continuous case, the edges become infinitely small and are represented by the
spatial positions directly. This leads to the effect that the continuous flows need to
be represented as point-wise multidimensional densities. This is symbolically denoted
in (2.96) between the two leads-to arrows, where p(x) would need to be evaluated
through directional derivatives lim∆xi→0

p(v,v+∆xi)/∆xi by introducing a vertex v+∆xi
infinitely close to v and a flow p(v, v+∆xi) between v and v+∆xi which could locally
represent a connection towards that direction. This reformulation of a discrete flow
to a continuous one seems practically irrelevant, whereas in the opposite direction the
reformulation of a continuous flow density to a discrete flow is straightforward since
such discretizations are naturally performed with graph cuts [93, 86].

Moreover, in the continuous case one can extend the non-terminal capacity to
C : Ω → RN≥0 with 1 ≤ N ≤ dim Ω. This way we can control the spatial dimen-
sions separately by adapting the component-wise comparator in p ≤ C accordingly –
as demonstrated in [117, 118] and Equation (6.2).

Finally, super-level sets, as one of the representations from Section 2.2.6, unused
in this section so far, lead to another representation of the pcMS which mainly is
a lifted version of (2.93) and is illustrated in the publication of Nosrati et al. [86].
This version introduces an additional critical parameter for the discretization of the
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”lifting dimension” which generates higher computational costs, as described in Sec-
tion 2.2.6. We did not further utilize this convexification technique for our purposes,
and therefore, continue with the unlifted version (2.93) in the following.

As mentioned earlier on Page 55, we can augment TV to ATV by introducing a
strongly positive definite [113] Riemannian metric matrix field A : Ω→ Rdim Ω×dim Ω

with which the generic segmentation model (2.86) is modified to

min
u: Ω→[0,1]

∫

Ω

uCO + (1− u)CB + C
√
∇uT A∇u dx. (2.97)

The matrix field A being a metric requires A(x) to be symmetric and positive definite
in every point x ∈ Ω and therefore we can uniquely decompose A(x) = S(x)S(x)T ,
which allows us to write

√
∇u(x)T A(x)∇u(x) =

∥∥S(x)T∇u(x)
∥∥. Following [19,

Appendix 8.A], we also find the non-terminal saturation property (2.87) for the
anisotropic case and thus we can reformulate the max-flow min-cut formulation (2.93)
to

max
‖p‖≤C
pO≤CO
pB≤CB

min
u

∫

Ω

pB + u (divS p− pB + pO) dx. (2.98)

Optimizer Even if the analytic models are formulated in the continuous setting,
the optimization algorithms finally need to be discretized, for example, by following
(2.28). To this end, different approaches to optimize the min-cut problem have been
proposed, which also necessitate slightly different dualities, e.g. [23, 119, 108].

In the remainder of this section, we motivate the optimizer we have chosen for the
work in Chapter 6 and 7, which is based on the continuous max-flow algorithm of Yuan
et al. [23]. Furthermore, instead of the isotropic TV, we enhance the regularization to
the anisotropic case of ATV and derive an algorithm as in [120]. In the following, we
directly refer to the max-flow min-cut with ATV (2.98), where the algorithm proposed
in [23] is a special case with S being the identity matrix.

As already mentioned above, the min-cut and max-flow formulations can both be
seen as primal and dual. The authors in [23] see the max-flow (2.94) as primal, the
max-flow min-cut (2.93) as primal-dual, and the min-cut (2.85) as dual. Seeing the
max-flow min-cut formulation as primal-dual makes sense because it is a mixture of
both min-cut and max-flow formulations, where both min and max operators are
present, respectively. However, this labeling, ”primal-dual”, could be misleading be-
cause of the well-known primal-dual algorithms [108, 121], which are based on the
Legendre-Fenchel-Rockafellar duality. The max-flow min-cut algorithm proposed by
Yuan et al. [23], however, is based on Lagrange duality, where the primal max-flow is
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modified with an augmented Lagrangian:

max
‖p‖≤C
pB≤CB
pO≤CO

min
u

∫

Ω

pB + u (div(S p)− pO + pB)− c

2
‖div(S p)− pO + pB‖2 dx

︸ ︷︷ ︸
=:Lc

. (2.99)

They (correctly) refer to the proposed algorithm as the augmented Lagrangian multi-
plier-based continuous max-flow algorithm. Using the categories discussed in the work
of Esser et al. [121], this augmented Lagrangian algorithm is a ”splitting algorithm
applied to a dual formulation”, whereas the primal-dual algorithm proposed in [108]
is similar to the primal-dual hybrid gradient algorithm [122] and is a generalization
of the Arrow-Hurwicz algorithm [123].

Indeed, the duality described by Yuan et al. [23] is not referring to the Lagrangian
or Fenchel duality; however, they exhibit the duality between max-flow and min-
cut to establish a connection to the well-known graph cut models by reformulating
saturation for the continuous case. Meanwhile, using Fenchel’s duality, Chambolle
and Pock [108] were looking for algorithms with nice convergence properties that
solve non-smooth convex optimization problems with known saddle-point structure,
such as the present TV-regularized min-cut problem.

The multiplier-based max-flow algorithm [23] alternatingly maximizes the three
flow variables p, pB, and pO and minimizes the multiplier u, which in this case is the
labeling map:

pk+1 = argmax
‖p‖≤C

Lc(p
k
B, p

k
O, p, u

k),

pk+1
B = argmax

pB≤Cs
Lc(pB, p

k
O, p

k+1, uk),

pk+1
O = argmax

pO≤Ct
Lc(p

k+1
B , pO, p

k+1, uk),

uk+1 = uk − c
(
div
(
S pk+1

)
− pk+1
B + pk+1

O
)
.

(2.100)

For each iteration k → k+1, each variable p, pB, pO, and u is being updated by fixing
the others. While each update looks like a complicated optimization on its own, they
actually can be solved explicitly by setting the following partial variational derivatives
to 0 where possible:

δLc
δp

= −ST ∇ (u− c (div (S p)− pB + pO))
!

= 0  gradient ascent
∂p

∂t
=
δE

δp
,

δLc
δpB

= 1− u− c (div (S p)− pB + pO)(−1)
!

= 0  solve for pB,

δLc
δpO

= u− c (div (S p)− pB + pO)
!

= 0  solve for pO,

δLc
δu

= div (S p)− pB + pO
!

= 0  gradient descent
∂u

∂t
= −δE

δu
.

(2.101)
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The slightly more complicated derivation of the variational derivative δLc
δp with the

involvement of S can be reproduced by realizing that the dual of the differential
operator d = divS is d? = −ST ∇, i.e. δLcδp = ∂pLc−ST ∇∂divSpLc. The derivation is

shown in more detail in [19, Appendix 8.B].

Solving the extremality equation δE
δp

!
= 0 for pk+1 for each step is inefficient since

it is a second-order partial differential equation. We, therefore, follow Yuan et al.
[124] and choose to update p by gradient ascent. The updates for pB and pO can be
found by solving for the root, which is possible because of the introduced augmented
Lagrangian. Without the augmentation, their derivatives would be δE

δpB
= 1 − u

and δE
δpO

= u, where the required variables are missing. The derivative towards
direction u still does not depend on u itself, even with augmentation, and therefore
we choose to find the minimum by gradient descent. However, we only perform
one gradient descent step, which is one iteration with the explicit Euler method
(2.28), and this also coincides with the augmented Lagrangian’s multiplier update in
(2.100), proposed in [23]. Thus, the last line in (2.100) could be written as uk+1 =
argminu Lc(p

k+1
B , pk+1

O , pk+1, u). The considerations in (2.101) lead to the following
update scheme,

pk+1 = pk + ∆t1
δE

δp
(pk),

pk+1
B = divS pk + pkO + (1−uk)/c,

pk+1
O = −divS pk + pk+1

B + uk/c,

uk+1 = uk −∆t2
δE

δu
(uk),

(2.102)

though, unfortunately pk+1, pk+1
B , and pk+1

O do not necessarily respect the constraints
pB ≤ Cs, pO ≤ Ct, and ‖p‖ ≤ C. To this end, after each update step, the mentioned
variables have to be projected onto the constraints’ domain boundary:

pk+1 = Pp
(
pk + ∆t1 c S

T ∇
(

divS pk − pkB + pkO −
uk

c

))
,

pk+1
B = PpB

(
divS pk + pkO +

1− uk
c

)
,

pk+1
O = PpO

(
−divS pk + pk+1

B +
uk

c

)
,

uk+1 = Pu
(
uk −∆t2 (divS pk+1 − pk+1

B + pk+1
O )

)
,

(2.103)

where P represents the corresponding projections. Interestingly, in our experiments,
the proposed updates for u kept the values of u in [0, 1] without any projections di-
rectly on u necessary.

Regarding the choice of this algorithm of Yuan et al. [23], we refer to a comparison
between the augmented Lagrangian method and the primal-dual approaches, as con-
ducted in [125]. Indeed, primal-dual methods show the fastest convergence rates [108],
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however, as tested in [125] on their chosen binary-labeling problem, their primal-dual
implementation was not much faster. We, therefore, chose to use the augmented La-
grangian method [23] because of its implementational simplicity and the mentioned
duality between min-cut and max-flow. Furthermore, at the beginning of this Ph.D.,
computational efficiency was not as relevant as designing a well-generalizing model.
Provided a model’s critical points represent the right solutions for the given problem,
the choice of an optimizer, in this case, was not the crucial component in terms of
accuracy. The same max-flow min-cut models could be solved with other, faster-
converging algorithms, and it would have been interesting to try out the primal-dual
algorithms listed in the well-organized work of Esser et al. [121]. It is, however, not
part of this thesis, since we abandoned the approach of variational segmentation and
solved the problem with a deep learning framework later, see Chapter 8.

2.2.9 Including Appearance Models

Before we jump to the topic of supervised deep learning, first, as an approach towards
that direction, we talk about including shape and appearance models to the variational
segmentation approaches.

The admissible solutions of the Mumford-Shah functional, so far, do not know what
they are representing. Given a deteriorated image of a SC, for example, with motion
artifacts, an optimal solution of the pcMS may represent an utterly unrealistic object.
To counteract, we need to include prior knowledge of the population of possible real-
istic segmentations. Provided, for example, a set of manual reference segmentations,
we can estimate probability maps to evaluate the likelihood of the appearance of a
segmentation.

For proper evaluation of such a likelihood, typically the target image and the ad-
missible segmentation need to be co-registered to the likelihood’s model space [90].
Likewise, all reference segmentations first need to be pairwise co-registered to estimate
a probability map that excludes the variability of different positioning of the object
of interest. On the topic of image registration we refer to Page 31 and Equation (4.1).

We differentiate between shape models and appearance models, where shape mod-
els represent object boundaries and appearance models also include the texture of
the objects [90]. Both models can be learned from a set of examples, which usu-
ally involves co-registration of the samples to a model space. This can be done
through rigid co-registration to align differently positioned objects, or additionally
also through pixel-to-pixel freeform co-registration to more precisely differentiate the
shape variability. Sampling from a model created with pixelwise co-registration is
done within the space of displacement fields and generates sharp and more realistic
instances, whereas sampling from a model with rigidly aligned samples merely super-
imposes objects from the population, yielding blurry or probabilistic instances, see
also [126, Sec. 2].

For our case of 2D label maps, we decided to create appearance models using rigid
co-registration only. Superimposing binary label maps from the population yields
gray-valued maps that can be combined with relaxed label maps from the current
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subject the following way. Given a relaxed label map as an iteration of a continuous
cut during optimization, the projection of such an iteration into the appearance model
space regularizes the segmentation towards a more realistic representation. Including
pixelwise freeform co-registration between appearance/shape models and the segmen-
tations may improve the regularization, however, at a higher computational cost in
each iteration of the segmentation process. Furthermore, pixelwise co-registration in-
troduces further errors and most certainly fails to generalize for deteriorated images.

In the following, we list approaches that combine the pcMS with appearance mod-
els. As mentioned in [81], the segmentation functional and the shape/appearance
functional mostly are combined linearly, where the shape/appearance regularization
mainly is modeled by a mean squared difference between the appearance ψ and the
iterated segmentations u as follows:

argmin
u,ψ

Esegmentation(u, I) + γ ‖u− ψ‖2 , (2.104)

where γ controls the influence of the shape/appearance regularization. Generally,
such algorithms then are designed, such that ψ converges together with u, in the
sense of Γ-convergence [49, p. 40].

Among others, Chan and Zhu [81] represented shape models as signed distance
functions and included them into Chan and Vese’s segmentation model (2.81) [94]. To
find correspondence between the shape model and the segmentation, they proposed
to rigidly register the shape model’s signed distance function to the segmentation
iterations during optimization, where, however, the shape model itself is static.

Later, Cremers et al. [126] proposed to use probability maps to represent shapes
and combined this representation with a pcMS similar to (2.66) but without boundary
length regularization. Similar to [81], the segmentation is only being regularized by
the shape model energy. In addition to the rigid registration as in [81], they introduced
dynamic Gaussian shape models, which do not only change their positioning but also
adapt their shapes to the iterated segmentations through coupling with a Mahalanobis
distance. Moreover, they showed that the set of relaxed shape probability maps is
convex, and the dynamic shape models can be globally optimized.

The work of Overgaard et al. [22] showed that the additive combination of the
Chan-Vese energy and the shape regularization (2.104) can be combinded to a pcMS
energy (2.57) to apply any continuous cut optimization. To this end, they introduced
the image model Imodel, the prior model Iprior, and the effective image Ieff which
depend on the weak segmentation u : Ω → [0, 1] and the weak shape representation
f : Ω→ [0, 1] as follows:

Imodel = cO u+ cB(1− u),

Iprior = bO f + bB(1− f),

Ieff = λ I + µ Iprior,

(2.105)

where cO, cB, bO, bB are the mean image intensities of the respective regions, and λ, µ
with λ+ µ = 1 are positive weights to balance the influence of the shape model. The

65



2 Background

model image Imodel, in this case, is the relaxed analog of the pcMS approximation,
cf. Equation (2.56). They show that the energy

∫

Ω

‖∇u‖+ λ (I − Imodel(u))2 + µ (Imodel(u)− Iprior(f))2 dx (2.106)

corresponds to the energy (2.104), if cO ≈ bO and cB ≈ bB, and finally, the continuous
cut’s model functions are found to be

CO(x, u, f) = (Ieff(x, f)− cO(u))2 and CB(x, u, f) = (Ieff(x, f)− cB(u))2. (2.107)

Interestingly, this reformulation of the coupling between segmentation and shape en-
ergy (2.104) translates into the effective image Ieff, where the prior model Iprior is
being superimposed onto the image I, resulting in a highlighting effect of the object
of interest. Furthermore, the authors in [22] incorporated a new gradient descent
procedure for the rigid registration of the statistical model by adapting the numeri-
cal step sizes to the curvature of the prior and image dependent rigid transformation
group.

Indeed, segmentation models that include such statistical knowledge do not neces-
sarily have a shallow architecture. However, the constructions presented above, where
we simply combine prior knowledge through addition in the energy term, never reach
the complexity of the non-linear approximation capability of deep neural networks.

Moreover, above segmentation models are closely related to atlas-based segmenta-
tion [98, 99, 127, 97]. Whereas appearance models consist of reference segmentations
only, atlases are composed of tuples of MR images and their reference segmentations.
Atlas-based algorithms register a collection of MR images onto the target image with
pixelwise freeform registration, choose the best fitting reference segmentations as can-
didate segmentations, and subsequently combine the candidates with a label fusion
technique such as the simultaneous truth and performance level estimation (STAPLE)
[128]. In this sense, atlas-based algorithms are regularized by the collection of images
in the used atlas. With the method (2.107) presented above, in contrast, the appear-
ance model is not primarily co-registered with the target image but with the iterated
segmentations, influencing the segmentation through a highlighting effect [22]. This
way, the method does not directly use the appearance model’s label maps as candi-
date solutions but lets the segmentation algorithm optimize for the best solution with
a strong dependency on the original image information. Depending on the parameter
γ in (2.104) or the balance between λ and µ in (2.105) and (2.106), the involvement
of an appearance model is thought of as a weak regularization.

2.2.10 Supervised Deep Learning

At the beginning of this decade, supervised deep learning induced an abrupt change
in state-of-the-art segmentation methods. Classic segmentation frameworks such as
morphological segmentation approaches, clustering algorithms, and variational ap-
proaches introduced in Section 2.2.7 were commonly used, but with the increasing
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computing performance, and the better availability of datasets, supervised deep learn-
ing became the new state of the art. Many challenges, such as the SC GM segmenta-
tion challenge [14], were dominated by the performance of supervised deep learning
approaches.

In this section, we briefly introduce concepts of supervised deep learning without
going into details of designing a network. The main principle in applying supervised
deep learning is as follows: first, we design or choose a network that is complex enough,
i.e. capable of approximating a given problem; and second, we gather a large set of
training data, consisting of images and manual segmentations; to third, optimize the
network’s weights in a training phase.

Network Architectures As a short literature review, convolutional neural networks
revolutionized and simplified the modeling part of neural networks, where the U-
net [129] introduced a new concept for segmentation networks. With the U-net’s
U-shaped architecture, low- as well as high-level features are gathered to produce an
output of the same resolution as the input image. An alternative approach was to
use recurrent neural networks (RNN) for image segmentation, which use recurrent
iterations in a mode similar to variational segmentation approaches. In the work of
[130], an RNN with long short-term memory (LSTM) was used in a multi-directional
scanning scheme over the data points. On the basis of this work, Andermatt et
al. developed a convolutional, recurrent neural network that uses simplified LSTM
units, called gated recurrent units (GRU), in a convolutional, multidimensional, and
multi-directional way, resulting in an architecture called multidimensional gated re-
current units (MDGRU) [24]. The work of Andermatt et al. outperformed other deep
neural networks including U-Net approaches in several medical image segmentation
challenges over extended periods of time [131].

The goals of this paragraph are to describe deep networks as non-linear approxi-
mators that can learn to divide complex processes into their constituent subprocesses
and to clarify the notions ”shallow” and ”deep”. To this end, we follow and borrow
notations from the theoretical work of Poggio et al. [95].

The terms present for artificial neural networks are obviously influenced by the
biological counterpart; however, artificial neural networks do not directly model a
biological neural network. However, the nodes represent neurons, and the nodes’
units represent connections like the axons between nerve cells. The units’ activation
functions mimic the saturation of the signal a nerve cell receives, and a node linearly
combines all such signals. A linear combination of such activation functions is typically
called a ridge function,

Q∑

i=1

ci σ(〈x,wi〉+ bi). (2.108)

Some articles compute the node’s output as σ(
∑Q
i=1〈x,wi〉 + bi), allowing to omit

the coefficients ci in (2.108), however, if these summations are applied recursively,
conceptually the results are the same. Having a closer look at the activation function:
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function graph ←→ network graph
vertex ←→ node = {unit1, . . . ,unitQ}

computes

y y
computes

y
compute

constituent function ←→ ridge function activation functions

hij ←→
Q∑
i=1

ci σ(〈x,wi〉+ bi) σ(〈x,wi〉+ bi)

Figure 2.12: Hierarchically local compositional functions and neural networks.

wi is its weight; bi its bias; x are the input data which could be a subdomain of the
initial data or also a collection of outputs of other nodes; and σ the activation function
itself, which could for example be the rectified linear unit max(x, 0). Ridge functions
need to be efficient to compute, and therefore many other activation functions σ exist.

Besides the connection between the artificial and biological concepts of neural net-
works, in Figure 2.12 we illustrate the connection between the network’s architecture
and the approximated functions, where the ridge functions correspond to constituent
functions, and the nodes correspond to evaluation vertices of sub-functions. To this
end, the authors in [95] introduce the set of hierarchically local, compositional func-
tions. Such functions are recursively composed from a set of constituent functions,
as for example a binary-hierarchical function f : R8 → R is composed from a set of
binary functions hi : R2 → R:

f(x) = h3

[
h21

(
h11(x1, x2), h12(x3, x4)

)
, h22

(
h13(x5, x6), h14(x7, x8)

)]
. (2.109)

Here, local compositionality refers to the sparse connectivity of the constituent func-
tions, i.e. the dimensionality of the constituent functions’ input arguments. The
connectivity order of the net then could be defined as the maximal local connectivity.
In the above function f , the connectivity order is 2 because all constituent functions
depend on two variables. On the other hand, the hierarchicality refers to the graph
of the hierarchical compositionality. To exemplify the plethora of neural networks,
Poggio et al. (Figure 2.13) use the binary-hierarchical, locally composed function f in
(2.109) as well as two other extreme cases: a shallow, non-locally composed function
and a recursive function with higher connectivity. These functions and their associ-
ated counterparts as neural networks, according to Figure 2.12, are illustrated in the
bottom part of Figure 2.13.

As pointed out in [95], binary-hierarchical networks represent an idealized version of
the many deep convolutional neural networks in the literature, since the convolution’s
kernel sizes define the number of connections. In the binary-hierarchical network in
the middle of Figure 2.13, the feature maps of all convolutions’ outputs of one layer
could be represented by the outputs of all nodes of one layer (here, with a seamless
and non-overlapping stride). In this sense, a convolution can sparsely and compactly
represent the behavior of multiple nodes of one layer, which simplifies the modeling
of the network, as mentioned before.

68



2.2 Technical Background

f(x1, . . . , x8)

h3

[
h21(h11(x1, x2), h12(x3, x4)),

h22(h13(x5, x6), h14(x7, x8)
]

f3(f2(f1(x1, . . . x8)))

with f1 : R8 → Rn

f2 : Rn → Rm

f3 : Rm → R

N∑
i=1

ci σ(〈x,wi〉+ bi)
each node j = 1, . . . , 7 with

Qj∑

i=1

cji σ(〈x,wji〉+ bji),

∑7
j=1Qj = N

multiple nodes
in each layer
with different
connectivity

Figure 2.13: Top row : functions, where the small red dots represent evaluation ver-
tices; bottom row : the top row’s associated networks according to Figure 2.12,
where the grayish circles represent the neural network’s units, and the local col-
lections of units represent the nodes.
Left: shallow network with one hidden layer and high connectivity; middle: deep
binary-hierarchical network with low connectivity and high compositionality; right :
deep hierarchical network with high connectivity. For visual simplicity, only one
node per layer is drawn in the graphs on the right.
This figure is taken from [95, Fig. 1] with the Creative Commons licensea. We
included blue lines to indicate the networks’ full connectedness, where necessary.

aCreative Commons Attribution 4.0 International License
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We define a network to be deep, if it has more than one hidden layer, a connectivity
order of at least two, and if each weight of all units represents a degree of freedom.
Ignoring the third condition that the units’ weights should be freely optimizable,
we could perceive the proposed continuous cut models in Chapters 6 and 7 as deep
models. Continuous cuts could be seen as networks of the type visualized on the right
side in Figure 2.13, with many hidden layers and without pooling in the end to a single
value. Each hidden layer would represent a gradient descent iteration, where most
weights would be modeled as repeated constants from layer to layer, driving the layers’
outputs to a steady-state. Now, although many hidden layers are present, continuous
cuts are not as deep as convolutional neural networks, because deep networks adapt
their free weights in a more globally connected manner during the supervised learning
phase.

Finally, both shallow and deep networks enjoy the universal approximation theo-
rem, which states that any continuous function can be arbitrarily well approximated,
provided enough degrees of freedom are given in the network – which, on the other
hand, also describes the curse of dimensionality. To this regard, it does not matter
whether higher connectivity (though, at least connectivity order of 2) or higher lo-
cal compositionality is present. However, deep networks can deal with the curse of
dimensionality better than shallow networks, as has been shown in [95], by impos-
ing smoothness constraints on the constituent functions: for special classes of smooth,
local compositional functions, exponentially fewer parameters are needed for deep net-
works to reach the same accuracy as shallow networks, if the deep network adopts an
architecture that approximately matches the approximated function’s compositional-
ity. For accurate approximations, therefore, a network has to have high connectivity
or a problem-specific hierarchical structure with at least a local connectivity of 2.

The authors in [95] hypothesize that the wiring in the cortex, or more precisely
the limited number of local connections between the neurons in the brain, impose
the hierarchical, local compositionality onto the way of thinking, which reflects in our
language. If so, deep neural networks are even closer to the human way of think-
ing than shallow models with very high connectivity, as argued in the philosophical
discussion on Page 46. Such compositionality, however, is not necessarily part of all
natural problems, as there might still be problems that can be approximated better
by shallow high-order networks.

Supervised Learning As already described in Section 2.2.7, a training set needs to
be available to learn the optimal weights of a network. A training set consists of
tuples of input data and their results. In the case of image segmentation, the input
data are images, and the results are (manual) reference segmentations. As shown in
Figure 2.9, supervised learning is a gradient descent process on the weights ci, bi, and
wi (2.108) of all nodes over the training set. Due to the huge size of the training
set, in practice, not all the training data are used for each gradient step, but random
batches from the image domains of randomly chosen training samples are used. Such
an optimization process is usually realized with some variant of stochastic gradient
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descent (SGD). As a loss function for the descent process one chooses a distance
between the network’s result and the reference result of a current random batch.
An example of a loss function is the cross-entropy loss. Applying SGD on a neural
network’s loss function mainly involves two steps: first, the forward pass, where the
network evaluates a given subsample and calculates the result’s loss; and second, the
backward pass, where the difference of the network’s result and the reference result is
backpropagated through the network. During backpropagation, the gradients for the
individual weights ci, bi, and wi (2.108) of all nodes are calculated by applying the
chain rule to the loss function, which is called automatic differentiation, cf. Page 21.

As pointed out in the previous paragraph, a network approximates a given problem
best, if the problem’s constituent architecture is contained in this network’s architec-
ture. Since, however, the architecture of the problem is not always known, a general
strategy is to design the network as complex as possible but with a reasonable amount
of parameters, such that the weights are learnable. Such an overparameterization is
not directly a devastating problem since SGD is particularly efficient in optimizing
overparametrized neural networks [132, 133], since with smaller subsamples the esti-
mated, calculated gradients have less noise.

Finally, similar to classical model-based segmentation, the goal of deep learning is
to generate a model which generalizes to unseen data. Inherent to overparametrized
neural networks is the problem of overfitting to the training data which leads to the
inability to generalize on other data. Countermeasures against overfitting are, for ex-
ample, regularization through dropout [134] or dropconnect [135]. Common practice
is to divide the available data into three mutually exclusive datasets with similar dis-
tributions: the training, the validation, and the test datasets. The validation dataset
is used to determine when to stop the learning process, and independently of this
stopping criteria, the test dataset is used to evaluate the final model.

2.2.11 Validation and Comparison of Segmentation Models

Segmentations can be validated through comparison with other segmentations. For
that purpose, throughout this work, we specifically compare the segmentation’s label
maps with the Dice similarity coefficient (DSC) and the Hausdorff distance (HD), and
the regions’ areas via the relative standard deviation (RSD), which is also called the
coefficient of variation (CV).

For binary segmentation, the DSC between two segmentations refers to the DSC
of their objects. The DSC is defined as the area of the intersection of the two objects
divided by the mean value of their individual areas. For multi-label segmentations, the
same is applied for each object, utilizing the so-called one-hot encoding, cf. Page 41.
The DSC yields a value of 1 if the prediction and the reference are identical, and a
value of 0, if they do not have any pixels in common. This score is not very sensitive to
noise, because if most pixels are identical, except for e.g. a few distant pixels, the DSC
is still close to 1. To capture such cases, we utilize the HD measure, which rates noisy
missegmentations with higher values. The HD is the largest value of the point-wise
minimal distances between the predicted and the reference object. Finally, the CV
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directly measures the reproducibility of the areas of the predicted and the reference
object, without consideration of the object’s shapes. Two disjoint objects with the
same area, for example, yield a perfect reproducibility although they probably are
not comparable. Such cases, however, are already captured and penalized by scores
of DSC and HD. Therefore, it is usually advisable to consider multiple such measures
together, rather than evaluating methods only on the basis of one of them.

Keeping in mind that for in-vivo measurements, all segmentations – including the
manual reference standards – are predictions, we nevertheless refer to comparisons
between a method’s prediction and the reference standard as accuracy scores. But
inevitably, segmentations that are closer to the (unknown) truth than the manual
reference standard would theoretically yield worse accuracy than segmentations that
are closer to the (probably not entirely correct) manual reference standard. In addi-
tion to the accuracy score, we refer to comparisons between several segmentations of
the same scan as precision scores. While we measure precision in our publications in
Chapters 7 and 8 with all three scores DSC, HD, and CV, for accuracy, we chose to
use only DSC and HD. We discarded CV in conjunction with accuracy since different
approaches naturally lead to (consistent) under- or over-segmentation, for which the
CV is not the appropriate measure because of its absolute values.

Assuming well-segmented images, the most relevant precision value for our task of
area quantification is the CV. This work aims at estimating tissue atrophy of cross-
sectional areas, and therefore, the CV of the areas is well suited because of its close
relation to atrophy. We demonstrate this relationship in the following. Let A1 and
A2 be two cross-sectional areas of a specific tissue, and let A2 be the result from the
yearly follow-up scan with A1 > A2; then the percentage of atrophy is given by

relative atrophy =
A1 −A2

A1
=
|A1 −A2|

A1
. (2.110)

Taking a closer look at the CV of the two values A1 and A2, by using the corrected
sample variation Var and defining A = mean(A1, A2) = A1+A2/2, then

CV(A1, A2) =

√
Var(A1, A2)

A
=

√(
A1 −A

)2
+
(
A2 −A

)2

A
=

√
2
(
A1 −A

)2

A

=
√

2

∣∣A1 −A
∣∣

A
=

√
2

2

|A1 −A2|
A

=
√

2
|A1 −A2|
A1 +A2

(2.111)
reveals that the CV is approximately a factor

√
2/2 = 1/

√
2 ≈ 0.7 smaller than the

relative atrophy, assuming A is similar to A1. In the case of follow-up scans without
the presence of atrophy, the CV should be around 0 but yields positive values because
of acquisition and segmentation errors. With the above reasoning, the scan-rescan
statistics’ CV values multiplied by a factor

√
2 ≈ 1.4 can be seen as a lower bound for

the detection of atrophy, at least in single-patient studies. Statistical effects caused
through larger sample sizes may reduce this lower bound for detecting atrophy, as
leveraged for example in [16].
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A reference standard for segmentation is often created via a consensus of manual
segmentations, calculated, for example, via pixelwise majority voting or STAPLE
[136]. In Chapters 7 and 8, we however used the segmentations of only one expert
rater as a manual reference standard because additional manual segmentations were
unavailable. In turn, the strength of our work is rooted in data acquired in a scan-
rescan fashion, which enables us to calculate precision scores even for deterministic
computer-based methods.

To estimate accuracy errors caused during the processes of acquisition and segmen-
tation more precisely, we experimented with acquiring high-resolution images of an
ex-vivo SC specimen in formaldehyde using nanotomography. We, however, did not
pursue this approach because of missing GM-WM contrast in the acquired images.
Scanning whole dead bodies (without extraction of the SC) with AMIRA sequences
of different resolutions, as listed on Page 85, would further enable to estimate errors
caused through partial volume effects.

Another form of validation is prosecuted via the comparison of one and the same
approach’s performance on different kinds of data, which is often applied to test an
algorithm’s generalization capability. However, comparisons of one approach on dif-
ferent data and, likewise, comparisons between different approaches on the same data,
are difficult to carry out. This difficulty arises from the fact that algorithms that are
specifically designed to work on a specific type of data would most probably need to be
adapted to work on other data, ultimately leading to a different algorithm. Therefore,
not only because of the time-consuming task of adaptation but also because reason-
ing based on unintentionally different algorithms, such comparisons pose additional
complications. However, provided small enough adaptations, such cross-comparisons
reveal further insights on which variabilities stem from acquisition or segmentation
errors. These circumstances made it particularly difficult to compare segmentation
algorithms developed for the AMIRA sequence to others that had been developed for
common MR sequences, such as [97, 137, 138, 14]. Nevertheless, we managed to test
the deep learning approach with multidimensional gated recurrent units (MDGRU)
on the data of the SC GM segmentation challenge, and to test the iterative non-local
STAPLE (iNLS) approach [97] on AMIRA data, see Chapters 7 and 8.
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3 The Underlying Project

This work is part of an SNSF project1 that includes three work packages (WP) for
three parties. In this section, we shortly describe our interactions with the groups of
the other two WPs and summarize their results that reflect this project’s development.

1. The group of the first WP is searching for MR sequences with optimal GM-WM
contrast.

2. Our part aims at computer-based analyses of the images acquired with the MR
sequences from the first WP, regarding GM-WM differentiability.

3. The group of the third WP is conducting the clinical research, which includes
recruiting volunteers and evaluating the results of the first two WPs. Satisfied
with the quality of the acquisition and post-processing pipeline, the automatic
segmentation approach finally can be used for statistical analyses to better un-
derstand the implications of pathological GM-WM changes in connection with
the progression of MS.

The timelines of these WPs are not strictly sequenced after each other but have
undergone several iterations.

3.1 The Search for an Optimal MR Sequence

For this section, basic terminologies for magnetic resonance (MR) imaging are pre-
requisites. An introduction to MR can be found in [139].

Imaging the SC in-vivo is challenging due to 1) the SC’s fine inner structure, 2)
low contrast between GM and WM, 3) variable bending of the SC, reinforced through
different positioning of the head and neck, 4) the gradually varying GM-WM structure
along the SC, rostral to caudal, 5) possible CSF pulsation effects [31], and 6) breathing
and swallowing motion in the neck region. For several years already, different MR
sequences such as 2D and 3D T?2-weighted gradient echo sequences and phase-sensitive
inversion recovery (PSIR) sequences have been used to acquire SC images with GM-
WM contrast [140, 14, 141, 47]. According to [25], the PSIR sequence was one of the
only MR imaging methods with a sufficient SC GM-WM contrast useful for assessing
GM-WM atrophy quantitatively; yet, PSIR sequences typically have long acquisition
times for fine resolutions. Therefore, the need for fast and accurate GM-WM MR
sequences is still present.

1SNSF grant number: SNF 320030-156860/1
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Figure 3.1: Three acquisitions of one axial slice on C3 level with a 3D-PSIR sequence
of different resolutions. Slice thickness 4 mm. Histogram-equalized images. Top
row : full view, bottom row : zoom on SC. Left to right : in-plane resolutions of
1.33 mm× 1.33 mm, 0.53 mm× 0.53 mm, and 0.40 mm× 0.40 mm, acquisition times
of 1:10 min, 1:10 min, 2:20 min.

At the beginning of this project, the first images indeed were acquired by a 3D PSIR
sequence, visualized in Figure 3.1, and those images were used for first segmentation
attempts. Later, an implementation of the Modified Look Locker Inversion Recovery
sequence (MOLLI) [142] was adapted for GM-WM contrast [143], with which we
acquired images with remarkable tissue contrast, depicted in Figures 3.2 and 3.7.
Scans acquired with the MOLLI sequence were used for the publication in Chapter 6.
As an improvement of the MOLLI sequence concerning acquisition time, the Averaged
Magnetization Inversion Recovery Acquisitions (AMIRA) sequence was developed
[25], which produces images similar to the MOLLI sequence, as shown in Figures 3.5
to 3.7. The AMIRA sequence was used to acquire the CGM dataset, described on
Page 88, which in turn was used for the publications in Chapters 7 and 8.

We would like to point out that from visual examination of axial SC GM-WM
MR images, the butterfly-shaped GM is easily visible in the unzoomed full view
images; when zooming in, however, the visual appearance gets worse, especially when
looking at the raw data (using only nearest-neighbor interpolation), as can be seen in
Figures 3.1 and 3.7. For the human vision, upsampling of the images helps to improve
the visual appearance and furthermore it also helps to minimize numerical errors for
the calculation of similarity scores such as the Dice coefficient and the Hausdorff
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distance. Throughout this work, we usually upsampled the images by interpolating
pixels with MATLAB’s Lanczos3 kernel.

Feedback of the groups of the three WPs influenced the development of the MR
sequences in terms of

• quality with signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), in-plane
resolution, slice distance, slice thickness, slice alignment, and sharpness,

• acquisition time to reduce motion artifacts induced through breathing and swal-
lowing, and

• reproducibility, which involves the number of axial slices, the slice distance, slice
alignment, and practical simplicity in preparing and conducting acquisitions.

The final MR acquisition protocol is a carefully balanced compromise between all of
these contradicting aspects and thus cannot accept the individual factors’ optima, be-
cause, for example, a finer resolution with the same CNR requires a longer acquisition
time. An in-plane resolution of 0.24 mm × 0.24 mm with 8 mm slice thickness needs
around 7 min to acquire one slice with the AMIRA sequence, which already leads to
high probabilities for motion artifacts, especially when patients are involved. As a
rule of thumb, reducing the voxel volume by a factor of 2 leads to a fourfold increase in
acquisition time. Finer resolutions, however, play an essential role in reducing partial
volume effects which are strongly present for the delicate SC structures, as can be
seen in the exemplary images in Figures 3.1, 3.9 and 3.10.

Besides the trade-off between resolution and acquisition time, another crucial re-
quirement for short acquisition times lies in the reproducibility. To accurately re-
produce SC GM-WM volumes in the neck region, a high number of axial slices with
small slice distances are important, because a few distant slices alone could not repre-
sent the whole cervical SC. The SC’s variability is further increased by the patients’
variable poses on the MR scanner bed resulting in different bendings of the SC. If
the orientation of the acquired slice is not perpendicular to the SC centerline, larger
slice thicknesses result in more partial volume effects of the thin GM structure, as
can be seen in Figure 3.9 on Page 84. Two straightforward solutions to that problem
are smaller voxel sizes as in almost isotropic 3D scans or manual alignment of the
slices perpendicular to the SC centerline. Now, the benefits of having single slices
compared to 3D scans are shorter acquisition times per scan, resulting in a lower
chance for motion artifacts. Given the gradually varying course of the SC, therefore,
proper alignment of the slices perpendicular to the spinal cord allows for thicker slices
without a drastic rise in partial volume effects, which even leads to higher SNR, cf.
Figure 3.9.

In the remainder of this section, we describe the two sequences MOLLI and AMIRA
that we used for our publications in Chapters 6 to 8. In addition, we describe two
experiments to assess the impact on the image quality with respect to the resolution,
the slice thickness, and slice angulation. These experiments, however, are based on
a few samples only, and evaluations were mainly conducted by visual appearance.
Nevertheless, we believe that the findings are interesting and worth mentioning.
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1 2 3 4

5 6 7 8

9 10 11 zoomed mean

Figure 3.2: MOLLI sequence, an IR sequence with 11 inversion images. One axial slice
on C4 level, slice thickness 8 mm, in-plane resolution of 0.67 mm × 0.67 mm. Last
image: Zoomed average of all acquired inversion images. Histogram-equalization
was used for better visualization.

MOLLI Sequence The adapted Modified Look Locker Inversion Recovery sequence
(MOLLI) [143], is based on the original work of Messroghli et al. [142], which was
developed for cadiac T1 relaxometry. The MOLLI sequence acquires inversion images
during 3 consecutive inversion recovery (IR) experiments, where the inversion images
are timed to capture the state during end-diastoles, controlled through cardiac gating.
At the beginning of each period, a 180◦ inversion pulse is applied, and only a few
milliseconds after, several inversion images are acquired at different effective inversion
times. During the first and the second inversion periods, 3 inversion images are
acquired, followed by another 5 in the third period, resulting in a total of 11 inversion
images. From inversion pulse to inversion pulse, relatively long repetition times (TR)
on the order of seconds are needed to allow a (partial to full) recovery of tissue
magnetization towards the thermal equilibrium. To sample the inversion images,
instead of spoiling the magnetization, Messroghli et al. used a balanced steady-state
free precession (bSSFP) readout, which, according to [25], offers the highest SNR
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3.1 The Search for an Optimal MR Sequence

per unit time of all MRI sequences. Availability of code for the MOLLI sequence
led to testing this combination of an IR sequence with bSSFP sampling for SC GM-
WM imaging. Moreover, the approach with bSSFP became a valuable tool because
of robustness in motion and flow, and therefore several magnetization preparation
techniques with application-specific contrasts have recently been proposed [144]. No
CSF pulsation artifacts were observed with the MOLLI sequence.

t
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251 ms 2251 ms 4251 ms
331 ms 2331 ms 4331 ms

411 ms 2411 ms 4411 ms

6411 ms 8411 ms

# 1 4 7 2 5 8 3 6 9 10 11
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Figure 3.3: The MOLLI sequence’s schematic inversion times and tissue-specific lon-
gitudinal relaxation curves. Inversion image numbers at the bottom.

The work of Weigel and Bieri [143] adapts the original MOLLI sequence [142] as
follows: three consecutive inversion pulses are applied with a fixed repetition time
of 2 s, where the effective inversion times are (251, 331, 411) ms during the first two
inversion periods and (251, 331, 411, 2411, 4411) ms during the third period, as shown
in Figure 3.3. This sequence was used to acquire images with a field of view of
128 mm × 128 mm, a sample grid of 288 × 288, an in-plane resolution of 0.4 mm ×
0.4 mm, and a slice thickness of 8 mm.

In Figure 3.3, we additionally illustrate tissue-specific longitudinal magnetization
relaxation curves. These curves are only schematic and should give an idea of how
the different tissue contrasts in the 11 inversion images are generated – compare with
Figure 3.2.

Inversion images 1, 4, and 7 have high CSF-WM contrasts and low noise levels,
whereas the other images contain information for GM-WM differentiation and at
the same time have slightly lower SNR, which is due to the signal decay at larger
inversion times after each inversion pulse. Interestingly, the average of all inversion
images together produces images with remarkable GM-WM contrasts, cf. top row
of Figure 3.7. We used such averaged images in our first publication in Chapter 6.
Unfortunately, with a total acquisition time of 2:14 min for only one slice, the proposed
sequence is not optimal for clinical use.

AMIRA Sequence The AMIRA sequence [25] is a mixed T1- and T2-weighted inver-
sion recovery (IR) sequence that uses balanced steady-state free precessing (bSSFP)
[144] sampling and exploits and improves the setup of the MOLLI sequence [143], to
make it applicable for clinical studies. Using a multi-shot IR-prepared sequence with

79



3 The Underlying Project

a time-limited cine bSSFP readout, Weigel and Bieri improved the sample efficiency,
resulting in shorter acquisition times. The AMIRA sequence captures 8 consecutive
images in time directly after inversion, whereas the MOLLI sequence acquires 11 im-
ages unevenly distributed over three inversion periods. As a consequence, the two
approaches produce different tissue contrasts for the acquired inversion images, as
visualized in Figure 3.5. Four different averages of the 8 inversion images are shown
in Figure 3.6 and a direct comparison to the MOLLI sequence on exemplary images
is provided in Figure 3.7.

t
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each ∆TI = 61.56 ms
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# 1 2 3 4 5 6 7 8

Figure 3.4: The AMIRA sequence’s schematic inversion times and approximated
tissue-specific relaxation curves after steady-state from TR to TR was reached.

The AMIRA sequence has a longer inversion pulse repetition time of 3 s as compared
to 2 s for MOLLI, but only needs 17 such repetitions to fully encode k-space for a
sample grid of 192 × 192, and directly is acquiring 8 instead of only 3 images per
preparation. At effective inversion times of (97.1, 158.7, 220.2, 281.8, 343.3, 404.9,
466.5, 528.0) ms of each repetition, a part of the k-space for each inversion image
is retrieved, visualized in Figure 3.4. For a field of view of 128 mm × 128 mm, the
sample grid of 192 × 192 yields an in-plane resolution of 0.67 mm × 0.67 mm, where
17 repetitions of 3 s each result in an acquisition time of only 51 s.

The presented steady-state relaxation curves in Figure 3.4 are approximations of
mixed effects of bSSFP sampling during the first 600 ms and free recovery after-
ward, which is analyzed in more detail in [25, Fig. 2]. Nevertheless, the curves in
Figure 3.4 approximately reflect the course of the different tissue contrasts of the in-
version images, shown in the mid-row of Figure 3.5. As already shown for the MOLLI
sequence’s longitudinal relaxation curves in Figure 3.3, similarly, the magnetizations
in the AMIRA sequence do not fully recover in each IR episode due to short repe-
tition times. Moreover, during the acquisition of the 8 inversion images in the first
600 ms, the relaxation curves of CSF, WM, and GM are all negative and increase
towards zero. These relaxation curves lead to a decreasing signal for the inversion
images acquired at higher effective inversion times, which is visible in the first row
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1 2 3 4

5 6 7 8

1 2 3 4

5 6 7 8

mean mean zoomed

Figure 3.5: AMIRA, IR sequence with 8 inversion images. One axial slice, C4 level,
slice thickness 8 mm, in-plane resolution 0.67 mm × 0.67 mm. Top: raw images,
middle: zoomed, histogram-equalized, upsampled, bottom: average of the first 5
acquired inversion images, histogram-equalized. 81
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1-5 GM-WM opt 4-8 CSF-SC opt

Figure 3.6: AMIRA averages, cf. Chapter 5. Left to right : average of the first 5
inversion images; optimized GM-WM contrast (observe that CSF-WM contrast is
not preserved); average of the last 5 inversion images; optimized CSF-SC contrast.

of Figure 3.5. Through normalization, however, tissue contrasts are still observable –
especially for CSF – at the cost of a slightly lower SNR.

While the MOLLI sequence achieves high CSF-SC contrasts in the inversion images
1, 4, and 7 of the first inversion pulse and GM-WM contrast in the other images, cf.
Figures 3.2 and 3.3, AMIRA has the highest GM-WM contrast in the first two inver-
sion images and increasing CSF-SC contrast in the last three images. As explained
in [25], averaging the inversion images leads to an expected reduction of noise by a
factor of 1/N, where N is the number of involved images. Therefore, averaging the
first and the last few images leads to improved CNR between GM and WM and good
CNR between CSF and SC, respectively, as also analyzed in Chapter 5 and visualized
in Figure 3.6.

The Angulation Experiment The slices’ orientation and thickness strongly influence
the image quality via partial volume effects. To estimate the impact, we acquired 20
images of one subject with different slice thicknesses of 8 mm, 6 mm, and 5 mm and
different slice orientations that are tilted towards the anteroposterior direction of slices
orthogonal to the SC centerline with angles of −20◦, −15◦, −10◦, −5◦, 0◦, +5◦, +10◦,
+15◦, and +20◦, as depicted in Figure 3.8. Among those, 15 images were acquired for
all combinations of the mentioned thicknesses and negative angles located at the axial
level of the spinal disc C2-C3. For the positive angles only five slices were acquired
with a thickness of 8 mm, located on the level of the spinal disc C4-C5. Slices with
a thickness of 5 mm were averaged over two subsequent acquisitions to improve SNR.
The results are shown in Figure 3.9.

To estimate the impact of different angles on GM segmentation, all 20 images were
manually segmented by one experienced rater and were also automatically segmented
with an algorithm similar to the one described in Section 6.A (but with the GM ap-
pearance model used in Chapter 6 and without slice-similarity). These segmentations,
together with their Dice similarity coefficients (DSC), are shown in Figure 3.9. Please
note that the calculated DSC values have a sample size of 1 for each combination, and
therefore, no significant conclusion can be drawn; yet, perfectly aligned orthogonal
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MOLLI

AMIRA

Figure 3.7: MOLLI and AMIRA averages of a healthy subject acquired at C4 level
in different sessions. Left to right : full view; zoom on SC (raw; 5-fold upsampled;
with CSF contrast). First three images are averages of all 11 MOLLI images (top),
and averages of the first 5 AMIRA inversion images (bottom); last image with high
CSF contrast is the average of the MOLLI images 1, 4, 7 (top), and the average of
the last 5 AMIRA inversion images (bottom).

Figure 3.8: Localization of the slices acquired with different orientations used in Fig-
ure 3.9. In red , the slices with positive angles wrt. the plane orthogonal to the SC
centerline, located at C4-C5 level, and in green, the slices with negative angles on
C2-C3 level. Shown are the mid-positions of the slices.
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slice thickness

∖
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Figure 3.9: AMIRA slices on C2-C3 level (negative angles), and C4-C5 level (positive
angles), as visualized in Figure 3.8. Manual segmentations in green, automated
segmentations in red , and Dice similarity coefficients in orange.
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a b c d

e f g h

Figure 3.10: High resolution images located at the spinal disc C2-C3 of two differ-
ent healthy subjects (top and bottom row). Left to right : in-plane resolutions of
0.67 mm×0.67 mm, 0.5 mm×0.5 mm, 0.38 mm×0.38 mm, 0.24 mm×0.24 mm; ac-
quisition times of 51 s, 2:27 min, 3:27 min, 6:45 min; and slice thickness 8 mm, 5 mm,
8 mm, 8 mm. For better SNR, the images with resolution finer than 0.67 mm were
averaged over two acquisitions. For visualization of each image, the 8 AMIRA
inversion images were averaged and subsequently the average was upsampled to a
common interpolated resolution of 0.067 mm.

slices tend to have less variability between the two segmentation approaches. A simi-
lar trend can be visually confirmed with orthogonally aligned slices having less partial
volume effect. Conversely, thicker slices induce a higher impact on partial volume ef-
fects for tilted orientation. In these images, slices with a thickness of 8 mm seem to
be a suitable compromise between partial volume effects and SNR. This investigation
shows the importance of properly angulated slices.

The Low-Resolution High-Resolution Experiment To assess the impact of different
voxel sizes on partial volume effects, different settings for high-resolution AMIRA
images were tested on healthy volunteers. Exemplary axial images located at the
spinal disc C2-C3 are shown in Figure 3.10.

The acquired images of this experiment showed that averaging two subsequent ac-
quisitions improves SNR and the visual appearance for resolutions finer than 0.67 mm;
averaging over more than two acquisitions, however, yielded blurry images because
of small motion artifacts. The acquisition times without double-acquisitions are 51 s,
1:14 min, 1:44 min, 3:23 min and increase more than linearly with respect to the in-
plane resolutions of 0.67 mm × 0.67 mm, 0.5 mm × 0.5 mm, 0.38 mm × 0.38 mm, and
0.24 mm× 0.24 mm and 8 mm slice thickness.
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3 The Underlying Project

The in-plane resolution of 0.38 mm × 0.38 mm yields impressive images where the
ventral horns begin to reveal their fine structure. On image c of Figure 3.10, even
the posterior median sulcus is visible which on most images with a coarser resolution
manifests as a blurry spot because of partial volume effects.

Blurred representations of the posterior median sulcus are indeed an obstacle for
GM segmentation algorithms, as experienced with the variational approaches as well
as the supervised deep learning approaches, since these spots consist of similar in-
tensities as GM. Ongoing experiments also revealed a possibility for misclassification
between MS lesions and blurred posterior median sulci. Moreover, partial volume
effects of the ventral horns in these experiments have shown to be problematic for
the distinction between GM and lesions. Therefore, images acquired with higher res-
olutions could potentially increase the accuracy and precision of segmentation algo-
rithms; however, with increasing acquisition times, the probability for motion artifacts
increases, too.

The AMIRA Protocol Finally, although finer resolutions more accurately represent
the SC anatomy and pathological changes, above considerations with strong weight on
the time factor led us to choose the AMIRA sequence with a resolution of 0.67 mm×
0.67 mm, a slice thickness of 8 mm, and an acquisition time of 51 s.

Already slightly higher resolutions with similar SNR markedly increase the acqui-
sition time, where for instance, an in-plane resolution of 0.5 mm × 0.5 mm already
requires an acquisition time of 2:27 min. Such long acquisition times, as just men-
tioned, massively increase the probability of motion artifacts, especially for neurolog-
ical patients with significant motor impairment or spasticity. Furthermore, shorter
acquisition times allow acquiring more images over a more extended segment of the
SC within a comparable session time.

While a slice thickness of 8 mm anatomically seems to be very coarse, we need
to clarify that in the MR acquisition process, information is not accumulated uni-
formly across the axial slices in inferior-superior direction but rather in a Gaussian-like
weighting. This thickness, finally, was chosen because of the higher SNR compared
to thinner slices.

Addressing the reproducibility: to acquire SC segments on similar axial levels each
time a subject is positioned in the scanner, the first slice is aligned perpendicular to
the SC such that the lower end of the slice matches the upper end of the intervertebral
disc C2-C3. From this position on, slices are shifted caudally with a slice distance
of 4 mm and are successively realigned perpendicular to the SC, to acquire a total of
12 slices that cover approximately 5.2 cm of the SC from mid C2 to the beginning of
C5. Because of the varying bending of the SC, the slice numbers cannot be associated
with exact vertebral levels, yet the correspondences are roughly given by ((1, 2), (3−
6), (7−10), (11, 12))↔ (C2, C3, C4, C5).

With these settings, acquiring each slice needs 51 s, which results in approximately
10 min for all the slices. Since it was not initially apparent during our planning
that the inversion images 5 to 8 produce an acceptable CSF-SC contrast, each slice
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is directly followed by an additional axial CSF scan that mimics the first inversion
images of the MOLLI sequence. Such images offer additional information for CSF-SC
segmentation, but are not perfectly aligned with the AMIRA images. Furthermore,
this protocol is accompanied by two sagittal 3D scans: a T1-weighted MPRAGE
scan with 120 sagittal slices, a resolution of 1 mm × 1 mm × 1 mm, TR 1580 ms, TE
3.52 ms, TI 900 ms, flip angle 8◦, and an acquisition time of 3:41 min; and a T2-
weighted TSE scan with 15 sagittal slices, averaged over 2 acquisitions each, with a
resolution of 0.6 mm× 0.6 mm× 3 mm, TR 3500 ms, TE 306 ms, flip angle 160◦, and
an acquisition time of 2:46 min. This way, information gathered by the AMIRA scans
can be enriched by the sagittal 3D scans, as is utilized in the Manual Segmentation
App, see next section and Figure 3.11.

3.2 Clinical Validation

The main research question from our medical collaborators addresses the correlation
of GM-WM atrophy regarding the MS disease progression. We propose using the
AMIRA protocol, described on Page 86, to acquire in-vivo SC GM-WM images of
MS patients. However, before the ongoing experiments with images of MS patients,
an essential step is to measure the reliability and performance of the AMIRA protocol
in combination with our developed post-processing tools. To this end, we applied two
pipelines on healthy subjects where no presence of radiological findings and GM-
WM atrophy is assumed. The results are published in [145, 146], and presented in
Chapters 7 and 8.

Because there is no ground truth available for our in-vivo experiments, we estimate
the accuracy and precision of the proposed pipelines based on the variability result-
ing from scan-rescan and ”segment-resegment” experiments. In ”segment-resegment”
experiments, we had multiple neuro-radiological experts segment the same images
(multiple times). The agreement of the manual segmentations varies between the
experts and also varies if one expert segments the same image twice, to which we
refer as inter- and intra-rater variability, respectively. Because the task of manual
segmentation is time-consuming, large datasets would need to be split into multiple
parts, where a different expert rater segments each part. This splitting causes addi-
tional variability and biases, which are undesired for further statistical evaluations.
Deterministic algorithms, in contrast, have zero variability in segmenting one image
multiple times and can unrestingly process images of a huge dataset with one and the
same algorithm. Nonetheless, manual segmentations are essential for training and
validation of automated methods. Segmenting the AMIRA sequence by hand, how-
ever, is not straightforward since this sequence produces 8 relatively noisy inversion
images that are difficult to keep in mind during segmentation simultaneously. We be-
lieve that a human expert needs less noisy one-channel projections of the 8 inversion
images for comfortable and reliable delineation and therefore we proposed different
average images, as shown in Figure 3.6. The collection of all inversion images, how-
ever, probably contains more information than a single one-channel projection, and
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therefore we designed a browser-based application called Manual Segmentation App
(MSA) that allows for simultaneous drawing and channel browsing. With MSA we
provide a split-screen view of the AMIRA channels (we refer to the AMIRA inver-
sion images and their average projections as the AMIRA channels) together with the
T1- and T2-weighted sagittal 3D scans from the AMIRA protocol, which entail even
more information. Finally, the client-server architecture within MSA simplifies data
exchange.

In the remaining two paragraphs of this section, we describe our dataset consisting
of AMIRA images of health subjects, called the CGM dataset, and briefly introduce
the developed application MSA.

CGM Dataset The Cervical Gray Matter (CGM) dataset consists of a cohort of 24
healthy subjects (14 female, 10 male, age 40±11) and a dataset of 72 MS patients (44
female, 29 male, age 49± 13). Since the MS patients currently still are being scanned
and manually segmented, this thesis focuses on the dataset of the healthy subjects.

Each of the 24 healthy controls was scanned 3 times with the AMIRA protocol,
described on Page 86. The first 3 scans were acquired in a scan-rescan fashion:
the 1st and 2nd scans were acquired shortly after each other without repositioning
of the subject in the scanner, describing the intra-session variability; for the 3rd

scan, the subject left the scanner, walked around, and laid back into the scanner
to simulate varying positioning and bending of the SC in inter-session comparisons,
which is inevitably given in yearly follow-up scans. In total, with all 3 scans from
the scan-rescan sessions, 875 slices were acquired, 10 slices of which were acquired
twice because of motion artifacts; and one scan recorded a 13th slice on an even more
caudal vertebral level. From the remaining regular 24 · 3 · 12 = 864 slices, we had to
remove another 9 slices because of severe imaging artifacts, resulting in 5 scans with
less than 12 slices: we discarded the last three caudal slices of one scan, the last two
slices of two scans, and the last slice of another two scans.

Before segmentation, we upsampled all images 10-fold with MATLAB’s Lanczos3
kernel. Two experienced raters, both with more than 4 years of experience in SC
neuroimaging, manually segmented parts of the CGM dataset by manually delineating
the background-CSF and the CSF-SC boundaries on one of the AMIRA average
images with CSF contrast, shown in Figure 3.6, and the GM-WM boundary on one
of the averages with GM-WM contrast:

• Rater 1 segmented all first three scans for each of the 24 healthy subjects and
additionally segmented 60 randomly chosen slices with respect to slice location,
scan session, and subject, without knowledge of such information, which we
used to estimate the intra-rater variability;

• Rater 2 segmented all 1st scans of the 24 healthy subjects, which we used to
estimate inter-rater variability.

All manual segmentations were performed with MSA (see next paragraph) except for
the segmentation of the scan-rescan dataset delineated by Rater 1. Rater 1 first used
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Figure 3.11: Screenshot of the Manual Segmentation App.

ITK-SNAP2 for delineation, transferring the CSF segmentation that was obtained
from the CSF contrast image onto the GM-WM contrast image to continue with the
delineation of GM inside the provided SC mask. This sequential arrangement of tasks
was tedious and was simplified with the use of MSA.

Manual Segmentation App With the JavaScript-based browser application called
Manual Segmentation App3 (MSA), we simplify the simultaneous visualization and
segmentation of the data provided by the AMIRA protocol and speed up the data
transfer of the raw image data and the segmentation results. On the user side, this
application directly runs in a web browser and works without installation. The ap-
plication connects to a server from where it receives the MR data and to where it
saves the user’s progress. The mode of operation is to slicewise segment the respective
tissues by manually drawing with a mouse or a stylus and clicking the ”next” button
to submit the drawings and receive new data. A screenshot is provided in Figure 3.11.
To stay independent of the browser’s window resolution, the positions of the manual
delineations are captured in image coordinates using floating point values such that
they could be resampled to any reasonable resolution afterward.

In the following, we go through MSA’s features which are explained in more detail
in MSA’s documentation.The AMIRA images are visualized on the left side, while
sagittal, axial, or coronal views of the T1- and T2-weighted 3D sequences are shown
on the right. With the top-left drop-down list, the user can select specific slices,
and next to it, the ”Boundary” drop-down list enables the user to select the drawing

2http://www.itksnap.org (last accessed on Sept. 10, 2019)
3https://github.com/neonroehre/MSA (last accessed on Sept. 10, 2019)
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Figure 3.12: Screenshot of the MSA when adjusting the contrast.

color for the current object boundary. Then there is the ”Contrast” drop-down list
to add or to choose between manually defined image contrasts, which the users can
design by themselves while having activated the ”Adjust Contrast” button, as shown
in Figure 3.12. Next there is a series of buttons that allow clearing the current
path; boundary-specific undoing and redoing of drawing path segments; switching the
visualization of the active boundary curve between ”on” and ”off”; toggling histogram
equalization; and toggling between full and zoom view. With the scrollbar below the
left image, we enable the navigation of the AMIRA channels, which is also possible
via mouse scrolling or touch gestures on the left image frame; and with the scrollbar
below the right image, we enable choosing between sagittal, axial, and coronal views
of the T1- and T2-weighted 3D sequences. Finally, ”previous” and ”next” buttons
enable the user to navigate through the AMIRA slices.

With activated ”Adjust Contrast” button, see Figure 3.12, intensity histograms
and intensity manipulation curves are shown in blue and red, respectively. With
three red control points, the user can modify the visualized intensities with instant
visual feedback via drag and drop. The coordinates of the control points, as well as
a name for the currently active contrast, can be specified in the text boxes in the
bottom row of MSA, allowing better reproducibility among users.
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4 High-Order Slice Interpolation for
Medical Images

The publication presented in this chapter addresses the large slice distance between
the images acquired with the AMIRA protocol, described on page Page 86 and visu-
alized in Figure 3.11. The goal of this work is to interpolate the missing information
between the given slices to enable accurate resampling of the given data to any desired
resolution. The presented algorithm finds application, for example, when visualizing
a stack of AMIRA slices in 3D space, assisting volume quantification algorithms, or
calculating intermediate slices for data augmentation during supervised deep learning.

Intensity-based interpolation algorithms linearly combine the intensities of neigh-
boring pixels, but in cases where neighboring pixels are located on different slices,
we need to find pixelwise correspondence between subsequent slices to combine the
correct information. Since this Ph.D. thesis mainly focuses on image segmentation,
we did not yet define the process of finding pixel-correspondence maps, which is
called image registration, cf. Page 31. In short: given two digital 2D images I1 and
I2 : Ω → I with the common intrinsic image domain Ω ⊂ Rm×n, one tries to find a
displacement field v : Rm×n → R2 by optimizing

min
v
D
(
I1 ◦ (Id + v), I2

)
+R

(
v
)
, (4.1)

with an appropriate image distance D, the identity function Id(x) = x, and a dis-
placement field regularization R.

We follow the idea of slice interpolation of Baghaie et al. [26], who propose to find
displacement fields by mutually warping two subsequent slices towards each other.
We improved their algorithm in three aspects:

1. we do not only interpolate one mid-slice between one pair of slices but varia-
tionally optimize a continuous model onto a whole stack of slices;

2. we do not only perform linear interpolation along one displacement field but
include higher-order displacement field terms to interpolate structural changes
along with the slices smoothly; and

3. we also adjust the linear combination of corresponding pixel intensities to a
smooth intensity interpolation along the smoothly interpolated correspondence
trajectories.

This approach describes a framework for arbitrary registration schemes that allows
choosing a suitable scheme for a given problem. As in the work of Baghaie et al., we
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chose to use the sum of squared differences (SSD) for D in combination with curvature
regularization for R in (4.1).

With leave-one-slice-out experiments on phantom images as well as on MR images,
we demonstrate superior performance with the proposed slice interpolation algorithm
as compared to a re-implementation of the algorithm proposed by Baghaie et al. in
[26].

The algorithm, however, does not directly consider different orientations of the
slices. To compensate for that, one could embed the interpolated slices into the
patient coordinate system given the slices’ interpolated locations and orientations.

Publication The proposed method was presented at the workshop Simulation and
Synthesis in Medical Imaging (SASHIMI 2017) in conjunction with the 20th Interna-
tional Conference on Medical Image Computing and Computer Assisted Intervention
(MICCAI) on the 10th of September 2017 in Quebec City, Canada. It was published1

as part of the workshop proceedings [147]. MATLAB code2 is made publicly available.

1http://dx.doi.org/10.1007/978-3-319-68127-6_8 (last accessed on Sept. 10, 2019)
2https://mathworks.com/matlabcentral/fileexchange/63907 (last accessed on Sept. 10, 2019)
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Abstract. In this paper we introduce a high order object- and intensity-
based method for slice interpolation. Similar structures along the slices
are registered using a symmetric similarity measure to calculate dis-
placement fields between neighboring slices. For the intensity-based and
curvature-regularized registration no manual landmarks are needed but
the structures between two subsequent slices have to be similar. The
set of displacement fields is used to calculate a natural spline interpola-
tion for structural motion that avoids kinks. Along every correspondence
point trajectory, again high order intensity interpolating splines are cal-
culated for gray values. We test our method on an artificial scenario and
on real MR images. Leave-one-slice-out evaluations show that the pro-
posed method improves the slice estimation compared to piecewise linear
registration-based slice interpolation and cubic interpolation.

Keywords: Slice interpolation · Image registration · Splines

1 Introduction

Medical images often have anisotropic resolution. For example, in magnetic reso-
nance (MR) images the in-plane resolution is often higher than the through-plane
resolution. Reslicing and upsampling are standard preprocessing steps when deal-
ing with such data. This motivates the search for slice interpolating methods
to increase the resolution between the slices. Standard intensity interpolations
such as nearest neighbor, linear, or cubic interpolations are well established. By
using such intensity interpolations between two slices with different structure we
would calculate linear combinations of intensities of points that do not belong
together, see Fig. 2 row 3 in the red box. Therefore it is better to interpolate
the object structure and position, which involves registration techniques to find
correspondences. Morphing images is often done using manual landmarks, but
since putting landmarks manually would be tedious, an automatic registration is

c© Springer International Publishing AG 2017
S.A. Tsaftaris et al. (Eds.): SASHIMI 2017, LNCS 10557, pp. 69–78, 2017.
DOI: 10.1007/978-3-319-68127-6 8
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advantageous. Grevera et al. [4] present a first comparison of slice interpolation
methods that use correspondence points. In general, to guarantee meaningful
slice interpolations, the structures of two subsequent slices have to be similar
and the registration approach has to find an appropriate displacement field.
Registration-based slice interpolation is an important field of research. Penney
et al. [7] use a nonrigid registration algorithm with a spatial B-spline basis [8] but
linear interpolation along the displacement field. Frakes et al. [3] use a modified
version of control grid interpolation and a cubic interpolator for the displacement
fields. Leng et al. [6] use a multi-resolution registration method and linear inten-
sity interpolation along Catmull-Rom spline interpolated displacement fields.

Baghaie et al. [1] introduce a method with a symmetric similarity measure
and curvature regularization

argmin
v:Ω→R2

1

2

∫

Ω

[I1(x − v(x)/2) − I2(x + v(x)/2)]
2

+ λ
(
(Δvx(x))2 + (Δvy(x))2

)
dx,

(1)
where they look for a displacement field v by minimizing the intensity differences
between the simultaneously displaced images and the bending of the resulting
displacement field. The two images I1 and I2 share the common intrinsic image
domain Ω ⊂ R2 and vx and vy are the displacement field components in x and
y direction. Using a symmetric similarity has the advantage that both the “ref-
erence” and “target” can be warped in a more symmetric way. After minimizing
energy (1), they can interpolate an image 1/2I1(x−v(x)/2)+1/2I2(x+v(x)/2) in the
middle of I1 and I2 through linear intensity interpolation at the automatically
registered and transformed correspondence points.

As an analytical property the zero level set of the curvature regularization
contains harmonic functions and among them affine transformations [2]. This
means that during minimization processes affine transformations are preferred
as long as possible, as can be nicely seen in an example in [2, Fig. 2]. Moreover,
the gradient descent steps with the curvature regularization can be iterated
efficiently with a stable, implicit finite difference scheme.

Stacking together these linear interpolations between many neighboring slices
results in a piecewise linear interpolation. At the stitching points, kinks may
appear, which could be smoothed out using a higher order interpolation; see
Fig. 1, left.

In this paper we derive a method that interpolates a whole stack of images
through both object and intensity interpolation. Given the point correspondences
between the slices, it calculates spline trajectories for all the correspondences
and along these trajectories spline interpolations for the gray values; see Fig. 1,
right. To find the correspondences between the slices we use the slice registration
proposed in [1], but the proposed method can easily be adapted to other distance
measures. Our contribution lies in solving the problem of combining higher order
interpolations of structure motion and intensity. We describe the approach and
the algorithm in Sect. 2, we test the proposed method on a test scenario and on
real 3D images in Sect. 3, and we conclude in Sect. 4.

4 High-Order Slice Interpolation for Medical Images

94



High Order Slice Interpolation for Medical Images 71

Z

Y
X

Z

Y
X

Fig. 1. Registration-based slice interpolation schemes: piecewise linear (left) vs. smooth
interpolation (right), with their projections on the x-y-planes (bottom). In both inter-
polations on the left and right, two exemplary correspondence curves are shown: cor-
respondences of points in a flat region and correspondences of a boundary pixel of
the circling ellipse. To get a full interpolation, for all pixels in the slices such corre-
spondence curves are established. The proposed method optimizes over the whole z
range for a smooth interpolation, similar as in the right scheme, avoiding kinks on the
correspondence curves at the given slice positions.

2 Method

Let (Ik)k=1,...,P be an ordered stack of P similar 2D images in RM×N , i.e. the
slices of a volumetric image or the frames of a movie. Assume slices Ik lie parallel
to the x-y-plane and their positions zk ∈ R along the z-axis are given with
zk < zk+1. Our task is to interpolate a new slice at any distance between two
subsequent slices or to refine the slice distances hk = zk+1−zk by a factor R ∈ N.

Given an image distance measure D and a displacement field regularization
R, we minimize the summed up registration energies of all the neighboring image
pairs at specific registration evaluation points S along the z-axis:

argmin
v={vk:Ω→R2}P−1

k=1

P−1∑

k=1

∑

s∈S
D [Ik ◦ −→pk(s), Ik+1 ◦ ←−pk(1−s)] + λ R(vk). (2)

Similar to [1], we use sum of squared distances for D and curvature regularization
for R [2] but add the evaluation points S = {0, 1/2, 1}. To clarify the notation,
the intensity of the transformed images I ◦ p(z) at point x in the intrinsic image
domain Ω can be read out by I(p(z,x)), whereas the transformations −→pk(s,x)
and ←−pk(1−s,x) are defined as follows: For each point x we interpolate a trajectory
p(z,x) for z ∈ [z1, zP ] along the slices. With the displacement fields vk, which
give correspondences for subsequent slices, we construct a natural spline with the
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third order Hermite interpolation polynomials pk(z,x) = p(z,x)|[zk,zk+1] defined
on the intervals [zk, zk+1] [5, p. 48]. Because of the well known inverse effect of
transforming image domains, out of pk we define two special transformations −→pk

and ←−pk with different parameter origins such that they are both formulated for
the common intrinsic image domain Ω of all slices: −→pk transforms the image in
positive direction along the z-axis and ←−pk in negative direction. Furthermore we
reparametrize the transformations. For every k let z=zk+s hk with s∈ [0, 1] and

−→pk(s,x) = x − s vk(x) − s(s − 1)
[
s (ak+1(x)hk − vk(x))+

+ (s − 1) (ak(x)hk − vk(x))
]
,

←−pk(1 − s,x) = x +(1 − s) vk(x) − s(s − 1)
[
(1 − s) (ak+1(x)hk − vk(x))+

− s (ak(x)hk − vk(x))
]
.

For using piecewise polynomial Lagrange interpolation of degree three, four sup-
porting points, or more abstractly, four degrees of freedom have to be set on
each interval [zk, zk+1]. Between the obvious supporting points pk(zk,x) = x and
pk(zk+1,x) = x+vk(x) the remaining two are placed exactly at the same spots zk

and zk+1 [5]. At the positions where two supporting points are now on top of each
other, Hermite interpolation can be used to calculate the derivatives ak = p′(zk)
and ak+1 = p′(zk+1). They define the other two degrees of freedom. The slopes ak

can be calculated through a nicely conditioned tridiagonal linear equation system
of size P ×P by incorporating smoothness conditions of the trajectory interpola-
tion p. For the third order spline to be two times differentiable, the first and sec-
ond derivatives at the stitching positions of the neighboring interpolation polyno-
mials are set to be equivalent: p′

k(zk+1) = p′
k+1(zk+1), p′′

k(zk+1) = p′′
k+1(zk+1).

This way, along each correspondence point trajectory, the spline interpolator
minimizes the bending energy

∫ zP

z1
(p′′(z))2 dz among all two times differentiable

interpolators [5]. Adding the natural spline condition p′′(z1) = p′′(zP ) = 0
defines all the degrees of freedom for the splines. For every x ∈ Ω, the optimal
first derivatives a(x) = (ak(x))k=1,...,P = ((akx(x), aky(x)))k=1,...,P in x and y
direction now can be calculated through solving the 2 · M · N linear systems
Aa·x(x) = d·x(x) and Aa·y(x) = d·y(x) of size P × P , where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 1 0 . . . 0
1
h1

2
(

1
h1

+ 1
h2

)
1
h2

0 · · · 0

0
. . .

...
...

1
hP −2

2
(

1
hP −2

+ 1
hP −1

)
1

hP −1

0 . . . 0 1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

d1(x) = 3
v1(x)

h1
,

dk(x) = 3

(
vk−1(x)

hk−1
+

vk(x)

hk

)
,

dP (x) = 3
vP−1(x)

hP−1
.

(3)
These systems can efficiently be solved by exploiting the structure of the invert-
ible tridiagonal matrix A. After a Cholesky decomposition A = LLT , the systems
Aa = d can be rewritten by Le = d and LT a = e. The lower triangular matrix
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Algorithm 1. Proposed Slice Interpolation Algorithm

Data: slices I ∈ RM×N×P , slice distances h ∈ RP−1, refinement factor R
Result: interpolated slices I interp ∈ RM×N×((P−1)R+1)

Set up the spline matrix A ∈ RP×P and calculate Cholesky decomp A = LLT .
Calculate D ∈ RM×N, Dij = 1+ τ λ (−4+2 cos ((i−1)π/M)+2 cos ((j−1)π/N))2 [2].
Initialize v = (vx, vy) = 0 ∈ RM×N×(P−1)×2.
while

∥
∥vnew − vold

∥
∥ � TOL do

% calculate displacement fields between slices

for k = 1, ..., P − 1 do
Fx = 0; Fy = 0; % � and �: pointwise mult. and div.

for s ∈ S do
ΔI = Ik+1 ◦ ←−pk(s) − Ik ◦ −→pk(1−s);
Fx = Fx + ΔI � ( s ∂xIk ◦ −→pk(s) + (1−s) ∂xIk+1 ◦ ←−pk(1−s) );
Fy = Fy + ΔI � ( s ∂yIk ◦ −→pk(s) + (1−s) ∂yIk+1 ◦ ←−pk(1−s) );

end

vkx
new = IDCT

(

DCT
(

vkx
old − τ Fx

)

� D
)

; % vkx, vky ∈ RM×N

vky
new = IDCT

(

DCT
(

vky
old − τ Fy

)

� D
)

;

end
% calculate spline coefficients for object interpolations ←−pk, −→pk

Set up d ∈ Rm×n×p×2 as in (3) with vnew and solve A a = d with (4).
end
% calculate spline coefficients for intensity interpolation

Set up dI ∈ Rm×n×p as in (6) and solve the systems A aI = dI with (7).
% interpolate slices

I1
interp = I1; l = 1;

for k = 1, ..., P − 1 do
for r = 1, ..., R − 1 do

s = r/R;
% spline intensity interpolation of spline morphed slices

ΔI = Ik+1 ◦ ←−pk(1−s) − Ik ◦ −→pk(s);

Il
interp = Ik ◦ −→pk(s) + s ΔI +
+s (s− 1) [s (hk aIk+1 ◦ ←−pk(1−s) − ΔI) + (s − 1)(hk aIk ◦ −→pk(s) − ΔI)];

l = l + 1;

end

Il
interp = Ik+1; l = l + 1;

end

L is invertible and only has one secondary diagonal on the first off-diagonal,
and thus the spline coefficients a can be calculated by forward and backward
substitution as follows:

{
e1 = d1/L11

ek = (dk−Lk,k−1 dk−1)/Lkk, k = 2,...,P ,

{
aP = eP/LP P

ak = (ek−Lk,k+1 ek+1)/Lkk, k = P−1,...,1.
(4)
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For minimizing (2), we use gradient descent: alternatingly we calculate a
new set of displacement fields through a descent step and calculate their spline
interpolation – compare with the while loop of the pseudocode (Algorithm1).

We could stop here and interpolate slices between the images Ik and Ik+1 at
any z = zk + s hk by linearly combining the intensities of the warped images:

I interp = (1 − s) Ik ◦ −→pk(s) + s Ik+1 ◦ ←−pk(1−s). (5)

This would, however, result in kinks of the intensities along the trajectories and
would result in a piecewise linear approximation.

We now construct a spline interpolation of the intensities along these trajec-
tories. The correspondence interpolation is correct only locally along the interpo-
lating axis, and registration errors between the corresponding points are summed
up over several slices. Thus intensity information of slices further away should
not have strong influence in the calculation of the interpolation. Because of the
bounded supports [zk, zk+1] of the piecewise interpolating polynomials pk and
the local dependencies between each other, encoded by the matrix A, we use the
same approach of spline interpolation as before to smooth out the kinks of the
intensities at the stitching positions. We compare the pure intensity differences
at the stitching positions zk and calculate the intensity spline coefficients aI

through solving the linear system AaI(x) = dI(x) with the following inhomo-
geneities:

dI1 = 3

(
I2 ◦ ←−p1(1) − I1

h1

)
, dIP = 3

(
IP − IP−1◦ −−−→pP−1(1)

hP−1

)
,

dIk = 3

(
Ik − Ik−1◦ −−−→pk−1(1)

hk−1
+

Ik+1◦ ←−pk(1) − Ik

hk

)
.

(6)

To make sure we can compare the images in (6) we added the registration eval-
uation points 0 and 1 to S, recalling that Baghaie et al. [1] only registered
them at s = 1/2. Preliminary experiments showed that forcing Ik ◦ −→pk(1/2) and
Ik+1◦←−pk(1/2) to be similar does not guarantee that Ik and Ik+1◦←−pk(1) or Ik◦−→pk(1)
and Ik+1 are similar. The registration point s = 1/2 is still needed to optimize
the third order polynomials. Other registration points can also be realized, in
fact, every reslicing point could be used as a registration point. While solving
AaI(x) = dI(x), we combine dIk(x) at different locations zk. In order to prop-
erly register them, we again utilize the tridiagonal structure of the matrix A:
The lower triangular matrix L of the Cholesky decomposition A = LLT only
has one secondary diagonal on the first off-diagonal. Therefore we can elegantly
solve Le = dI and LT aI = e with forward and backward substitution where for
each subtraction the involved variables are warped to the mutual z-position:

{
e1 = dI1/L11 (k = 2,...,P )

ek = (dI k−Lk,k−1 (dI k−1◦−−→pk−1(1)))/Lkk,

{
aIP = eP/LP P (k = P−1,...,1)

aIk = (ek−Lk,k+1 (ek+1◦←−pk(1)))/Lkk.
(7)

Now we can interpolate slices between the images Ik and Ik+1 at any z =
zk + s hk, by replacing the linear combination (5) with (compare lower part
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of Algorithm 1)

ΔI = Ik+1 ◦ ←−pk(1−s) − Ik ◦ −→pk(s)

I interp = Ik ◦ −→pk(s) + sΔI + s (s − 1)
[
s (hk aIk+1 ◦ ←−pk(1−s) − ΔI)+

+ (s − 1)(hk aIk ◦ −→pk(s) − ΔI)
]
.

(8)

3 Experiments and Results

We implemented1 the proposed algorithm in MATLAB. In all our experiments
we linearly rescaled the images to values between 0 and 1, chose the parameters
λ = 10 and τ = 10 and stopped the optimization process when the mean square
distance of the update is less than 0.1% for 10 consecutive iterations. For the
in-slice image transformations ◦ we used bilinear interpolation during the reg-
istration phase and bicubic interpolation for (6)–(8). The optimization time of
the proposed method is comparable to the time of the linear registration-based
method. The complexity of one registration iteration is O(PMN log(MN)),
where DCT with O(MN log(MN)) is the main contributor. Solving for the
spline coefficients a with (4) is of order O(PMN).

The artificial scenario involves two tests: shape interpolation and intensity
interpolation along the correspondence point trajectories. Shape interpolation
involved non-linear, ellipsoidal movement of a 2D ellipse, see Fig. 2. We sampled
9 slices counterclockwise every eighth from 6 o’clock to 6 o’clock. Comparing
the results of the proposed algorithm in the 2nd and the 3rd row in Fig. 2, we
clearly see the benefit of the proposed against an intensity interpolation without
calculating displacement fields. The second advantage of the proposed method is
the non-linear movement estimation: In the 4th row we see the motion trajectory
of the center points of the interpolated ellipses. The algorithm in [1] estimates
the object motion piecewise linearly while the proposed approach calculates a
spline interpolated motion field, which results in a better approximation of the
true solution. In the 4th row on the right in Fig. 2 we clearly see the advantage
of the proposed method with a leave-one-slice-out test. The calculated center
point of the ellipse in the third slice is close to the analytic solution. To test the
intensity interpolation we colored the ellipses along the slices with a sinusoidal,
as shown in Fig. 2. The proposed method performs better than the proposed
structure interpolation with only linear intensity (5) (spline reg).

For a second scenario, we use 42 datasets of the human spinal cord along
the neck captured with a slicewise inversion recovery MR sequence (in-slice res-
olution 0.67 mm × 0.67 mm, slice distance 4 mm, slice thickness 8 mm) which
we cropped for a centered view to a size of 120 × 120 × 10 voxels; see Fig. 3.
With a leave-one-slice-out interpolation we quantitatively evaluated how well the
left out slices can be interpolated. In particular, we compared linear and cubic
interpolation without registration, a reimplementation of the linear registration-
based method of [1], the proposed interpolation with piecewise linear intensity

1 https://mathworks.com/matlabcentral/fileexchange/63907.
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Fig. 2. 1st row: 9 slices from left to right of a counterclockwise circling ellipse. 2nd
row: proposed interpolation between the 3rd and 4th slice. Images are shown in larger
size than in row 1 for visualization without upsampling. 3rd row: linear intensity inter-
polation. 4th row: movement line of the center points of the interpolated ellipses of the
proposed method compared against the slice interpolation of [1]. 4th row, right: center
points, when leaving the third slice out. 5th row: gray values of the center points of
the proposed solution are nicely interpolated compared to the analytic solution.

4 High-Order Slice Interpolation for Medical Images

100



High Order Slice Interpolation for Medical Images 77

Fig. 3. Exemplary validation dataset. Slice interpolated with the method of Baghaie
et al. [1] (left) and the proposed method (right). Upsampled and histogram equalized
for better visualization. Transverse cut (upper left), sagittal cut (upper right), coronal
cut (below). In the sagittal and coronal cuts on the left kinks along the stitching posi-
tions are visible (yellow arrows). The proposed interpolation on the right is smooth.
(Color figure online)
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Fig. 4. Leave-one-slice-out interpolation of MR data. Left: MAD in percent of the
interpolated slices compared to the corresponding left out slices of all datasets; datasets
sorted for better visualization. Right: medians from left to right: 4.1, 3.9, 4.0, 3.9, 3.7.

changes (5) (spline reg), and the proposed method; see Fig. 4. As an evalua-
tion metric we chose the mean absolute difference (MAD), comparing all the
(P −2) interpolated slices of the (P −2) leave-one-slice-out interpolations to the
left out slices of one dataset. In most datasets the registration process provided
acceptable correspondences. In Fig. 4 we can see, that the proposed interpolation
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reaches a higher accuracy as long as the correspondences are accurate. The
proposed method interpolated the datasets with 0.5% less error in intensity
than [1]. Errors in the correspondences can increase the spline intensity inter-
polation error which also explains the slightly higher variance. Nevertheless,
the proposed method improves on the slice interpolation capability of the
pure intensity-based methods and of the registration-based linear interpolation
methods.

4 Discussion and Conclusion

In this paper we derived a new method for registration-based slice interpolation.
The structural motions along the interpolating axis are spline interpolated, and
along these motion trajectories the intensities are also spline interpolated. We
presented a way to solve the problem of combining motion and intensity inter-
polation. We used piecewise polynomial interpolators of degree three between
the slices and the additional free degrees of freedom to even out the kinks at the
stitching positions. The method produces two times differentiable structure- and
intensity interpolations. Provided by accurate point correspondences between the
slices, the smooth interpolation can be a better approximation than the ones from
linear registration-based interpolations and from intensity-based cubic interpola-
tions. To better guarantee point correspondences, we would like to point out that
the proposed approach can be used with other, more sophisticated image dis-
tances and regularizations. The proposed slice interpolation framework is flexible
and can be extended in several aspects. For example, the polynomial interpola-
tors can be transformed to include bending of the interpolating axis, in case the
slices are not parallel to each other.
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5 A Principled Approach to Combining
Inversion Recovery Images

The published abstract presented in this chapter focuses on combining the 8 inversion
images of the AMIRA sequence, described on page 79. As pointed out in [25, Tab. 3],
averaging the first five inversion images reveals an enhanced contrast-to-noise-ratio
(CNR) between GM and WM, while averaging the last five inversion images leads
to a good CNR between CSF and WM. Averaging, however, linearly combines the
involved images with equal weights only.

In this work, we modeled a compressed sensing-inspired energy functional to op-
timize non-uniform weights in the 8-dimensional space for optimal CNR 1) between
GM and WM, and 2) between CSF and SC (with minimal variations inside the SC
between GM and WM). To calculate the CNR values appearing in the energy, we
used manual segmentations of 68 slices of 4 different healthy subjects. We point out
that this optimization procedure is, however, a chicken and egg problem, since the
manual segmentations were created on the uniform averages, which probably slightly
influences the results.

The optimized weights are similar to the uniform weights and only slightly improve
CNR. Therefore the uniform averages proposed in [25] can be interpreted as close-to-
optimal. To assess the robustness of the presented approach, we performed ”leave-
all-other-subjects-out” cross-validations that show consistent results, independent of
the subject for which the coefficients were optimized.

We would like to mention that one task of this approach was to optimize for optimal
CSF-SC contrast, which is not the same as optimal CSF-WM contrast. Opposed to
this goal, the original work [25] described a uniform averaging of the last 5 images
which leads to a close-to-optimal CSF-WM contrast. However, averages with optimal
CSF-SC contrast achieve lower variations inside the SC, which contributes to more
robust CSF segmentation with the variational approach presented in Section 6.A.
Experiments revealed that averages of the last 3 images have a significantly better
CSF-SC contrast as compared to the averages of the last 5 inversion images. This
observation is explained through the inversion images 4 and 5 providing more GM-
WM contrast than images 6 to 8, cf. Fig. 2 in the abstract below. These reasons led
us to compare the optimized CSF-SC contrast to the uniform averaging technique of
the last 3 inversion images, instead of the last 5.

Publication The following abstract was presented as a poster at the 27th annual
meeting of the International Society for Magnetic Resonance in Medicine (ISMRM)
on the 18th of June 2018 in Paris, France. It was published as part of the conference
proceedings [148]. The following text was reformatted for appearance in this thesis.
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1 Synposis

The averaged magnetization inversion recovery acquisitions (AMIRA) spinal
cord imaging sequence acquires images of different inversion contrasts [2]. De-
spite the different contrasts the images can be combined to even enhance tissue
contrast. We give a principled justification for such averaging. Using energy opti-
mization, we describe how to automatically optimize the contrast-to-noise ratio
between different tissues using a compressed sensing inspired approach [1]. We
show that the uniform weights in the recently proposed AMIRA sequence are
close to the optimum but can nevertheless still be improved. As an example
we optimize the contrast-to-noise ratio between different compartments in the
spinal cord.

2 Purpose

Recently, a fast high-resolution spinal cord imaging sequence with averaged mag-
netization inversion recovery acquisitions (AMIRA) has been presented [2]. This
sequence acquires 8 images at different inversion times, whose averages give bet-
ter contrast-to-noise ratio. The original work proposes to average the first 5
images for optimal spinal cord gray matter (GM) and white matter (WM) con-
trast and to average the last 5 images for optimal WM and cerebrospinal fluid
(CSF) contrast. Direct averaging of some of the acquired images is a promis-
ing but still simple concept. In the following we analyze whether a non-uniform
averaging could improve the contrast. Using energy minimization, we calculate
coefficients for optimal linear combinations of the 8 inversion images with best
contrast-to-noise ratios.

3 Method

We present an energy functional, which is based on the idea of compressed
sensing [1]. Given some images I1, . . . , In with values between 0 and 1, we search
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Fig. 1. Top and middle row : series of the 8 acquired inversion images of the AMIRA
sequence in chronological acquisition order from top left to bottom right. Bottom row :
CSF/SC and GM/WM averages of the AMIRA images combined with the optimized
mean coefficient values of Figure 2 and the uniform 1:5 and 6:8-averages, respectively.
All images zoomed in, upsampled, and histogram equalized.

for coefficients c = (c1, . . . , cn) where the linear combination I(c) := c1 · I1 +
. . . + cn · In yields an optimal contrast-to-noise ratio. Suppose we have manual
segmentations of tissue A and B (subsets of the image domain) and suppose
tissue A has bright intensities close to 1 and tissue B has dark intensities close
to 0 (or at least darker than tissue A). We define the energy

E(c) := λ1

∑
x∈A(I(c)(x)− 1)2

|A| + λ2

∑
x∈B(I(c)(x))2

|B| +

− λ3
∣∣∣∣E
[
I(c)(A)

]
− E

[
I(c)(B)

]∣∣∣∣+ λ4 V
[
I(c)(A)

]
+ λ5 V

[
I(c)(B)

]
+

− λ6
n∑

k=1

ck

∣∣∣∣E
[
Ik(A)

]
− E

[
Ik(B)

]∣∣∣∣+

+ λ7

n∑

k=1

ck V
[
Ik(A)

]
+ λ8

n∑

k=1

ck V
[
Ik(B)

]
+ λ9 R(c),

(1)
where |A| is the cardinality of A, I(A) is the set of all intensities of tissue A
on an image I, and E

[
I(A)

]
and V

[
I(A)

]
are the mean and variance of the

intensities of tissue A on an image I, respectively. The first two summands in
E encourage the linear combination I(c) to be as close to the segmentation as
possible, the third negative term maximizes the contrast, and the fourth and
fifth terms minimize noise. The terms 6, 7 and 8 in the third line also maximize
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contrast and minimize noise, however on level of the individual inversion images.
With the regularization

R(c) :=

(
1−

n∑

k=1

|ck|
)2

, (2)

we weakly constrain the coefficients’ absolute values to sum up to 1. This way we
omit arbitrarily large coefficients and we enable meaningful negative coefficients.
A negative coefficient ck flips the contrast of an inversion image Ik between tissue
A and B. E is minimized using BFGS.

We optimized the coefficients for a total of 68 slices on 4 different subjects
at different vertebral heights (C2-C5) acquired with the AMIRA sequence. For
each slice, we calculated linear coefficients cCSF/SC for optimal CSF-SC contrast
and another set of linear coefficients cGM/WM for optimal GM-WM contrast, see
Figure 2.

4 Results and Discussion

Figure 1 shows a representative series of the 8 images acquired by the AMIRA
sequence and the suggested optimized CSF-SC and GM-WM contrast averages of
an exemplary single axial slice located at level C2-C3. The optimized coefficients
and their statistics are shown in Figure 2. The calculated optimal coefficients
for GM-WM and for CSF-SC contrast are similar to uniform averaging, but
they also address the weaker signal of inversion images at later inversion times,
e.g. the drop of c8 in the right side of Figure 2. For the calculated CSF-SC
coefficients, we may now include the first inversion image, which has darker CSF
and brighter WM, by allowing negative coefficients ck. A flipped image ck · Ik
can be combined with the inversion images I5 to I8, where the CSF is brighter
than WM. We empirically have chosen λ1, . . . , λ9 to be 100, 100, 1, 1, 1, 10, 10,
10, and 1000, respectively.

For quantitative comparison we calculated contrast-to-noise ratios CNRA/B =
SNRA−SNRB and signal to noise ratios SNRA = E[I(A)]/SD[I(C)]. We estimated
the standard deviation of noise SD[I(C)] on a homogeneous part C of the back-
ground. Figure 3 shows a quantitative comparison of CNR between uniform and
proposed averaging. Leave-one-subject-out results are shown in Table 1.

5 Conclusion

With the proposed method we analyze the uniform averaging technique of the
inversion images of the AMIRA sequence. The found calculated coefficients are
close to the uniform coefficients and the contrast-to-noise ratios can slightly be
improved. For CSF-SC contrast a notable improvement was possible. With the
developed approach, we could justify the decisions made in [2] on a quantitative
basis. The optimization coefficients can be chosen for the needs, e.g. prioritizing
less noise or better contrast.

5 A Principled Approach to Combining Inversion Recovery Images
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Fig. 2. Optimized linear coefficients cGM/WM for optimal GM-WM contrast (left),
and cCSF/SC for optimal CSF-SC contrast (right), in comparison to the uniform 1:5-
averaging (left) and 6:8-averaging (right). In solid red, the uniform averaging; in black
box plots of the optimized coefficients of all 68 slices with median, lower and upper
quartile box, and 10/90-th percentile whiskers; and in dash-dotted blue, the mean
values are shown.

CNRGM/WM,unif CNRGM/WM,opt,s CNRGM/WM,opt,g
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CNRCSF/SC,unif CNRCSF/SC,opt,s CNRCSF/SC,opt,g

100
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Fig. 3. Contrast-to-noise ratios, comparing the uniform averaging (unif) and the op-
timized coefficients (opt). The optimized coefficients are evaluated for two cases: the
optimal case (s), where the optimal coefficients c of each slice were used to calculate
the linear combination I(c) for each slice; and the global case (g), where the blue mean
value coefficients of the optimal cGM/WM and cCSF/SC in Figure 2, respectively, were
used for all slices. Left : CNR comparison for CSF-SC contrast enhancement; right :
comparison for GM-WM contrast enhancement.
Mean values from left to right : 83, 139, 97, 22, 24, 23.

Left out subject CNRCSF/SC,unif CNRCSF/SC,opt ∆CNRCSF/SC,opt-unif CNRGM/WM,unif CNRGM/WM,opt ∆CNRGM/WM,opt-unif

1 81.98 91.87 9.88 24.99 25.36 0.37
2 90.26 101.57 11.31 24.66 25.64 0.98
3 87.37 102.44 15.07 22.71 23.65 0.94
4 72.64 88.15 15.51 17.37 18.07 0.70

Table 1. Leave-one-subject-out cross-validation: CNR mean values over all slices of
the subjects that were not left out are shown for uniform averaging and optimized
averaging. Each cross-validation uses the coefficients cGM/WM and cCSF/SC averaged
over the optimal coefficients of the slices of the left out subject. Positive improvements
with the proposed method are possible for both contrasts.
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6 Variational Segmentation of the
White and Gray Matter in the
Spinal Cord Using a Shape Prior

The publication presented in this chapter describes an automatic segmentation method
for axial MR images of the SC on C3 level acquired with the MOLLI sequence, de-
scribed on Page 78. After reviewing and experimenting with the various segmenta-
tion frameworks presented in Section 2.2.8, we chose the continuous cut model (2.97)
adapted to the use of appearance models according to the idea of Overgaard et al.
[22], see Equation (2.107). We solved the model with the multiplier-based max-flow
algorithm of Yuan et al., cf. Equation (2.103).

We separated the algorithm into two segmentation parts: in a first part, the method
locates and segments the ring-shaped CSF and subsequently extracts the SC from it;
in a second part, the algorithm differentiates between GM and WM using the SC as
a mask. Both parts essentially use the continuous cut framework (2.107) but with
individually adapted parameters. During segmentation, the method automatically
estimates the involved objects’ intensity distributions, which are used for the terminal
capacities.

The goal of this paper was to describe a first working experimental setup as complete
and as reproducible as possible. While we manually tweaked the involved parameters
by observing the algorithm’s iterations using only a few validation images, we tested
the proposed algorithm on 16 axial images at C3 level acquired with the MOLLI
sequence. We achieved robust segmentation results that are on par with the manual
segmentations.

We, however, did not provide an ablation analysis on the impact of the different
mathematical ingredients. We believe that the algorithm’s performance was mainly
limited by the low resolution of the raw data (0.4 mm × 0.4 mm), which results in
a SC diameter of approximately 20 pixels. We did not resample the data to higher
resolutions before automatic segmentation. Therefore, the calculated similarity met-
rics are prone to numerical imprecision and thus not sensitive enough for the true
performance. As a consequence, we considerably improved the proposed algorithm
after this publication by adapting the parameters for use with higher resolutions and
by harmonizing the two segmentation parts. These adaptations are described in this
chapter’s Appendix 6.A and led to the publication in Chapter 7,

We point out that the argument of ”non-diffentiability of ‖·‖ at the origin” on page
29 of this publication, which supported the use of the divergence on the flow-variable
instead of the gradient on the primal variable, holds for the L1-norm but does not hold
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6 Variational Segmentation of SC GM-WM

when using the Euclidean L2-norm. Nevertheless, the second argument of avoiding
derivative calculations along jump-parts is still valid.

Publication The following paper was presented at the workshop Computational
Methods and Clinical Applications for Spine Imaging (CSI 2016) in conjunction with
the 19th International Conference on Medical Image Computing and Computer As-
sisted Intervention (MICCAI) on the 17th of October 2016 in Athens, Greece. It was
published1 as part of the workshop proceedings [149].

1http://dx.doi.org/10.1007/978-3-319-55050-3_3 (last accessed on Sept. 10, 2019)
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Abstract. Segmenting the inner structure of the spinal cord on mag-
netic resonance (MR) images is difficult because of poor contrast between
white and gray matter (WM/GM). We present a variational formulation
to automatically detect cerebrospinal fluid and WM/GM. The segmen-
tation results are obtained by continuous cuts combined with a shape
prior. Intensity-based segmentation guarantees high accuracy while the
shape prior aims at precision. We tested the algorithm on a set of MR
images with visual WM/GM contrast and evaluated it w.r.t. manual GM
segmentations. The automated GM segmentations are on a par with the
manual results.

1 Introduction

Numerous neurological diseases manifest not only in the brain but also in the spinal
cord (SC). Accurate SC segmentation recently gained increasing attention. Mea-
suring the SC cross-sectional area on magnetic resonance (MR) images has shown
to be a good quantitative measure to study diseases of the central nervous system
like multiple sclerosis (MS). MS shows strong influence on the SC, which manifests
e.g. in atrophy and lesion formation [7]. Spinal cord atrophy is occurring early in
the disease progress and was shown to correlate very well with the clinical evalu-
ation (EDSS) of the patient i.e. with MS disability progression [7]. Especially the
SC gray matter area was shown to correlate strongly with MS disability [11].

Delineating white (WM) and gray matter (GM) and measuring their areas
or volumes in-vivo is challenging because of their fine structure, poor WM/GM
imaging contrast, limited practical MR resolution, and inter- and intrapatient
variability of the captured images and of the SCs themselves. On top of that,
high intra- and interobserver variability in manual segmentations make further
statistical evaluations difficult.

To overcome these challenges and to further deepen the knowledge about the
GM/WM atrophy in the SC an automatic quantitative segmentation method is
required that has high accuracy as well as precision.

c© Springer International Publishing AG 2016
J. Yao et al. (Eds.): CSI 2016, LNCS 10182, pp. 26–37, 2016.
DOI: 10.1007/978-3-319-55050-3 3
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Given an MR image with optimal contrast and signal-to-noise ratio, an
intensity-based segmentation method is perfectly suited for that job. The more
noise is involved the more we need to regularize the method. To handle partial
volume effects of captured fine structures, even shape priors may be necessary.

Yiannakas et al. [16] show the feasibility of segmenting WM/GM in the SC.
Tang et al. [12] use a Bayesian three-class classifier, and Asman et al. [1] use
groupwise multi-atlas segmentation to discriminate WM/GM slice-wise. Taso
et al. [13] construct atlases for cerebrospinal fluid (CSF), WM/GM and propose
atlas based 3D segmentation and classification methods. De Leener et al. [5]
provide a more comprehensive review of the available GM segmentation methods.
However, no standard method has yet been established, which motivates the
search for alternative approaches.

In this paper, we propose an automatic variational segmentation method
that can locate CSF and segment the WM/GM of the spinal cord. We describe
our data in Sect. 2, introduce our generic models in Sect. 3, show the results in
Sect. 4, and discuss them in Sect. 5.

2 Data

For this paper 10 volunteers (6 male, 4 female) were scanned with an experimen-
tal MR sequence (approved by the local ethics review board). In total we acquired
16 axial cross-sectional sets of images on C3 level with acceptable WM/GM con-
trast using a 2D-MOLLI sequence [15] with 0.4 × 0.4mm2 in-plane resolution
and 8 mm slice thickness. The MOLLI sequence acquires altogether 11 aligned
images in each image set with different inversion times TI per slice [15]. The first
image of each image set has good CSF contrast and the average of each set has
good WM/GM contrast. In Fig. 1 we see the first three images and the mean
image of one set. Figure 3 shows more mean images of different contrast quality
and of different subjects.

Two experienced raters segmented the 16 images manually for GM. Rater
1 rated two times at different days with different techniques. In one tech-
nique images in the original resolution were segmented pixel-wise, see Fig. 3. In
the other, 10-fold upsampled cubic interpolated images were segmented whose
masks were downsampled again afterwards. The second technique resulted in a
grayscale segmentation. Rater 2 used the same up- and downsampling technique.

3 Method

In this paper we present a variational approach that segments CSF, WM, GM,
and background given a set of MR images of the same slice. Because binary
segmentation algorithms are more robust than multi-labeling algorithms and
because of the special situation of the MOLLI sequence, where the first image
has good CSF contrast, we split our fully automatic approach into two steps:
a CSF segmentation step and a WM/GM segmentation step. The second step

6 Variational Segmentation of SC GM-WM
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Fig. 1. Upper row: first three images of the MOLLI sequence of a cross-sectional neck
scan on C3 level; histogram-equalized mean image and its zoom depict CSF, WM, GM.
Lower row, segmentation steps: CSF contrast image with ellipsoidal prior; zoomed view
on the CSF segmentation (red) and mask (yellow); GM segmentation (green) and the
boundary towards CSF (red) before and after shape regularization. (Color figure online)

makes use of the previously labeled CSF, where we extract the interior of the
ring-shaped CSF and use it as a mask for the WM/GM discrimination, see Fig. 1.

In recent years a tendency towards relaxed convex variational formulations
can be observed because their solutions all enjoy to have the optimal score. The
motivation of using continuous cuts [17] lies in the mathematical beauty and in
the simple algorithmic implementation. The model is convex and finds intended
segmentations robustly, independent of any specific algorithm initialization. Its
dual formulation, also called continuous max flow, has analogies to graph cut
[3], but enables subpixel accuracy and has less metrication errors. We added
different additional features to the continuous cut formulation: anisotropic total
variation (ATV) [8], pose invariant shape priors [4,9], an additive Bhattacharyya
coefficient (BC) [14], and prior boundary curvature dependent capacities.

3.1 Mathematical Ingredients

Before we describe the CSF and WM/GM segmentation steps, we first introduce
continuous cuts [17] and additional energies, which we use in both steps.

The most basic segmentation method is intensity thresholding, where the
pixels are divided into two categories: those with intensity values lower and
respectively higher than a certain threshold. Because of the presence of noise in
high resolution MR images, before thresholding, first an approximation of the
image has to be calculated where the noise is reduced. In the literature this
problem can be modeled with the Mumford-Shah functional [2]. We make use of
a generalized special case of the piecewise-constant Mumford-Shah problem

argmin
O⊂Ω

∫

O

Ct(x) dx +

∫

Ω\O

Cs(x) dx + TVC(∂O), (1)
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which is also a generalized version of the Chan-Vese model and can be seen as a
generic segmentation model [17]: Inside the image domain Ω the object O and
the background B := Ω\O shall be found, where Ct, Cs and C are the model
parameters, here called capacity functions. The name capacity and the indices
of Cs and Ct find their roots in graph cuts and stand for source and target. Ct

has to be low on the object O, and Cs has to be low in the background.
For an associated algorithm to be automatic, it is necessary to estimate

proper capacity functions automatically. In this task, mean intensity differ-
ences turned out to be well-suited for the terminal capacities Cs and Ct. For
non-terminal capacities C we chose negative exponential image gradients. The
weighted total variation TVC as an object boundary length regularizer can be
adapted anisotropically to the image structures when introducing a Riemannian
metric tensor A [8], replacing TVC by ATVC .

To find a convex version of the above functional (1) one introduces a relaxed
labeling u : Ω → [0, 1], such that x is in O if u(x) is close to 1 and x is in B if
u(x) is close to 0. This way we can write down the continuous cut with ATV

argmin
u:Ω→[0,1]

∫

Ω

Ct(x)u(x) + Cs(x)(1 − u(x)) + C(x) ‖∇u(x)‖A dx, (2)

where ‖∇u(x)‖A =
√

∇u(x)T A(x)∇u(x) =
∥∥S(x)T ∇u(x)

∥∥
2
, and A = SST is

a strongly positive definite, matrix valued function [8]. Olsson et al. [8] proofed
that a coarea formula for ATV holds and thus a thresholding theorem exists for
solutions of (2). This means that for a minimizer u� of (2) and any threshold θ
in ]0, 1] the thresholded superlevel set 11u��θ is again a minimizer of (2).

Algorithms that minimize (2) itself may struggle with the non-differen-
tiability of ‖∇u(x)‖2 twofold: the non-differentiability of ‖·‖2 at the origin and
the calculation of ∇u along jump-parts. A nice work-around is provided by
the primal-dual formulation of (2). As proposed in [10], adding an augmented
Lagrangian and calculating the variational derivatives results in a very short
algorithm: We iterate a valid initialization (p0

s, p
0
t , p

0, u0) with

pk+1
s = min

(
(1−uk)/c + div Spk + pk

t , Cs

)
,

pk+1
t = min

(
uk

/c − div Spk + pk+1
s , Ct

)
,

pk+1 = P
(
pk + γ ST ∇

(
divSpk − pk+1

s + pk+1
t − uk

/c
))

,

uk+1 = uk − c
(
div Spk+1 − pk+1

s + pk+1
t

)
,

(3)

where P(p(x)) = sign(p(x))min(|p(x)| , C(x)). We use c = 0.3 and γ = 0.16.
Up to here the model is convex and fulfills a thresholding theorem. Now we

vary the capacity functions and make them dependent on u, thus in general
we lose the mathematical global optimality property. In practice, as long as
the capacity functions do not change too fast, they converge with u. We lose
convexity anyway, as we include additional energy terms like BC [14], and a
mean squared difference to a shape prior [4,9], see next sections. Of course, the
mathematical properties of the continuous cut in practice still help to balance

6 Variational Segmentation of SC GM-WM
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out the local properties of the additional energies, as long as they are weighted
appropriately. In turn, BC helps out the segmentation process to stick to the
local intensity structure while the shape prior term includes prior knowledge.

Pose Invariant Shape Prior. Given a grayscale image I : Ω → [0, 1], a shape
prior f0 : Ω → [0, 1], and a relaxed labeling u, we introduce the effective image

Ieff = λ Imodel +μ Iprior, Imodel = c0 (1−u)+ c1 u, Iprior = b0 (1− f)+ b1 f, (4)

with c1 and c0 the mean intensities of the background and foreground, f =
f0 ◦ Tp : Ω → [0, 1] a rigidly transformed version of f0, and b1 and b0 the mean
model intensities on the rigidly transformed shape prior area and its complement
[9]. The idea is to minimize

∫

Ω

λ (I − Imodel)
2 + μ (Imodel − Iprior)

2 + C ‖∇u‖A dx, (5)

where we segment and force the segmented result to be close to the prior by min-
imizing the mean squared distance to the relaxed piecewise constant approxima-
tion Imodel. By factoring out with remainder, we see that minimizing the latter
is equivalent to minimizing

E(u, c, f, b) =

∫

Ω

(Ieff − c1)
2 u + (Ieff − c0)

2 (1 − u) + C ‖∇u‖A dx, (6)

which is in the form of a continuous cut, thus can be optimized by (3). In practice,
we replace (Ieff(x)− c1)

2 and (Ieff(x)− c0)
2 with functions Ct(x) and Cs(x) that

stay close to the idea of (4): The square function is replaced with the absolute
function and c0 and c1 are varied slightly, see below.

Following [9], the rigid coordinates p = (a, b, θ, exp σ) of the prior f can be
iterated by a gradient descent through

an+1 = an − ι
〈f − u,−∂x1

f〉
‖f‖2 , θn+1 = θn − ι

〈f − u,−∇fT J(x − (a, b)n+1)〉
‖|x − (a, b)| ∇f‖2 ,

bn+1 = bn − ι
〈f − u,−∂x2

f〉
‖f‖2 , σn+1 = σn − ι

〈f − u,−∇fT (x − (a, b)n+1)〉
‖|x − (a, b)| ∇f‖2 ,

(7)
where J =

(
0 1

−1 0

)
, and 〈·, ·〉 and ‖·‖ denote the L2 scalar product and norm. The

denominators, obtained through the metric on the Lie group of the transformed
priors, can be seen as automatic step size controllers. We use the stepsize ι = 1.

Bhattacharyya Coefficient. BC is a measure of how different two densities
are. The goal of intensity-based segmentation can be described as finding regions
with maximally distinct histograms. Given the two histogram densities fO and
fB of the object and the background with values in Z, their BC is given by

BC(fO, fB) =

∫

Z

√
fO(z) fB(z) dz. (8)
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Following Wang et al. [14] we calculate the variational derivative δ·
δu of BC:

δBC

δu
(x) =

1

2
δ(u(x) − θ)

∫

Z

√
fO(z) fB(z)

(
1

AB
− 1

AO

)
+

+ δ(I(x) − z)

(√
fO(z)fB(z)

fB(z)

1

AO
−

√
fO(z)fB(z)

fO(z)

1

AB

)
dz,

(9)
where the histograms and the areas AO and AB are represented through thresh-
olded u segmentations, and δ(·) stands for the Dirac-delta distribution. A more
global variant of the BC gradient could be calculated by plugging in u directly,
omitting the factor δ(u(x) − θ) in (9). But since we only want to influence the
continuous cut close to the boundary of the thresholded solution, we chose this
version. In the algorithm we set θ to 0.5 and use a standard arctan approxima-
tion with ε = 1 for the δ function outside the integral. Given a discrete image,
we already calculate discrete histogram densities which also discretizes

∫
Z

dz to∑
z∈Z and δ(I(x) − z) to the Kronecker delta δI(x),z.
Wang et al. [14] combined the level set representation of the Chan-Vese energy

with BC. We now combine the continuous cut energy for shape priors with BC,
weighted with a factor ν:

min

∫

Ω

Ct(u, f, I)u + Cs(u, f, I) (1 − u) + C(f, I) ‖∇u‖A dx + ν BC(u). (10)

With this external energy, the update rule for u in (3) changes to

uk+1 = Pu

(
uk − c

(
divSpk+1 − pk+1

s + pk+1
t + ν

δBC

δu

))
. (11)

The local behavior of the variational derivative of BC is guided by the convex
property of the continuous cut. BC influences twofold: For the terminal capac-
ities, aside mean intensity differences, also object and background histogram
densities can be used. This choice, in practice, turned out unsuited for auto-
matic segmentation when the object is not already well initialized. Using BC
we can incorporate the histogram densities simultaneously with mean intensity
differences. The second benefit is: While continuous cut (6) is computing on the
effective image Ieff, BC is dealing with the original image intensities. BC makes
the choice of the capacities less sensitive and balances the influence of the prior
in the segmentation process.

Statistical Appearance Model. We do not only want the shape prior f0 to be
a statistical mean shape, but we also want the shape prior to adapt to the actual
segmentation. Cremers et al. [4] use an appearance model for this task, because
projection and backprojection are low cost compared to a displacement field
model, where non-rigid registration is involved. They also showed that optimizing
the model parameter inside the set of meaningful parameters is convex.

6 Variational Segmentation of SC GM-WM
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Let us model the shape priors by a Gaussian distribution with mean f0

and covariance C and let C = V Λ2V T be its eigendecomposition. Following
[4], we use our continuous cut energy (10) for an appearance model realization
optimization together with an appearance prior regularizer ξ αTΛα:

min
α

∫

Ω

Ctf + Cs(1 − f) + C ‖∇f‖A dx + νBC(u) + ξ αTΛα, (12)

with the backprojection f = f(α, p) = min(max(f0(p) + V (p)Λα, 0), 1), where
f0(p) and V (p) are the rigidly transformed mean GM and eigenshapes at the
rigid coordinates p.

In (12) compared to (10) f(α, p) takes the role of u and since they have to
be similar, we initialize the model parameter α with the projection of uk0 , where
uk0 is an acceptable solution of the model (10). We iterate the model parameter
simultaneously with projected u-updates from (11):

α0 = Λ−1V (p)T (uk0 − f0(p)),

αn+1 = αn − ΔtαΛ−1V (p)T

(
div Spk+1 − pk+1

s + pk+1
t + ν

δBC

δu

)
− 2 ξΛαn.

(13)

The idea behind this algorithm is: projecting u in every iteration into the model
space and using its approximation f as the prior. But since we can choose the
stepsize Δtα, the prior and the segmented structure are, up to the point where
f is initialized, uncoupled from each other.

Anisotropic Total Variation. We use the structure tensor of the image to
design the Riemannian metric matrix field A : Ω → R2×2 [6]. In

∫
Ω

‖∇u‖A dx
we want the integrand to be small at high image gradients. Thus, for each x
in Ω the eigenvalue of A(x) in image gradient direction, which is parallel to
∇u, has to be small. Let B(x)Λ̂(x)B(x)T be the eigendecomposition of the sym-
metric structure tensor at point x with decreasing order of eigenvalues and let
λ(x) denote the larger eigenvalue. We use the gamma-transformed normalized
negative transform of all image gradient magnitudes (1 − N(λ)(x))2, to scale
the image gradient direction, such that ∇u gets less penalized when the image
gradient is stronger. We define S(x) = B(x) diag((1 − N(λ)(x))2 + ε, 1), where
we add ε > 0 to guarantee strong positiveness of the matrix field. When λ gets
small, (1 − N(λ)(x))2 tends quadratically to 1, thus A approaches the isotropic
identity matrix in regions with weak edges.

Notations and Definitions. For super- and lowerlevel sets we set {u ∼ θ} =
{x ∈ Ω |u(x) ∼ θ}, where ∼ stands for a relation (=, >,<,...). We denote the
normalization of a real-valued function v : Ω → R as the function N(v) : Ω →
[0, 1] with N(v)(x) = (v(x)−min

s
v(s))/(max

s
v(s)−min

s
v(s)), and the normalized gamma

transform Γ (v) : Ω × R+ → [0, 1] with Γ (v)(x, γ) = (N(v)(x))γ . We denote the
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shortest Euclidean distance between x and the boundary of {f = 1} by d(x, f).
Fmedian is a median filter of size 3×3. For all the terms that need to be regularized
we add a constant ε = 10−5. Tolerances have been chosen, such that the L1 norm
of an update is smaller than 1 pixel for 10 consecutive iterations.

3.2 CSF Segmentation

Given a histogram-equalized MR image I : Ω ⊂ R2 → [0, 1] with good CSF
contrast we introduce an ellipsoidal shape prior f0 : Ω → {0, 1}, shown in Fig. 2.
We use the segmentation model (10) with λ = μ = 0.5, ν = 0, and

A while f0 is being registered:

Cs(x) = Fmedian(Γ (|Ieff(x) − mean(I({f > 0.5})| , 3/2)),

Ct(x) = Fmedian(Γ (|Ieff(x) − mean(I({f � 0.5})| , 2/3)),

C(x) = 1/10 log(1 + d(x, f)) + ε,

B after f0 has been registered:

Cs(x) = Fmedian

(
max(log(fO + ε) − log(fB + ε), 0)

log(1 + ε) − log ε

)
,

Ct(x) = Fmedian

(
max(log(fB + ε) − log(fO + ε), 0)

log(1 + ε) − log ε

)
,

C(x) = γ1 exp (−γ2 ‖∇Iassist(x)‖) .

In A, the translational initial point of f is the center of mass of the neck,
calculated through Otsu’s thresholding, which is then iterated through (7). The
terminal capacity functions are gamma-transformed with experimentally chosen
exponents 3/2 and 2/3 to enhance the contrast between object and background.
In B, when f has been registered to the CSF position, we calculate a mask and
use it as the new image domain – marked yellow in Fig. 2. We use the convex hull
of the ellipsoid and dilate it with a box-shaped structuring element of size 4, to
make sure that the segmentation does not leak into surrounding bright intensity
areas, when we switch to other capacity functions. The non-terminal capacity C
is then changed to a negative exponential of gradient magnitudes of an assisting
image Iassist. The assisting image at a bigger TI relaxation time, where the CSF
is black and the spinal tract is brighter, helps in case the captured CSF of the
subject is not ring-shaped. CSF can be pressed away though the gravity of the
spinal tract when lying on the back, compare Fig. 2.

3.3 WM/GM Segmentation

Given an image I : Ω ∩M ⊂ R2 → [0, 1] with good WM/GM contrast, the inner
part of the segmented CSF as a mask M and a statistical model for GM, we use
(10) and (12) with λ = μ = 0.5, ν = 5, ξ = 0, Δtα = 0.2 (13), and

6 Variational Segmentation of SC GM-WM
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Fig. 2. Upper row: CSF segmentation without adapted non-terminal capacity; CSF
segmentation with adapted non-terminal capacity; assisting image Iassist; adapted non-
terminal capacity for CSF – low values along the posterior CSF result in weak length
regularization. Lower row: Ellipsoidal-shaped CSF prior (major and minor axis roughly
10 mm and 7 mm); special mask Mspecial with high values where GM cannot be; negative
exponential of gradient magnitudes combined with Mspecial; negative transformed GM
curvature multiplied by distance map. (Color figure online)

A during initial segmentation and rigid registration:

Cs(x) = Fmedian(Γ (|I(x) − mean(I(M))| , 3/2)),

Ct(x) = Fmedian(Γ (|Ieff(x) − 0| , 2/3)),

C(x) = g(x) +
median(g) + max(g)

2
· Mspecial, g(x) = γ1 exp (−γ2 ‖∇I(x)‖) ,

B during appearance model registration:

Cs(x) = Fmedian(Γ (|Ieff(x) − mean(I({f > 0.5})| , 4)),

Ct(x) = Fmedian(Γ (|Ieff(x) − mean(I({f � 0.5})| , 1/4)),

C(x) = 1/10 log(1 + d(x, f)) · ζ(x, f) + ε.

The time-domain A starts with an initial segmentation according to (10) without
a prior. Once the segmentation updates reach the tolerance, the rigid registration
part starts. The initial translational coordinate is set to the center of mass of the
WM/GM mask M . For C we construct a special mask Mspecial, where capacities
are forced to be high in regions where GM cannot be, see Fig. 2.

When the rigid registration and segmentation updates reach the tolerance,
time-domain B starts. Here the model appearance f is being registered according
to (12). We observed that, as long as f is registered appropriately, calculating
mean intensities of object and background depending on the prior f seems more
stable than looking at the actual areas defined through u. For Cs and Ct, Ieff =
(Imodel+Iprior)/2 is replaced with (I+Iprior)/2, compare (4). This way we combine
again unblurred original image intensities with prior information.

With the curvature κ on the boundary of the prior, we define for any point
in Ω the normalized negative transform of the curvature ζ(x, f) = 1 − N(κ)(x̂)
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Fig. 3. Upper row: Solutions of (10) show disconnected GM regions and depend on the
image quality. Middle row: Proposed solutions show anatomically consistent results.
Lower row: GM contours of pixel-wise manual segmentations of rater 1.
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Fig. 4. GM segmentation results. Dices: intra-rater: binary vs grayscale; inter-rater:
rater 1 vs 2 (grayscale); proposed vs rater 1 (binary); proposed (grayscale) vs rater 1
and 2 (binary and grayscale). Hausdorff: thresholded grayscale segmentations.

of the nearest neighbor x̂. For the capacity function C we multiply the prior
distance map with ζ. This way the boundary has more freedom in regions with
high curvature, see Fig. 2.

It is an advantage to choose Δtα smaller than 1 (we chose 0.2) because
then the prior does not change too fast, in case the Chan-Vese solution at the
initialization time has good quality and would be affected badly by the prior,
which, in turn, would change the prior again.

4 Results

We implemented our models and algorithms in MATLAB and tested the GM
results against the manual segmentation. For each dataset we created a statistical
appearance model for (12) from the aligned manual segmentations of rater 1
and 2 of the remaining datasets, using principal component analysis. The CSF
localization, spinal tract extraction and GM segmentation worked robustly and

6 Variational Segmentation of SC GM-WM
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fully automatic on all 16 images. Figure 3 shows exemplary GM results. We
notice that the CSF segmentation is not perfect, because the anterior median
fissure is not seen in the first image, where the CSF has bright intensity and
overrules the thin structure because of partial volume effects.

Figure 4 shows mean Dice coefficients (0.75) and average Hausdorff distances
(1 mm) of the proposed GM results. The Hausdorff distances have the tendency
to be large, because the thin-structured posterior horns are not always delin-
eated with the same length. Taso et al. [13] reach mean GM Dice coefficients of
0.83. Since our image resolution and signal-to-noise ratio are low, our manual
segmentation only reaches a mean intra- and inter-rater Dice of 0.75. Therefore
we expect Dices at best in the latter range, when comparing our method to the
manual raters. Hand-segmented results are thresholded with 0.6, because of the
downsampling technique, and the automated results with a standard 0.5. The
error for thresholding is in the range of non-thresholded inter-rater variance. The
proposed automated solution therefore can be seen as a third rater.

5 Discussion and Conclusion

We developed a variational approach to segment GM inside the spinal cord on
C3 level. The algorithm works robustly on the given data sets and achieves
similar Dice and Hausdorff measures as hand-segmented results. The solutions
of the algorithm depend more on the intensity values gathered through the MR
sequence and less on prior knowledge. Prior knowledge is included but does not
overrule the information given in the MR image.

The quality of the results depends strongly on the imaging quality because
of the fine structures present in the GM. We expect better quality in new images
and thus better segmentation results. The MR sequence is still experimental and
further adaptations are necessary for use in clinical practice.

We consider to implement a spatially adaptive weighting factor between
the information of a given MR image and of the prior knowledge. The sim-
ple ellipsoidal-shaped prior was only used to locate the CSF, and in the future
CSF and WM appearance models will be included. Since variational algorithms
can easily be extended to additional dimensions, our model can be adapted for
3D MR images with good WM/GM contrast.
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6.A Adaptation of the Continuous Cut Model to
AMIRA

This section describes the improvements to the original algorithm proposed in this
chapter’s publication [149]. The MOLLI sequence (cf. Page 78) was replaced by the
AMIRA sequence (cf. Page 86) because of the AMIRA sequence’s shorter acquisition
times. To this end, the proposed algorithm needed to be adapted to the new sequence,
which also includes acquired axial slices of lower cervical levels. The modified version
was used as ”the automatic segmentation algorithm” in the publication of Chapter 7.
MATLAB code2 is made publicly available.

Similar to the original method of this chapter [149], we again split the segmentation
process into two parts: CSF segmentation with subsequent SC extraction, and GM-
WM segmentation on the provided SC mask. We harmonized both parts in having
three phases, which are depicted in Chapter 7, Fig. 2: in the first phase, the contin-
uous cut iterations provide a first estimate of the segmentation; in the second phase,
the mean appearance of a collection of translationally aligned manual segmentations
is being rigidly aligned and superimposed onto the target image; and in the final third
phase, a statistical appearance model of the same collection of manual segmentations
is being adapted to the actual continuous cut iterations. We point out that during all
three phases, the continuous cut iterations deliver new estimates for the final segmen-
tation. During phases two and three, the appearance model is not only adapting to
the current iterated segmentation but is also influencing the iterations by altering the
terminal and non-terminal capacities according to Equation (2.107). We improved
this setup in adding four major modifications: 1) support for multi-channel input,
2) a slice similarity prior that allows extending the 2D model to a 3D continuous
cut model, 3) posterior appearance models based on trusted prior pixels, and 4) an
ellipsoidal vector field for ATV during CSF segmentation.

1. We augmented the continuous cut model (2.97) for input images of M channels
by linearly combining the channels’ individual capacity functions C·,i for the
terminal and the non-terminal capacities CO, CB, and C using the following
scheme:

C·((Ii)
M
i=1, x) =

M∑

i=1

λ·,i C·,i(Ii, x), (6.1)

where Ii are the individual input channels and λ·,i describe the channels’ weighted
contributions to the final capacity functions C· . The indexed dots symbolize
the use for the terminal capacities CO, CB, or the non-terminal capacity C.

In contrast to this modification, the original model of this chapter [149] used
averaged one-channel projections of the MOLLI sequence’s 11 inversion images.
With this modification we directly feed the AMIRA sequence’s individual inver-
sion images and may also feed additional feature channels, such as the additional

2https://github.com/neonroehre/AJNR2019 (last accessed on Sept. 10, 2019)
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CSF contrast image provided with the AMIRA protocol (cf. Page 86) and fil-
tered or histogram-equalized projections of the IR sequences. Similar to the
original model [149], we use mean intensity differences on the individual chan-
nels’ terminal capacities during phases 1 and 2, because they can be efficiently
calculated; during phase 3, we use the histogram-based terminal capacities of
Boykov et al. [93] applied to the individual channels. Finally, we discarded the
additional energy term with the Bhattacharyya distance in [149, Eq. 10], since
histogram information is already utilized with the histogram-based terminal
capacities during phase 3.

2. We added a slice similarity prior |∂x3
u(x)| to the anisotropic total variation

(ATV) term ‖∇u(x)‖A =
√
∇x1,x2u

T A∇x1,x2u in (2.97),

min
u: Ω→[0,1]

∫

Ω

uCO + (1− u)CB + C ‖∇x1,x2
u(x)‖A + β |∂x3

u(x)| dx, (6.2)

weighted by a factor β. To this end, we collected all slices acquired with the
AMIRA protocol (cf. Page 86) and co-registered them in a successive slicewise
fashion from top to bottom using integer-valued translations only to prevent
interpolation. Slicewise registration is performed two times, once before CSF
segmentation and a second time before GM-WM segmentation using the esti-
mated SC label maps.

3. Inspired by the probabilistic posterior models for partial information [150], we
involved the appearance model more closely in the segmentation during phase 3
[149, Eq. 13] with the calculation of such posterior probabilities. In each itera-
tion, we reconstruct the most likely posterior appearance given well-segmented
pixels only.

Let the probabilistic appearance model of segmentations be modeled as follows:

f ∼ N
(
µ, U (D2 + σ2 I)UT

)
, (6.3)

where µ ∈ RN is the mean appearance of a population of aligned and vectorized
manual segmentations with N denoting the number of pixels, U ∈ RN×Mpca

is a collection of the populations’ highest-ranking principal components with
Mpca denoting the number of used principal components, D2 ∈ RMpca×Mpca is
a diagonal matrix with the principal components’ eigenvalues, σ2 ∈ R is the
variance of the added probabilistic Gaussian noise, and I ∈ RMpca×Mpca is the
identity matrix.

Assuming an iterated segmentation uk rigidly aligned to the probabilistic ap-
pearance model, we can calculate an energy of uk(x) in the model space pixelwise
through the negative log-likelihood of the pixelwise marginal of (6.3):

E(uk)(x) = (uk(x)− µ(x))

Mpca∑

j=1

((UDppca)x,j)
2, (6.4)

124



6.A Adaptation of the Continuous Cut Model to AMIRA

leaving out any proportional factors and additive terms, where the diagonal ma-
trix Dppca =

√
D2 + σ2 I consists of the probabilistic singular values calculated

via element-wise square-roots. Using the pixelwise energies E(uk)(x) we trust
those pixels that have an energy smaller than a selected threshold of trust. In
the following, we denote with index b in ukb , µb, and Wb the respective entities
that live on the trusted pixels only. The matrix Wb, in this case, is the collec-
tion of the weighted principal components UD with deleted rows of those pixel
dimensions that are not trusted. Based on these trusted pixels of the iterated
segmentation uk, we reconstruct the most likely posterior appearance fMLE by
first calculating the most likely latent variable

αMLE =
1

σ2

(
I +

1

σ2
WT
b Wb

)−1 (
WT
b (ukb − µb)

)
(6.5)

and then finally projecting the latent variable back into the appearance space
through

fMLE = µ+ UDαMLE. (6.6)

Such posterior appearances fMLE are calculated for each slice by generating
a model that consists of only those manual segmentations located on similar
vertebral levels as the target slice and by excluding those samples of the same
subject. The slicewise posterior appearances are then superimposed onto the
target image’s channels according to (2.107). Whereas the original model [149]
uses adaptive appearance models only for the GM segmentation part, we har-
monized the two parts and included such models also for the CSF segmentation
part.

4. To the third phase of the CSF segmentation, we added a Riemannian metric
matrix field A with strong ellipsoidal rotational components and weak center
normal components positioned at the center of the SC mask. With this metric
field A, ATV favors ellipsoidal segmentations and punishes label changes per-
pendicular to the rotational streamlines. This setup helps inpainting boundaries
in cases where the ring-shaped CSF has an appearing gap in the image data (cf.
Chapter 6, Fig. 2) which occurs if, for example, the SC is touching the posterior
part of the vertebral column.

With these modifications, many more parameters were introduced that enable a
better capability of generalization as compared to the original model [149]. We opti-
mized all parameters groupwise through exhaustive search on discretized parameter
grids on a small validation set. Still, an ablation analysis of the proposed method
in terms of accuracy was difficult to perform since all these modifications greatly in-
fluenced the method’s robustness: Including the additional CSF contrast image led
to 4% fewer CSF segmentation failures; varying the channels’ contribution to the ca-
pacities via Equation (6.1) greatly influenced the algorithm’s performance in terms
of CPU time, robustness, and accuracy; the slice similarity prior improved segmenta-
tion stability as compared to pure slicewise segmentation; the posterior shape models
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with the probabilistic noise factor and the threshold of trust introduced another two
parameters that have a fair influence on robustness and accuracy, which we observed
during the parameter search; and the ellipsoidal ATV for CSF segmentation signifi-
cantly increased the chance for closing gaps in the ring-shaped CSF.

126



7 Novel Reliable Automatic Pipeline
for Spinal Cord Gray Matter
Quantification

In the publication presented in this chapter, we assess the reproducibility and accu-
racy of measurements from images acquired with the AMIRA protocol (cf. Page 86)
by segmenting the GM-WM structures of the acquired images in the CGM dataset
(described on Page 88) manually and with the modified continuous cut algorithm
described in Section 6.A.

Results show high reproducibility for both the manual and the automatic segmenta-
tions, where the automatic segmentations showed more reproducible results in intra-
and inter-session comparisons. The similarity between the automatic segmentations
and the manual reference standard, interpreted as accuracy, was high with a mean
DSC of 0.86 for GM and 0.90 for WM.

Keeping in mind that the quantification of the SC’s inner structure depends on
both the imaging and the post-processing part, the focus of this publication lies less
on the analysis of the modified continuous cut algorithm, but rather on the quality of
the AMIRA images on healthy subjects. Considering the challenges of SC MRI (cf.
Page 75) and considering that with the proposed continuous cut approach a shallow
algorithm is capable of providing state-of-the-art segmentations in 88% of all acquired
slices, the high quality of the acquisitions with the AMIRA protocol is substantiated.

To further analyze the quality of the AMIRA images, we adapted the iterative
non-local STAPLE (iNLS) algorithm for GM segmentation proposed by Asman et
al. [97], which is also the underlying algorithm of the atlas-based GM segmentation
algorithm in the spinal cord toolbox (SCT) [137]. Applying the method of Asman et
al. [97] on AMIRA images yields superior results to the same method being applied
on T?2-weighted 3D gradient echo images, as reported in [97]. In a second attempt,
we wanted to test the SCT’s implementation of iNLS [137] together with the SCT’s
provided MNI-Poly-AMU atlas [127]. Unfortunately, this did not perform as expected
on the AMIRA images and would have required the construction of a new atlas, based
on the AMIRA images in the data format of the SCT. However, since according to
the SCT developers, this code is not maintained anymore, we were not able not to
generate such an atlas even after several weeks of trial. Hence, this attempt is not
part of the publication.

Moreover, the proposed continuous cut algorithm was not designed to differentiate
between healthy and inflamed nervous tissue and therefore fails in segmenting AMIRA
images of MS patients with presence of lesions, as presented in this chapter’s Fig. 6.
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This limitation, however, does not devalue the results of this publication regarding
reproducibility of images without lesions acquired with the AMIRA protocol.

Publication The publication was written with joint first authorship by Charidimos
Tsagkas and Antal Horváth, with A. Horváth developing and applying the post-
processing pipeline and conducting the statistical analysis, and C. Tsagkas focusing
on the clinical setup and evaluation. It was accepted by the American Journal of Neu-
roradiology (AJNR) in June 2018 and was published1 in August 2019 [145]. MATLAB
code2 is made publicly available.

1https://doi.org/10.3174/ajnr.A6157 (last accessed on Sept. 19, 2019)
2https://github.com/neonroehre/AJNR2019 (last accessed on Sept. 10, 2019)
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Automatic Spinal Cord Gray Matter Quantification: A Novel
Approach

X C. Tsagkas, X A. Horvath, X A. Altermatt, X S. Pezold, X M. Weigel, X T. Haas, X M. Amann, X L. Kappos, X T. Sprenger, X O. Bieri,
X P. Cattin, and X K. Parmar

ABSTRACT

BACKGROUND AND PURPOSE: Currently, accurate and reproducible spinal cord GM segmentation remains challenging and a noninva-
sive broadly accepted reference standard for spinal cord GM measurements is still a matter of ongoing discussion. Our aim was to assess
the reproducibility and accuracy of cervical spinal cord GM and WM cross-sectional area measurements using averaged magnetization
inversion recovery acquisitions images and a fully-automatic postprocessing segmentation algorithm.

MATERIALS AND METHODS: The cervical spinal cord of 24 healthy subjects (14 women; mean age, 40 � 11 years) was scanned in a
test-retest fashion on a 3T MR imaging system. Twelve axial averaged magnetization inversion recovery acquisitions slices were acquired
over a 48-mm cord segment. GM and WM were both manually segmented by 2 experienced readers and compared with an automatic
variational segmentation algorithm with a shape prior modified for 3D data with a slice similarity prior. Precision and accuracy of the
automatic method were evaluated using coefficients of variation and Dice similarity coefficients.

RESULTS: The mean GM area was 17.20 � 2.28 mm2 and the mean WM area was 72.71 � 7.55 mm2 using the automatic method.
Reproducibility was high for both methods, while being better for the automatic approach (all mean automatic coefficients of variation,
�4.77%; all differences, P � .001). The accuracy of the automatic method compared with the manual reference standard was excellent
(mean Dice similarity coefficients: 0.86 � 0.04 for GM and 0.90 � 0.03 for WM). The automatic approach demonstrated similar coefficients
of variation between intra- and intersession reproducibility as well as among all acquired spinal cord slices.

CONCLUSIONS: Our novel approach including the averaged magnetization inversion recovery acquisitions sequence and a fully-auto-
mated postprocessing segmentation algorithm demonstrated an accurate and reproducible spinal cord GM and WM segmentation. This
pipeline is promising for both the exploration of longitudinal structural GM changes and application in clinical settings in disorders
affecting the spinal cord.

ABBREVIATIONS: AMIRA � averaged magnetization inversion recovery acquisitions; CV � coefficient of variation; DSC � Dice similarity coefficient; HD �
Hausdorff distance; SC � spinal cord

The human spinal cord (SC) can be affected by numerous neu-

rologic disorders of variable pathophysiology (eg, genetic, in-

flammatory, demyelinating, degenerative, and so forth),1,2 and

MR imaging is a valuable part of the diagnostic work-up in pa-

tients with suspected intramedullary pathology.3,4 SC gray matter

and white matter can be involved to a various extent not only

among different SC disorders but also among patients with the

same disease (eg, multiple sclerosis, amyotrophic lateral sclero-

sis).5,6 Hence, quantification of SC compartments may add to our

understanding of SC pathology5,6 and hopefully help in the man-

agement of individual patients in the future.

However, the SC presents additional challenges for MR imag-
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ing. The SC is surrounded by a number of different tissue types,

including CSF, bone, and air. These create considerable signal

inhomogeneities along this thin, elongated structure.3,4,7,8 As a

result, conventional SC MR imaging was— until recently—not

able to differentiate sufficiently among SC GM, WM, and CSF. In

the past, there were first attempts toward this differentiation using

a series of acquisition approaches.9-12 More recently an averaged

magnetization inversion recovery acquisitions (AMIRA) se-

quence was proposed, delivering a notable SC GM/WM contrast

while maintaining short acquisition times at the same time.13 The

latter is especially important for imaging small-sized structures

(like the SC GM/WM) in patients with disabilities having a short

time window in which they can lie still.

Moreover, accurate SC GM segmentation remains challeng-

ing. First, manual approaches demonstrated the feasibility of

distinguishing between WM and GM.9 However, manual ap-

proaches require a considerable amount of time, are prone to

error, and demonstrate significant interobserver and intraob-

server variability. As a result of improvements in image quality

and postprocessing techniques, the first fully automatic SC GM

segmentation methods were established in the past few years.14-17

These methods have deployed atlas-based GM segmentation al-

gorithms, which may, however, lead to misestimations or seg-

mentation errors, especially in case of pathology, image artifacts,

or large between-individual anatomic variations.18,19 A noninva-

sive broadly accepted reference standard for accurate and repro-

ducible SC GM measurements is still a matter of ongoing

discussion.

In this study, we validate a fully automatic method for SC GM

and WM segmentation in terms of its reproducibility and accu-

racy in segmenting the cervical SC of healthy controls against a

manual segmentation. The proposed approach used a variational

segmentation algorithm with a shape prior,20 modified for 3D

data with a slice similarity prior on AMIRA images.

MATERIALS AND METHODS
Subjects and MR Imaging Acquisition
Twenty-four healthy subjects (14 women; mean age, 40 � 11

years) were scanned in a test-retest fashion on a 3T whole-body

MR imaging system (Magnetom Prisma; Siemens, Erlangen, Ger-

many). All subjects provided written consent. Experimental pro-

cedures conformed to the Declaration of Helsinki, and the study

protocol was approved by the local ethics committee. We ac-

quired 12 axial AMIRA images13 (FOV � 128 � 128 mm2, slice

thickness � 8 mm, slice overlap � 4 mm, in-plane resolution �

0.67 � 0.67 mm2, TEbalanced steady-state free precession � 2.14 ms,

TRbalanced steady-state free precession � 5.13 ms, signal averaging � 1,

acquisition time � 51 seconds per slice) over a 48-mm cervical

SC segment, extending approximately from the C2–C5 verte-

bral level.13 The most rostrally acquired slice was placed with

its lower surface adjacent to the most rostral surface of the

C2/C3 intervertebral disc. For precise positioning of each in-

dividual slice and its orthogonal angulation to the course of the

SC, a strongly T2-weighted TSE with high contrast between

CSF and SC was used as a reference. For each slice, the AMIRA

approach acquired 8 images of considerably different tissue

contrast among GM, WM, and CSF with effective TI � 97.1,

158.7, 220.2, 281.8, 343.3, 404.9, 466.5, 528.0 ms. Averaging

the first 5 images enhances the GM/WM contrast-to-noise ra-

tio, whereas averaging the last 3 images clearly improves the

WM/CSF contrast-to-noise ratio (Fig 1). For more details on

the AMIRA sequence, please see Weigel and Bieri, 2018.13

Each subject was scanned 3 times in 1 MR imaging session.

The first 2 scans were performed in a back-to-back fashion with-

out repositioning to allow intrasession comparisons. The third

scan was obtained after patient repositioning to allow intersession

comparisons.

All scans underwent basic preprocessing including 2D and

3D correction for field inhomogeneities using the scanner soft-

FIG 1. Exemplary axial AMIRA slice of 1 representative volunteer at the C4 level. A–H, Eight images of different tissue contrast acquired by the
AMIRA sequence, shown in chronologic order from lowest-to-highest TI. I, Average image from A to E in full view, which delivers a high
contrast-to-noise-ratio for GM/WM. J, Average image from F to H, which delivers a high contrast-to-noise ratio for SC/CSF. K, Same average
image as in I but histogram-equalized and zoomed.
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ware before segmentation. To minimize numeric errors of the

validation metrics, we performed a 5-fold in-slice upsampling

of the slices using the Lanczos-3 interpolation kernel.

SC Segmentation
As proposed in a previous study,20 a variational segmentation

approach based on the continuous min-cut max-flow framework

was used, which includes total variation regularization to segment

WM and GM. The min-cut max-flow capacity functions are mod-

eled using edge, region, and prior information as well as an ap-

pearance model built from manual segmentations. Aiming for

high accuracy, the proposed approach prefers intensities of the

actual image and tries to include prior information as little as

possible, which regularizes for higher precision. Compared with

the previous study,20 we added a slice similarity prior,21 included

all inversion images of one slice (Fig 1) into the calculation of the

max-flow capacity functions, and improved the adaptation of the

appearance model with posterior models that reconstruct

the most likely appearance only based on well segmented pixels.22

As a first step of the algorithm to align the 12 slices, the images

are center-cropped and slice-wise successively coregistered rostral

to caudal using translations in pixel-size steps to prevent further

interpolation. Then, the algorithm automatically locates and de-

lineates the ring-shaped CSF from its surroundings and extracts

the cross-sectional SC surface. Finally, it uses the previously seg-

mented SC surface as a mask for GM/WM differentiation. An

illustration of the algorithm is shown in Fig 2. Segmentations were

achieved in a leave-one-subject-out cross-validation—that is,

with the currently segmented subject being left out in the appear-

ance model used.

The segmentation algorithm was implemented in Matlab

(MathWorks, Natick, Massachusetts). Processing time on a

Xeon CPU E5–2620 v3 @ 2.40GHz (Intel, Santa Clara, Califor-

nia) is around 1 minute for each segmentation step (CSF-SC

and WM-GM segmentation), and fewer than 8 GB of RAM is

used to segment a stack of 12 slices. Code is available on

https://github.com/neonroehre/AJNR2019.

Two experienced raters (C.T. and A.A.) were involved in the

manual segmentations. Both raters had �4 years’ experience in

neuroimaging research, including SC volumetric studies. In a first

step, segmentations were conducted on the average of the last 3

AMIRA images for the total SC cross-sectional area. Using the

already delineated total SC masks, we then performed manual

segmentations of the GM and WM cross-sectional areas on the

average of the first 5 AMIRA images (On-line Figure). C.T. seg-

mented all images once. These results were further applied as a

“manual reference standard.” C.T. also conducted a second

FIG 2. Flow chart of the automatic segmentation pipeline. As a first step of the algorithm to align the 12 slices, the images are center-cropped
and slice-wise successively coregistered rostral to caudal using translations in pixel-size steps to prevent further interpolation. Then, the
algorithm automatically locates and delineates the ring-shaped CSF from its surroundings and extracts the cross-sectional SC surface. Finally, it
uses the previously segmented SC surface as a mask for GM/WM differentiation. The iterative steps of CSF segmentation are shown as a
zoomed-in view. GM segmentation uses essentially the same steps and is thus not shown in detail.
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“run” of 60 randomly selected slices to assess intrarater com-

parisons. This second run was conducted with slightly differ-

ent contrast adjustments than the first to evaluate the robust-

ness of intrarater manual segmentation. A.A. segmented all

images of the first scan of all 24 healthy controls to allow in-

terrater comparisons.

To evaluate the performance of our method on SC slices, in

which the fully automatic approach failed (in total 12% of ac-

quired slices, see also Results), we applied a semiautomatic ap-

proach as follows: The SC/CSF boundaries were segmented man-

ually (manual reference standard) and segmentation of the GM

and WM was then performed using the fully-automatic approach

described above, given the manual total SC masks.

To compare our automatic method with currently available

algorithms, we tested the iterative nonlocal STAPLE algorithm23

on our AMIRA images using the algorithm in the SCFusion_

Demo package (https://www.nitrc.org/frs/download.php/7666/

scfusion_demo.zip). Asman et al23 used atlases consisting of SC-

GM-WM contrast images and SC-GM-WM manual reference

standard segmentations, which are rigidly registered to the target

slice and fused together with the most fitting manual reference

standard segmentation as an estimation of the targeted segmen-

tation. We built our own atlases and tested the iterative nonlocal

STAPLE in a leave-one-subject-out fashion.

Statistical Analysis
Intra- and intersession and intra- and interrater reproducibility of

the 2 approaches were evaluated using coefficients of variation

(CVs), Dice similarity coefficients (DSCs), and Hausdorff dis-

tances (HDs). The accuracy of the automatic method compared

with the manual reference standard was evaluated using the DSC

and HD. CVs between the 2 masks A and B were calculated with

the following formula:

CV � �2 �
�A � B�
�A � B�%.

DSCs were calculated as follows:

DSC � 2 �
�MRS � AM�

�MRS� � �AM�.

HDs were calculated as follows:

d�X3 Y� � max�d i
X3 Y, i � 1…Nx�

HD � max	d�MRS3 AM�, d� AM3 MRS�
,

where d is the Euclidean distance between voxels x and y, MRS is

the manual reference standard and AM the automatic method.

Because of non-normally distributed data, we performed a

square root transformation of the CV, a cubic transformation of

the DSC, and a logarithmic transformation of the HD before con-

ducting all t test analyses and MANOVA. Two-paired t tests were

performed for the following comparisons after controlling for

normal data distribution: 1) manual segmentation versus au-

tomatic method reproducibility, and 2) manual segmentation ver-

sus automatic method total SC, WM, and GM cross-sectional area.

For the automatic method, differences in measures of reproducibility

and accuracy between intrasession and intersession; among GM,

WM, and total SC; and among the axial slice levels (1–12) were in-

vestigated using MANOVA. Additional Tukey post hoc tests were

conducted when applicable.

RESULTS
In total, 864 slices were acquired from 24 volunteers with 12 slices

per scan, and each scan was performed a total of 3 times for each

subject. Of 864 acquired axial SC slices, 9 were excluded from

further analysis because of severe imaging artifacts. The automatic

method successfully segmented 88% (752 slices) of all remain-

ing slices. Because of imaging artifacts, localization problems,

or posterior gaps of the CSF, 8% of all slice-wise SC segmen-

tations and 4% of GM segmentations would have needed fur-

ther manual interventions and thus were excluded from the

reproducibility analysis.

Cross-Sectional SC Measurements
The mean total SC area was 89.98 � 7.88 mm2, the mean WM area

was 72.71 � 7.55 mm2, and the mean GM area was 17.20 � 2.28

mm2 as measured by the automatic method. Compared with the

manual reference standard, the automatic method delivered sig-

nificantly higher total SC and WM area as well as significantly

lower GM area (86.88 � 11.87, 69.18 � 10.16, and 17.77 � 3.05

mm2, respectively; all, P � .001). Cross-sectional areas per slice of

the automatic method are shown in Fig 3.

Reproducibility
Measurements of intra- and intersession and intra- and interrater

reproducibility are shown in the On-line Table. Reproducibility

FIG 3. Cross-sectional areas of total spinal cord, white matter, and gray matter per axial slice as measured by automatic segmentations. Notice
the slight increase of total spinal cord (TSC) and the marked GM cross-sectional area increase caudally, which corresponds to the cervical SC
enlargement. The light gray area depicts the limits of �1 SD.
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of SC GM and WM is also depicted per slice in Fig 4. All mean CVs

of the automatic method were �4.77%, and the mean DSC was

�0.88 between scans and raters. The latter was significantly better

than for the manual segmentation (all, P � .001).

By means of MANOVA with DSC, HD, and CV as multivariate

outcomes, a significant difference between intra- and intersession

reproducibility for total SC, WM, and GM using the automatic

method was shown (P � .001 for all 3 models). However, CVs

differed only for WM and total SC (P � .05 and P � .001, respec-

tively), but not for GM. In our automatic method, intra- and

intersession reproducibility was significantly decreased in the or-

der total SC3WM3GM (all P � .001), as shown by MANOVA

and post hoc tests. No difference was found in intra- and interses-

sion reproducibility among slices for GM, but a significant de-

crease was found for WM (both P � .001) and total SC (P � .05

and P � .001, respectively) in caudal slices, as shown by

MANOVA. However, CVs were similar for all SC metrics among

all slices.

Accuracy
Measurements of accuracy of our fully automatic method com-

pared with a manual reference standard are shown in detail in the

Table and are also shown per slice in Fig 5. The automatic method

showed a mean DSC of �0.86 in all SC metrics. Accuracy was

significantly decreased in the order total SC3WM3GM (all P �

.001), as shown by MANOVA and post hoc tests. In MANOVA,

accuracy was lower for GM (P � .05) and total SC (P � .001) in

caudal slices, but not for WM. However, the DSC was similar

among acquired slices for total SC.

Measurements of accuracy of the initially discarded SC slices

(12% of all acquired AMIRA slices) analyzed in a semiautomatic

fashion are also shown in the Table. The semiautomatic approach

showed a mean DSC of �0.83 in both GM and WM. When we

compared it with the fully automatic approach on the initially

nondiscarded SC slices, a statistically significant accuracy de-

crease was observed in the semiautomatic approach (both P �

.001).

Comparison with the Iterative Nonlocal STAPLE
Algorithm
In comparison with the original study23 performed on T2* MR

images, the application of the iterative nonlocal STAPLE algo-

rithm in our AMIRA images showed a higher accuracy. Mean

DSC and HD for the total SC, GM, and WM were as follows—

total SC: mean DSC � 0.93 � 0.03 (median, 0.94), mean HD �

0.96 � 0.39 mm (median, 0.84 mm); GM: mean DSC � 0.80 �

0.06 (median, 0.82), mean HD � 1.09 � 0.42 mm (median, 1.04

mm); WM: mean DSC � 0.87 � 0.04 (median, 0.88), mean HD �

FIG 4. Comparison between the reproducibility of manual and automatic measurements (AM) of spinal cord gray matter and white matter per
axial slice. Intrasession and intersession reproducibility is assessed in terms of Dice coefficients (graphics on the left) and coefficients of variation
(graphics on the right). Manual and automatic intersession reproducibility is shown in dark gray, whereas manual and automatic intrasession
reproducibility is shown in light gray. Error bars display mean values � 0.2 SDs.

SC GM, WM, and TSC accuracy of automatic and semiautomatic segmentations against the manual reference standard segmentationsa

Parameter GM WM TSC
AM (on 88% of acquired slices, nondiscarded from initial analysis) DSC 0.86 � 0.04 (0.87) 0.90 � 0.03 (0.91) 0.95 � 0.03 (0.95)

HD (mm) 0.90 � 0.44 (0.72) 0.82 � 0.22 (0.75) 0.64 � 0.27 (0.67)
SAM (on 12% of acquired slices, discarded from initial analysis) DSC 0.83 � 0.04 (0.84) 0.96 � 0.01 (0.96)

HD (mm) 1.11 � 0.55 (0.93) 0.64 � 0.15 (0.67)
AM (on nondiscarded samples) and SAM (on discarded slices),

mixed (100% of acquired slices)
DSC 0.86 � 0.04 (0.86) 0.91 � 0.04 (0.92) 0.96 � 0.03 (0.96)
HD (mm) 0.91 � 0.46 (0.81) 0.80 � 0.22 (0.75) 0.60 � 0.29 (0.55)

Note:—SAM indicates semiautomatic segmentation; TSC, total spinal cord; AM, automatic segmentations; DSC, Dice coefficient; HD, Hausdorff distances.
a All values are shown as mean � SD (median).

FIG 5. Accuracy measurements in terms of Dice coefficients (graphics on the left) and Hausdorff distances (graphics on the right) of white
matter and gray matter per slice. Overlaid boxplots display median values as well as 25th and 75th percentile values. Gray areas depict the mean
standard error values � 1 SD.
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0.98 � 0.37 mm (median, 0.89 mm).23 Moreover, our proposed

automatic method had higher accuracy for all total SC, WM, and

GM compared with the iterative nonlocal STAPLE algorithm in

our AMIRA images (all, P � .001).

DISCUSSION
Visualization of the SC GM in MR imaging has been hampered by

technical difficulties until recently.8 Despite technologic advance-

ments, segmentation of SC compartments remains a challenge.24

In this work, we successfully deployed the novel MR imaging ap-

proach AMIRA and a fully automatic variational segmentation

algorithm with a shape prior modified for 3D data with a slice

similarity before demonstrating a fully automated approach for

segmentation of SC, GM, and WM.

In contrast to brain MR imaging, the environment of the SC

presents additional challenges for MR imaging methods and in-

herently for SC segmentation. The greatest challenges include

magnetic field inhomogeneities across the SC, cord curvature,

shape and size, contact of the SC and the osseous canal, osteo-

phytes causing focal changes in CSF flow dynamics within the

canal, motion artifacts, Gibbs artifacts, partial volume effects, and

B1 inhomogeneity.25-27 The AMIRA sequence13 used is based on a

2D approach that is, generally, less motion-sensitive than a 3D

sequence. It uses a relatively short acquisition time of 51 seconds

per slice, which leads to a reduction of motion artifacts and is

especially suitable for disabled patients with limited ability to lie

still (eg, due to spasticity). The AMIRA approach makes use of a

balanced steady-state free precession readout, which is inherently

of low-flow sensitivity or inherently flow compensated.13 The in-

version recovery preparation is global and nonselective; hence, it

does not pose an issue for CSF flow sensitivity either.

Furthermore, because the SC has a small cross-section of

roughly 1.3 � 0.7 cm and our slices were located close to the

isocenter, effects of B1 inhomogeneity do not play a significant

role for the present AMIRA images. The even smaller size of the

SC GM presents additional difficulties for MR imaging methods,

requiring submillimeter in-plane resolutions, especially for mor-

phometry. Visualization and segmentation of the SC GM and

WM are hampered by the similar relaxation times of the 2 SC

compartments, limiting the use of conventional SC MR imaging

for that purpose. Finally, the complex butterfly shape of the SC

GM makes the segmentation of the structure a rather difficult task

for computer-based segmentation methods. The AMIRA ap-

proach was able to produce SC images with a high GM/WM con-

trast in all participants. This was achieved in clinically feasible

acquisition times (10.2 minutes for a 48-mm cervical SC

segment).

Of 864 slices, only 9 were excluded due to image artifacts,

mainly resulting from magnetic field inhomogeneities produced

by bone structures (clavicles, scapulae, humeri, ribs, and so forth)

as well as due to aliasing and motion artifacts. Although, these

artifacts occurred in a rather small percentage of the acquired

images (1%), they should be taken into account in future appli-

cations of the AMIRA approach. A further argument in favor of

the use of AMIRA for SC GM and WM quantification is that our

pipeline was able to deliver not only higher accuracy measures

compared with a previous study24 demonstrating results from

various MR imaging sequences and segmentation algorithms, but

also better accuracy performance of an established algorithm on

AMIRA compared with T2* MR images (see also below). This

result may be an indirect indication of the superior quality of

AMIRA compared with other sequences used so far for spinal

cord GM and WM quantification. Nevertheless, due to AMIRA

having a nonisotropic resolution, our MR imaging acquisition

may have been more prone to partial volume effects, despite our

slices being angulated individually in an orthogonal way to the

course of the SC.

The proposed automatic segmentation method showed excel-

lent precision in terms of inter- and intrasession reproducibility

and was superior to the manual segmentation performed by ex-

perienced raters for all SC metrics, as measured by both CV and

DSC. Our automatic method was also superior in terms of the HD

for total SC, though it did not differ with regard to SC WM and

GM. At the same time, the accuracy of the automatic method was

high for total SC, GM, and WM, as measured by both the DSC and

HD. Comparing the present data with results of the SC GM seg-

mentation challenge,24 we achieved a superior mean GM DSC of

0.86 versus 0.80 performed by the deepSeg (https://pypi.org/

project/deepSeg/) algorithm in the SC GM segmentation chal-

lenge dataset. This achievement could be potentially explained by

the high quality of the AMIRA images and/or the use of a multi-

center dataset within the challenge with results from various MR

imaging sequences and segmentation algorithms. Application of

the previously published iterative nonlocal STAPLE algorithm on

our AMIRA images showed higher accuracy than the original

work of Asman et al23 (SC GM: median DSC of 0.82 versus 0.75,

median HD of 1.04 versus 2.5 mm), which was performed on

T2*-weighted 3D gradient-echo images. While our atlases were

constructed from a pool of around 800 samples, Asman et al had

around 2000 available slices. Thus, the better accuracy seen here

can be explained by a possible higher image quality in AMIRA

images compared with T2*-weighted 3D gradient-echo images;

however, a direct comparison of MR images within the same sub-

jects was not performed. The shallow architecture of the proposed

algorithm with only a few parameters may make it less prone to

overfitting to the training set compared with a state-of-the-art

deep neural network. However, a direct comparison of our

method with deepSeg28 was not possible in this study.

Precision and accuracy of our automatic method was de-

creased in the order of total SC3WM3GM. This decrease may

be caused by the accordingly decreasing size of WM and GM

compared with total SC because small differences may be trans-

lated into a larger variance. Moreover, the more complex geom-

etry of the GM and WM compared with total SC may be more

prone to misclassification errors. Finally, despite the good image

quality, signal contrast was stronger for SC/CSF compared with

GM/WM, which, in turn, could have partly contributed to differ-

ences in total SC and GM segmentation. Moreover, a slightly

lower reproducibility and accuracy of our measurements in more

caudally acquired slices could also be identified, which may reflect

a decrease in contrast intensity and a “noise” increase in AMIRA

images acquired closer to the lungs and surrounded by overall

greater body mass (thorax, shoulders, and arms) compared with

the more rostral cervical SC.

6 Tsagkas ● 2019 www.ajnr.org

7 Novel Reliable Automatic Pipeline for Spinal Cord Gray Matter Quantification

134



Our automatic method also showed significantly lower intra-

session than intersession variability for all SC metrics. However,

GM intra- and intersession CVs were similar, with mean values

ranging between 4.10% and 4.77%. Accordingly, our method

demonstrated similar mean intra- and intersession CVs between

2.54% and 2.95% for WM. We, therefore, conclude that patient

repositioning only slightly influences GM and WM area measure-

ments; this conclusion provides evidence for the suitability of our

automatic segmentation method in longitudinal settings.

In our work, minimal contrast adjustment differences in our

manual segmentation led to a marked decrease of reproducibility,

especially in GM area quantifications, as shown in the manual

intra- and interrater measurements (mean CV up to 19.18%).

Because the proposed method is fully automatic and requires no

user-software interaction, it is devoid of additional variation pro-

duced by intra- and interrater variability. Therefore, our method

provides significant advantages in large datasets or multicenter

studies and, as mentioned above, may also be valuable in the lon-

gitudinal evaluation of individual patients (eg, patients with MS).

Compared with the manual reference standard, the automatic

method slightly overestimated total SC and WM area, while un-

derestimating the GM area. This result might be due to different

intensity-thresholding in the manual segmentation compared

with the automatic method. The caudal GM area increase shown

in Fig 3 can be explained by the increased volume of motor cells of

the cervical SC enlargement in the GM ventral horns, which in-

nervate the upper limb muscles.

Although a fully automatic segmentation was not feasible on

12% of acquired SC slices, a semiautomatic approach with man-

ual total SC segmentation and fully automatic GM and WM seg-

mentation could be performed on those slices. This approach also

showed high-accuracy measurements with mean DSC of �0.83 in

both GM and WM. However, compared with the fully automatic

method on the initially nondiscarded slices, a slight accuracy de-

crease was observed, which could be interpreted in terms of a

lower image quality of those AMIRA images. Nevertheless, these

results demonstrate a relative robustness of our automatic ap-

proach even in MR images of suboptimal quality, which are a

rather common phenomenon in clinical routine.

The present work focused on SC GM and WM segmentation

using AMIRA images of healthy controls. Nevertheless, the moti-

vation of our research is to deploy this method in patient data (eg,

patients with MS) for the development of a potential widely ap-

plied MR imaging biomarker. Exemplary segmentation of data of

patients with MS (not shown in detail here) showed that lesion

appearance was similar to that of GM and therefore challenged the

algorithm where lesions did not respect the GM boundaries (Fig

6). In future work, we intend to adjust the current method to

address its current limitations. As an alternative approach, we

plan to apply a deep learning– based segmentation approach on

pathologic images as already performed on the data of healthy

subjects.28,29

CONCLUSIONS
The AMIRA sequence is presented as a time-efficient and repro-

ducible MR imaging approach within the cervical cord. Our fully

automatic segmentation method for SC GM and WM demon-

strated further high reproducibility and accuracy. We were able to

show that a shallow algorithm produces state-of-the-art GM-WM

segmentation results on the AMIRA data. It is therefore suitable in

large longitudinal studies investigating upper cervical SC vol-

umes. Reproducibility measures of this work could be further

FIG 6. Examples of segmentations of representative patients with MS. The thick continuous line indicates automatic segmentation; the dashed
line, manual reference standard. A, A 54-year-old female patient with MS. Rostral cervical SC slices of the C1/C2 level without focal lesions.
Automatic segmentation highly corresponds to the manual reference standard. B, A 32-year-old male patient with MS. Rostral cervical SC slice
of the C2 level with a focal posterolateral lesion fused with the left posterior gray matter horn. Automatic segmentation misclassifies the focal
lesion as SC GM. C, A 33-year-old female patient with MS. A cervical SC slice of the C3/C4 level with a focal posterior lesion fusing with the
posterior SC GM horns and the central SC GM commissure. Automatic segmentation misclassifies the focal lesion as SC GM and CSF.
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used for effect size calculations of SC compartment metrics for

studies using the same processing approach. In future work, we

will address the use of deep learning approaches, as demonstrated

in recent studies.28
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22. Lüthi M, Albrecht T, Vetter T. Probabilistic modeling and visualiza-
tion of the flexibility in morphable models. In: Hancock ER, Martin
RR, Sabin MA, eds. Mathematics of Surfaces XIII. Berlin: Springer-
Verlag; 2009:251– 64

23. Asman AJ, Smith SA, Reich DS, et al. Robust GM/WM segmentation
of the spinal cord with iterative non-local statistical fusion. Med
Image Comput Comput Assist Inter 2013;16(Pt 1):759 – 67 Medline

24. Prados F, Ashburner J, Blaiotta C, et al. Spinal cord grey matter segmen-
tation challenge. Neuroimage 2017;152:312–29 CrossRef Medline

25. Bhadelia RA, Bogdan AR, Kaplan RF, et al. Cerebrospinal fluid pul-
sation amplitude and its quantitative relationship to cerebral blood
flow pulsations: a phase-contrast MR flow imaging study. Neurora-
diology 1997;39:258 – 64 CrossRef Medline

26. Figley CR, Stroman PW. Investigation of human cervical and upper
thoracic spinal cord motion: implications for imaging spinal cord

8 Tsagkas ● 2019 www.ajnr.org

7 Novel Reliable Automatic Pipeline for Spinal Cord Gray Matter Quantification

136



structure and function. Magn Reson Med 2007;58:185– 89 CrossRef
Medline
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8 Spinal Cord Gray Matter-White
Matter Segmentation on Magnetic
Resonance AMIRA Images with
MDGRU

The approach presented in this chapter describes our first attempt in applying a super-
vised deep-learning framework to the CGM dataset of healthy subjects (cf. Page 88).
In particular, we chose a recurrent neural network with multidimensional gated recur-
rent units (MDGRU) [24], which was designed for the segmentation of biomedical data
and proved excellent performance in GM-WM segmentation. We applied MDGRU to
the 2D images of the CGM dataset slicewise, directly feeding the 8 AMIRA inversion
images. Moreover, for the training phase, we modified MDGRU’s cross-entropy loss
(CEL) by proposing and including a generalized Dice loss (GDL) with automated
class weighting [151].

To demonstrate the architecture’s capability of generalization, we applied the pro-
posed approach to the spinal cord gray matter segmentation (SCGM) challenge data
[14]. We set a new state of the art in this challenge with a significant margin between
the mean GM DSC of 0.90 achieved by the proposed approach compared to 0.85
of the predecessor, see Table 2 of this chapter’s publication. The proposed method
furthermore yields mean GM Dice coefficients of 0.92 ± 0.03 on the AMIRA images
as compared to 0.90 ± 0.03 on the challenge data. This difference may point to-
wards AMIRA’s favorable image quality compared to the quality of the common MR
sequences gathered for the SCGM challenge.

The use of a Dice loss was inspired by SCT’s ”deepseg” network of Perone et al.
[138]. They showed that the implementation of a Dice loss in the network’s learning
loss not only improves the testing scores in terms of DSC but also leads to sharper
predicted probability maps calculated through softmax, cf. Equation (2.49). Sharper
probability maps have less uncertainty in the labels’ boundary regions, as depicted
in Fig. 2 of this chapter’s publication. The publication focuses on giving an ablation
analysis on the combination with GDL: first, the combination of CEL and GDL to-
gether performs better than the versions with either only CEL or only GDL; second,
the automated class weighting establishes a comfortable way of dealing with class
imbalance; third, the convex linear combination of CEL and GDL is quite stable
because of GDL’s linear scale and CEL’s logarithmic scale; fourth, there is no notice-
able difference between the multi-label Dice loss and its generalized version, except
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in the implementation of the generalized version having fewer regularization terms to
prevent divisions by zero.

We, however, did not include an ablation analysis on the effect of feeding the
network with the 8 inversion images directly rather than providing only a projected
mean image. Experiments revealed inferior performance when feeding only one mean
image. We believe that directly feeding the 8 AMIRA inversion images enables the
network to learn the tissue-specific MR relaxation curves shown in Figure 3.4.

Finally but importantly, the estimated SC, WM, and GM cross-sectional areas
of the manual segmentations as well as those of the proposed automatic approach
correspond to similar values reported in the literature, such as [152], [153, Tab. 2],
[154, Fig. 8], [13, Tab. 1], and [21, Tab. 4].

Publication The publication was written with joint first authorship by Charidimos
Tsagkas and Antal Horváth, with A. Horváth developing and applying the proposed
method and performing the statistical analysis, and C. Tsagkas focusing on the clinical
setup and providing manual segmentations. The paper was presented at the workshop
Computational Methods and Clinical Applications for Spine Imaging (CSI 2018) in
conjunction with the 21st International Conference on Medical Image Computing and
Computer Assisted Intervention (MICCAI) on the 16th of September 2018 in Granada,
Spain. It was published1 as part of the workshop proceedings [146].

1https://link.springer.com/chapter/10.1007/978-3-030-13736-6_1 (last accessed on Sept. 10,
2019)
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Spinal Cord Gray Matter-White Matter
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Abstract. The small butterfly shaped structure of spinal cord (SC)
gray matter (GM) is challenging to image and to delineate from its
surrounding white matter (WM). Segmenting GM is up to a point a
trade-off between accuracy and precision. We propose a new pipeline for
GM-WM magnetic resonance (MR) image acquisition and segmentation.
We report superior results as compared to the ones recently reported in
the SC GM segmentation challenge and show even better results using
the averaged magnetization inversion recovery acquisitions (AMIRA)
sequence. Scan-rescan experiments with the AMIRA sequence show high
reproducibility in terms of Dice coefficient, Hausdorff distance and rela-
tive standard deviation. We use a recurrent neural network (RNN) with
multi-dimensional gated recurrent units (MD-GRU) to train segmenta-
tion models on the AMIRA dataset of 855 slices. We added a generalized
dice loss to the cross entropy loss that MD-GRU uses and were able to
improve the results.

Keywords: Segmentation · Spinal cord · Gray matter ·
White matter · Deep learning · RNN · MD-GRU

1 Introduction

Cervical spinal cord (SC) segmentation in magnetic resonance (MR) images is a
viable means for quantitatively assessing the neurodegenerative effects of diseases
in the central nervous system. While conventional MR sequences only allowed
differentiation of the boundary between SC and cerebrospinal fluid (CSF), more
recent sequences can be used to distinguish the SC’s inner gray matter (GM)
and white matter (WM) compartments. The latter task, however, remains chal-
lenging as state-of-the-art MR sequences only achieve an in-slice resolution of
around 0.5 mm while maintaining a good signal-to-noise ratio (SNR) and an
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acceptable acquisition time. This resolution is barely enough to visualize the
SC’s butterfly-shaped GM structure.

The 2016 spinal cord gray matter segmentation (SCGM) challenge [7]
reported mean Dice similarity coefficients (DSC) of 0.8 in comparison to a man-
ual consensus ground truth for the best SC GM segmentation approaches at that
time. Porisky et al. [6] experimented with 3D convolutional encoder networks but
did not improve the challenge’s results. Perone et al.’s U-Net approach [5] later
managed to push the DSC value to 0.85. More recently, Datta et al. [3] reported
mean DSC of 0.88 on images of various MR sequences with a morphological
geodesic active contour model.

Still, this means that a high number of subjects would be necessary to get
reliable findings from clinical trials. Hence, despite recent developments, there
is a need for improvement of the reproducibility of SC GM and WM measure-
ments. An accurate and precise segmentation of the SC’s inner structures in MR
images under the mentioned limiting trade-off between resolution, SNR, and
time therefore remains a challenge, especially when focusing on the GM.

In this work, we present a new robust and fully automatic pipeline for the
acquisition and segmentation of GM and WM in MR images of the SC. On the
segmentation side, we propose the use of multi-dimensional gated recurrent units
(MD-GRU), which already proved fit for a number of medical segmentation tasks
[1], to gain accurate and precise SC GM and WM segmentations. To this end, we
adapt MD-GRU’s original cross-entropy loss by integrating a generalized Dice
loss (GDL) [8] and show improved segmentation performance compared to the
original. Using the proposed setup, we manage to set a new state of the art on
the SCGM challenge data with a mean DSC of 0.9. On the imaging side, we
propose to use the AMIRA MR sequence [9] for gaining improved GM-WM and
WM-CSF contrast in axial cross-sectional slices of the SC. Using the proposed
MD-GRU approach in combination with this new imaging sequence, we manage
to gain an even higher accuracy of DSC 0.91 wrt. a manual ground truth, as we
demonstrate in experiments on scan-rescan images of healthy subjects, for both
SC GM and WM.

The remaining paper is structured as follows: in Sect. 2, we present our seg-
mentation method; in Sect. 3, we briefly describe the AMIRA MR sequence and
the two datasets (SCGM challenge, AMIRA images) that we use for the experi-
ments of Sect. 4, before we conclude in Sect. 5.

2 Method

The Multi-Dimensional Gated Recurrent Unit (MD-GRU) [1] is a generalization
of a bi-directional recurrent neural network (RNN), which is able to process
images. It achieves this task by treating each direction along each of the spatial
dimensions independently as a temporal direction. The MD-GRU processes the
image using two convolutional GRUs (C-GRUs) for each image dimension, one in
forward and one in backward direction, and combines the results of all individual
C-GRUs. The gated recurrent unit (GRU), compared to the more popular and
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established long short-term memory (LSTM), uses a simpler gating structure and
combines its state and output. The GRU has been shown to produce comparable
results while consuming less memory than its LSTM counterpart when applied
to image segmentation and hence allows for larger images to be processed [1].

We directly feed the 2D version of MD-GRU the 8-channel AMIRA images
(cf. Sect. 3.1) to train AMIRA segmentation models, but only use the single
channel images of the SCGM dataset (cf. Sect. 3.2) for the challenge models. To
address the high class imbalance between background, WM and GM, similar to
[5] we added a GM Dice loss (DL), but also included DLs for all the other label
classes using the generalized Dice loss (GDL) formulation of Sudre et al. [8].

2.1 Dice Loss

A straightforward approximation of a DL for a multi-labelling problem is

LD = − 1∑
�∈L ω�

∑

�∈L
ω�

2
∑

x∈X p�x r�x∑
x∈X p�x + r�x

, (1)

with the image domain X, labels L, predictions p, raters r, and class weights
ω. Sudre et al. [8] described a Generalized Dice Loss (GDL) LGD where they
divide the weighted sum of the intersections of all labels by the weighted sum
of all predictions and targets of all labels, instead of just linearly combining the
individual Dice coefficients:

LGD = − 2
∑

�∈L ω�

∑
x∈X p�x r�x∑

�∈L ω�

∑
x∈X p�x + r�x

. (2)

As stated in [2], compared to the DL (1), the GDL (2) allows all labels to
contribute equally to the overall overlap (denominator in (2)).

The (squared) inverse volume weighting

ω� =
1

(∑
x∈X r�x

)2 , (3)

as proposed in [2], deals with the class imbalance problem: large regions only
contribute very little to LD or LGD, whereas small regions are weighted more
and thus are more important in the optimization process.

To avoid division by zero in ω� for image samples with absence of label �, we
regularize the denominator of (3) and formulate the weighting we used:

ω� =
1

1 +
(∑

x∈X r�x

)2 . (4)

The weighting (4) compared to (3) only slightly decreases its value as long as the
object of interest has enough pixels. Note, that during training of a network, it is
possible, that not all labels occur in a random subsample with random location.

Finally, we combine DL or GDL with the cross entropy loss LC (CEL) with
a factor λ ∈ [0, 1]:

L = λLD or GD + (1 − λ)LC.
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Fig. 1. AMIRA sequence of an exemplary slice on C4 level. All images 10-fold upsam-
pled. Top and middle row: Inversion images with increasing inversion times from left to
right. Original cropped images (top), and histogram equalized (middle). Bottom row:
Histogram equalized sum of the first 5 inversion images in full view (left), weighted aver-
age with optimal CSF-WM contrast (middle), and optimal GM-WM contrast (right).

3 Data

In the following subsections, we describe the images used for the experiments:
healthy subjects scan-rescan AMIRA dataset (own), which we call the AMIRA
dataset, and the SCGM challenge dataset1 [7], which we refer to as SCGM
dataset.

3.1 AMIRA Dataset

The first dataset used in this paper consists of 24 healthy subjects (14 female,
10 male, age 40± 11 years). Each subject was scanned 3 times, remaining in the
scanner between the first and second scan, and leaving the scanner and being
repositioned between the second and third scan. Each scan contains 12 axial
cross-sectional slices of the neck acquired with the AMIRA sequence [9] that
were manually aligned at acquisition time perpendicular to the SC’s centerline
with an average slice distance of 4 mm starting from vertebra C3 level in caudal
direction.

1 http://cmictig.cs.ucl.ac.uk/niftyweb/program.php?p=CHALLENGE last accessed:
September 13, 2018.
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Because of severe imaging artifacts some slices had to be discarded. For one
scan the last three caudal slices, for two scans the last two slices and for another
two scans the last slice, in total 9 out of the 864 slices were discarded.

The AMIRA sequence consists of 8 inversion images of the same anatomical
slice captured at different inversion times after 180◦ MR pulses that have an in-
slice resolution of 0.67 mm × 0.67 mm. Exemplary inversion images and different
averages of an exemplary slice on vertebra C4 level are shown in Fig. 1. For
human raters, to manually segment the AMIRA images, different single channel
projections of the 8 channel images are necessary. Weighted averages of the
inversion images with e.g. optimal CSF-WM or GM-WM contrast, see Fig. 1,
were calculated with an approach that maximizes between-class intensity mean
values and minimizes within-class intensity variances [4].

In order to reduce the numerical errors for the calculated measures, we 10-fold
upsampled all slices with Lanczos interpolation. Since all images were manually
centered at the SC, we consequently trimmed one third of the image size on each
side and thus cropped out the inner ninth to a size of 650 × 650 pixels for faster
processing.

One experienced rater segmented all 855 images manually for WM and GM
and segmented again 60 randomly chosen slices over all subjects, scans and slices,
without knowledge of their origin, to enable an intra-rater comparison.

3.2 SCGM Dataset

The SCGM segmentation challenge data [7] consists of 40 training datasets and
40 test datasets acquired at 4 different sites. Both training and test datasets each
have 10 samples of each site. The 4 sites have different imaging protocols with
different field of view, size and resolution. Each dataset was manually segmented
by 4 experts and to assess rater performance, with majority voting (more than
2 positive votes) a consensus segmentation of the 4 raters was calculated.

For training and testing of our MD-GRU models, we resampled all axial slices
of all the datasets to the common finest resolution of 0.25 mm × 0.25 mm and
center cropped or padded all datasets to a common size of 640 × 640 pixels.
Before submitting the testing results for evaluation, we padded and resampled
all slices to their original sizes and resolutions.

4 Experiments and Results

In the following subsections, we describe our experiments, the chosen MD-GRU
options, and show their results.

4.1 AMIRA Segmentation Model

We split the 24 subjects into 3 groups of 8 subjects each for 3 cross-validations:
training on two groups and testing on a third group. To handle over-fitting, of
each training set we excluded one subject and used it for validation.
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We used the standard MD-GRU2 model with default settings and residual
learning, dropout rate 0.5, and dropconnect on state. We chose the following
problem specific parameters: Gaussian high pass filtering with variance 10, batch
size 1, and window size 500 × 500 pixels. In each iteration of the training stage,
for data augmentation, a subsample of the training data with random deforma-
tion field at a random location was selected. Random deformations included an
interpolated deformation field on 4 supporting points with randomly generated
deformations of standard deviation of 15, random scaling of a factor between 4/5

and 5/4, random rotation of ±10◦, and random mirroring along the anatomical
median plane. To prevent zero padding of the subsamples, we only allowed ran-
dom sampling within a safe distance of 45 pixels from the image boundary and
truncated the random deformation magnitudes to 45 pixels, which is 3 times the
chosen standard deviation.

We trained the networks with Adadelta with a learning rate of 1 for 30’000
iterations, where one iteration approximately took 10 s on an NVIDIA GeForce
GTX Titan X. Cross entropy and DSC on the evaluation set already reached
their upper bounds after around 20’000 iterations, and dropconnect on state
prevented from overfitting as we can see in Fig. 3.

The time for segmenting a slice with the trained network approximately
took 7 s.

Prior to the final model generation, we experimented in adding only a GM
DL to the CEL with weightings λ = 0, 0.25, 0.5, 0.75, 1 and figured that 0.5
produced the best results. DL produces values close to −1 whereas CEL tends
to have small values close to 0. Moreover, CEL holds the information of all
labels, since it is calculated over all labels. Now, when adding only GM DL,
because of the imbalance of the loss values, higher values of λ strongly weaken
the information for WM and background that in this setup is carried only within
CEL. The best weighting λ depends on the cross entropy and thus depends on
the class imbalance and label uncertainty of each specific segmentation task.

CGM 1 Scan 1 Slice 2 CGM 1 Scan 3 Slice 11

CEL GDL 0.5 CEL GDL 0.5

Fig. 2. Exemplary prediction probability maps of the three labeling maps background
(red), GM (green) and WM (blue) of MD-GRU with CEL and with GDL in RGB
colors. (Color figure online)

2 https://github.com/zubata88/mdgru last accessed: September 13, 2018.
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Fig. 3. GM DSC, WM DSC and cross entropy over the training iterations of the
validation set of group 1 in the AMIRA dataset in the format mean ± one standard
deviation. Top row: models with λ = 0 (only CEL), λ = 1 (only GDL), and combined
with λ = 0.5 (GDL 0.5). Bottom row: GM DL 0.5, DL 0.5, and GDL 0.5 show similar
performance.

We observed that the auxiliary DL produces sharper probability maps at the
boundaries as compared to only using CEL, see Fig. 2, and that DL helps to
delineate weak contrasts e.g. between GM and WM.

Further experiments showed, that the proposed automatic weightings ω� (4)
for the DLs between all label classes is a good strategy to simplify the selection
of λ. In our case, the evaluation scores did not show big differences for λ in a
range from 0.25 to 0.75, when using the class weights ω� according to (4) for both
DL and GDL. MD-GRU with the trivial linear combinations λ = 0 (only CEL)
and λ = 1 (only GDL) did not perform as good as true combinations between
the two losses. We show the improvement in the scores of GDL with λ = 0.5 in
Fig. 3 and Table 1.

Table 1. Improvement between native MD-GRU with CEL and the proposed MD-
GRU with GDL together with the manual segmentation’s precision and intra-rater
accuracy values. Intra-rater accuracy of the human expert was calculated for the 60
randomly chosen slices.

Accuracy Intra-session Inter-session
GM DSC HD(mm) DSC HD(mm) RSD(%) DSC HD(mm) RSD(%)
MD-GRU CEL 0.90 ± 0.04 0.68 ± 0.43 0.89 ± 0.03 0.71 ± 0.46 3.22 ± 2.87 0.88 ± 0.04 0.70 ± 0.43 3.65 ± 3.97
MD-GRU GDL 0.5 0.91 ± 0.03 0.56 ± 0.33 0.88 ± 0.03 0.58 ± 0.32 2.93 ± 2.63 0.88 ± 0.03 0.61 ± 0.35 3.86 ± 3.49
Manual 0.86 ± 0.03 0.67 ± 0.24 5.55 ± 4.11 0.85 ± 0.03 0.71 ± 0.27 6.27 ± 4.70
Intra-rater 0.85 ± 0.07 0.62 ± 0.30

WM DSC HD(mm) DSC HD(mm) RSD(%) DSC HD(mm) RSD(%)
MD-GRU CEL 0.94 ± 0.03 0.47 ± 0.26 0.94 ± 0.02 0.51 ± 0.25 2.07 ± 2.16 0.94 ± 0.02 0.52 ± 0.22 2.40 ± 2.22
MD-GRU GDL 0.5 0.95 ± 0.02 0.43 ± 0.22 0.94 ± 0.02 0.51 ± 0.22 2.14 ± 2.35 0.94 ± 0.02 0.53 ± 0.23 2.69 ± 2.54
Manual 0.93 ± 0.02 0.54 ± 0.13 3.78 ± 3.32 0.92 ± 0.02 0.58 ± 0.15 4.59 ± 3.77
Intra-rater 0.96 ± 0.02 0.44 ± 0.15
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Finally, comparisons between GM DL 0.5, auto-weighted DL 0.5 and GDL
0.5, all with λ = 0.5, are shown in Fig. 3 on the bottom row. As can be expected,
the similarity of the terms DL (1) and GDL (2) is reflected in their almost
identical segmentation performance.

GM DL 0.5 shows comparable WM segmentation performance to the losses
that have WM DL included. This can be explained, because the GM boundary is
part of the WM boundaries and thus influences the WM scores, and furthermore
the outer WM boundary is already well delineated even without any DL through
the good CSF-WM contrast. Choosing a DL as a surrogate for GM DSC only,
as proposed in [5], is thus justifiable.

Subject 6537 Scan 1 Slice 10 Subject 6582 Scan 2 Slice 1 Subject 6537 Scan 1 Slice 5

Subject 6550 Scan 1 Slice 3 Subject 6614 Scan 1 Slice 7 Subject 6582 Scan 1 Slice 9

Fig. 4. Exemplary slices of the AMIRA dataset with automatic GM (red) and CSF-
WM (green) boundaries, and manual GM (blue) and CSF-WM (magenta) boundaries.
(Color figure online)
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Fig. 5. SC, WM, and GM areas of GDL 0.5 (automatic) and manual segmentations
wrt. the anatomical slice positions in mean ± one standard deviation.

While the SCGM challenge results only provide GM segmentation accuracy,
for the AMIRA dataset we additionally also provide WM segmentation results.
For the statistics, we gathered all slice-wise test results of all cross-validations
for the proposed method GDL 0.5 and compare it with those of CEL. Pairwise
two-tailed Hotelling’s T-tests for GM accuracy in DSC and labelmap Hausdorff
distance (HD) show, that the test results of the MD-GRU models trained on the
different groups are not significantly different from each other (p > 0.3 for both
GDL and CEL).
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Fig. 6. GM and WM accuracy and precision plots of the AMIRA dataset. For both
boxes GM and WM: Top row: Accuracy (left) in DSC and HD of all the 855 slices
of the proposed method; intra-session (intra) and inter-session (inter) precision (right)
of the proposed method (auto) and the manual segmentations in DSC, HD, and area
RSD. Bottom row: Accuracy box plots (left) in DSC and HD wrt. the slice positions
with overlaid error bars in the format mean ± one standard deviation; precision error
bars (right) for area RSD wrt. the slice positions, for better visualization shown with
0.2 standard deviations. HD is measured in millimeters, and RSD in percents.
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In Fig. 6 and in Table 1 we show GM and WM accuracy and precision of
all gathered slice results in DSC, HD and relative standard deviation of the
areas (RSD), also known as coefficient of variation. With intra- and inter-session
precision we compare segmentations of the same slice for different scans with
and without repositioning, respectively. The proposed automatic segmentations
shows better reproducibility as the manual segmentations. Additionally, we show
the anatomical GM and WM areas wrt. the slice positions in Fig. 5 and show
randomly chosen results in Fig. 4. Training multiple networks with data from
multiple human raters as ground truth data, as we did with the SCGM data, cf.
Subsect. 4.2, might further improve the performance.

4.2 SCGM Challenge Model

To enable comparison with other methods, we tested MD-GRU on the SCGM
dataset [7]. We trained four MD-GRU models, one for each expert rater’s ground
truth, and in the end performed majority voting on the individual test results
to mimic the challenge’s consensus segmentation.

We used the same MD-GRU setup but with a window size of 200×200 pixels
for a similar anatomical field of view as the AMIRA models. Random subsamples
in each training iteration were drawn with a distance of 200 pixels from the image
boundary. We trained the networks for 100’000 iterations and observed, that the
scores reached their upper bounds after around 60’000 iterations. One training
iteration took around 4 s and segmentation of one slice took less than 1 s.

In Table 2, the proposed model shows a new state-of-the-art in almost all
metrics. This comparison shows MD-GRU’s strong performance in learning the
GM segmentation problem. In Table 3, we additionally show the improvement
for the auto-weighted GDL, compared to the native MD-GRU approach with
only CEL. Figure 7 shows randomly chosen results of the proposed model.

Table 2. Results of the SCGM challenge competitors including the results of Porisky
et al. [6], Perone et al. [5] and ours. The metrics are Dice coefficient (DSC), mean sur-
face distance (MD), Hausdorff surface distance (HD), skeletonized Hausdorff distance
(SHD), skeletonized median distance (SMD), true positive rate (TPR), true negative
rate (TNR), precision (P), Jaccard index (J), and conformity (C). Best results on each
metric are highlighted in bold font. Distances are measured in millimeters.

JCSCS DEEPSEG MGAC GSBME SCT VBEM [6] [5] Proposed
DSC 0.79 ± 0.04 0.80 ± 0.06 0.75 ± 0.07 0.76 ± 0.06 0.69 ± 0.07 0.61 ± 0.13 0.80 ± 0.06 0.85 ± 0.04 0.90 ± 0.03
MD 0.39 ± 0.44 0.46 ± 0.48 0.70 ± 0.79 0.62 ± 0.64 0.69 ± 0.76 1.04 ± 1.14 0.53 ± 0.57 0.36 ± 0.34 0.21 ± 0.20
HD 2.65 ± 3.40 4.07 ± 3.27 3.56 ± 1.34 4.92 ± 3.30 3.26 ± 1.35 5.34 ± 15.35 3.69 ± 3.93 2.61 ± 2.15 1.85 ± 1.16
SHD 1.00 ± 0.35 1.26 ± 0.65 1.07 ± 0.37 1.86 ± 0.85 1.12 ± 0.41 2.77 ± 8.10 1.22 ± 0.51 0.85 ± 0.32 0.71 ± 0.28
SMD 0.37 ± 0.18 0.45 ± 0.20 0.39 ± 0.17 0.61 ± 0.35 0.39 ± 0.16 0.54 ± 0.25 0.44 ± 0.19 0.36 ± 0.17 0.37 ± 0.17
TPR 77.98 ± 4.88 78.89 ± 10.33 87.51 ± 6.65 75.69 ± 8.08 70.29 ± 6.76 65.66 ± 14.39 79.65 ± 9.56 94.97 ± 3.50 96.22 ± 2.69
TNR 99.98 ± 0.03 99.97 ± 0.04 99.94 ± 0.08 99.97 ± 0.05 99.95 ± 0.06 99.93 ± 0.09 99.97 ± 0.04 99.95 ± 0.06 99.98 ± 0.03
P 81.06 ± 5.97 82.78 ± 5.19 65.60 ± 9.01 76.26 ± 7.41 67.87 ± 8.62 59.07 ± 13.69 81.29 ± 5.30 77.29 ± 6.46 85.46 ± 4.96
J 0.66 ± 0.05 0.68 ± 0.08 0.60 ± 0.08 0.61 ± 0.08 0.53 ± 0.08 0.45 ± 0.13 0.67 ± 0.07 0.74 ± 0.06 0.82 ± 0.05
C 47.17 ± 11.87 49.52 ± 20.29 29.36 ± 29.53 33.69 ± 24.23 6.46 ± 30.59 44.25 ± 90.61 48.79 ± 18.09 64.24 ± 10.83 77.46 ± 7.31
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Table 3. SCGM challenge results of the native MD-GRU with only CEL in comparison
to the proposed GDL 0.5. Abbreviations of the metrics taken from Table 2.

DSC MD HD SHD SMD TPR TNR P J C
MD-GRU CEL 0.87 ± 0.03 0.30 ± 0.31 2.14 ± 1.20 0.85 ± 0.36 0.40 ± 0.20 93.93 ± 3.85 99.98 ± 0.03 82.04 ± 5.42 0.78 ± 0.05 70.90 ± 9.06
MD-GRU GDL 0.5 0.90 ± 0.03 0.21 ± 0.20 1.85 ± 1.16 0.71 ± 0.28 0.37 ± 0.17 96.22 ± 2.69 99.98 ± 0.03 85.46 ± 4.96 0.82 ± 0.05 77.46 ± 7.31

Site 1 Subject 15 Slice 2 Site 2 Subject 13 Slice 5 Site 3 Subject 12 Slice 14 Site 4 Subject 19 Slice 7

Fig. 7. For each site of the SCGM dataset, one randomly chosen result of the proposed
model in cropped view.

5 Conclusion

We presented a new pipeline of acquisition and automatic segmentation of SC
GM and WM. The AMIRA sequence produces 8 channel images for different
inversion times which the proposed deep learning approach with MD-GRU used
for segmentation. Using the 8 channels, tissue specific relaxation curves can be
learned and used for GM-WM segmentation.

Comparing our segmentation results to the results of the ex-vivo high-
resolution dataset of Perone et al. [5], we show comparable accuracy for in-vivo
data. The acquired AMIRA dataset in scan-rescan fashion, with and without
repositioning in the scanner, shows high reproducibility in terms of GM area
RSD. Thus we believe that the presented pipeline is a candidate for longitudinal
clinical studies. Further tests with patient data have to be conducted.

We added a generalized multi-label Dice loss to the cross entropy loss that
MD-GRU uses. We observed, that the segmentation performance was stable for
a larger region of the weighting λ between the two losses. In a future work,
we will study the effects of small λs that correspond well with the logarithmical
magnitudes of CEL. Our proposed segmentation model outperforms the methods
from the SC GM segmentation challenge. Training the MD-GRU models directly
on the 3D data might further improve the performance compared to slice-wise
segmentation.

Given the small and fine structure of the GM, we like to point out, that
the achieved results of the metrics are near optimal. Higher resolutions of the
imaging sequence will improve the accuracy more easily.

Acknowledgments. We thank Dr. Matthias Weigel, Prof. Dr. Oliver Bieri and Tanja
Haas for the MR acquisitions with the AMIRA sequence.
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9 Discussion and Conclusion

The goal of this Ph.D. thesis was to develop a segmentation algorithm that enables
automated quantification of gray matter (GM) and white matter (WM) inside the cer-
vical spinal cord (SC) on magnetic resonance (MR) images. Segmentation of the SC’s
inner structures on MR images is particularly challenging because of low contrast-
to-noise ratio (CNR) between GM and WM. As part of a larger project supported
by the Swiss National Science Foundation (SNSF), we collaborated with magnetic
resonance physicists in the development of an MR sequence appropriate for GM-WM
segmentation. On the other hand, we were working together with neurological ex-
perts, who served us with their medical expertise, recruited healthy volunteers and
multiple sclerosis (MS) patients for MR imaging (MRI) of the SC, and provided us
with the manual GM-WM segmentations of such images. This joint work led to the
development of a web application, called manual segmentation app (MSA), for vi-
sualization and manual segmentation of images acquired with the AMIRA protocol.
This application makes use of the different representations of the AMIRA sequence’s
inversion images and simplifies the data transfer. The focus of this work, however,
was the development and implementation of an automatic SC GM-WM segmentation
algorithm that uses statistical knowledge to assist the pixelwise intensity-based de-
cisions for getting a robust, accurate, and precise segmentation outcome, which, in
turn, enables reliable SC GM and WM quantifications.

With the absence of training data at the beginning of this thesis, we first started
experimenting with variational segmentation methods, while towards the end of this
thesis, more and more data had been manually segmented, enabling us to apply deep
learning. A literature review on variational segmentation approaches led us to the
choice of continuous cut models equipped with statistical appearance models which
can be elegantly optimized through the multiplier-based max-flow min-cut algorithm
of Yuan et al. [23]. We published a prototype of such a continuous cut approach
capable of segmenting SC GM-WM structures on axial 2D images acquired with the
MOLLI sequence at the cervical vertebral level C3, see Chapter 6. We improved
the model by extending it to a 3D model applicable also for other cervical levels and
adapting it to the AMIRA sequence, which led to the publication in Chapter 7. In this
publication, we analyzed the accuracy on a larger dataset, called the CGM dataset.
We included intra- and inter-session comparisons to estimate the precision of the
whole pipeline of imaging and post-processing. With supervised deep learning setting
a new state of the art in image segmentation, we experimented with adapting and
applying a deep-learning framework to the CGM dataset. In particular, we proposed
to modify the training loss of the multidimensional gated recurrent units (MDGRU)
[24] with a generalized Dice loss [151]. This modification enabled us robust and
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9 Discussion and Conclusion

automatic segmentation of the inner SC structure with surprisingly high accuracy
and reproducibility, which we published in Chapter 8. Moreover, this approach set
a new state of the art in the SC GM segmentation (SCGM) challenge [14]. Both
segmentation methods, the trained MDGRU network as well as the variational model
are on par with the manual segmentations of the CGM dataset.

Parallel to the development of automated segmentation algorithms, we were inves-
tigating two other aspects of the AMIRA protocol. First, we analyzed the AMIRA
sequence’s inversion images for the best one-channel projections in terms of CSF-SC
contrast and GM-WM contrast, which are necessary for manual and variational seg-
mentation. The resulting principled approach for combining AMIRA images led to
the publication presented in Chapter 5. Second, we investigated dealing with the large
slice distances between the 12 acquired axial AMIRA slices. For this we developed
and implemented a slice interpolation algorithm capable of resampling the provided
slices at any intermediate slice position, which led to the publication in Chapter 4.

Discussion This work was performed at the verge of the era of deep learning and was
part of the sudden change from manual modeling techniques to supervised deep learn-
ing. With variational segmentation frameworks, we tried splitting the segmentation
problem into several sub-problems using the mathematical language to reformulate
each sub-problem to a computable version. Manual modeling in this way involved ob-
serving the algorithm’s performance and identifying possible improvements for many
hours. It is, therefore, open to question whether this effortful task of manual mod-
eling justifies the variational automation of the tedious task of manual segmentation
– especially with supervised deep learning at hand. The automation of this problem
tends to be more cost-effective when conducting the cumbersome task of manual seg-
mentation on a set of images with which a deep neural network may automatically
figure out how to solve the problem. From a practical point of view, it does not
matter whether an algorithm’s model is hand-crafted or computer-generated, or, in
other words, whether a problem is described by a simple, mathematically principled
model or automatically optimized through deep learning: for complex ill-posed prob-
lems, reasoning with the statistical performance in terms of robustness, accuracy, and
precision is more crucial than reasoning with mathematical principles.

With manual variational modeling as well as with deep learning, we generate seg-
mentation models designed to work for a specific kind of data that both cannot be
applied directly to other data. When trying to segment slightly different data, for
example, images acquired with a different MR sequence, with deep learning, we can
retrain the same architecture more conveniently compared to a manual approach.
Efficiently designed forward passes of neural networks and applicable deep learning
frameworks make retraining and ablation analyses more straightforward. With the
variational pipeline described in Section 6.A, in contrast, ablation analyses involved
individual, parameter-specific processing errors. Proper ablation analyses, however,
are important to identify the parameters’ or the model features’ impact on the per-
formance. The main problem in manual modeling lies in carefully handling the many
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different cases where new problems eventually arise with unseen data. This aspect
is more pleasing with neural networks, where forward passes normally do not throw
syntactic or semantic errors if a network fails to generalize on unseen data. Supervised
deep learning with neural networks, therefore, is desirable when it comes to compar-
isons of one approach applied to different datasets. The continuous cut approach in
Section 6.A which was designed to work on cervical, axial AMIRA images, therefore,
was not applied to the data of the SCGM challenge, whereas we applied the approach
with MDGRU in Chapter 8 to the CGM dataset as well as the challenge dataset.
In this sense, deep learning is scalable. The downside of supervised deep learning,
however, is that it needs a lot of already annotated data to train on, to which it might
be biased in addition. Since a shallow variational model has fewer parameters and
regularizes more strongly, it might be ”trained” on fewer samples.

Regarding the approximation accuracy, if a deep neural network’s architecture is
rich enough, then the network has the freedom of decomposing an actual task into its
constituent functions, providing they exist in the first place. In contrast, a shallow
model’s architecture might be too hard-coded to represent the problem’s complexity.
For our task of segmenting GM and WM on MR images, however, both approaches
eventually encountered samples where they failed; no matter how well they had been
trained. The deep learning approach with MDGRU in Chapter 8 generalized more
robustly and led to superior performance with less hand-crafted regularization com-
pared to the variational segmentation approach in Section 6.A. The overregularization
in the variational segmentation model, mainly caused by the regularization with slice
similarity and appearance models, led to the slightly overestimated SC areas in the
upper cervical regions, shown in Chapter 7, Fig. 31. Moreover, about 12% of all slices
in the CGM dataset needed to be excluded for the continuous cut approach because
of failing subprocesses. On the other hand, experiments with the SCGM challenge
have shown that a deep neural network trained on annotated data of one individual
rater can mimic the rater’s peculiarities. In Chapter 8, we showed that combining the
outputs of several such individually trained networks generalizes the expert raters’
consensus segmentation.

The AMIRA sequence produces 8 inversion images with different tissue contrasts
which computer-based segmentation methods may process directly, but human raters
first need one-channel projections with better CNR to conduct manual segmentation.
The analysis in Chapter 5 shows that uniform averaging of the first five or the last
three inversion images produces images with close-to-optimal CNR between GM and
WM or CSF and SC, respectively. This analysis also yielded two other average images
with even slightly better CNR regarding GM-WM and CSF-SC differentiability. All
four average projections and the 8 inversion images, as well as the additional CSF con-
trast image from the AMIRA protocol (see Page 86), are presented within the Manual
Segmentation App (MSA), where a human rater may scroll through all images while
segmenting simultaneously. The shallow variational approaches from the publications
in Chapter 6 and Chapter 7 mainly focused on using the MOLLI and the AMIRA

1The SC areas of the manual segmentations, in contrast, are visualized in Chapter 8, Fig. 5.
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sequences’ less noisy average images, too. Experiments in Section 6.A showed, that
the inclusion of the AMIRA sequence’s individual inversion images in Equation (6.1)
did not influence the segmentation performance significantly when choosing the λi in
(6.1) to be the optimal weights proposed in Chapter 5 for optimal CNR. A parameter
search on the optimal channel weights λi in (6.1) for optimal segmentation perfor-
mance, however, has not been conducted. The additional CSF contrast image from
the AMIRA protocol led to 4% fewer CSF segmentation failure cases with the contin-
uous cut approach. Finally, the concept of using all individual inversion images of the
AMIRA sequence is directly carried out with the MDGRU approach in Chapter 8,
where the CSF segmentation robustly worked without the need of average images or
the additional CSF contrast image. This additional CSF image has been neglected on
purpose since MDGRU segments the CSF-SC boundary excellently without it, and
co-registration errors with the AMIRA sequence might worsen the results.

The AMIRA protocol’s large slice distances, in relation to the fine axial in-plane
resolution, lead to an anisotropic 3D resolution. To address any needs for resam-
pling of the anisotropic data, we developed a high-order slice interpolation method,
proposed in Chapter 4. The improvements of this method compared to conventional
interpolation techniques are only small in terms of mean absolute intensity differ-
ences. Accuracy measurements with manually placed landmarks could have revealed
further insights for the method’s performance. The main contribution, however, is
the avoidance of kinks at the slice’s stitching positions, which should provide better
segmentation performance on resampled data. For now, we did not yet further follow
this path, since the analyses of the individual slices already entail all the available
information.

The magnetic field strength of an MR device has a strong influence on the quality
of the acquired images in terms of the achievable CNR and resolution. The exper-
iments in this work involved an MR device with a field strength of 3 T, since such
machines represent the current state of the art in medical imaging and are well-spread
around the world besides the 1.5 T machines. With 7 T machines being the next step
in medical applications, better images with higher resolution and better CNR are
expected [21], which probably would allow segmentation methods to achieve higher
accuracy. However, with images of better quality probably also the segmentation
tasks‘ demands increase towards the edge of the possible and thus the segmentation
problems’ difficulty increases as well. Whatever quality in MRI the future brings,
segmentation algorithms should nevertheless be capable of dealing with today’s de-
vices for the foreseeable future, because of (a) the slow spread of 7 T scanners and
more importantly because of (b) older data in longitudinal trials that were acquired
with older technology. This work addresses the current limitations on quantifying
SC GM-WM cross-sectional areas in-vivo with state-of-the-art MR imaging and post-
processing pipelines. To provide our clinical partners with SC GM and WM atrophy
rates, quantification of these limitations is necessary to assess the reliability of such
rates.

Considering the large variability in assessing the SC GM and WM cross-sectional
areas with respect to different methods [21, Tab. 4], our reported findings of cross-
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sectional areas in healthy subjects, presented in Chapter 8, Fig. 5, are well in line
with the literature.

Future Work Although the solution with the deep learning approach proposed in
Chapter 8 is promising for longitudinal clinical studies, its performance may be further
improved with newer network architectures which may also address the automatic
estimation of the segmentation’s reliability and measures of uncertainty. With the
healthy subjects’ follow-up data still being acquired, it will be interesting to analyze
the yearly variability in addition to the already published intra- and inter-session
variabilities of the GM, WM, and SC areas. The heavy presence of MS lesions in the
SC, observed in AMIRA images of patients from the CGM dataset, complicates the
morphometric analysis, mainly because lesion sites occlude the separability of GM
and WM. Ongoing promising experiments include SC lesion segmentation as well as
GM-WM segmentation on AMIRA images of MS patients. To analyze the variability
of the GM-WM separability inside lesions, more manual segmentations are currently
being produced that offer more data for the deep neural networks to train on. These
mentioned steps are necessary for further clinical analyses, such as the estimation
of reliable MS subtype-specific GM-WM atrophy rates, which is one of the clinical
objectives of this research project.

So far, we aimed for automatic approaches to eliminate the variability induced
through the interaction of a human rater. However, to enable accurate subject-specific
analyses, instead of just aiming for large-scale medical studies, we plan to include the
possibility to correct the computer-based results. This idea introduces exciting appli-
cations in combination with deep reinforcement learning to improve the segmentation
models based on the amendments made by the user [155]. Furthermore, a poten-
tial future direction might also involve weakly supervised learning, where algorithms
automatically learn the segmentations without providing pixelwise manual reference
segmentations but manual annotations that are less time-consuming to acquire [131].

Conclusion We are living in an exciting time with fast-paced new discoveries made
almost daily. We started with segmentation models from the first decade of the 2000s
and ended with modern neural network architectures for deep learning. Supervised
deep learning needs many training samples that include manual annotations but at
the same time drastically minimizes the time needed to generate a segmentation al-
gorithm. However, with both approaches, the manual modeling attempt and the
supervised deep learning attempt, we created segmentation algorithms that conve-
niently and automatically segment the GM-WM compartments of the cervical SC on
AMIRA images without hypo- or hyper-intense spots. Both methods, compared to
manual segmentation, reduce the inter- and intra-session variabilities without losing
a significant share of accuracy. Both methods are on par with manual segmentations.
Thus, we are confident that our work enables further large scale, longitudinal clinical
and pharmaceutical studies.
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Adèr, and C. H Polman. Information processing characteristics in subtypes of
multiple sclerosis. Neuropsychologia, 40(11):1751–1765, January 2002. 10

[33] Charles M. Poser, Donald W. Paty, Labe Scheinberg, W. Ian McDonald,
Floyd A. Davis, George C. Ebers, Kenneth P. Johnson, William A. Sibley,
Donald H. Silberberg, and Wallace W. Tourtellotte. New diagnostic criteria
for multiple sclerosis: Guidelines for research protocols. Annals of Neurology,
13(3):227–231, 1983. 10

[34] W. Ian McDonald, Alistair Compston, Gilles Edan, Donald Goodkin, Hans-
Peter Hartung, Fred D. Lublin, Henry F. McFarland, Donald W. Paty, Chris H.
Polman, Stephen C. Reingold, Magnhild Sandberg-Wollheim, William Sibley,
Alan Thompson, Stanley Van Den Noort, Brian Y. Weinshenker, and Jerry S.

162

https://en.wikipedia.org/wiki/Grey_matter##/media/File:Medulla_spinalis_-_Section_-_English.svg
https://en.wikipedia.org/wiki/Grey_matter##/media/File:Medulla_spinalis_-_Section_-_English.svg
https://en.wikipedia.org/wiki/Grey_matter##/media/File:Medulla_spinalis_-_Section_-_English.svg


BIBLIOGRAPHY

Wolinsky. Recommended diagnostic criteria for multiple sclerosis: Guidelines
from the international panel on the diagnosis of multiple sclerosis. Annals of
Neurology, 50(1):121–127, 2001. 10

[35] Alan J Thompson, Brenda L Banwell, Frederik Barkhof, William M Carroll,
Timothy Coetzee, Giancarlo Comi, Jorge Correale, Franz Fazekas, Massimo Fil-
ippi, Mark S Freedman, Kazuo Fujihara, Steven L Galetta, Hans Peter Hartung,
Ludwig Kappos, Fred D Lublin, Ruth Ann Marrie, Aaron E Miller, David H
Miller, Xavier Montalban, Ellen M Mowry, Per Soelberg Sorensen, Mar Tin-
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[149] Antal Horváth, Simon Pezold, Matthias Weigel, Katrin Parmar, Oliver Bieri,
and Philippe Cattin. Variational segmentation of the white and gray matter
in the spinal cord using a shape prior. In International Workshop on Com-
putational Methods and Clinical Applications for Spine Imaging, pages 26–37.
Springer, 2016. 110, 123, 124, 125
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