
 

 

Multi-Atlas Segmentation through Rater Performance Modeling: 

Theory and Applications 

By 

Andrew Joseph Asman 

Dissertation 

Submitted to the Faculty of the 

Graduate School of Vanderbilt University 

in partial fulfillment of the requirements 

for the degree of 

DOCTOR OF PHILOSOPHY 

in 

Electrical Engineering 

August, 2014 

Nashville, Tennessee 

Approved: 

Bennett A. Landman, Ph.D. 

Benoit M. Dawant, Ph.D. 

Aniruddha Gokhale, Ph.D. 

Adam W. Anderson, Ph.D. 

Megan K. Strother, M.D. 



ii 

 

ACKNOWLEDGMENTS 

My time as a graduate student has been extremely gratifying personally, academically and 

scientifically. First and foremost, I am permanently indebted to my wonderful wife for her patience, 

understanding, and support. I don’t know where I would be without your constant encouragement and 

belief in my abilities. To Renly, the past year has been one of the most gratifying (and exhausting) years 

of my life. You have taught me more in one year than any class, textbook, or lecture ever could. 

Without a doubt, I would not be where I am today without the love and support of my family. I 

am extremely blessed to have parents that allowed me to pursue my interests and provided unwavering 

encouragement. To my brother, Bill, thank you for being the first scientist I ever met. You question 

everything and are undoubtedly a man of extraordinary principle. I have tried to emulate you throughout 

my entire life and these traits have been critical in my development as a student, mentor and scientist. 

At Vanderbilt, I am forever grateful for the leadership and friendship provided by our leader – 

Bennett Landman. I have become more and more aware of how lucky we are to have your incessant 

encouragement, insight, and knowledge at our disposal. To my lab mates – Andrew Plassard, Benjamin 

Yvernault, Frederick Bryan, Xue Yang, Zhoubing Xu, Swetasudha Panda, Carolyn Lauzon, Wade Allen, 

Alex Dagley, and Rob Harrigan – thank you for your insights and conversation. It has been a pleasure to 

go on this academic ride with all of you. 

Finally, I am grateful to all of our colleagues (both at Vanderbilt and around the world). Through 

your insights, I can depart from graduate school with the hope that I have made a difference in the world 

– regardless of how small that difference might be. 



iii 

 

TABLE OF CONTENTS 

Acknowledgments .......................................................................................................................... ii 

Table of Contents .......................................................................................................................... iii 

List of Tables ................................................................................................................................ xii 

List of Figures .............................................................................................................................. xiii 

 ........................................................................................................................................ 1 Chapter I

Introduction .................................................................................................................................... 1 

1. Overview ................................................................................................................................. 1 

2. Atlases ...................................................................................................................................... 4 

3. Atlas-Based Segmentation ....................................................................................................... 5 

4. Registration in Atlas-Based Segmentation .............................................................................. 5 

5. Multi-Atlas Segmentation ........................................................................................................ 6 

5.1. Typical Multi-Atlas Segmentation Workflow .................................................................... 7 

6. Registration in Multi-Atlas Segmentation ............................................................................... 8 

6.1. Pairwise Registration ........................................................................................................ 8 

6.2. Groupwise Registration .................................................................................................... 9 

7. Label Fusion .......................................................................................................................... 10 

7.1. Problem Definition .......................................................................................................... 10 

7.2. Voting Label Fusion ........................................................................................................ 12 

7.3. Statistical Label Fusion .................................................................................................. 13 



iv 

 

8. Additional Processing Steps .................................................................................................. 17 

8.1. Pre-Processing ................................................................................................................ 17 

8.2. Post-Processing .............................................................................................................. 19 

9. Contributions ......................................................................................................................... 21 

10. Previous Publications ........................................................................................................... 23 

Part 1 ............................................................................................................................................. 24 

Theory ........................................................................................................................................... 24 

 ..................................................................................................................................... 25 Chapter II

Formulating Task Difficulty ....................................................................................................... 25 

1. Introduction ............................................................................................................................ 25 

2. Theory .................................................................................................................................... 27 

2.1. Problem Definition .......................................................................................................... 27 

2.2. COLLATE Algorithm ...................................................................................................... 29 

2.3. E-Step: Estimation of the Voxelwise Label Probabilities ............................................... 31 

2.4. M-Step: Estimation of the Performance Fields via Maximization .................................. 32 

2.5. Initialization Strategy, Convergence Detection, and Model Parameters ....................... 36 

3. Methods and Results .............................................................................................................. 39 

3.1. Terminology .................................................................................................................... 39 

3.2. Implementation and Evaluation ...................................................................................... 41 

3.3. Simulation 1: Simulation using COLLATE Model of Rater Behavior ............................ 41 

3.4. Simulation 2: Data Adaptive Prior Sensitivity ................................................................ 43 



v 

 

3.5. Simulation 3: Simulation using Boundary Random Raters ............................................. 46 

3.6.  Empirical Comparison using Delineations by Human Raters ....................................... 49 

3.7. Simulation 4: Simulation using STAPLE Model of Rater Behavior................................ 51 

4. Discussion and Conclusion .................................................................................................... 53 

 ................................................................................................................................... 56 Chapter III

Formulating Spatially Varying Performance ............................................................................ 56 

1. Overview ................................................................................................................................ 56 

2. Theory .................................................................................................................................... 58 

2.1. Problem Definition .......................................................................................................... 58 

2.2. Spatial STAPLE Algorithm ............................................................................................. 60 

2.3. E-Step: Estimation of the Voxelwise Label Probabilities ............................................... 61 

2.4. M-Step: Estimation of the Performance Fields via Maximization .................................. 61 

2.5. Accounting for Limited Data and Computational Concerns .......................................... 62 

2.6. Initialization Strategy, Convergence Detection, and the Prior Distributions ................. 64 

3. Methods and Results .............................................................................................................. 65 

3.1. Implementation and Evaluation ...................................................................................... 65 

3.2. Simulation using a Boundary Model of Human Behavior .............................................. 65 

3.3. Empirical Fusion for Segmentation of Malignant Gliomas ............................................ 68 

3.4. Simulation of Multi-Algorithm Fusion for Whole-Brain Segmentation .......................... 70 

3.5. Empirical Experiments using Expert-labeled Head and Neck CT scans ........................ 71 

4. Discussion and Conclusion .................................................................................................... 74 



vi 

 

 ................................................................................................................................... 77 Chapter IV

Formulating Imperfect Correspondence ................................................................................... 77 

1. Overview ................................................................................................................................ 77 

2. Theory .................................................................................................................................... 79 

2.1. Problem Definition .......................................................................................................... 79 

2.2. The Non-Local STAPLE Algorithm................................................................................. 80 

2.3. Non-Local Correspondence Model ................................................................................. 80 

2.4. Approximation of the Latent Performance Level Parameters ........................................ 82 

2.5. E-Step: Estimation of the Voxelwise Label Probabilities ............................................... 83 

2.6. M-Step: Estimation of the Performance Level Parameters ............................................ 84 

2.7. Initialization, Model Parameters, and Detection of Convergence.................................. 85 

3. Methods and Results .............................................................................................................. 87 

3.1. Baseline Algorithms ........................................................................................................ 87 

3.2. Motivating Simulation ..................................................................................................... 88 

3.3. Empirical Evaluation ...................................................................................................... 90 

3.4. Pre-Processing and Analysis .......................................................................................... 91 

3.5. Thyroid Segmentation Results ......................................................................................... 92 

3.6. Whole-Brain Segmentation Results ................................................................................. 94 

3.7. Sensitivity to Model Parameters ..................................................................................... 98 

3.8. Model Optimality ............................................................................................................ 99 

3.9. Comparison to Non-Local Voting ................................................................................. 101 



vii 

 

4. Discussion ............................................................................................................................ 102 

 ................................................................................................................................... 106 Chapter V

Formulating Hierarchical Performance .................................................................................. 106 

1. Overview .............................................................................................................................. 106 

2. Theory .................................................................................................................................. 107 

2.1. Problem Definition ........................................................................................................ 107 

2.2. Hierarchical Performance Model ................................................................................. 108 

2.3. E-Step: Estimation of the Voxelwise Label Probabilities ............................................. 109 

2.4. M-Step: Estimation of the Hierarchical Performance Level Parameters ..................... 109 

2.5. Extension to state-of-the-art Statistical Fusion Approaches ........................................ 111 

2.6. Initialization, Detection of Convergence and Implementation ..................................... 114 

3. Methods and Results ............................................................................................................ 115 

3.1. Motivating Simulation ................................................................................................... 115 

3.2. Whole Brain Multi-Atlas Segmentation ........................................................................ 117 

3.3. CT Orbit Multi-Atlas Segmentation .............................................................................. 123 

4. Discussion ............................................................................................................................ 126 

Part 2 ........................................................................................................................................... 128 

Applications ................................................................................................................................ 128 

 ................................................................................................................................. 129 Chapter VI

Out-of-Atlas Likelihood Estimation ......................................................................................... 129 

1. Introduction .......................................................................................................................... 129 



viii 

 

2. Theory .................................................................................................................................. 131 

2.1. Problem Definition ........................................................................................................ 131 

2.2. Construction of the Expected Intensity Distributions ................................................... 132 

2.3. Construction of the Observed Intensity Distributions ................................................... 133 

2.4. Estimation of the Voxelwise Out-of-Atlas Likelihood ................................................... 133 

2.5. Model Parameter Initialization, and Implementation Details ...................................... 134 

3. Methods and Results ............................................................................................................ 135 

3.1. Multi-Atlas Data ........................................................................................................... 136 

3.2. Detection of Malignant Gliomas ................................................................................... 136 

3.3. Glioma Detection Results ............................................................................................. 137 

3.4. DTI Quality Control ...................................................................................................... 139 

3.5. DTI Results.................................................................................................................... 140 

4. Discussion ............................................................................................................................ 141 

 ................................................................................................................................ 144 Chapter VII

Groupwise Segmentation of the Spinal Cord’s Internal Structure ....................................... 144 

1. Overview .............................................................................................................................. 144 

2. Theory .................................................................................................................................. 147 

2.1. Problem Definition ........................................................................................................ 147 

2.2. Creation of a Groupwise Consistent Atlas Representation ........................................... 148 

2.3. Appearance Model Construction .................................................................................. 150 

2.4. Groupwise Registration and Segmentation using the Appearance Model .................... 151 



ix 

 

2.5. Model Parameters and Initialization ............................................................................ 154 

3. Methods and Results ............................................................................................................ 156 

3.1. Data .............................................................................................................................. 156 

3.2. Implementation of Proposed Framework ..................................................................... 157 

3.3. Baseline Approaches ..................................................................................................... 157 

3.4. Experimental Methods .................................................................................................. 159 

3.5. Experimental Results .................................................................................................... 161 

4. Discussion ............................................................................................................................ 166 

 .............................................................................................................................. 169 Chapter VIII

Geodesic Learner Fusion ........................................................................................................... 169 

1. Overview .............................................................................................................................. 169 

2. Data and Pre-Processing ...................................................................................................... 170 

3. Geodesic Learner Fusion Theory ......................................................................................... 171 

4. Methods and Results ............................................................................................................ 173 

4.1. Parameter Optimization and Sensitivity ....................................................................... 174 

4.2. Testing Data Accuracy and Assessment ........................................................................ 175 

4.3. Reproducibility Data Accuracy and Assessment........................................................... 175 

5. Discussion ............................................................................................................................ 176 

 ................................................................................................................................. 178 Chapter IX

Conclusions and Future Work .................................................................................................. 178 

1. Summary .............................................................................................................................. 178 



x 

 

2. Theoretical Advancements to Statistical Fusion .................................................................. 178 

2.1. Summary ....................................................................................................................... 178 

2.2. Main Contributions ....................................................................................................... 179 

2.3. Future Work .................................................................................................................. 180 

3. Out-of-Atlas Likelihood Estimation .................................................................................... 180 

3.1. Summary ....................................................................................................................... 180 

3.2. Main Contributions ....................................................................................................... 181 

3.3. Future Work .................................................................................................................. 181 

4. Groupwise Segmentation of the Spinal Cord ....................................................................... 182 

4.1. Summary ....................................................................................................................... 182 

4.2. Main Contributions ....................................................................................................... 182 

4.3. Future Work .................................................................................................................. 182 

5. Geodesic Learner Fusion ..................................................................................................... 183 

5.1. Summary ....................................................................................................................... 183 

5.2. Main Contributions ....................................................................................................... 184 

5.3. Future Work .................................................................................................................. 184 

6. Concluding Remarks ............................................................................................................ 184 

Appendix A ................................................................................................................................. 186 

Publications ................................................................................................................................ 186 

1. Refereed Journal Articles ..................................................................................................... 186 

2. Highly Selective Conference Publications ........................................................................... 187 



xi 

 

3. Refereed Conference Publications ....................................................................................... 188 

4. Conference Publication Abstracts ........................................................................................ 191 

5. Books / Book Chapters ........................................................................................................ 191 

Appendix B ................................................................................................................................. 192 

Biography ................................................................................................................................... 192 

References ................................................................................................................................... 193 

 



xii 

 

LIST OF TABLES 

Table VIII.1. Data summary. Each value is represents: number of subjects (number of images)171 

 

file://vboxsvr/Home/likewise-open/VANDERBILT/asmanaj/school/thesis/thesis-final/__Main__.docx%23_Toc384719022


xiii 

 

LIST OF FIGURES 

Figure I.1. The evolution of atlases. In 1988, Jean Talairach proposed a stereotaxic model for the 

human brain population. Since, alternative techniques for atlas construction included (1) using large 

numbers of subjects, (2) using multiple scans of a single subject over time, (3) unbiased average atlases, 

and (4) age/demographic-specific atlases. .................................................................................................... 4 

Figure I.2. A typical multi-atlas segmentation workflow. First, the target image and the atlas 

information are passed to a deformable registration in order to achieve a deformation field that maps the 

atlases to the target coordinate system. Second, the atlas information is then passed through the resulting 

deformation fields in order to construct the registered atlas information. Finally, all of the resulting 

information is then combined into a label fusion framework in order to achieve the final, fused 

segmentation. ................................................................................................................................................ 7 

Figure I.3. A flowchart generalizing the process of voting-based label fusion. The target image 

and the registered atlas images are compared using a pre-defined similarity metric. The results of this 

comparison lead to a voxelwise weighting for each of the registered atlases. These weights are then 

combined with the observed labels in order to construct the probability of each label at all voxels. Finally, 

the fused segmentation is constructed by taking the maximum likelihood label at each voxel. ................. 12 

Figure I.4. A flowchart generalizing the process of statistical label fusion. Given the target image, 

the registered atlas information and a priori label probabilities, the statistical fusion process estimates the 

final segmentation through an Expectation-Maximization (EM) estimation process. The E- and M-steps of 

the EM framework are iterated until convergence of the algorithm. Lastly, given the final estimate the 

label probabilities, the fused segmentation is constructed by taking the maximum likelihood label at each 

voxel. ........................................................................................................................................................... 14 

file://vboxsvr/Home/likewise-open/VANDERBILT/asmanaj/school/thesis/thesis-final/__Main__.docx%23_Toc384719023
file://vboxsvr/Home/likewise-open/VANDERBILT/asmanaj/school/thesis/thesis-final/__Main__.docx%23_Toc384719023
file://vboxsvr/Home/likewise-open/VANDERBILT/asmanaj/school/thesis/thesis-final/__Main__.docx%23_Toc384719023
file://vboxsvr/Home/likewise-open/VANDERBILT/asmanaj/school/thesis/thesis-final/__Main__.docx%23_Toc384719023
file://vboxsvr/Home/likewise-open/VANDERBILT/asmanaj/school/thesis/thesis-final/__Main__.docx%23_Toc384719024
file://vboxsvr/Home/likewise-open/VANDERBILT/asmanaj/school/thesis/thesis-final/__Main__.docx%23_Toc384719024
file://vboxsvr/Home/likewise-open/VANDERBILT/asmanaj/school/thesis/thesis-final/__Main__.docx%23_Toc384719024
file://vboxsvr/Home/likewise-open/VANDERBILT/asmanaj/school/thesis/thesis-final/__Main__.docx%23_Toc384719024
file://vboxsvr/Home/likewise-open/VANDERBILT/asmanaj/school/thesis/thesis-final/__Main__.docx%23_Toc384719024
file://vboxsvr/Home/likewise-open/VANDERBILT/asmanaj/school/thesis/thesis-final/__Main__.docx%23_Toc384719024
file://vboxsvr/Home/likewise-open/VANDERBILT/asmanaj/school/thesis/thesis-final/__Main__.docx%23_Toc384719025
file://vboxsvr/Home/likewise-open/VANDERBILT/asmanaj/school/thesis/thesis-final/__Main__.docx%23_Toc384719025
file://vboxsvr/Home/likewise-open/VANDERBILT/asmanaj/school/thesis/thesis-final/__Main__.docx%23_Toc384719025
file://vboxsvr/Home/likewise-open/VANDERBILT/asmanaj/school/thesis/thesis-final/__Main__.docx%23_Toc384719025
file://vboxsvr/Home/likewise-open/VANDERBILT/asmanaj/school/thesis/thesis-final/__Main__.docx%23_Toc384719025
file://vboxsvr/Home/likewise-open/VANDERBILT/asmanaj/school/thesis/thesis-final/__Main__.docx%23_Toc384719026
file://vboxsvr/Home/likewise-open/VANDERBILT/asmanaj/school/thesis/thesis-final/__Main__.docx%23_Toc384719026
file://vboxsvr/Home/likewise-open/VANDERBILT/asmanaj/school/thesis/thesis-final/__Main__.docx%23_Toc384719026
file://vboxsvr/Home/likewise-open/VANDERBILT/asmanaj/school/thesis/thesis-final/__Main__.docx%23_Toc384719026
file://vboxsvr/Home/likewise-open/VANDERBILT/asmanaj/school/thesis/thesis-final/__Main__.docx%23_Toc384719026
file://vboxsvr/Home/likewise-open/VANDERBILT/asmanaj/school/thesis/thesis-final/__Main__.docx%23_Toc384719026


xiv 

 

Figure II.1. The inaccuracies of the STAPLE model of rater behavior. A representative slice from 

the truth model is shown in (A). The expected STAPLE model of rater behavior can be seen in (B). 

STAPLE operates under the assumption that there is a uniform probability that any given rater would 

mis-label a given voxel. The observed model of rater behavior can be seen in (C). The primary difference 

between (B) and (C) is that the human raters showed a clear inclination to mislabel boundary pixels and 

other ambiguous regions. ............................................................................................................................ 26 

Figure II.2. The COLLATE model. The hidden data in the COLLATE E-M algorithm can be seen 

in (A), (B) and (C). These images (the true labels, rater confusion matrices and consensus map) represent 

the complete set of data that COLLATE attempts to estimate. The generative model of rater behavior can 

be seen in (D). This flowchart shows the path from an input voxel on some clinical data to a single 

observation. A flowchart demonstrating the way in which COLLATE takes input observations and 

estimates the hidden data can be seen in (E). Note the inclusion of priors in conditional probability that is 

estimated to generate the maximum a posteriori estimate of the hidden data. Example estimates of the 

hidden data can be seen in (F), (G) and (H). ............................................................................................... 28 

Figure II.3. Results for simulation 1 using the COLLATE model of rater behavior. A 

representative slice from the truth model can be seen in (A). (B) and (C) represent example observations 

of the slice seen in (A). The STAPLE estimate using 8 coverages can be seen in (D). The COLLATE 

estimate using the same observations can be seen in (E). The estimated consensus map can be seen in (F). 

The accuracy of the estimated labels and confusion matrices can be seen in (G) and (H), respectively. The 

gray bars seen on (G) and (H) correspond to the number of coverages used in the estimations seen in (D), 

(E) and (F). .................................................................................................................................................. 42 

Figure II.4. Results for simulation 2, the COLLATE sensitivity with respect to the estimated 

confusion region size data-adaptive prior. The sensitivity of the confusion region size prior can be seen in 

(A) and (B). (A) represents the accuracy of the truth estimation with varying prior estimates from 0.05 to 

0.95 for a given confusion region size of 0.5. The accuracy of the truth estimation is presented as a 

percent improvement over the STAPLE. .................................................................................................... 44 

file://vboxsvr/Home/likewise-open/VANDERBILT/asmanaj/school/thesis/thesis-final/__Main__.docx%23_Toc384719027
file://vboxsvr/Home/likewise-open/VANDERBILT/asmanaj/school/thesis/thesis-final/__Main__.docx%23_Toc384719027
file://vboxsvr/Home/likewise-open/VANDERBILT/asmanaj/school/thesis/thesis-final/__Main__.docx%23_Toc384719027
file://vboxsvr/Home/likewise-open/VANDERBILT/asmanaj/school/thesis/thesis-final/__Main__.docx%23_Toc384719027
file://vboxsvr/Home/likewise-open/VANDERBILT/asmanaj/school/thesis/thesis-final/__Main__.docx%23_Toc384719027
file://vboxsvr/Home/likewise-open/VANDERBILT/asmanaj/school/thesis/thesis-final/__Main__.docx%23_Toc384719027
file://vboxsvr/Home/likewise-open/VANDERBILT/asmanaj/school/thesis/thesis-final/__Main__.docx%23_Toc384719028
file://vboxsvr/Home/likewise-open/VANDERBILT/asmanaj/school/thesis/thesis-final/__Main__.docx%23_Toc384719028
file://vboxsvr/Home/likewise-open/VANDERBILT/asmanaj/school/thesis/thesis-final/__Main__.docx%23_Toc384719028
file://vboxsvr/Home/likewise-open/VANDERBILT/asmanaj/school/thesis/thesis-final/__Main__.docx%23_Toc384719028
file://vboxsvr/Home/likewise-open/VANDERBILT/asmanaj/school/thesis/thesis-final/__Main__.docx%23_Toc384719028
file://vboxsvr/Home/likewise-open/VANDERBILT/asmanaj/school/thesis/thesis-final/__Main__.docx%23_Toc384719028
file://vboxsvr/Home/likewise-open/VANDERBILT/asmanaj/school/thesis/thesis-final/__Main__.docx%23_Toc384719028
file://vboxsvr/Home/likewise-open/VANDERBILT/asmanaj/school/thesis/thesis-final/__Main__.docx%23_Toc384719028
file://vboxsvr/Home/likewise-open/VANDERBILT/asmanaj/school/thesis/thesis-final/__Main__.docx%23_Toc384719029
file://vboxsvr/Home/likewise-open/VANDERBILT/asmanaj/school/thesis/thesis-final/__Main__.docx%23_Toc384719029
file://vboxsvr/Home/likewise-open/VANDERBILT/asmanaj/school/thesis/thesis-final/__Main__.docx%23_Toc384719029
file://vboxsvr/Home/likewise-open/VANDERBILT/asmanaj/school/thesis/thesis-final/__Main__.docx%23_Toc384719029
file://vboxsvr/Home/likewise-open/VANDERBILT/asmanaj/school/thesis/thesis-final/__Main__.docx%23_Toc384719029
file://vboxsvr/Home/likewise-open/VANDERBILT/asmanaj/school/thesis/thesis-final/__Main__.docx%23_Toc384719029
file://vboxsvr/Home/likewise-open/VANDERBILT/asmanaj/school/thesis/thesis-final/__Main__.docx%23_Toc384719029
file://vboxsvr/Home/likewise-open/VANDERBILT/asmanaj/school/thesis/thesis-final/__Main__.docx%23_Toc384719030
file://vboxsvr/Home/likewise-open/VANDERBILT/asmanaj/school/thesis/thesis-final/__Main__.docx%23_Toc384719030
file://vboxsvr/Home/likewise-open/VANDERBILT/asmanaj/school/thesis/thesis-final/__Main__.docx%23_Toc384719030
file://vboxsvr/Home/likewise-open/VANDERBILT/asmanaj/school/thesis/thesis-final/__Main__.docx%23_Toc384719030
file://vboxsvr/Home/likewise-open/VANDERBILT/asmanaj/school/thesis/thesis-final/__Main__.docx%23_Toc384719030


xv 

 

Figure II.5. Results for simulation 2, the accuracy of the COLLATE algorithm with respect to the 

confusion region size. This tests the ability of the algorithm to estimate the confusion region size. (A) 

represents the percent improvement for COLLATE over the STAPLE estimation for confusion region 

sizes varying from 0.05 to 0.95. (B) represents the average absolute error at each element in the confusion 

matrices for varying confusion region size. Note that the COLLATE estimate accuracy remains constant 

while the quality of the STAPLE estimate varies depending upon the size of the confusion region. All 
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varying numbers of coverages can be seen in (G). The confusion matrix accuracy comparison for varying 

number of coverages can be seen in (H). The gray bars seen on (G) and (H) correspond to the number of 

coverages used in the estimations seen in (D), (E) and (F). ........................................................................ 52 

Figure III.1. Registered atlases exhibit spatially varying behavior.  Representative slices from an 

expertly labeled MR brain image and CT head and neck image are shown in (A). Example registered 

atlases with their local performance can be seen in (B) and (C). Note that atlases exhibit smooth spatially 

varying performance that is unique to each atlas. ....................................................................................... 57 

Figure III.2. Demonstration of the Spatial STAPLE performance level field estimation procedure. 

An example expert segmentation can be seen in (A) with a collection of registered atlas observations seen 

in (B). Spatial STAPLE estimates local confusion matrices (C) in order to construct a whole-image 

estimate of performance that is smooth and spatially varying. The true performance for the atlas seen in 

(B) can be seen in (D) and the estimated performance from Spatial STAPLE presented in (E). Note that 

the intensity in (E) is an indication of average “performance” – i.e., the average diagonal element of  . 59 

Figure III.3. Results for the human rater simulation. The cross-sectional view of the truth model 

used in this simulation can be seen in (A). An example observation utilizing the boundary model of 

human behavior can be seen in (B). Note the fact that there exists a unique region where each rater is 

perfect in these observations. The corresponding label estimate from Majority Vote, STAPLE and Spatial 

STAPLE can be seen in (C)-(E), respectively. All displayed estimates were constructed using 10 raters. 

Lastly, an accuracy analysis can be seen in (F), note that with increasing volumes, Spatial STAPLE 

continually outperforms both STAPLE and Majority Vote. ....................................................................... 66 

Figure III.4. Assessment of Spatial STAPLE sensitivity with respect to various model parameters 

for the human rater simulation. For each plot the percent improvement exhibited by Spatial STAPLE over 

STAPLE is assessed. The plot seen in (A) indicates the sensitivity of Spatial STAPLE to the impact of the 

global estimate of the performance level parameters. (B) indicates the sensitivity to the size of the pooling 

region (or window) associated with the voxelwise performance estimate. Lastly, plot (C) indicates the 
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sensitivity to the amount of overlap between windows. The window overlap is a proxy for the number of 

seed points used in the estimation of the performance level field. ............................................................. 67 

Figure III.5. Qualitative results for the human rater cancer label experiment. The accuracy of 

majority vote, STAPLE and Spatial STAPLE are considered with varying numbers of observations per 

slice (or “coverages”). For all number of observations per slice, Spatial STAPLE exhibits statistically 

significant improvement over both majority vote and STAPLE. ............................................................... 68 

Figure III.6. Qualitative results for the human rater cancer labeling experiment. Four separate 

slices are shown, with the expert labels, majority vote, STAPLE and Spatial STAPLE presented for each 

example using 8 observations per slice. For all examples Spatial STAPLE is qualitatively superior to both 

majority vote and STAPLE. The arrows indicate areas of particular improvement exhibited by Spatial 

STAPLE. ..................................................................................................................................................... 69 

Figure III.7. Quantitative results for the simulation of meta-analysis fusion for whole brain 

segmentation. The presented results represent the accuracy of majority vote, STAPLE and Spatial 

STAPLE for all 26 labels across the 15 atlases considered in this experiment. Spatial STAPLE 

significantly outperforms the other algorithms for nearly all labels (excluding the left amygdala, pallidum 

and putamen). .............................................................................................................................................. 71 

Figure III.8. Quantitative results for the segmented CT head and neck data. The mean DSC for all 

structures can be seen in (A). The DSC value for each of the individual algorithms can be seen in (B)-(E). 

Spatial STAPLE statistically outperforms locally weighted vote for all labels other than the thyroid 

despite the fact that Spatial STAPLE does not utilize intensity information. ............................................. 72 

Figure III.9. Qualitative results for the segmented CT head and neck data. The average mean DSC 

improvement exhibited by Spatial STAPLE was approximately 0.01 DSC (Fig. 8A). Thus, it is important 

to assess whether or not this improvement is qualitatively visible. The truth labels can be seen in (A), with 

the corresponding majority vote, locally weighted vote, STAPLE and Spatial STAPLE estimates seen in 

(B) – (E). ..................................................................................................................................................... 73 
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Figure IV.1. Flowchart of the Non-Local STAPLE (NLS) algorithm. NLS integrates a non-local 

correspondence model (using the atlas-target intensity relationships) into the estimation process. Point-

wise correspondence is constructed in a traditional non-local means approach. ........................................ 78 

Figure IV.2. Simulated models of rater behavior and their impact on fusion performance. The first 

two examples present traditional models of human observation behavior, and, for both models, STAPLE 

substantially outperforms a majority voting based approach. In contrast, the third example simulates a 

typical multi-atlas observation model. In this case, STAPLE is outperformed by a majority vote. 

Additionally, the multi-atlas fusion approaches that utilize the target-atlas intensity relationships (e.g., 

locally weighted vote and the proposed Non-Local STAPLE) provide substantial improvement. ............ 89 

Figure IV.3. Results of the empirical multi-atlas segmentation of the thyroid. The quantitative 

results (A) show that NLS provides significant improvement in terms of the DSC, Hausdorff distance, and 

mean surface distance, with a       patch neighborhood as the most consistent performer. The 

qualitative results (B) support the quantitative improvement and demonstrate that NLS provides 

substantial improvement in shape, boundary, and point-wise surface distance error. Note that “Subject 

Type 1” underwent a surgery to surgically bisect the thyroid..................................................................... 92 

Figure IV.4. Overall accuracy, in terms of mean DSC, comparison for whole-brain segmentation. 

For both pairwise non-rigid and pairwise affine registration procedures, NLS provides significant 

improvement over traditional fusion approaches. ....................................................................................... 93 

Figure IV.5. Per-label accuracy comparison on the whole-brain segmentation problem using a 

pairwise non-rigid registration procedure. NLS provides consistent improvement over locally weighted 

voting. In this case, NLS using a single voxel patch neighborhood consistently outperformed a larger 

(     ) patch neighborhood. ................................................................................................................ 94 

Figure IV.6. Per-label accuracy comparison on the whole-brain segmentation problem using a 

pairwise affine registration procedure. As in Figure IV.5, NLS provides consistent improvement over 

locally weighted voting. In this case, NLS using a larger (     ) patch neighborhood consistently 

outperformed a single voxel patch neighborhood. ...................................................................................... 95 
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Figure IV.7. Qualitative comparison between the various fusion algorithms for whole-brain 

segmentation using 5 atlases. For both registration procedures, the qualitative results support the 

quantitative improvement demonstrated by NLS in Figures IV.4-6. The NLS results are qualitatively 

superior to alternative voting-based procedures in terms of overall shape, size, location and appearance. 

Note that the mean DSC labels indicate the mean observed DSC for all labels for the corresponding 

subject (row) and algorithm (column). ....................................................................................................... 96 

Figure IV.8. Sensitivity to NLS model parameters. The sensitivity of NLS to    (A) and    (B) 

demonstrate degraded performance for values that are either too small or too large. Regardless, consistent 

improvement over a locally weighted vote is achieved. Gray outlines indicate the values used in the 

previously presented experiments. The qualitative results demonstrate the benefits and detriments of 

optimal and sub-optimal model parameters. ............................................................................................... 97 

Figure IV.9. Assessment of the model optimality of the NLS approach. The results using ideal 

STAPLE and ideal NLS represent the estimates using the globally ideal performance level parameters 

with 5 atlases per estimate.  NLS consistently converged to an estimate that is very close to “ideal” NLS 

(i.e., the global optimum). On the other hand, STAPLE consistently converged to a value significantly 

less than the global optimum. Additionally, the results of the “Ideal STAPLE” approach are only slightly 

better than a MV, which indicates the non-optimality of the traditional STAPLE observation model. ... 100 

Figure IV.10. Comparison to non-local voting fusion. NLS provided consistent improvement over 

non-local voting, particularly for the smaller deep brain structures (A). NLS provided significant 

improvement on 18 of the 25 considered labels. Particularly for the smaller labels, the benefits of the 

proposed multi-atlas rater model are evident. The qualitative comparison (B) supports the per-label 

comparison and demonstrates the type of improvement achieved by NLS. ............................................. 101 

Figure V.1. Hierarchical representation of rater performance. Volumetric renderings of the brain 

anatomy at the various levels are shown. At each level, the rater performance is quantified using a 

representative confusion matrix. Each level is then unified through a complete hierarchical performance 

model. ....................................................................................................................................................... 107 
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Figure V.2.. Motivating simulation data and results. A simple 2D simulated dataset was 

constructed with observations using a boundary error model (A). Given a pre-defined hierarchical 

structure (B), the accuracy of all possible unique hierarchies via label permutation was quantified (C). 

Representative estimates using the “logical” (D), “best” (E), and “worst” (F) hierarchies are also 

presented. .................................................................................................................................................. 116 

Figure V.3. Mean accuracy of the various benchmarks and their corresponding hierarchical 

implementations for both the affine and the non-rigid registration frameworks. The accuracy of a majority 

vote (MV) and locally-weighted vote (LWV) are presented to provide a reference baseline. The 

hierarchical implementations for STAPLE, Spatial STAPLE (SS), Non-Local STAPLE (NLS), and Non-

Local Spatial STAPLE (NLSS) provide consistent and statistically significant improvement over their 

non-hierarchical counterparts. ................................................................................................................... 117 

Figure V.4. Per-label accuracy for non-cortical labels for hierarchical implementations of NLS 

and NLSS using the affine registration framework. The hierarchical reformulations provide substantial 

and significant improvement for many of the considered labels. ............................................................. 119 

Figure V.5. Per-label accuracy for non-cortical labels for hierarchical implementations of NLS 

and NLSS using the non-rigid registration framework. As with the affine-only registration framework 

(Figure V.4), the hierarchical implementations provide substantial and significant improvement for many 

of the considered labels. ............................................................................................................................ 120 

Figure V.6. Mean per-label accuracy improvement for cortical labels using the hierarchical 

implementations of NLS and NLSS for the both of the considered registration frameworks. Particularly 

for the affine registration framework, the hierarchical reformulations provide substantial improvement in 

mean DSC accuracy for many of the cortical labels. ................................................................................ 121 

Figure V.7. Qualitative improvement exhibited by several state-of-the-art statistical fusion 

algorithms with the reformulated hierarchical performance model for the affine registration framework. 

For each of the considered statistical fusion algorithms we see substantial visual improvement for many 

of the considered labels. In particular, there appears to be marked improvement in the quality of the 
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lateral ventricle labels and many of the cortical labels. The ellipses highlight regions exhibiting particular 

qualitative improvement. .......................................................................................................................... 122 

Figure V.8. Empirical evaluation of Hierarchical STAPLE applied to multi-atlas segmentation of 

orbital anatomy on CT. The considered logical hierarchical representations are shown in (A). The 

quantitative (B) and qualitative (C) comparisons demonstrate that Hierarchical STAPLE provides 

significant improvement using both the EM and “ideal” performance parameters. ................................. 125 

Figure VI.1. Flowchart demonstrating the out-of-atlas likelihood estimation procedure. First the 

provided atlas information is used to both (1) perform a multi-atlas segmentation estimate of the target 

image, and (2) estimate the per-label density functions. Next, these per-label density functions and the 

target information are used to estimate the observed and expected density functions. These two density 

functions are then used to construct a voxelwise estimate of the out-of-atlas likelihood. Lastly, the 

background and edge effects are diminished through a post-processing smoothing step. ........................ 130 

Figure VI.2. Quantitative results for the detection of malignant gliomas across 30 target subjects. 

The positive and negative predictive values for varying declaration thresholds can be seen in (A) and (B), 

respectively. The “declaration threshold” indicates the threshold probability for which we declare a voxel 

to be anomalous (in this case, a cancerous voxel). Finally, the per-subject Receiver Operating 

Characteristic (ROC) curves can be seen in (C) in the various thin lines, with the mean ROC curve across 

the subjects represented with the thick black line. .................................................................................... 137 

Figure VI.3. Qualitative results for the detection of malignant gliomas. Five representative 

examples are presented. For each example, the target volume, expert labeling, label fusion estimate, and 

the out-of-atlas likelihood are presented. The first four examples represent cases where the tumor region 

is correctly identified. The last example represents the outlier case (seen in red in Figure VI.2C) in which 

the cancerous region was almost completely missed. ............................................................................... 138 

Figure VI.4. Sensitivity of the approach to the bandwidth parameter. The spread of area under 

curve (AUC) values across the 30 subjects for various bandwidth values is seen in (A). Note that the 

optimal value is approximately 1.0, which is not surprising given the intensity normalization procedure.  
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In (B)-(G) qualitative results are presented with various out-of-atlas likelihood estimations for varying 

bandwidth values presented in (E)-(G). .................................................................................................... 139 

Figure VI.5. Sensitivity of the approach to the label fusion algorithm. A comparison is made 

between 4 different fusion approaches: (1) best individual atlas, (2) majority vote, (3) STAPLE, and (4) 

Non-Local STAPLE. Non-Local STAPLE provides both quantitatively and qualitatively the best results 

due to the fact that it incorporates both label and intensity information into the fusion process. Note that 

all of the multi-atlas fusion approaches outperform the best individual atlas which highlights the 

importance of using multiple template images to account for atlas bias. ................................................. 140 

Figure VI.6. Flowchart demonstrating the multi-atlas labeling process for the DTI study. First, the 

provided atlases are used to label each subject’s T1-weighted image. Next, this label information is 

transferred to all of the DTI datasets via an intra-subject rigid registration. Note that all of the diffusion 

weighted volumes were rigidly registered to their associated    volume to account for patient movement.

 .................................................................................................................................................................. 141 

Figure VI.7. Qualitative results for the quality control framework for DTI images. Six 

representative examples are presented demonstrating the gamut of potential image qualities in the 

provided dataset. The first two examples (top two rows) represent examples where no abnormalities are 

present and the out-of-atlas likelihood estimate supports this observation. The final four examples 

demonstrate images with varying degrees of aliasing and shading artifacts, and the out-of-atlas likelihood 

estimate consistently detects and localizes these image quality issues. .................................................... 142 

Figure VII.1. Problems associated with non-rigid volumetric registration of cervical spinal cord 

MRI. Non-rigid volumetric registration of cervical spinal cord MRI is challenging and may yield 

suboptimal results, including (A) poor global initialization, (B) undesired boundary conditions, and (C) 

overly smoothed deformations as a result of poor local correspondence. ................................................ 145 

Figure VII.2. Flowchart describing the construction of the groupwise consistent atlas 

representation and the resulting groupwise appearance model. In an iterative procedure, all of the atlases 
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registered to the current estimate of the mean, which is then updated. Using the co-registered atlas data, 

the groupwise appearance model is constructed using principal component analysis. ............................. 151 

Figure VII.3. Example local atlas image content with respect to the primary modes of variation 

constructed in the model. The geodesic distance between co-registered atlases (i.e., the distance in the 

low-dimensional model) visually corresponds to anatomical similarity. .................................................. 152 

Figure VII.4. Flowchart describing the process of (1) registering the target image with the model 

space, and (2) constructing the final segmentation estimate. For a given rigid transform, the registered 

target is projected into the model space enable a model-informed cost function to be evaluated. This 

process is repeated until the optimal rigid transformation is found. Using the optimal parameters (i.e., the 

transform and the selected atlas content), the segmentation estimate is constructed through label fusion 

and, finally, transferred back to the original target coordinate system. .................................................... 154 

Figure VII.5. Quantitative comparison of the considered registration frameworks and label fusion 

approaches for the accuracy of both gray matter and white matter segmentation. For both structures, the 

accuracy is measured in terms of the Dice similarity coefficient, mean surface distance error, and 

Hausdorff distance error. The proposed groupwise slice-based registration framework provides consistent 

improvement across both structures and by all of the considered metrics. ............................................... 162 

Figure VII.6. Slice-based qualitative comparison of a pairwise slice-based registration framework 

and the proposed groupwise slice-based registration framework. For both examples, the proposed 

framework provides significantly more accurate segmentations and is able to maintain the complex 

structure of the GM horn. .......................................................................................................................... 163 

Figure VII.7. Volumetric qualitative comparison of the accuracy of the segmented gray matter for 

the pairwise slice-based framework, and the proposed groupwise slice-based framework. The proposed 

registration framework consistently estimates the complex shape of the GM horn more accurately than its 

pairwise counterpart. Note the different axes for the two different registration frameworks. .................. 164 

Figure VII.8. Quantitative analysis of the sensitivity of the proposed registration framework to the 

free model parameters. For the fraction of explained variance, (A), the inclusion of a significant portion of 
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the modes of variation provides valuable benefits in terms of segmentation accuracy (i.e., up to   

    ). However, inclusion of too many modes (i.e.,         ) results in sub-optimal performance. 

For the model weighting parameter, (B), the estimated parameter value inferred from the model appears 

to be the near-optimal parameter value across the considered targets. For both parameters, the gray bar 

indicates the value used in the other presented experiments. Note, for (A) and (B) the accuracy measures 

are the result of a majority vote so that the effect of the parameter is not obfuscated by more sophisticated 

fusion algorithms. ..................................................................................................................................... 165 

Figure VIII.1. Flowchart demonstrating the geodesic learner fusion (GLF) framework. A large 

collection of training images are processed offline using a typical multi-atlas segmentation pipeline. The 

dimensionality of the training images is then reduced, and learners are constructed to map a weak initial 

estimate to the multi-atlas segmentation. Finally, for a new testing image, the image needs to be projected 

into the low-dimensional space and the geodesically appropriate learners can be fused to efficiently and 

accurately estimate the final segmentation. .............................................................................................. 170 
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  CHAPTER I

INTRODUCTION 

1. Overview 

Segmentation of medical images provides a critical mechanism for relating a collection of 

seemingly unrelated voxel intensity values to the latent, underlying anatomical structure within an image. 

This structure provides localizing context that is paramount to performing nearly any analysis of medical 

image content. For example, segmentation is pivotal for (1) defining desired regions-of-interest, (2) 

providing large-scale characterization of variability in anatomical structure, (3) localizing pathological 

abnormalities, (4) assessing disease progression and treatment efficacy, and (5) scientific inquiry into the 

complex relationships between biological structure and function. This plethora of potential applications 

has been the driving force behind decades of research into the optimal ways to perform robust and 

accurate segmentation. 

For well over three decades, the long-held “gold standard” for highly robust segmentation has 

been through expert manual delineation [1-3]. Even with the more recent image-guided interactive tools 

[2, 4], manual labeling is extremely time and resource consuming which limits its applicability to large-

scale imaging studies. In addition to being extraordinarily time and resource consuming, manual labeling 

is plagued by both inter- and intra-rater variability (e.g., 10-20% by volume [5-7]). This problem of 

variability has led to the desire to utilize multiple raters in order to come to a consensus segmentation  [8, 

9] which only further complicates the problems of limited of resources. More recently, approaches have 

been developed that attempt to “crowd-source” the manual labeling problem using internet-based 

collaboration [10-16]. While certainly promising, these approaches are still years away from being a 

viable alternative for large-scale segmentation. 
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On the opposite end of the spectrum, it would be ideal if fully-automated algorithms resulted in 

accurate and robust segmentations. Unfortunately, wild anatomical and imaging variability often force 

fully-automated segmentation approaches to be highly-tuned for specific applications. For example, early 

medical image segmentation efforts focused on the problem of brain tissue classification (i.e., white 

matter vs. gray matter) [17-24], in which these tissues could be separated through direct modeling of the 

intensity characteristics present on the images. Assuming highly accurate pre-processing (e.g., removal of 

non-brain tissue), these techniques were shown to be extraordinarily successful and robust for this 

specific problem; however, extension of this type of framework to capture, for example, more subtle sub-

cortical structures in the human brain requires a priori spatial context and, possibly, manual intervention 

[9, 25-28]. As a result of this robustness problem, automated segmentation algorithms often rely upon 

manual initialization and/or correction [29-32]. 

Given the limitations of purely manual and purely automatic segmentation, in the early 1990’s 

atlas-based segmentation methods provided a much needed middle-ground [28, 33, 34]. In atlas-based 

models, spatial information is transferred from an existing labeled atlas (i.e., an example segmentation) to 

a previously unseen context (target subject) through a deformable registration [35-39]. An extraordinary 

amount of work has gone into the construction of atlases in order to represent (1) unbiased average atlases 

[40-42], (2) age/demographic-specfic atlases [42, 43], and (3) target-specific atlases [43, 44]. While 

single-atlas-based methods are quite robust, they rely upon the implicit assumption that the provided atlas 

can be warped through a deformable registration to find absolute correspondence with the target-of-

interest. As a result of this assumption, however, the accuracy of single-atlas-based methods are 

inherently limited due to (1) lack of correspondence (e.g., due to morphological and pathological 

differences), (2) the inherent bias of the atlas image, and (3) failures in the deformable registration [19, 

45-47]. 

Due to the restrictions of single-atlas-based methods, an alternative strategy that independently 

utilizes multiple atlases (i.e., multi-atlas segmentation) has come to represent the de facto standard 

baseline for robust and consistent segmentation. In multi-atlas segmentation [9, 26], multiple atlases are 
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separately registered to the target and the voxelwise label conflicts are resolved using label fusion [8, 11, 

26, 48-62]. While pairwise registration followed by label fusion represents a typical framework for 

performing multi-atlas segmentation, several advancements to the multi-atlas framework have been 

considered, such as (1) atlas selection [53, 58, 63-66] and (2) post-processing refinement [46, 67-71]. 

Regardless of the intricacies of the approach, however, multi-atlas segmentation has proven to be 

extraordinary fruitful across a plethora of potential applications (e.g., whole-brain [26, 46, 48, 49, 51, 52, 

59, 63, 65, 67, 71], hippocampus [53, 56, 61], head and neck [51, 52, 72], cardiac [57, 73, 74], prostate 

[58], and abdomen [75, 76]). 

In the end, the fundamental question governing multi-atlas segmentation is one that has been the 

underpinning of decades of machine learning research: Can we model the world though examples? While 

the initial work in this field has been promising, several problems persist that limit the accuracy and 

prevent the widescale adoption of this framework to new problem spaces. First, while weighted voting 

fusion strategies [48, 56-59, 61] have come to represent the baseline fusion techniques, they remain 

primarily ad hoc and fail to provide a theoretically consistent model of multi-atlas segmentation behavior. 

Second, while traditional statistical fusion strategies [8, 9] provide elegant theoretical models of human 

labeling observation behavior, they fail to be applicable to a multi-atlas context as they (1) ignore task 

difficulty (i.e., some voxels are harder to label than others) [50, 77], (2) provide global estimates of rater 

behavior (i.e., they do not allow spatially varying performance) [49, 52, 54], (3) make implicit 

assumptions about highly accurate atlas-target correspondence [51, 78], and (4) neglect the hierarchical 

relationships between the labels exhibited in the anatomy [79]. 

In this dissertation, we address these challenges through a cohesive view of multi-atlas 

segmentation based upon rater performance modeling. For the rest of this chapter, we delve into the 

details surrounding multi-atlas segmentation, and outline where our work falls in the overarching 

structure. Finally, this chapter concludes by clearly defining the contributions provided by this 

dissertation. 
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2. Atlases 

Atlases represent a fundamental unit for understanding structure and anatomical context across a 

population. The origins of modern research into the construction of atlases stems from the seminal work 

by Jean Talairach in 1988 [80] in which he developed a standardized 3D coordinate space for which brain 

anatomy could be analyzed. With the development of magnetic resonance imaging (MRI), the space 

developed by Talairach was extended to define a stereotaxic imaging space [81-85] and later utilized to 

make statistical inferences across a population of subjects [86-88]. Later, due to the limitations of the 

initial Talairach formulation (e.g., the fact that it was established using a single, post-mortem 60-year old 

female brain), alternative techniques for atlas construction included (1) using large numbers of subjects 

(e.g., the MNI-305 atlas [86]), and (2) construction of a high SNR single-subject atlas using multiple 

scans over time (e.g., the MNI-Colin27 atlas [89]). Finally, more recently, efforts have gone into the 

construction of (1) unbiased average atlases [40-42], and (2) age/demographic-specfic atlases [42, 43].  

See Figure I.1 for a graphical representation of the evolution of atlases. 

 

Figure I.1. The evolution of atlases. In 1988, Jean Talairach proposed a stereotaxic model 

for the human brain population. Since, alternative techniques for atlas construction 

included (1) using large numbers of subjects, (2) using multiple scans of a single subject 

over time, (3) unbiased average atlases, and (4) age/demographic-specific atlases. 
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3. Atlas-Based Segmentation 

The above description of atlases is based upon the viewpoint of analyzing images within a 

common, consistent coordinate space (i.e., stereotaxy). As a result, subject images are generally aligned 

with the stereotaxic space and inferences are made about the coordinate system itself. To contrast, an 

alternative viewpoint of atlases is to use the inverse perspective and align the atlas space to the acquired 

target coordinate system. While this loses generality in terms of making inferences about populations, it 

gains the ability to make target-specific inferences [43, 44]. Additionally, when the atlases have 

associated labels to represent the underlying structure, these labels can be propagated using the atlas-

target deformation field in order to infer structural information about the target subject [28] (see Section 4 

for further details on image registration for atlas-based segmentation). This label propagation technique 

(traditionally known as atlas-based segmentation) enables an extremely straightforward technique for 

estimating anatomical structure. Unfortunately, atlas-based segmentation is typically relegated as a pre-

processing step to many of the more popular automated segmentation algorithms [17, 19, 25, 90, 91] due 

to the inherent problems of using a single atlas to represent the target population (e.g., dependence on 

highly accurate deformable registration, and the implicit assumption that the atlas is representative of the 

target anatomy). 

4. Registration in Atlas-Based Segmentation 

The fundamental technique that enables atlas-based segmentation is image registration (see [92] 

for a survey of medical image registration techniques). In its essence, image registration is an 

optimization problem in which two images are aligned by trying to minimize some cost criterion (e.g., 

mean squared difference, correlation coefficient, mutual information [93]). In general, medical images are 

registered using a multi-stage framework in which global alignment is maximized initially, followed by a 

local (or voxelwise) alignment. For 3-D medical image volumes, the global alignment phase typically 

involves maximizing a rigid transformation (i.e., a 6 degree-of-freedom transformation model) [94-97] 

and/or an affine transformation (i.e., a 12 degree-of-freedom transformation model) [98-101]. For the 
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local alignment phase, the previously estimated global transformation is used to initialize a deformable 

non-rigid registration to maximize the voxelwise correspondence between the images [36-38, 102]. The 

problem of deformable non-rigid registration has been the focus of decades worth of  medical imaging 

research. As a result, a complete review of the available techniques is outside the scope of this 

dissertation; however, in a recent study of 14 non-rigid registration algorithms, Klein et al [39] 

demonstrated the importance of registration accuracy on atlas-based segmentation techniques where it 

was shown that the symmetric normalization (SyN) algorithm was the most consistent performer in terms 

of the resulting segmentation accuracy [36]. 

As previously discussed, in atlas-based segmentation, the goal is to estimate the segmentation for 

some target image from a provided atlas image with corresponding labels via image registration. 

Specifically, the atlas image is registered to the target image using the previously described framework. 

Finally, the atlas labels can be transformed to the target coordinate system by propagating (or 

transferring) the atlas labels through the previously estimated transformations/deformations and the final 

target segmentation is estimated via an appropriate label-preserving interpolation scheme.  

5. Multi-Atlas Segmentation 

While using a single atlas to represent a target population is problematic, a natural and simple 

way to account for imaging and anatomical variability across subjects is to independently use multiple 

manually labeled atlases. As a result, individual failures in registration or in the applicability of an 

individual atlas can be overcome by aggregating the information provided by the set of atlases. This 

process (known as multi-atlas segmentation) was originally proposed in 2004 by Torsten Rohlfing [9] and 

then popularized by Rolf Heckemann on neurological data in 2008 [26]. Since its inception, multi-atlas 

segmentation has exploded in popularity and has been used across an extraordinary range of potential 

applications and imaging sequences/modalities – including, but not limited to, whole-brain [26, 46, 48, 

49, 51, 52, 59, 63, 65, 67, 71], hippocampus [53, 56, 61], head and neck [51, 52, 72], cardiac [57, 73, 74], 

prostate [58], and abdomen [75, 76]. 
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5.1. Typical Multi-Atlas Segmentation Workflow 

The general formulation of multi-atlas segmentation, despite being quite straightforward, consists 

of many components (see Figure I.2 and the subsequent sections for details on each of the individual 

components). Put simply, the goal is to use a collection of example atlases (consisting of both intensity 

and labeled images) and generalize this information to a new, previously unseen context (i.e., the target 

image). However, as each of the atlases and the target are within in their own defined space (generally 

defined by the scanner acquisition), the first step is to deform the atlas images to the target coordinate 

system. There are many ways to accomplish this transformation, the most popular being to use a pairwise 

registration procedure in which each of atlas images are separately deformed to match the target image. 

Then, using the acquired transformations (e.g., an affine transformation or non-rigid deformation), the 

associated atlas labels can then be transferred (or “propagated”) to the target coordinate system using an 

appropriate, label-preserving, interpolation scheme. Thus, after all of the atlases have been spatially 

 

Figure I.2. A typical multi-atlas segmentation workflow. First, the target image and the 

atlas information are passed to a deformable registration in order to achieve a deformation 

field that maps the atlases to the target coordinate system. Second, the atlas information is 

then passed through the resulting deformation fields in order to construct the registered 

atlas information. Finally, all of the resulting information is then combined into a label 

fusion framework in order to achieve the final, fused segmentation. 
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normalized with the target image, we are left with a collection of label observations governing the 

underlying target segmentation. The voxelwise label conflicts between these observations can then be 

resolved using a process known as “label fusion” in order to provide a single, probabilistic estimate of the 

underlying segmentation. In general, there are two primary ways to perform label fusion: (1) voting-based 

fusion in which each of the atlases are weighted based upon some a priori simmilarity metric with the 

target image, and (2) statistical fusion in which the registered atlas (or “rater”) performance is 

simultaneously estimated with the underlying segmentation (see Section 5 for an outline of label fusion 

techniques). While the above description outlines a typical multi-atlas workflow, several additional steps 

have been considered (a collection of which are summarized in Section 6). 

6. Registration in Multi-Atlas Segmentation 

Finding appropriate and optimal deformations between the atlases and the target image plays a 

critical role in defining multi-atlas segmentation accuracy. Obviously, if the registration fails (e.g., 

converges to a suboptimal local optimum as a result of highly variable anatomy, fields-of-view, or image 

quality), then the accuracy of the resulting propagated labels are inherently limited. Thus, the manner in 

which atlas information is transferred to the target context is essential in multi-atlas segmentation. Below, 

we consider the two most common ways in which registration is performed in multi-atlas segmentation. 

6.1. Pairwise Registration 

The first and most popular manner in which to propagate atlas information to the target image is 

through a pairwise registration procedure [9, 26, 46, 48, 49, 51-54, 57-59, 61, 63, 68]. In a pairwise 

registration procedure, the propagation of the atlas information to the target image is treated 

independently for each of the individual atlases. Thus, for each individual atlas, the previously described 

atlas-based registration procedure is repeated for each atlas (i.e., globally initialized using a rigid [94-97] 

or affine registration [98-101] followed by a local alignment using a highly deformable non-rigid 

registration [36-38, 102]). 
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The above pairwise registration procedure has been shown to be extremely successful, 

particularly for neurological applications. However, when extended outside of the cranial vault, (e.g., to 

the abdomen [75], or head and neck structures [52, 72]) more complex multi-scale, multi-level pairwise 

registration procedures are often implemented. For example, these type of techniques might include an 

initial rigid/affine segmentation that attempts to align the boney structures in the image which can often 

be approximated using a soft thresholding technique [72, 103, 104]. 

6.2. Groupwise Registration 

The primary problem with a pairwise non-rigid registration framework is the excessive run time. 

For example, if a single-atlas registration procedure takes, on average, time   seconds, then the multi-

atlas registration in a pairwise framework would inherently take approximately     seconds, where   is 

the number of registered atlases. For situations where   is very large, this amount of time can be 

unacceptably long and limit the applicability of multi-atlas segmentation in many clinically useful 

scenarios. As a result of these time limitations, there has been increased interest in performing groupwise 

registration procedures. Groupwise registration builds on the theoretical developments by Cootes et al 

[105, 106] in which shape and appearance models were constructed in order to summarize the variability 

in a collection of images. As a result, typical groupwise registration techniques summarize the training 

atlases into a common coordinate space that provides an unbiased representation of the data as a whole 

[107, 108]. Note that this unbiased representation are not typically an “average map” taken from the atlas 

images. Instead, the goal is typically to find the optimal representation in which the amount of 

deformation between the atlases and the obtained unbiased image is arbitrarily small. Regardless, using 

this type of model, all of the atlases can be spatially normalized into a common coordinate system without 

requiring knowledge of the target image. Then, due to the fact that the atlases are all pre-aligned, a single 

deformation from the group mean to the target image can be obtained and all of the atlases can be 

propagated through the acquired groupwise deformation. 
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Groupwise registration has become increasingly popular in the multi-atlas segmentation literature 

[44, 63, 109]. In particular, applications for (1) determining the most similar atlases for performing label 

fusion [63, 65, 66], (2) decreasing the computational burden of multi-atlas segmentation [109], and (3) 

maintaining groupwise consistent segmentations [110, 111]. While the traditional pairwise registration 

framework is still considered to be the gold standard for performing robust multi-atlas segmentation, 

these recent efforts have continually shown that the gap in performance between pairwise and groupwise 

registration frameworks is diminishing.  

7. Label Fusion 

Label fusion represents the primary focus of this dissertation. Given the target image and the 

registered atlas information (consisting of both intensities and labels) label fusion attempts to estimate the 

underlying segmentation. The concept of label fusion arose in the context of statistical machine learning. 

Kearns and Valiant suggested that a collection of “weak learners” (i.e., raters that are only slightly better 

than chance) could be fused (or “boosted”) to form a “strong learner” (i.e., a single rater with arbitrarily 

high accuracy) [112]. This proposal was first proven a year later [113], and, with the introduction of 

AdaBoost [114] in 1995, the process of “boosting” multiple classifiers became widely practical and 

popular. Perhaps suprisingly, it wasn’t until approximately 2004 that the boosting literature was 

successful translated to the medical imaging analysis context for the fusion of image labels [8, 9]. Today, 

label fusion is an extremely popular topic for ongoing research. Below, we delve into the details of label 

fusion and discuss the different perspectives on the optimal ways to fuse image labels. 

7.1. Problem Definition 

Consider a target gray-level image represented as a vector,       . Let        be the latent 

representation of the true target segmentation, where              is the set of possible labels that 

can be assigned to a given voxel. Additionally, consider a collection of   registered atlases with 

associated intensity values,       , and label decisions,       . Throughout, the index variables  , 
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   and    will be used to iterate over the voxels,  ,  , and    over the labels, and   over the registered 

atlases. Given this information, the goal of any label fusion framework is to accurately estimate the 

following probability density function: 

                  (1.1) 

where     can be directly interpreted as the probability that the true label at voxel   is equal to label   

given the provided contextual information.  

Using a standard Bayesian expansion, Eq. 1 can be re-written as 

    
                    

∑                      
 (1.2) 

Where,         represents the a priori distribution governing the underlying segmentation and 

              represents distribution governing the relationships between the observed atlas 

information and the latent target segmentation. Lastly, one of the most common assumptions in the label 

fusion literature [59] is that the observed atlas labels and the observed atlas intensities are conditionally 

independent resulting in 

    
                      

∑                        
 (1.3) 

while this might seem like it neglects the complex relationships between labels and intensity, the common 

assumption is that the information gained by direct incorporation of the target/atlas intensity relationships 

accurately approximates these complex relationships through the assumed conditional independence. 

With that said, further investigation into estimating the target label probabilities, using joint models of 

atlas performance is an active area of continuing research [60, 61]. 

Using this general framework, there are two primary fields-of-thought within the label fusion 

community. First, voting label fusion attempts to find optimal weights in order to determine which atlases 

are optimally representative in terms of some local/semi-local/global metric. Nevertheless, these 

techniques are primarily ad hoc and lack a consistent theoretical underpinning. In stark contrast, statistical 

fusion techniques attempt to model atlas performance using a statistically driven rater performance model. 

Significantly more detail on these two approaches is provided in the following two sub-sections.  
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7.2. Voting Label Fusion 

The first, and simplest way to perform label fusion is to utilize a voting-based framework (see 

Figure I.3 for a flowchart demonstarting the typical workflow). In voting label fusion there are generally 

two primary assumptions (1) the a priori distribution is unnecessary as all of the registered atalses 

provide accurate and consistent spatial information (i.e.,         
 

 
     ) and (2) the model 

probability density functions can be approximated using Parzen’s window density approach [115]. As a 

result, a general voting-based fusion approach would simplify to 

    
∑  (   |      (  |   

∑ ∑  (   |      (  |    

 (1.4) 

Perhaps surprisingly, a majority vote, the simplest voting-based fusion strategy, has been 

consistently shown to result in highly robust and accurate segmentations [9, 26, 63]. In a majority vote, all 

atlases are weighted equally and result in Eq. 4 simplifies to 

    
∑  (     ) 

∑ ∑  (     )  

 (1.5) 

 

Figure I.3. A flowchart generalizing the process of voting-based label fusion. The target 

image and the registered atlas images are compared using a pre-defined similarity metric. 

The results of this comparison lead to a voxelwise weighting for each of the registered 

atlases. These weights are then combined with the observed labels in order to construct the 

probability of each label at all voxels. Finally, the fused segmentation is constructed by 

taking the maximum likelihood label at each voxel.  
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where        is the kronecker detla function. 

More recently weighted voting strategiest that use global [48, 72], local [57, 59, 60], semi-local 

[59, 61], and non-local [56] intensity similarity metrics have demonstrated consistent improvement in 

segmentation accuracy. Regardless of the type of weight, however, weighted voting strategies can 

typically be simplified to be of the general form 

    
∑  (     )  (  |  

∑ ∑  (     )   (  |  

 
∑     (     ) 

∑ ∑     (     )  

 (1.6) 

where     is simply a weighting function governing the likelihood that the correct answer at voxel   is 

obtained from atlas  . Note that there are many ways to estimate these weighting functions (e.g., Gaussian 

intensity differences [57, 59, 61], correlation coefficients [48, 53], or mutual information [48]). For 

example, one of the more common weighting schemes is to use a Gaussian distribution to model the 

intensity differences between the target and the atlas images. Particularly for high resolution MR images 

of the brain, using a strict intensity difference framework has been shown to be more accurate than many 

of the alternative weighting schemes [48]. Using a Gaussian distribution governing the intensity 

difference the weighting scheme could be constructed as 

    
 

  
   ( 

(      )
 

   
) (1.7) 

where   is a standard deviation parameter for the Gaussian distribution. Nevertheless, regardless of the 

weighting metric, the general weighted voting fusion framework remains essentially identical. With that 

said, additional investigation into the optimal weighting metric for a given applicationremains an open 

problem. 

7.3. Statistical Label Fusion 

In stark contrast to ad hoc voting, statistical fusion strategies (e.g., Simultaneous Truth and 

Performance Level Estimation, STAPLE [8]) directly integrate a stochastic model of rater behavior into 
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the estimation process (see Figure I.4 for a flowchart describing the general estimation process). 

Mathematically, this model of rater behavior manifests itself by augmenting the the distribgution in Eq. 1 

                    (1.8) 

where          parameterize the performance level of raters (registered atlases). Each element of  , 

     , represents the probability that rater   observes label    given that the true label is   at a given target 

voxel— i.e.,        (      |       ) . This type of formulation of rater performance is often 

referred to as a “confusion matrix” (i.e., each rater has a confusion matrix that governs their labeling 

performance). 

However, unlike voting-based label fusion frameworks, statistical fusion attempts to 

simultaneously estimate both (1) the underlying segmentation probabilities and (2) the rater performance 

level parameters,  . To accomplish this, statistical fusion strategies utilize an Expectation-Maximization 

(EM) formulation [116]. In an EM framework, the desired model parameters are iteratively estimated 

using two subsequent steps (referred to as the E-step and the M-step, respectively). In the E-step, the 

voxelwise label probabilities are estimated using the current estimate of the rater performance level 

 

Figure I.4. A flowchart generalizing the process of statistical label fusion. Given the target 

image, the registered atlas information and a priori label probabilities, the statistical fusion 

process estimates the final segmentation through an Expectation-Maximization (EM) 

estimation process. The E- and M-steps of the EM framework are iterated until 

convergence of the algorithm. Lastly, given the final estimate the label probabilities, the 

fused segmentation is constructed by taking the maximum likelihood label at each voxel. 
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parameters. In the M-step, the performance level parameters are updated by finding the parameters that 

maximize the expected value of the conditional log-likelihood function (i.e., using the results of the 

previous E-step). This iterative process is then repeated until the algorithm converges (i.e., until the 

estimated performance level parameters cease to change beyond a pre-defined threshold).  

First, for the     iteration of the E-step of the statistical fusion framework, we follow a familiar 

procedure and apply a Bayesian expansion to Eq. 7: 

   
   

 
                  

∑                    
 (1.9) 

Assuming conditional independence between the registered atlases (or “raters”) and using a simple 

substitution we can then obtain 

   
   

 
       ∏  (      |      ) 

∑        ∏  (      |      )  

 
       ∏       

∑        ∏        

 (1.10) 

where    is simply the label observed by rater   at voxel  . 

For the M-step of the algorithm, we estimate the performance level parameters by finding the 

parameters that maximize the expected value of the conditional log-likelihood function (i.e., using the 

result in Eq. 9). 

  
     

        
  

∑ 

 

[                 
    

   
 |      ]

        
  

∑∑   
   

                 
    

   
 

  

 (1.11) 

Noting the constraint that each row of the rater performance level parameters must sum to unity to be a 

valid probability mass function (i.e., ∑  
    

   
    ), we can maximize the performance level parameters 

for each element by using a Lagrange Multiplier (   [117] to formulate the constrained optimization 

problem. Following this procedure, we obtain 
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Finally, solving for the Lagrange Multiplier leaves the final solution for each element of the performance 

level parameters 

      
∑    

   
        

∑    
   

 

 (1.13) 

Note that there are several considerations for (1) detection of convergence, and (2) initialization strategies 

for the framework. However, in the interest of brevity, we refer the reader to [8] for the intricacies of the 

approach. 

Nevertheless, despite elegant theory and success on human raters, applications of the statistical 

fusion framework to the multi-atlas context have proven problematic [49, 59-61]. In response, a myriad of 

advancements to the statistical fusion framework have been proposed to account for (1) spatially varying 

task difficulty [9, 50], (2) spatially varying rater performance [49, 52, 54, 67], (3) instabilities in the rater 

performance level parameters [11, 55], and (4) models of hierarchical performance estimation [79]. While 

these advancements have been shown to dramatically improve segmentation accuracy, they still fail to 

incorporate useful intensity information that is critical for accurately modeling multi-atlas segmentation 

behavior. As a result, alternative techniques that utilize intensity information have recently been proposed 

that account for (1) imperfect registration correspondence [51] and (2) ad hoc extensions that ignore 

voxels based upon a priori similarity measures [53, 67, 118] have been considered. 
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To summarize, statistical fusion strategies represent a fascinating framework for estimating the 

underlying segmentation while simultaneously incorporating a model of registered atlas observation 

behavior. This theoretical consistency makes statistical fusion significantly more attractive than ad hoc 

voting-based approaches. Herein, the primary focus of this dissertation is on modifying the statistical 

fusion framework to more accurately model the type of label observation behavior exhibited in a multi-

atlas context. In Chapters II-V, we propose four distinct, yet complementary, models of rater behavior 

that attempt to account for the limitations of the original statistical fusion formulation. 

8. Additional Processing Steps 

While registration (and label transfer) followed by label fusion represents the fundamental 

framework for performing multi-atlas segmentation, several additional processing steps have been 

proposed in order to increase the efficiency, robustness, and accuracy of the final segmentation. In 

general, these processing steps can be broken up into two distinct categories (1) pre-processing (e.g., 

intensity normalization, atlas selection, and patch-based approaches) and (2) post-processing (e.g., 

Markov Random Field regularization, intensity clustering, and learning-based wrapper methods). 

8.1. Pre-Processing  

8.1.1. Intensity Normalization 

Given the popularity of utilizing a strict intensity difference model in order to construct local 

weights (see Eq. 7) for the fusion process [46, 48, 57, 59, 61], intensity normalization between images 

plays a critical role in segmentation accuracy. In particular, intensity normalizing MR images is critical 

for accurate analysis due to the fact that the intensity characteristics between MR images often varies 

dramatically between scanners and acquisition sequences [119-121].  Perhaps surprisingly, there is no 

standard technique for normalizing intensity between images for multi-atlas segmentation. The most 

common technique is to simply normalize the intensity between the images at a pre-defined percentiles on 

the images [57, 59]. Alternative techniques are to use a piece-wise linear function to map the intensities 
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[68] (i.e., assuming a standard gray matter, white matter, cerebro-spinal fluid intensity model). More 

recently, groups have considered fitting more complex functions to map the intensities between the atlas 

and the target image (e.g., higher order polynomials [51]). Nevertheless, due to the issues of applying 

these intensity normalization technique across applications, the use of alternative similarity metrics is 

becoming increasing popular even if it results in slightly lower accuracy for certain applications [53]. 

8.1.2. Atlas Selection 

Atlas selection was one of the first advancements to be considered for multi-atlas segmentation. 

Originally proposed in 2004 [64], atlas selection is an extremely simple process in which one ignores 

certain atlases in the estimation process due to the fact that they are not representative of the target 

subject. Mathematically, atlas selection is extremely simple. Given an indicator variable,           , 

atlas selection can be applied to a majority vote through a simple manipulation of Eq.5  

    
∑     (     ) 

∑ ∑     (     )  

 (1.14) 

where the only difference is that     indicates whether or not atlas   is used in determining the final 

segmentation at voxel  . Note, the general formulation presented in Eq. 14, enables voxelwise atlas 

selection. This can be simplified to perform global atlas selection by enforcing the constraint that 

               . 

Since its inception atlas selection has been shown to result in minor, yet, statistically significant 

improvement over standard fusion techniques [63]. More recently, atlas selection has been extended to be 

part of an iterative estimation process [58], and integrated into the statistical fusion estimation process 

[118] which has been shown to provide additional improvement in segmentation accuracy. 

It should be noted, however, that atlas selection is really just a special case of a traditional 

weighted voting fusion framework (i.e., a weighted voting framework where the weights are limited to a 

pre-defined set of binary values --          ). Thus, the popularity of explicit atlas selection has waned 

due to the more intuitive and theoretically optimal models in which implicit and partial (i.e.,          ) 
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atlas selection is possible. Additionally, it is important to note that the rater performance models 

implemented as part of a statistical fusion framework are a type of implicit atlas selection as the quality of 

the raters are directly modeled within the estimation framework. 

8.1.3. Patch-based Approaches 

While the deformable atlas-target registrations are often highly accurate on a global level, the 

voxelwise correspondence is often hindered by smoothness constraints and dramatic morphological 

disparities. As a result, many approaches have considered using a patch-based approach to reformulate the 

atlas label observations to more accurately match the target intensity characteristics [51, 56, 61, 74, 78]. 

These patch-based approaches build on the approach described as non-local means, a framework that 

emerged in the context of image de-noising [122-127]. In the non-local means framework, images are 

deconstructed into a collection of small volumetric patches and the similarity or correspondence between 

these patches is quantified to learn contextual information about the underlying image structure [122]. 

Specifically, in the multi-atlas context, the similarity of the atlas patches with the current target patch can 

be used to transform the initial labeled observations into probabilistic observations and relax the any 

assumptions about perfect voxelwise correspondence from the initial atlas-target registrations. 

8.2. Post-Processing 

Several techniques have been considered for performing a post-processing refinement of the 

estimated segmentation in order to improve the segmentation accuracy. While many errors in a multi-atlas 

segmentation context can be corrected through more efficient modeling of the atlas observation behavior, 

there exists a different type of error in which consistent mistakes are to be expected due to (1) 

inconsistencies in the expected labels, and (2) pathological/morphological differences that are not present 

on the atlases. As a result, post-processing refinement techniques have been considered that attempt to 

account for these types of errors. 

Building upon the random field theory in imaging statistics [128], Markov Random Fields 

(MRFs) provide a mechanism for enforcing spatial consistency across images. In general, the idea behind 
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MRF integration is to regularize the a priori distribution by simultaneously taking into account the 

previous estimate of the segmentation and the relationships between the neighboring voxels. Through 

careful design of the neighborhood (or clique) structure, MRFs provide a theoretically sound procedure 

for incorporating the complex interactions between voxels in an image. Particularly, for early intensity-

based segmentation algorithms, MRFs played in critical role in increasing the accuracy and consistency of 

the underlying segmentations [129, 130]. For multi-atlas segmentation, spatial consistency is typically 

maintained due to the smoothness constraints of typical registration algorithms. As a result, although 

MRFs have been shown to provide accuracy improvements for multi-atlas segmentation [8], the observed 

improvement is typically minimal. 

Another type of post-processing refinement is to perform a meta-analysis framework in order to 

enforce desired constraints (i.e., consistency with the training data). For instance, the idea of applying the 

intensity-driven EM segmentation after a multi-atlas segmentation is becoming increasingly popular [68, 

69]. However, this type of formulation is limited to scenarios where the intensity characteristics between 

the desired anatomical structures can be probabilistically separated. For example, in multi-organ abdomen 

segmentation, many of the desired organs have identical, or nearly identical, intensity characteristics on 

CT. As a result, EM refinement techniques are often unable to discover distributions that uniquely 

identify the individual organs, and the approach would rely on extremely accurate a priori structural 

context. 

Lastly, machine learning techniques that construct classifiers (e.g., via AdaBoost) for correcting 

consistent segmentation errors are becoming increasingly popular in the segmentation literature (e.g., [70, 

76]). These type of “wrapper” methods have been shown to provide consistent improvement in 

segmentation accuracy, however, determining optimal techniques for feature selection criteria and 

initializing model parameters represent fascinating areas of continuing research.. 
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9. Contributions 

The primary contributions of this dissertation are as follows. In Part 1, we demonstrate 

advancements to the statistical fusion framework that (1) provide a theoretical basis for estimating 

labeling task difficulty (Chapter II), (2) demonstrate a direct mechanism for characterizing spatially 

varying performance (Chapter III), (3) seamlessly incorporate intensity information into the statistical 

fusion framework via a reformulation from a non-local means perspective (Chapter IV), and (4) estimate 

a general model of hierarchical performance (Chapter V). Next, in Part 2, the benefits of these 

theoretical advancements are illustrated for: (1) detection of imaging abnormalities and anomalies 

(Chapter VI), (2) segmenting the spinal cord’s internal structure through structural shape and appearance 

modeling (Chapter VII), and (3) removing the need for computationally expensive deformable 

registration in whole-brain multi-atlas segmentation via machine learning mechanisms (Chapter VIII). 

Finally, we conclude by summarizing the contributions and addressing avenues for further extension and 

exploration (Chapter IX). Specifically we: 

1. We extend the statistical fusion framework in order to account for spatially-varying task 

difficulty. While the traditional statistical fusion framework assumes that all voxels represent 

the same underlying difficulty, this has been consistently shown to be inconsistent with 

observed rater performance models. We augment the traditional statistical fusion framework 

with consensus levels. Through this augmentation, we simultaneously estimate the likelihood 

that each voxel belongs to each of the available consensus levels. This algorithm – Consensus 

Level, Labeler Accuracy, and Truth Estimation (COLLATE), (i) provides a theoretical 

motivation for ignoring consensus voxels, and (ii) provides statistically significant 

improvement over traditional statistical fusion techniques. 

2. We extend the statistical fusion framework to allow for spatially-varying performance. 

Particularly in a multi-atlas segmentation context, it is to be expected that a given atlas would 

exhibit varying quality depending upon the quality of the registration. While traditional 

techniques assume a single global representation of rater performance, we provide a simple 
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mechanism for estimating a smooth, voxelwise estimate of rater performance in order to 

account for these inconsistencies in rater performance. This algorithm – Spatial STAPLE, 

represents the first statistical fusion algorithm that enables local characterization of rater 

performance. 

3. We derive a reformulation of the traditional statistical fusion framework from a non-

local means perspective to account for inconsistencies in the atlas-target registrations. This 

algorithm – Non-Local STAPLE, represents the first statistical fusion algorithm that (i) 

creates a cohesive theoretical model specifically targeting registered atlas observation 

behavior, and (ii) seamlessly incorporates intensity into the core of the STAPLE estimation 

framework. As a result, NLS largely overcomes the need for high-quality non-rigid 

registration and large numbers of atlases. 

4. We propose a novel statistical fusion framework to estimate a generalized model of 

hierarchical performance. Given an a priori model of the hierarchical label relationships for 

a given segmentation task, the proposed model provides a straightforward mechanism for 

simultaneously estimating multiple (hierarchical) confusion matrices for each rater and is 

highly amenable to many of the state-of-the-art advancements to the statistical fusion 

framework. 

5. Typically, multi-atlas segmentation is limited to “in-atlas” applications (e.g., applications 

where the atlases are anatomically and structurally indicative of the target image). We 

propose a technique to estimate the out-of-atlas (OOA) likelihood for every voxel in the 

target image. The OOA approach provides an intuitive and fully general abnormality/outlier 

detection framework that (i) uses multiple normal atlases to limit the inherent bias of using a 

single atlas and avoid the need for non-rigid registration, and (ii) can be used in a large 

number of potential applications. 

6. We propose the first approach for fully automated segmentation of cervical spinal cord 

internal structure using a groupwise slice-based multi-atlas registration framework. 
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Specifically, we provide a method for (i) pre-aligning the slice-based atlas information into a 

common, groupwise-consistent coordinate system, (ii) constructing a model describing spinal 

cord variability (i.e., “eigenspines”), (iii) registering the target image slice to the model space 

using a simultaneous intensity- and model-driven cost function, and (iv) estimating a final 

segmentation by fusing the provided atlas information. 

7. We propose geodesic learner fusion (GLF), a framework for rapidly and accurately 

replicating the highly accurate, yet computationally expensive, multi-atlas segmentation 

framework based on fusing geodesically appropriate learners. In the largest whole-brain 

multi-atlas study ever reported, we (i) estimate a low-dimensional representation for selecting 

geodesically appropriate example images, and (ii) build AdaBoost learners that map a weak 

initial segmentation to the multi-atlas segmentation result. Thus, to segment a new target 

image we simply project the image into the low-dimensional space, construct a weak initial 

segmentation, and fuse the trained, geodesically appropriate, learners. 

10. Previous Publications 

Many contributions of this dissertation have been published. Advancements to the statistical 

fusion framework are discussed for characterizing task difficulty [50, 77], spatially varying performance 

[49, 52], imperfect correspondence [51, 78], and hierarchical performance estimation [79]. The ability to 

detect abnormalities, pathologies, and quality control issues are shown in [131]. The groupwise multi-

atlas segmentation framework for segmentation of the spinal cord’s internal structure is discussed in [132, 

133]. Additionally, advancements to the field of collaborative labeling provide support for many of the 

contributions of this dissertation [10-16]. 
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PART 1 

THEORY 

The first part of this thesis focuses on theoretical advancements to the statistical label fusion 

framework. Building on the seminal Simultaneous Truth and Performance Level Estimation (STAPLE) 

[8], we present theoretical reformulations to more accurately characterize rater (or atlas) performance. 

Specifically, these advancements provide methods for: (1) estimating task difficulty (Chapter II), (2) 

formulating spatially varying performance (Chapter III), (3) accounting for registration uncertainty and 

imperfect correspondence (Chapter IV), and (4) estimating hierarchically consistent models of 

performance (Chapter V). Together, these theoretical advancements provide powerful mechanisms for 

more accurately understanding and estimating rater-driven models and, thus, more accurately estimating 

the desired target segmentations. 
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  CHAPTER II

FORMULATING TASK DIFFICULTY 

1. Introduction 

The label fusion problem arose in the context of statistical machine learning. Kearns and Valiant 

suggested that a collection of “weak learners” (raters that are only slightly better than chance) could be 

fused (“boosted”) to form a “strong learner” (a single rater with arbitrarily high accuracy) [112]. This 

proposal was first proven about a year later [113], and the process of “boosting” became widely practical 

and popular with the presentation of AdaBoost [114]. Statistical methods using automated results or 

complete data sets from several different human raters have been proposed to simultaneous estimate (1) 

the rater performance level and (2) the “ground truth” [8, 9, 134]. The algorithm presented by Warfield et 

al. provided a simultaneous estimation of both performance level parameters of expert segmentations and 

an estimation of the “ground truth” [8]. Extensions to this approach were introduced by Rohlfing et al [9]. 

These algorithms are based upon a maximum likelihood/maximum a posteriori approach (e.g. 

Simultaneous Truth and Performance Level Estimation, STAPLE [8]). When operating under the 

assumption that the raters performing the segmentations are collectively unbiased and independent, these 

algorithms increase the accuracy of a single labeling by probabilistically fusing multiple less accurate 

delineations. These statistical approaches have been widely used in atlas-fusion techniques [26] and have 

been extended to handle continuous (scalar or vector) images [55, 135, 136]. 

Despite the recent advancements in the field of label fusion, there exists a fundamental limitation 

in the way that these algorithms compute performance level parameters of the raters and, thus, the 

estimation of the true segmentation: the observed model of rater behavior when dealing with human raters 

is not particularly accurately modeled by the generative model of rater behavior used by STAPLE (and its 
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descendants). Intuitively (and empirically – see Figure II.1), raters tend to miss at a very small subset of 

the actual voxels present in a data set. These voxels tend to be boundary pixels and voxels where the 

value is ambiguous for one reason or another. This problem manifests itself, in many cases, by creating 

estimations of the rater performance parameters that are biased towards certain labels.  

For example, imagine a truth model where there are only two labels present. One of the labels is 

the background, which composes a huge percentage of the total data set and the other is a label that is 

only present as a small circle in the middle of the truth model. Additionally, the only voxels where there 

is contention about the true label are the voxels that define the boundary between the background and the 

small label. If the observed model of rater behavior holds, the STAPLE estimate of rater behavior would 

estimate that the raters are very good at the background label and very bad at the small label, when, in 

actuality, the problems of the raters are directly related to their ability to delineate the boundary between 

the labels. Instead of the entire observation, there is a small subset of voxels that determine the quality of 

the raters, and the consensus voxels should not be as heavily weighted when determining the rater 

performance parameters. Herein, we present a robust statistical label fusion algorithm through consensus 

level, labeler accuracy and truth estimation (COLLATE). By simultaneously characterizing and 

estimating this additional consensus, we capture a more realistic model of rater behavior to more 

accurately estimate both rater performance and truth labels. The performance of COLLATE is 

characterized in simulation and with empirical data (i.e., labels provided by human raters).  

 

Figure II.1. The inaccuracies of the STAPLE model of rater behavior. A representative slice 

from the truth model is shown in (A). The expected STAPLE model of rater behavior can 

be seen in (B). STAPLE operates under the assumption that there is a uniform probability 

that any given rater would mis-label a given voxel. The observed model of rater behavior 

can be seen in (C). The primary difference between (B) and (C) is that the human raters 

showed a clear inclination to mislabel boundary pixels and other ambiguous regions. 
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Throughout this chapter the terms confusion and consensus will be used to characterize the 

likelihood that a rater makes a mistake at a given voxel. These polar terms are used as a qualitative 

description of the quantitative consensus level. For example, a voxel that is determined to have a high 

consensus level is considered to be a voxel where there is high consensus and low confusion (i.e. it is 

unlikely that a rater would make a mistake at this voxel). Alternatively, a voxel that is determined to have 

a low consensus level is considered to be a voxel where there is high confusion and low consensus (i.e. 

there is a high probability that a rater would make a mistake at this voxel).   

This chapter is organized in the following manner. In Section 2, the COLLATE algorithm is 

described. Techniques for initializing the algorithm, detecting convergence, and the recommended 

method of setting the model parameters is described. In Section 3, the COLLATE algorithm is compared 

to traditional STAPLE on a series of experiments and simulations. One of the simulations demonstrates 

the sensitivity of the data-adaptive priors defined in Section 2. Additional implementations include 

simulations using the modified COLLATE model of rater behavior, an approximation of a human model 

where raters miss at boundaries, the STAPLE model of rater behavior and an empirical experiment.  

2. Theory 

The following derivation of the COLLATE closely follows the approach of  Warfield, et al [8].  

2.1. Problem Definition 

As in the Warfield approach, consider an image of N voxels with the task of determining the 

correct label for each voxel in that image. Also consider a collection of R raters that provide an observed 

delineation for each of N voxels exactly once. Herein, the index variable i will be used to iterate over the 

N voxels and the index variable j will be used to iterate over the R raters. The set of labels, L, represents 

the set of possible values that a rater can assign to all N voxels. Let D be an N x R matrix describing the 

labeling decisions of all R raters at all N voxels where                . Let T be a vector of N 

elements that represents the hidden true segmentation for all voxels, where               .  
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In addition to the traditional model, consider a vector of N elements, C, that represents a 

characterization of the consensus or confusion of each voxel at one of F level of possible consensus. All 

elements in this vector,               , indicate whether voxel i is a voxel of confusion (    ) or 

a voxel of some level of consensus (    ). It is important to note that the terms consensus and 

confusion are polar terms that are describing the same phenomenon from opposite perspectives. As the 

value of    increases the amount of confusion about voxel i decreases, while, conversely, the amount of 

consensus about voxel i increases. We present theory for a multi-consensus level framework. However, 

only a closed form solution for the binary consensus level solution is derived. This vector will 

subsequently be referred to as the “consensus level vector.”  The E-M algorithm presented in this paper, 

 

Figure II.2. The COLLATE model. The hidden data in the COLLATE E-M algorithm can 

be seen in (A), (B) and (C). These images (the true labels, rater confusion matrices and 

consensus map) represent the complete set of data that COLLATE attempts to estimate. 

The generative model of rater behavior can be seen in (D). This flowchart shows the path 

from an input voxel on some clinical data to a single observation. A flowchart 

demonstrating the way in which COLLATE takes input observations and estimates the 

hidden data can be seen in (E). Note the inclusion of priors in conditional probability that is 

estimated to generate the maximum a posteriori estimate of the hidden data. Example 

estimates of the hidden data can be seen in (F), (G) and (H). 
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will estimate the probability that voxel i belongs to each consensus level in the E-Step, and these 

estimated probabilities will be crucial in weighting each voxel when estimating the performance level 

parameters in the M-Step. 

A characterization of the R raters’ performance is characterized by ϴ, where each element, ϴj, is 

an L x L confusion matrix where each element in the matrix quantifies the probability that rater j will 

assign label s’ to a voxel when the true label is s. For reference, the perfect rater would have a confusion 

matrix of the identity matrix. Let the complete data be (D, T, C) and let the probability mass function of 

the complete data be           . 

2.2. COLLATE Algorithm 

The goal of COLLATE is to accurately estimate the performance level parameters of the R raters 

given the rater segmentation decisions, the estimation of the truth, and the estimation of the consensus 

level vector (see Figure II.2). The estimated performance level parameters will be selected such that they 

maximize the complete data log likelihood function 

 ̂        
 

             (2.1) 

It is assumed that the segmentation decisions are all conditionally independent given the true 

segmentation and the performance level parameters, that is                                 . This 

model expresses the assumption that the raters derive their segmentations of the same image 

independently from one another and that the quality of the result of the segmentation is captured by the 

estimation of the performance level parameters. 

Our version of the expectation-maximization (E-M) algorithm used to solve (1) is now presented. 

The complete data used to solve this E-M algorithm is the observed data, D, and the true segmentation of 

each voxel T augmented with the consensus level vector, C. The true segmentation T and the consensus 

level vector, C, are regarded as the missing or hidden data, and are unobservable. Let    be the 

covariance, or confusion, matrix associated with rater j and let 
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               (2.2) 

be the complete set of unknown parameters for the R segmentations. Let            denote the 

probability mass function of the random vector corresponding to the complete data. The complete data log 

likelihood function is presented as 

                      (2.3) 

The E-M algorithm approaches the problem of maximizing the incomplete data log likelihood 

equation 

                (2.4) 

by proceeding iteratively with estimation and maximization of the complete data log likelihood function. 

As the complete data log likelihood function is not observable, it is replaced by its conditional expectation 

of the observable data D given the current estimate of ϴ. Computing the conditional expectation of the 

complete data log likelihood function is referred to as the E-step, and identifying the parameters that 

maximize this function is referred to as the M-step. 

In more detail, let ϴ
(0)

 be some initial value for ϴ. Then, on the first iteration, the E-step requires 

the calculation of 

                                 

  ∑           (   |      )

 

  (2.5) 

The M-step requires the maximization of           over the parameter space of  . That is, we 

choose      such that 

 (    |    )   ( |    ) (2.6) 

for all  . The E-step and the M-step are then repeated as above where at each iteration k, the current 

estimate     , the observed data D are used to calculate the conditional expectation of the complete data 

log likelihood function, and then the estimate of        is found by maximizing  ( |    ). The E- and 

M- steps are repeated until convergence. 
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The performance parameters at iteration k that maximize the conditional expectation of the log 

likelihood function are given by 

           
 

              |        ]

       
 

    
          

    
          

 (2.7) 

Thus, on multiplying by 
        

        
 

           
 

    
                  

            
           (2.8) 

which yields 

           
 

                               (2.9) 

where     is the estimate of the performance level parameters of the raters after the k
th 

iteration of the 

algorithm. The last step operates under the assumption that T and C are independent of the performance 

level parameters, i.e.                    . 

2.3. E-Step: Estimation of the Voxelwise Label Probabilities 

In this section, the estimator for the unobserved true segmentation is derived. We first derive an 

expression for the conditional probability density function of the true segmentation and the consensus 

level vector at each voxel given the raters decisions, and the previous estimate of the performance 

parameters. 

In order to maintain a compact representation of the result, the conditional probability of the true 

segmentation at each voxel is represented using a common notation for E-M algorithms. 
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where     
     

, the weight variable, indicates the probability of the true segmentation at voxel i being 

equal to label s, with consensus level value  . This representation is different from the traditional 

STAPLE representation of the weight variable due to the presence of the consensus level vector. For 

example, the value described by     
   

 represents the probability that voxel i is equal to label s for the k
th
 

iteration and is a voxel that is likely to be confused by a given rater. The matrix constructed by 

considering this value at all N voxels and for all L labels is referred to later as the “consensus map.” The 

result of augmenting the weight variable with the consensus level vector is that consensus voxels are 

isolated so that they can be weighted less heavily when computing the rater confusion matrices. This 

results in an unbiased estimate of rater quality where the proportion of a given label in a truth model is 

significantly less influential than in the STAPLE algorithm. 

2.4. M-Step: Estimation of the Performance Fields via Maximization 

Given the estimated weight variable     
     

, which represents the conditional probability that the 

true segmentation of voxel i is equal label s with consensus level value  , it is now possible to estimate 

the rater performance parameters that maximize the conditional expectation of the complete data log 

likelihood function. Considering each rater separately, we find the parameter estimates   
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We determined that 

 (                   )  (      )             (      |       ) (2.12) 

where         is the indicator function. Plugging (11) into (12) yields 
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Note the constraint that each row of the rater parameter matrix must sum to one in order to be a 

probability mass function 
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    (2.14) 

The rater performance parameters can be maximized through the constrained optimization 

problem 
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where   is a Lagrange multiplier. 

In order to represent the solution for       there are two cases that need to be considered. First, 

the      case (off-diagonal) which can be shown to be equal to 

           
∑ ∑     

     
         

  
  (2.16) 

Up until this point, the theory presented has been for the generic multi-consensus level approach 

for COLLATE. However, it is more involved to analytically solve for the      (on-diagonal) case for 

     . Function optimization methods (e.g. simplex, annealing, etc) could be applied to numerically solve 

for the case of an arbitrary number of consensus levels.  

For simplicity of representation in this paper the binary case, where         and         

    , is solved below 
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The solution for              was obtained using Mathematica (Wolfram Research, Champaign, 

IL). For ease of representation, three dummy variables (a, b, and c) are declared below to solve for 
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The final solution for            is 

           
   √      

  
  (2.21) 

The remaining step is to solve for  . This can be accomplished using the constraint defined in 

(16), which is redefined below due to the separation of the      and      cases 

           ∑           

       

    (2.22) 

Given that both            and            are functions of   it is possible, after some algebra, to 

represent the closed form solution for  . As with the solution for           , three dummy variables are 

declared to ease the representation of the solution 
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The solution for   can be written as 

  
   √      

  
  (2.26) 

With the solution for  , the solution for the on-diagonal case is complete, resulting in a complete 

solution for        The solution presented integrates the consensus level vector directly into the 

estimation process by weighting the importance of each voxel based upon the estimated level of 

confusion/consensus. There are many benefits to this approach particularly the fact that it provides a 

performance level estimate that automatically dramatically decreases the importance of high consensus 

regions. However, because of the integration of the consensus level vector, the estimate for       no 

longer has a strict statistical interpretation as a measure of sensitivity/specificity.  

At this point it is important to clarify the implications of the number of consensus levels. The 

consensus level estimation for each voxel is integrated into both the estimation of the true segmentation 

(E-Step) and the performance level parameters (M-Step). For the E-Step, the probability that a given 

voxel belongs to a given consensus level is estimated. Thus, even in the binary consensus level case, the 

actual state (i.e. consensus or confusion) exists on a spectrum. To illustrate this, consider a voxel where 

all raters agree, the probability that this voxel belongs to consensus level     would be estimated to be 

1.0 and 0.0 for all other consensus levels. On the other hand, for a voxel where most raters agree on the 

label but there is some disparity, then, in all likelihood, the probability associated with each consensus 

level would be greater than zero. For the M-Step, the number of consensus levels indicates the number of 

possible weighting factors that are taken into account when estimating  . These weighting factors are 

then applied to the probability that a given voxel has label s and consensus level   from the E-Step. The 

optimal number of consensus levels for a given task largely depends upon the difficulty of the labeling 

task. For a straightforward task where the only confusion about the true label would exist along the 
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boundary between labels, then the binary consensus level case would be appropriate. For a more difficult 

problem, such as estimating full brain structure in a multi-atlas multi-label task, more than two consensus 

levels may be more appropriate and would make for an interesting area of future consideration.  

2.5. Initialization Strategy, Convergence Detection, and Model Parameters 

The theory presented above provides the framework for the implementation of the COLLATE 

algorithm. In order to fully implement the algorithm, however, an initialization strategy, method of 

detecting convergence and the model parameters must be set according to the needs of the application. 

1) Initialization:  COLLATE can be initialized by either providing an initial estimate of the 

performance level parameters (  ) or the true segmentation and consensus level vector (usually 

implemented as an initial estimation of W). In this paper, COLLATE is initialized with an initial estimate 

of W as the results of a majority vote algorithm. If the data are available, a probabilistic atlas can be used 

to provide an initial estimate of the true segmentation [137]. If an initial estimate of the true segmentation 

is provided, then the iterative process of the E-M algorithm begins by calculating the rater performance 

parameters from the initial estimate of the true segmentation and consensus level vector. 

As opposed to providing an initial estimate of the true segmentation, initial estimates of the rater 

performance parameters can be provided to initialize COLLATE. Previous algorithms [8] have used this 

strategy for initialization of the E-M algorithm. If there is no prior information about the performance of 

the raters then the initialization strategy is generally to assume that all raters are of equally high quality. 

For example, this could be accomplished by setting the diagonal of           . It should be noted that 

if an initial estimate of the performance parameters is provided then the iterative COLLATE algorithm 

would begin with an estimation of the true segmentation. 

In all of the simulations and empirical experiments presented in this paper, an initial estimation of 

the true segmentation is used to initialize the COLLATE algorithm. 

2) Convergence: As with all E-M algorithms, the COLLATE algorithm presented in this paper is 

guaranteed to converge to a local maximum. The detection speedup of convergence is a topic that has 
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been explored on multiple occasions [138, 139]. The COLLATE algorithm estimates the performance 

level parameters, the true segmentation and the consensus level given the input data provided by multiple 

raters. A close monitoring of any of these parameters would provide a quality method of detecting 

convergence depending upon the application. In this paper, the desired method of convergence detection 

is through monitoring the change in the performance level parameters. As suggested in STAPLE, the 

change in the normalized trace of the estimated performance level parameters is the desired method of 

convergence detection. We use a threshold of          for all simulations and empirical experiments 

presented in this paper. The normalized trace calculation is given by 

 

  
∑  (  )

 

   

  (2.27) 

The number of iterations required for convergence generally depends upon the number of 

coverages and the quality of the data passed to the COLLATE algorithm. In this worst case scenario (i.e. 

low number of coverages, low quality raters) the algorithm generally converges in around 20 iterations in 

our experience. 

3) Data-adaptive Priors: There are three different data-adaptive priors that need to be determined 

in order to perform the COLLATE algorithm. The first prior that needs to be set is         which 

describes the probability of a rater giving the incorrect label for a consensus voxel. It is of note that in the 

binary consensus level case, the                 and describes the probability that the rater 

reports the correct label for a consensus voxel. In this paper, the values of 0.99 and 0.01 were used for 

       and       , respectively. 

The second prior that needs to be set is        . This is equivalent to the prior in the STAPLE 

algorithm and can be either a global or a spatially varying prior. A spatially varying prior would be 

optimal in situations when prior knowledge, such as a probabilistic atlas, is available for the given 

segmentation. In general, this prior can be thought of as simply the probability that voxel i has associated 

label s. As a rule of thumb, if explicit spatial information about the true label is available (i.e. information 
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above and beyond the observed data) it should be integrated into this prior. In all of the simulations 

presented in this experiment no explicit spatial information is provided, thus, a global prior is used, in 

which         is a vector where each element in the vector represents a prior probability for each 

available label in the segmentation. For notational consistency, we let           . In a situation 

where this quantity is not readily available, this value is found using the input segmentations provided by 

the labelers 
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 (2.28) 

where          is the indicator function which is equal to 1 when       and equal to 0 otherwise. 

The final prior that needs to be set is                which indicates the probability that a 

given voxel is consensus or confusion given that the true label is s. As with the parameter        , this 

parameter could be a spatially varying prior or a global prior. Again, in all of the simulations and 

experiments in this paper a global prior is used. In the case of a global prior, let    be a binary variable 

indicating whether or not voxel i has been estimated to be confusion (      or consensus  (     . In 

order to calculate the value of    a threshold value of        is used, which indicates the fraction of 

raters that need to agree in order for a pixel to be estimated to be consensus. The value of   is calculated 

at each voxel by 
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where s is a value in the set of              . 

In addition to the calculation of   , the binary variable that estimates the status of each voxel 

(“consensus” or “confusion”), an estimation of the true label is garnered through the majority vote 

algorithm at each voxel. Let    represent the label estimated through a majority vote algorithm. The value 

of                     is computed by 
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where 
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  (2.31) 

It is important to note that there is no guarantee that these methods of calculating the data-

adaptive priors are optimal. Nevertheless, these parameters are meant to provide a basis by which 

COLLATE uses to compute the estimates of the rater performance parameters and the hidden data. 

Instead of constructing two separate priors (as presented above), it would accomplish a similar goal to use 

a single spatially varying prior as previous work has suggested [8]. In this case, the estimation of 

consensus/confusion would be integrated implicitly into the spatially varying prior. We felt that exposing 

two separate priors made the estimation of confusion level and the various opportunities for 

implementation more explicit. The implementation of the data adaptive priors was meant to be as simple 

as possible.  

3. Methods and Results 

3.1. Terminology 

In the following results and methodologies presented in this section, several simulations and 

experiments are presented. These simulations range from a model that matches the COLLATE rater 

behavior model to an empirical experiment that uses data acquired from human raters. In order for the 

presentation to be as clear and consistent as possible it is necessary to define some terminology: 

 A label is an integer valued category assigned to an anatomical location.  

 A rater is an entity (real or simulated) that reports or observes labels. 

 An observation is the result of a single rater observing all labels in a given slice (i.e. assigning an 

integer value to all pixels/voxels in an image). 
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 A coverage is the result of a single rater making exactly one observation of each available slice in 

the set. 

 A truth model defines the true labels for all voxels/pixels in all of the available slices. If the slices 

are the output of a simulation then the truth model is generally known. For empirical data the 

truth model is the result of an anatomical expert carefully providing a label for each voxel. 

 A generative model of rater behavior defines the way in which a label fusion algorithm (e.g. 

STAPLE, COLLATE) models the decision-making process of a given rater. 

 The consensus level vector is the aspect of the true segmentation that is introduced by the 

COLLATE algorithm. This vector is fully integrated into the estimation process. The probability 

that a given voxel is in each consensus level is estimated and this estimated probability is used to 

determine the weighting of each voxel in the determination of the performance level parameters. 

 A consensus map is a property specific to the COLLATE algorithm that defines the regions in a 

specific slice where consensus/confusion is present. This concept is a byproduct of that fact that 

we are using binary consensus levels, as it dramatically simplifies the representation of the 

estimated consensus levels. The consensus map is derived from the estimated consensus level 

vector in the weight variable,     
     

. Mathematically, this is defined as ∑     
      

      , where it 

defines the amount of weight in the in     consensus level. All of the values of the consensus 

map are       , where 0 (black) is referred to as “full consensus” and 1 (white) is referred to as 

“full confusion.” The consensus map can be thought of as the continuous probability that each 

voxel is a voxel of confusion.  

 A confusion region is the collection of high-valued pixels/voxels in the consensus map. 

 A confusion matrix is an LxL matrix where each element in the matrix defines the probability that 

a rater would label a voxel with label s given that the true label is s’ in high valued regions of the 

consensus map. As previously defined, the confusion matrix for rater j is   .   

This terminology will be used consistently in the following simulations and empirical experiments. 
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3.2.  Implementation and Evaluation 

COLLATE and all simulations were implemented in MATLAB (Mathworks, Natick, MA). The 

implementation used to produce the results seen in this paper is available via the “MASI Label Fusion” 

project on the Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC, 

www.nitrc.org/projects/masi-fusion). For all simulations and experiments, both STAPLE and COLLATE 

use a global prior for the label probabilities (see Eq. (28)). COLLATE uses a global prior for the fraction 

of each label that are in consensus (see Eq. (30)). Additionally, for all simulations both COLLATE and 

STAPLE analyze the entire truth model when performing the estimation procedure (i.e. no regions of 

interest are considered [9]). The empirical data presented in this paper was gathered using the WebMill 

interface (https://brassie.ece.jhu.edu/Home). For data contributed by human raters, detailed instructions 

about the labeling procedure were provided to the raters. All human raters were required to perform at 

least one practice labeling before proceeding to the actual labeling data. All studies were run on a 64 bit 

quad-core 3.07GHz desktop computer with 13GB of RAM, running Ubuntu 9.04. 

When results are presented, the resulting truth model, performance level (confusion matrices) and 

consensus map estimations are presented. In situations where the true confusion matrix for the model is 

known, the accuracy of the estimations is presented. Otherwise, a comparison between the resulting 

STAPLE confusion matrix and COLLATE confusion matrix are presented for visual comparison. In all of 

the simulations the accuracy of the estimated truth labels is presented for varying numbers of coverages as 

the fraction of pixels correct in the confusion region. For the empirical simulation the “ground truth” 

provided by an expert anatomist is provided for visual comparison with the COLLATE truth estimation. 

3.3. Simulation 1: Simulation using COLLATE Model of Rater Behavior 

The first simulation (Figure II.3) used simulated raters that are nearly identical to the COLLATE 

model of rater behavior. This means that the consensus map is clearly defined to be low valued outside of 

the square in the middle of the truth model and high valued inside of the square. The truth model consists 

of 50 slices of size 100x100 pixels. A collection of 20 simulated raters were created that are described by 
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confusion matrices with constant valued diagonals. The diagonal values for the raters were linearly 

spaced between 0.45 and 0.65. Thus, the raters from this simulation were slightly better than chance as 

there were 5 labels on the truth model. For all slices the size of the confusion region was held constant at 

10%. 

The purpose of this simulation was to assess the accuracy of COLLATE in a model where there 

exist well-defined regions of the image where raters are very accurate and other regions where they are 

only slightly more accurate than chance. The accuracy of truth estimation and the confusion matrices is 

assessed and compared to the accuracy of STAPLE as a reference point. The accuracy of these 

estimations was assessed by varying the number of coverages (from 3 to 20) passed to COLLATE. An 

estimate of the consensus map is provided for eight coverages with 25 Monte Carlo iterations.  

 

Figure II.3. Results for simulation 1 using the COLLATE model of rater behavior. A 

representative slice from the truth model can be seen in (A). (B) and (C) represent example 

observations of the slice seen in (A). The STAPLE estimate using 8 coverages can be seen in 

(D). The COLLATE estimate using the same observations can be seen in (E). The estimated 

consensus map can be seen in (F). The accuracy of the estimated labels and confusion 

matrices can be seen in (G) and (H), respectively. The gray bars seen on (G) and (H) 

correspond to the number of coverages used in the estimations seen in (D), (E) and (F). 
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Figure II.3A represents an example slice from the truth model used in this simulation. Note that 

the ‘white’ label present in the confusion region (i.e., the light-gray to white area of the consensus map) is 

not present in the consensus region (i.e. the dark-gray to black area of the consensus map). This was 

included because of the apparent problem with the STAPLE algorithm for small labels. The reason for 

this problem is that the limited data used to estimate the performance level parameters for small labels 

tends to increase the likelihood for label inversion. It is of note that both the parametric prior approach 

proposed by Commowick et al. [55] and the non-parametric prior proposed by Landman et al. [11] have 

decreased the likelihood of witnessing label inversion on small labels. Figures II.3B and 3C represent 

example observation made by the simulated raters with diagonal values of 0.45 and 0.65, respectively. 

Figure II.3D represents the labels generated by STAPLE using eight coverages. As clearly evident, the 

presence of the small white label and the poor accuracy of the raters in the confusion region cause 

STAPLE to converge to an estimate that does not match the truth model. Figure II.3E represents the 

COLLATE truth estimation which does not suffer from the same failures as the STAPLE estimation. Due 

to the introduction of the consensus map and the new generative model of rater behavior, COLLATE is 

able to converge to the correct answer despite the small label and poor labeling accuracy in the confusion 

region. Figures II.3G and 3H show the accuracy of COLLATE and STAPLE for the simulation with 

varying numbers of coverages. The results shown in Figure II.3G indicate that the COLLATE truth 

estimation is consistently more accurate in the confusion region than the STAPLE estimate. Additionally, 

due to label inversion, STAPLE converges to the incorrect truth estimate while COLLATE converges to 

the correct truth estimate. The results shown in Figure II.3H show that COLLATE is able to converge to 

the confusion matrices that match the simulation model, while, not surprisingly, STAPLE converges to a 

significantly different approximation of the confusion matrices. 

3.4. Simulation 2: Data Adaptive Prior Sensitivity 

The next simulation (Figures II.4 and 5) was constructed by creating a truth model that is 

equivalent to the model seen in Figure II.3. The truth model consists of 50 slices of size 100x100 pixels. 
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A collection of 20 simulated raters were created that were described by confusion matrices with constant 

valued diagonals. The diagonal values for the raters were linearly spaced between 0.55 and 0.75. Note 

that despite the low diagonal confusion matrices the raters are still significantly better than chance as 

there are five labels present on the truth model. Each rater observed one coverage of the truth model. 

The purpose of this simulation was to quantify the sensitivity of COLLATE with respect to the 

               data adaptive prior. This simulation is broken up into two parts. The first part (Figure 

II.4) maintains a constant confusion region (50%) and varies the data adaptive prior. The second part 

(Figure II.5) focuses on the algorithm’s ability to estimate the confusion prior by varying the size of the 

confusion region (5% to 95%). For both parts, the accuracy of the estimated labels is represented as a 

percent improvement over the STAPLE estimate of the same truth model. A truth model was created such 

 

Figure II.4. Results for simulation 2, the COLLATE sensitivity with respect to the estimated 

confusion region size data-adaptive prior. The sensitivity of the confusion region size prior 

can be seen in (A) and (B). (A) represents the accuracy of the truth estimation with varying 

prior estimates from 0.05 to 0.95 for a given confusion region size of 0.5. The accuracy of 

the truth estimation is presented as a percent improvement over the STAPLE. 
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that varying the fraction of the image that represents a confusion region is straightforward. For both parts 

of the simulation a random subset of six raters (six coverages) was chosen to construct the estimates with 

10 Monte Carlo iterations. 

Figures II.4A and 4B represent the results for a constant 50% confusion region for the truth 

estimation and confusion matrix accuracy, respectively. These results show that, as expected, the ideal 

result is obtained when the estimate of the fraction confusion is equal to the actual fraction confusion. An 

underestimate has little effect on the accuracy of the results for the truth estimation, but causes the 

confusion matrix accuracy to decrease. An overestimate of the confusion region drastically affects the 

accuracy of both the truth estimation and the confusion matrix estimation. Nevertheless, regardless of the 

 

Figure II.5. Results for simulation 2, the accuracy of the COLLATE algorithm with respect 

to the confusion region size. This tests the ability of the algorithm to estimate the confusion 

region size. (A) represents the percent improvement for COLLATE over the STAPLE 

estimation for confusion region sizes varying from 0.05 to 0.95. (B) represents the average 

absolute error at each element in the confusion matrices for varying confusion region size. 

Note that the COLLATE estimate accuracy remains constant while the quality of the 

STAPLE estimate varies depending upon the size of the confusion region. All data 

presented in this Figure use six coverages for both COLLATE and STAPLE. 
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data adaptive prior estimate, the COLLATE estimates are consistently better than the estimates obtained 

by STAPLE. Additionally, confusion matrix accuracy of the STAPLE estimate is consistently different 

than the confusion matrices used in the simulation as the STAPLE rater behavior model does not take into 

account the consensus map introduced by the COLLATE algorithm. These results are present on Figure 

II.3B to emphasize the differences between the two generative models of rater behavior. 

Figures II.5A and II.5B represent the results for varying confusion region size. The size is varied 

between 5% and 95%. The results show that as the confusion region increases toward full confusion, the 

COLLATE truth estimate and STAPLE truth estimate (Figure II.5A) converge to the same accuracy level. 

This is due to the fact that if the confusion region represents the entire image, then the COLLATE and 

STAPLE models of rater behavior are equivalent. Figure II.5B shows that, regardless of the confusion 

region size, the accuracy of the COLLATE confusion matrix estimates remains approximately constant, 

while the STAPLE estimate increases in accuracy until a large confusion region is present, in which case 

the COLLATE and STAPLE confusion matrix estimates are of approximately equal accuracy. 

3.5. Simulation 3: Simulation using Boundary Random Raters 

The third simulation (Figure II.6) emulates a reliable model of rater behavior by simulating raters 

that only miss by inaccurately labeling the boundary between two adjacent label regions. This approach is 

slightly different than previous boundary random rater simulations where each boundary pixel had a 50% 

chance of being chosen incorrectly. The truth model for this simulation consists of 50 slices of size 

100x100 pixels. Once again, a collection of 20 raters were used to observe the truth model slices, 

however, the raters were designed to only miss at the boundaries and only assign the labels in the adjacent 

regions to each boundary. This was accomplished by identifying the boundary pixels and applying a 

“shift” amount (positive or negative) to each boundary pixel. A random number was drawn from a 

Gaussian distribution, where the standard deviation of the distribution was determined by the quality of 

the rater. The standard deviations ranged from 1.2 to 3.26 for the best and worst raters respectively.  
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This simulation assesses the accuracy of the estimates returned by the COLLATE algorithm in a 

model that closely approximates the way that human raters observe truth models. The accuracy of the 

truth estimations was assessed for various numbers of coverages, ranging from 3 to 20. Due to the fact 

that the confusion matrices do not precisely correspond to the proposed generative model of rater 

behavior, a visual comparison is presented for the COLLATE and STAPLE estimations. Twenty-five 

Monte Carlo iterations were used. As with the second simulation, an estimated consensus map is provided 

for eight coverages.  

Figure II.6A represents the truth model used for this simulation. Figures II.6B and 6C are 

representative observations made by a high quality rater and a low quality rater, respectively. Figures 

 

Figure II.6. Results for simulation 3 using boundary random raters. A representative slice 

from the truth model can be seen in (A). (B) and (C) represent example observations of the 

slice seen in (A). The STAPLE estimate using eight coverages can be seen in (D). The 

COLLATE estimate using the same observations can be seen in (E). The estimated 

consensus map can be seen in (F). The truth estimation accuracy comparison of the two 

algorithms in the confusion region for varying numbers of coverages can be seen in (G). The 

gray bar indicates the number of coverages corresponding to the estimates seen in (D), (E). 

(F), (H) and (I).  An example confusion matrix from a single rater from the STAPLE 

estimate and the COLLATE estimate using eight coverages can be seen in (H) and (I). 
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II.6D and 6H show the STAPLE estimation of the true labels and an example confusion matrix after 8 

coverages. Upon visual inspection it is evident that STAPLE has incorrectly placed the magenta label. 

The reason for this problem is due to label inversion, which can be seen in the 4
th
 column (which 

corresponds to the magenta label) of the confusion matrix in Figure II.6H. Label inversion occurs when 

the confusion matrix estimation indicates when a rater assigns a label other than the intended label. This 

can have catastrophic effects on the truth estimation as it can cause large regions of the estimation to have 

incorrect label values. Recent work has focused on the label inversion problem and both parametric and 

non-parametric priors have been proposed that have been shown to prevent label inversion [11, 55]. On 

the other hand, the COLLATE estimates of the true labels, consensus map and example confusion matrix 

can be seen in Figure II.6E, 6F, and 6I, respectively. The COLLATE estimate does not suffer from the 

same label inversion problem.  

COLLATE estimates the rater to have a nearly constant diagonal confusion matrix. This makes 

logical sense as the raters were not designed to be biased towards certain labels. The reason for this 

benefit is due to the modified generative model of rater behavior, which serves to normalize the size of 

the labels in the confusion matrix estimation. In this simulation, the STAPLE confusion matrix 

estimations largely depend on the size of the region associated with a given label. The reason for this is 

the fact that larger regions have significantly more consensus voxels. Thus, due to the STAPLE model of 

rater behavior, the performance level estimations for a given label will be largely dependent on the size of 

the label in this simulation (see Figure II.6H).  On the other hand, COLLATE removes this dependence 

by weighting the voxels based upon the estimated consensus levels. It is of note that if modifications were 

made to the traditional STAPLE algorithm (i.e. spatially varying prior, or specifying a region of interest) 

this dependence may be reduced. The accuracy of the truth estimations with respect to number of 

coverages is presented in Figure II.6G. As with the second simulation, the COLLATE estimates are of 

consistently higher accuracy and lower standard deviation than the estimates provided by STAPLE. Note 

that the y-axis on this plot is the fraction of pixels correct in the confusion region only. The fraction 

correct would be significantly higher if the consensus regions were included, however, the pixels of 



49 

 

interest in the COLLATE model are the pixels where there is confusion about the true label, and thus, 

only the pixels in the confusion region are considered. 

3.6.  Empirical Comparison using Delineations by Human Raters 

The empirical experiment presented in Figure II.7 compares the accuracy of the COLLATE and 

STAPLE algorithms on data generated by human raters. The truth model for the empirical consisted of 10 

slices of 70x110 pixels. These slices were selected from a whole-brain scan (182x218x182 voxels) of a 

healthy individual (after informed written consent) that was cropped to isolate the posterior fossa. A 

specific region of the brain was isolated (i.e. the posterior fossa) to simplify the labeling process and 

 

Figure II.7. Empirical experiment using human raters. A representative slice from the 10-

slice truth model can be seen in (A). The STAPLE and COLLATE estimates can be seen in 

(B) and (C), respectively. The observed model of rater behavior can be seen in (D). The 

color value at each voxel corresponds to the fraction of raters that incorrectly labeled the 

given voxel. The estimated consensus map can be seen in (E). The averaged confusion 

matrices for both the STAPLE and COLLATE estimations can be seen in (F). The range of 

Jaccard Similarity Coefficient values and Dice Similarity Coefficient values can be seen in 

(G). In both cases, a paired t-test resulted in p < 0.001. 
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allow a large collection of data to be collected in a relatively short amount of time.  A collection of eight 

raters each performed a single coverage using the online WebMill system.  The task defined for each rater 

was to label the sagittal cross-section of a cerebellum. Five different colors were assigned to five different 

regions of the cerebellum. The color blue was assigned to Lobules I-V (upper lobe), green was assigned 

to Lobules VI-VII (middle lobe), magenta was assigned to Lobules VIII-X (lower lobe), red was assigned 

to the Corpus Medulare White Matter and Yellow was assigned to the Vermis. All background pixels 

were assigned the color white. The raters observed the slices by applying the labels directly to the high 

resolution Magnetization Prepared Rapid Acquired Gradient Echo (MPRAGE) sequence. While 

performing each observation a reference image was placed in the top right corner to visually remind the 

raters of the task to be performed. 

The spatial homogeneity and overlap are particularly important when comparing segmentations 

gathered using clinical data. Thus, the Dice and Jaccard similarity coefficients were used when comparing 

the accuracy of the truth label estimations acquired from the algorithms. The Dice Similarity Coefficient 

(DSC) [140]is an often used metric when comparing the spatial overlap between two vectors. The DSC is 

defined as                    where     and     represent the area of regions A and B respectively. 

The Jaccard Similarity Coefficient [141] is another commonly used metric when defining the spatial 

overlap between two vectors. The Jaccard Similarity Coefficient (sometimes called the Jaccard Index) is 

defined as               where     and     have the same meaning as seen in the DSC definition. 

Figure II.7 illustrates both that COLLATE can accurately fuse the labels from multiple raters, but 

also that it can outperform STAPLE. Figure II.7A presents a representative slice from the truth model that 

was created by an expert neuroanatomist. Figures II.7B and 7C represent the STAPLE and COLLATE 

estimations of the true labels by fusing the labels from eight raters. Figure II.7B contains several 

mislabels around the outside boundary of the estimation and inaccurately extends the corpus medulare. It 

is important to note that these errors are due to partial label inversion. This is a highly studied problem 

with statistical fusion methods [142, 143] that results from when two labels are commonly confused. This 
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problem manifests itself in the STAPLE confusion matrix estimate (see the second column of the 

STAPLE confusion matrix in Figure II.7F). 

Figure II.7D represents the observed model of rater behavior and it demonstrates that the raters 

did not arbitrarily mis-label pixels on the slice. Instead, as previously described, the raters struggled with 

boundary pixels and regions of low contrast on the original slice. Figure II.7E represents the estimated 

consensus map, which agrees with the observed model of rater behavior. The estimated consensus map 

presented here is certainly a little conservative. This could be adjusted by modifying the        prior 

which is discussed in the theory section. The averaged confusion matrices for both the COLLATE and the 

STAPLE estimates can be seen in Figure II.7F.  Similar to the results seen in the third simulation, the 

COLLATE averaged estimated confusion matrix is very close to a constant diagonal matrix. This makes 

intuitive sense, because there is no reason why any given rater would be biased towards a given label 

value since all labels in this task share a boundary. The averaged STAPLE confusion matrix shows that 

nearly all raters are perfect at background simply because of the fact that the majority of the pixels are 

background in the truth model. Additionally, there is near label-inversion in the second column of the 

averaged STAPLE confusion matrix which explains the presence of the blue label on the perimeter of the 

green label on the STAPLE truth estimate. 

Lastly, the range of Jaccard and Dice Similarity coefficient values for the 10 slices used in this 

experiment were computed for both the COLLATE estimates and the STAPLE estimates of the true 

labels. These ranges can be seen in the two plots in Figure II.7G. A paired t-test was performed on both 

the Jaccard and Dice similarity coefficients and the resulting p-values were found to be less than .001 for 

both similarity metrics. This indicates that there is significant improvement gained by using COLLATE 

on empirical data. 

3.7. Simulation 4: Simulation using STAPLE Model of Rater Behavior 

The fourth, and final, simulation (Figure II.8) presented in this paper assesses the accuracy of the 

COLLATE algorithm when using a model that matches the STAPLE generative model of rater behavior. 
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Note that this is equivalent to a COLLATE truth model that has a true consensus map that is all 

confusion. The truth model consists of 50 slices of 100x100 pixels. The truth model used in this 

simulation is identical to the model used in Simulation 1 except that the raters miss uniformly throughout 

the volume. A collection of 20 simulated raters were created that are described by confusion matrices 

with constant valued diagonals. The diagonal values are linearly spaced from 0.45 to 0.65 for the worst 

and best rater, respectively. 

The purpose of this simulation was to quantify the accuracy of COLLATE when the STAPLE 

model of rater behavior is fully accurate. As with the previous simulations, the accuracy of the truth 

estimations and confusion matrix estimations was assessed and compared to the results from the STAPLE 

algorithm. This was accomplished by varying the number of coverages used to perform the estimations 

 

Figure II.8. Results for simulation 4 using STAPLE model of rater behavior. A 

representative slice from the truth model can be seen in (A) with example observations in 

(B) and (C). The STAPLE and COLLATE estimates using eight coverages can be seen in 

(D) and (E), respectively. The estimated consensus map can be seen in (F). The truth 

estimation accuracy comparison of the two algorithms for varying numbers of coverages 

can be seen in (G). The confusion matrix accuracy comparison for varying number of 

coverages can be seen in (H). The gray bars seen on (G) and (H) correspond to the number 

of coverages used in the estimations seen in (D), (E) and (F). 
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(from 3 to 20 coverages). Ten Monte Carlo iterations were used to approximate the mean and standard 

deviation of the estimation accuracy. As with the previous simulations, an estimation of the consensus 

map is provided for eight coverages. 

Figure II.8A shows an example truth model used in the simulation. Figures II.8B and 8C are 

representative observations of the truth model. Figures II.8D and 8E represent STAPLE and COLLATE 

truth estimations. Upon visual inspection it appears that they are essentially equivalent. The estimated 

consensus map can be seen in Figure II.8F. The true consensus map would be fully ‘white,’ indicating 

that all of pixels are in the confusion region. By chance, there are several pixels where raters agree, so the 

consensus map contains several isolated pixels where some level of consensus is present. Figures II.8G 

and 8H represent the accuracy of the truth estimations and confusion matrix estimations for COLLATE 

and STAPLE. The average accuracy of the truth estimations (Figure II.8G) by COLLATE is slightly 

(≈0.005) better than the STAPLE estimations for low numbers of coverages. However, by approximately 

seven coverages the STAPLE and COLLATE estimates converge to the same level of accuracy. Due to 

the inaccuracies of the consensus map estimation, the COLLATE estimations of the confusion matrix are 

less accurate than the STAPLE estimations for all numbers of coverages. Nevertheless, it should be 

considered that these differences are only on the magnitude of approximately 0.1% for seven or more 

coverages. 

4. Discussion and Conclusion 

Herein, we presented an algorithm, COLLATE, for fusing a collection of rater label observations 

to estimate the consensus level, labeler accuracy and truth labels. COLLATE (1) provides significant 

improvement over previously developed algorithms, (2) more accurately reflects the realistic rater 

behavior as seen when human raters segment medical image data, and (3) results in nominal degradation 

when the rater assumptions are violated (Figure II.7 and 8). Initialization parameters, detection of 

convergence and other model parameters are clearly defined. 
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Like its predecessors, COLLATE takes a collection of input observations from a group of raters 

(human or otherwise) and simultaneously estimates the truth labels and the rater performance parameters 

(“labeler accuracy”). However, COLLATE also estimates the consensus level of each voxel, which can be 

viewed as an inherent property of each voxel that determines the likelihood that a given rater would be 

confused about the label associated with a given voxel. The algorithm presented in this paper is 

formulated as an instance of the expectation-maximization (E-M) algorithm [116, 138]. As with STAPLE, 

the decisions of each rater are directly observable, the hidden true segmentation is an integer-valued array 

corresponding to the label decisions at each voxel. The hidden data in the COLLATE algorithm is 

augmented with a “consensus level vector” which describes the consensus level of each voxel. The labeler 

accuracy is iteratively estimated until convergence and is represented in the form of a confusion matrix 

for each rater. In often used E-M terminology, the complete data consists of the rater decisions, which is 

given, and the true segmentation and “consensus level vector” which are iteratively estimated. In order to 

perform this estimation, the conditional probability of the hidden true segmentation and the “consensus 

level vector” is evaluated given the rater decisions and the previous estimate of the rater confusion 

matrices. Convergence to a local maximum is guaranteed. As with previous algorithms, COLLATE is 

straightforward to apply to medical imaging data acquired from human raters or automated algorithms. 

The sensitivity of the consensus-based priors was analyzed for varying confusion region sizes and 

estimates of the confusion region size. The sensitivity was captured by comparing the accuracy of both 

the COLLATE truth estimate and confusion matrix parameters to that of STAPLE. Optimal estimations 

are obtained when priors match the truth model; however, our analysis also indicates that when the 

confusion region size prior is underestimated the accuracy of the results are significantly better than when 

the confusion regions size prior is overestimated.  

COLLATE is able to accurately estimate the quality of the raters and does not suffer from 

commonly encountered problems with STAPLE, such as label inversion. For small confusion region 

sizes, COLLATE significantly outperforms STAPLE for both the truth label accuracy and the confusion 

matrix accuracy. For large confusion region sizes, COLLATE and STAPLE converge to the same 
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accuracy level. The benefits of the estimated “consensus level vector” are demonstrated in the differences 

in the estimated confusion matrices — which reflect a more “physical” characterization of failure 

likelihood. In the COLLATE estimates, likelihood of error is not biased by the area of the region being 

labeled. 

In this paper, both COLLATE and STAPLE utilize strictly global priors when estimating the true 

segmentations and the performance level parameters. However, one could use a spatially varying prior 

instead of a global prior for        . A spatially varying prior has the potential to prevent some of the 

poor STAPLE segmentation estimations that are presented in this paper (e.g. Figure II.6). Nevertheless, 

simply implementing a spatially varying prior does not make COLLATE and STAPLE equivalent. 

COLLATE makes an iterative estimate of the consensus level of each voxel. Voxels that are in high 

consensus are de-weighted when calculating the performance level parameters. Regardless of whether a 

global or spatially varying prior was used, STAPLE would consider all voxels to have an equal impact on 

the calculation of the performance level parameters. Thus, if a given label is present in multiple consensus 

levels (such as Figure II.3) the final STAPLE estimation of the performance level estimations would be 

artificially high in the regions where there is significant confusion. 

Another modification to STAPLE, proposed by Rohlfing et al.[9], is to select only voxels that are 

not in consensus when performing the statistical fusion. In some cases, selecting a subset of the total 

voxels makes the STAPLE model of rater behavior significantly more appropriate and accurate. For the 

binary consensus level case seen in this paper, the dramatic improvement by COLLATE over STAPLE 

would certainly be lessened. In some cases, the regions of consensus and confusion are clearly defined 

and easily detected (e.g. the simulation presented Figure II.3). In this scenario, COLLATE with binary 

consensus levels is essentially equivalent to performing STAPLE only over the confusion region. 

Nevertheless, COLLATE provides a framework for integrating any number of consensus levels directly 

into the estimation process without the need to perform any pre-processing to determine a reasonable 

region of interest for processing. This framework is the primary contribution of this paper and we feel that 

this new perspective on the problem will provide fascinating avenues for continuing research. 



56 

 

  CHAPTER III

FORMULATING SPATIALLY VARYING PERFORMANCE 

1. Overview 

Optimality of statistical fusion frameworks hinges upon the validity of the underlying stochastic 

model of how a rater errs (i.e., labeling process model). Existing methods to simultaneously estimate rater 

performance (e.g., STAPLE approaches) have used spatially invariant models (i.e. the probability of error 

does not change voxel-by-voxel) [8, 11, 50, 58, 144]. On the other end of the spectrum, voting based 

techniques (including global [48, 58, 59] and local [57, 59, 61] approaches) ignore the spatial relation 

between voxels and fuse each voxel independently. However, these models of observation behavior are at 

odds with an intuitive notion of rater performance. Regardless of the fusion context (e.g. human raters or 

multiple atlases), it would not be surprising if the manner in which the labels were observed resulted in 

spatially varying performance. For example, in a multi-atlas context (Figure III.1), there exist regions 

where the quality of registration in a multi-atlas based approach is better than others, and, not 

surprisingly, this quality level is generally smooth on a semi-local level. As a result, we are left with 

several issues in the field of label fusion, primarily we lack, i) an alternative between the “global” 

STAPLE method and “local” voting techniques and ii) an understanding of the observed disparity 

between STAPLE and majority vote on multi-atlas segmentation. By addressing these two issues, a 

statistical fusion framework would more accurately model the manner in which labels were observed, 

and, hopefully, result in robustly fused segmentation estimates, regardless of the context. 

Herein, we propose an extension to the STAPLE approach, “Spatial STAPLE,” to seamlessly 

account for spatially varying performance. This is accomplished by extending the performance level 

parameters present in STAPLE to a voxelwise performance level field that is unique to each rater. By 
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estimating a field instead of global parameters, Spatial STAPLE captures the spatially varying behavior 

that is often present in 1) the fusion of human raters, 2) multiple segmentation algorithms and 3) multiple 

registered atlases. Additionally, as will become evident later in this manuscript, these performance level 

fields are guaranteed to be smooth, which allows for a seamless semi-local approach to the fusion of 

information. This approach is validated for both simulated an empirical datasets modeling both the fusion 

of human raters and a multi-atlas context. The results suggest that Spatial STAPLE provides a valuable 

framework that can be utilized to construct an optimal framework for fusion of observed labels, regardless 

of the context. 

It is important to note that, while Spatial STAPLE is demonstrated to perform very well on a 

variety of label fusion problems, it is, at its heart, a model of human observation behavior. Like STAPLE, 

Spatial STAPLE 1) models the raters as a group of collectively unbiased observers and 2) does not 

integrate intensity directly into the estimation process. As a result, a claim that Spatial STAPLE is 

consistently applicable to a multi-atlas context requires further validation. Herein, we demonstrate that 

Spatial STAPLE is capable of outperforming multi-atlas fusion methods (e.g., a locally weighted vote) for 

a CT segmentation application. However, it is unlikely that Spatial STAPLE would be able to outperform 

multi-atlas fusion techniques for problems in which intensity information provides highly valuable 

information about the complex relationships between labels and intensity (e.g., whole brain segmentation 

 

Figure III.1. Registered atlases exhibit spatially varying behavior.  Representative slices 

from an expertly labeled MR brain image and CT head and neck image are shown in (A). 

Example registered atlases with their local performance can be seen in (B) and (C). Note 

that atlases exhibit smooth spatially varying performance that is unique to each atlas. 
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[48, 49, 59]). 

Similar techniques to the ones presented in this paper have been proposed. Sabuncu, et al [59] 

proposed accounting for semi-local performance by augmenting locally weighted vote to include a 

Markov Random Field (MRF). However, this technique is particularly sensitive to using images whose 

intensities are normalized to one another. This manuscript extends an initial conference publication of the 

same underlying theory [49] with additional derivations, discussion, experiments and extensions. 

Subsequently, block-wise neighborhoods were proposed within a meta-algorithm for fusion of local 

classifiers [67] based upon a Maximum a posteriori (MAP) STAPLE framework [55]. Here, we focus 

specifically on the performance level field theory for statistical fusion rather than statistical 

boosting/meta-analysis. 

This chapter is organized in the following manner. Section 2 describes the Spatial STAPLE 

algorithm and discusses initialization and implementation. Section 3 compares Spatial STAPLE to 

traditional STAPLE, majority vote and locally weighted vote on a series of experiments and simulations. 

Lastly, Section 4 provides additional discussion and brief concluding remarks. 

2. Theory 

The following derivation of Spatial STAPLE closely follows previous derivations of fusion 

frameworks [8].  

2.1. Problem Definition 

Consider an image of N voxels with the task of determining the correct label for each voxel in 

that image. Consider a collection of R raters that provide an observed delineation for each of N voxels 

exactly once. The index variable i will be used to iterate over the N voxels and the index variable j will be 

used to iterate over the R raters. The set of possible labels, L, represents the set of possible values that a 

rater can assign to all N voxels. Let D be an N x R matrix describing the labeling decisions of all R raters 
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at all N voxels where                . Let T be a vector of N elements that represents the hidden 

true segmentation for all voxels, where               .  

In the traditional rater model presented in[8], the raters’ quality of observation is characterized by 

 , the performance level parameters for all raters. In this model, each element,    (i.e., the performance 

level parameters for rater  ) is an     confusion matrix, where each element in the matrix,       

represents the probability that rater   would observe label    given that the underlying true label is  . 

These performance level parameters are global parameters that are utilized at all voxels in order to obtain 

the estimate of the true segmentation.  

Here, we extend these performance level parameters to characterize the performance of each rater 

with respect to spatial position. As a result, we estimate a performance level field for each rater, where 

each element of  ,     ⃑⃑  , represents the performance level (or confusion matrix) associated with rater   at 

spatial coordinate  ⃑⃑ . Additionally, we define    ⃑⃑ ) to be the pooling region (i.e. the spatial region) over 

which     ⃑⃑   is influenced. We simplify this construct such that the performance level field is discretely 

defined at every voxel,     ⃑⃑       and the pooling regions is defined as a collection of voxels given by 

   ⃑⃑     . Figure III.2 illustrates the performance level field representation. 

 

Figure III.2. Demonstration of the Spatial STAPLE performance level field estimation 

procedure. An example expert segmentation can be seen in (A) with a collection of 

registered atlas observations seen in (B). Spatial STAPLE estimates local confusion 

matrices (C) in order to construct a whole-image estimate of performance that is smooth 

and spatially varying. The true performance for the atlas seen in (B) can be seen in (D) and 

the estimated performance from Spatial STAPLE presented in (E). Note that the intensity 

in (E) is an indication of average “performance” – i.e., the average diagonal element of  . 
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2.2. Spatial STAPLE Algorithm 

The goal of Spatial STAPLE is to accurately estimate the performance level field of the R raters 

given the rater segmentation decisions and the estimation of the truth. The estimated performance level 

field will be calculated such that it maximizes the complete data log likelihood function 

 ̂         
 

           (3.1) 

It is assumed that the segmentation decisions are conditionally independent given the true 

segmentation and the performance level parameters, that is                             . This model 

expresses the assumption that the raters derive their segmentations of the same truth model independently 

from one another and that the quality of the segmentations is captured by the estimation of the 

performance level field. The estimated performance level parameters for a given rater at differing voxels 

are not necessarily conditionally independent. 

Our version of the expectation-maximization (E-M) algorithm used to solve (1) is now presented. 

The complete data used to solve this E-M algorithm is the observed data, D, and the true segmentation of 

each voxel T. The true segmentation T is regarded as the missing or hidden data, and is unobservable. Let 

    be the covariance, or confusion, matrix associated with rater   at voxel   and let 

  [

          

          

    
          

] (3.2) 

be the complete set of unknown parameters for the R segmentations. Let          denote the probability 

mass function of the random vector corresponding to the complete data. The complete data log likelihood 

function is presented as                   . We apply E-M to iteratively estimate and maximize the 

complete data log likelihood function. Let   denote the iteration for which all estimates were obtained. 

For more detail on E-M in the statistical fusion model see [8, 50]. 
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2.3. E-Step: Estimation of the Voxelwise Label Probabilities 

We first derive an expression for the conditional probability density function of the true 

segmentation at each voxel given the raters decisions and the previous estimate of the performance fields, 

   
   

            
      . Applying Bayes’ rule and the fact that all of the observations are 

conditionally independent we obtain a MAP formulation of the underlying segmentation 

   
   

 
       ∏  (      |        

     
) 

∑         ∏  (      |        
     

) 

 (3.3) 

where         represents an a priori estimate of the true segmentation and   
     

 is the prior estimate 

of the performance level fields. The distribution         will be discussed more thoroughly later in this 

manuscript. Finally, as will be seen in the calculation of the performance level fields, the distribution 

given by  (      |       
     

) simplifies directly to       
     

. Thus, the final equation for   is given 

by 

   
   

 
       ∏       

     
 

∑         ∏       
     

 

 (3.4) 

This estimation of the conditional expectation of the complete data log likelihood function is 

almost identical to the STAPLE approach. The major difference is the utilization of the performance level 

field (i.e.,       
     

) as opposed to the global performance level parameters as seen in [8].  

2.4. M-Step: Estimation of the Performance Fields via Maximization 

Given the estimated weight variable,    
     

, which represents the conditional probability that 

the true segmentation of voxel   is equal to label  , it is now possible to estimate the rater performance 

field that maximizes the conditional expectation of the complete data log likelihood function. Considering 

each rater and voxel separately, we find the field estimates    
   

 by iterating only over the voxels given by 

pooling region    
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where,    
   

 is only defined over voxels      . Carrying out the expectation yields 
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 (3.6) 

At this point, we are left with the task of maximizing all of the elements in the performance level 

field using the constraint ∑            which can be solved with a Lagrange multiplier approach. The 

final solution for  
     

   
 is given by 

  
     

   
 

∑  
   
   

              

∑  
   
   

     

  (3.7) 

2.5. Accounting for Limited Data and Computational Concerns 

Particularly in multi-atlas based segmentation, the spatial quality of an observed segmentation 

can vary dramatically in a relatively small region (Figure III.1). As a result, the number of voxels in a 

given pooling region,   , should be relatively small in order to accurately characterize these semi-local 

performance variations. However, if the number of voxels contained in a given pooling region is too 

small, the performance level field will be unstable due to limited data. Additionally, if a given label is not 

observed (or only observed a handful of times) in the spatial region    , then it will be impossible to 

estimate the related elements in the associated confusion matrix        . Thus, we introduce the idea of 

using a whole-image estimate of the performance level parameters for regularization.  

For computational and stability concerns, we introduce an implicit prior in the following form. 

Let   
   

 be the confusion matrix associated with rater   estimated from an appropriate algorithm. The 

estimation of the performance level parameters seen in (13) would then be reformulated to be 

  
     

   
 

         
   

 ∑  
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 (3.8) 
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where       is a scale factor that is dependent upon the size of the pooling region,   , rater   and label   . 

Our empirically derived expression for this scale factor is 

       (       
    

 
) (

    

 
      )  (3.9) 

where      is the indicator function,       is the number of times rater   observed label    in pooling 

region   ,      represents the cardinality of the pooling region (i.e. the number of voxels in the region) 

and   is a scalar constant. Unless otherwise noted, the value of   is unity for all presented experiments. 

This factor adjusts the impact of the implicit global estimate of performance on the estimate of 

performance for given rater  , label    and voxel  . 

Numerous approaches could be used to construct the performance level prior (e.g. STAPLE [8], 

COLLATE [50], Majority Vote, Locally Weighted Vote, etc..). In general, for the fusion of human raters 

(i.e. when no intensity information is available), we use STAPLE. For multi-atlas segmentation we use 

Majority Vote while ignoring consensus voxels [144]. 

The approaches presented in (8) and (9) utilize the observed segmentations to construct a non-

parametric estimate of the underlying global performance level parameters. Alternatively, a parametric 

approach could be used to provide more stability in the performance level field, e.g., [55] used a 

component-wise beta distribution for the performance level parameters. To date, parametric methods have 

neglected the interdependence of the distribution of individual entries in the performance level matrix; 

hence, we advocate non-parametric approaches. Formulating the estimation of performance level 

parameters optimally in a maximum a posteriori framework remains an open problem. 

Moreover, calculating confusion matrixes for all raters at all voxels is daunting challenge from 

both a computational and resource perspective. Hence, we seek to sample and interpolate this field to 

reduce algorithm complexity. The sample locations are referred to as seed points. Herein, we apply linear 

interpolation using a rectilinear grid.  

In this context, implementation of Spatial STAPLE’s performance level field presented in this 

paper can be interpreted as a collection of sliding windows with varying levels of overlap. Herein, we use 
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the same size window for all seed points and report this size as a fraction of the field of view in each 

cardinal direction. In other words, a window size of 0.1, would represent a window that is           

    , where  ,  , and   are the length of each of the dimensions on the input image. Lastly, the amount 

of overlap between windows is reported as the fraction linear overlap along each of the principle 

directions, i.e., an overlap of 0.5 would indicate that there is 50% overlap between consecutive windows 

along the  ,  , and   directions.  

2.6. Initialization Strategy, Convergence Detection, and the Prior Distributions 

1) Initialization:  Spatial STAPLE may be initialized by either providing an initial estimate of   

or  . Herein, Spatial STAPLE is initialized with an initial estimate of   as the results of a majority vote 

algorithm. Alternatively, an initial estimate of   could be provided, however, if initialized in the manner 

suggested in [8] then it is essentially the same as initializing   to a majority vote estimate. 

2) Convergence: Spatial STAPLE is guaranteed to converge given its use of E-M [138, 139]. In 

this implementation, we detect convergence by monitoring the change in the trace of the confusion matrix 

estimates at each of the seed points. We use a threshold of          for all simulations and empirical 

experiments presented in this paper. In the worst case empirical trials presented here (i.e. low number of 

raters, low quality raters) the algorithm converged in less than 20 iterations. 

3) Prior Distribution: As with STAPLE, the a priori distribution,        , must be defined. 

This can range from a global parameter to a spatially varying prior. As with the STAPLE implementation, 

we let            and define it as the empirically observed label frequencies for a most general 

definition. When available, intensity information can be integrated into this prior. In our case, this 

spatially varying prior would be defined in a manner that is identical to a log-odds majority vote [59]. We 

let             and define: 

    
 

 
∑   ̃  

 
 

   

 (3.10) 
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where   is the partition function,  ̃  
  is the value of the signed distance transform of the observations of 

rater   and voxel   for label  . The parameter     defines the slope constant of the log-odds type 

approach (herein, we use    ). Finally, for simplicity we define the final value of         in terms of 

both the global prior and the spatially varying prior 

                       (3.11) 

where         is a parameter that creates a continuum between local and global approaches to prior 

specification. In general, for STAPLE and Spatial STAPLE we use a prior governed by    . 

3. Methods and Results 

3.1.  Implementation and Evaluation 

We present four experiments: i) a simulation modeling human behavior, ii) an empirical fusion of 

human raters for the segmentation of malignant glioma, iii) a simulation modeling the fusion of multiple 

whole-brain segmentation algorithms using multiple results from a locally weighted vote, and iv) an 

empirical, multi-atlas based experiment using expert-labeled head and neck CT scans. All experiments 

were implemented in MATLAB (Mathworks, Natick, MA); complete source code is available via the 

“MASI Label Fusion” project on the Neuroimaging Informatics Tools and Resources Clearinghouse 

(NITRC).  

3.2. Simulation using a Boundary Model of Human Behavior 

First, we compared the statistical fusion methods using a model of human behavior by simulating 

raters that only miss by inaccurately labeling boundary voxels (Figure III.3A and B, similar to [50]). The 

truth model consisted of a 3-D volume (        ) with 15 embedded labeled cubes. The truth model 

was observed by 16 different raters, where each rater was “perfect” in one sixteenth of the total volume 

and exhibited boundary error behavior in the remaining regions. In the regions exhibiting boundary errors, 

the level of boundary shift for each boundary voxel was chosen from a Gaussian distribution with zero 
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mean and standard deviation — distributed          ). When all 16 raters are considered, there exists a 

single rater that is perfect in each of the sub-regions. 

1) Overall Accuracy Comparison: Accuracies of Spatial STAPLE, STAPLE and majority vote 

were assessed with 10 Monte Carlo iterations for each of a varying numbers of raters (ranging from 5 to 

16). Spatial STAPLE was applied with: a 0.15 window size fraction (i.e.       ), an overlap ratio of 

0.5, linear interpolation, and a global performance estimate based on STAPLE with a value of     (see 

Eq. 9).  

The results from this simulation can be seen in Figure III.3C-F. The performance of Spatial 

STAPLE along the boundaries between the various regions is qualitatively superior to the other methods, 

as seen by comparing Figures III.3C-3E. Quantitative results demonstrate that increasing the numbers of 

raters increases the benefit of Spatial STAPLE over both STAPLE and majority vote (Figure III.3F). 

2) Sensitivity to the Model Parameters: In addition to an overall accuracy comparison, we assess 

the sensitivity of Spatial STAPLE to the i) the global performance level bias amount ( ) ii) the size of 

 

Figure III.3. Results for the human rater simulation. The cross-sectional view of the truth 

model used in this simulation can be seen in (A). An example observation utilizing the 

boundary model of human behavior can be seen in (B). Note the fact that there exists a 

unique region where each rater is perfect in these observations. The corresponding label 

estimate from Majority Vote, STAPLE and Spatial STAPLE can be seen in (C)-(E), 

respectively. All displayed estimates were constructed using 10 raters. Lastly, an accuracy 

analysis can be seen in (F), note that with increasing volumes, Spatial STAPLE continually 

outperforms both STAPLE and Majority Vote. 
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each window in the calculation of the performance level field calculations and iii) the amount of overlap 

between the various windows in the field calculations (Figure III.4). Other than the swept parameter of 

interest, Spatial STAPLE was applied with a 0.15 window size fraction, an overlap ratio of 0.5, and a 

value of    . The results from these experiments are reported as the percent improvement over 

STAPLE (in terms of fraction voxels correct). 

The global performance level bias ( , see Eq. 9) was swept in 21 logarithmic steps between 10
-3

 

to 10
3
 (Figure III.4A). For both very low and very high bias amounts the accuracy of Spatial STAPLE 

degrades. However, as the amount of bias approaches unity we see that Spatial STAPLE is vastly superior 

to STAPLE. This level of improvement plateaus for approximately two orders of magnitude indicating 

that the accuracy of the algorithm is not particularly sensitive to the strength of the biasing prior. Note 

that as the strength of the bias increases, the accuracy of Spatial STAPLE converges to the accuracy level 

of STAPLE due to the fact that the prior estimate of the performance level parameters are estimated from 

the STAPLE algorithm. 

The window size parameter was swept in 20 linear steps between 0.05 (~1-2 voxel windows) and 

0.95 (essentially global fusion) (Figure III.4B). For very small window sizes (i.e. 0.05) the accuracy of 

Spatial STAPLE is worse than STAPLE due to the inability to estimate accurate performance using such 

 

Figure III.4. Assessment of Spatial STAPLE sensitivity with respect to various model 

parameters for the human rater simulation. For each plot the percent improvement 

exhibited by Spatial STAPLE over STAPLE is assessed. The plot seen in (A) indicates the 

sensitivity of Spatial STAPLE to the impact of the global estimate of the performance level 

parameters. (B) indicates the sensitivity to the size of the pooling region (or window) 

associated with the voxelwise performance estimate. Lastly, plot (C) indicates the sensitivity 

to the amount of overlap between windows. The window overlap is a proxy for the number 

of seed points used in the estimation of the performance level field. 
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few voxels. However, for relatively small window sizes (i.e. between 0.15 and 0.3), the accuracy of 

Spatial STAPLE is at a maximum. For window sizes beyond 0.2, the accuracy slowly decreases and 

converges to an accuracy level that is approximately equal to that of STAPLE. 

The window overlap parameter was swept in 20 linear steps between 0.05 (very little overlap) and 

0.925 (~3-4 voxel difference) (Figure III.4C). For increasing amounts of overlap the accuracy of Spatial 

STAPLE increases, as the regional performance level parameters more accurately reflect the area 

surrounding the voxel of interest. However, beyond 0.5 overlap the increase in accuracy is relatively 

small. Additionally, as the amount of overlap increases the computational time significantly increases as 

well.  

3.3. Empirical Fusion for Segmentation of Malignant Gliomas 

Second, we analyze the accuracy of majority vote, STAPLE, and Spatial STAPLE on the fusion 

of multiple human raters for the segmentation of malignant gliomas. The cancer patients utilized in this 

paper are a collection of 15 pre-operative T1-weighted brain MRI scans based on varied (but standard of 

care) imaging protocols that were obtained in anonymous form under IRB approval. The resolution of 

 

Figure III.5. Qualitative results for the human rater cancer label experiment. The accuracy 

of majority vote, STAPLE and Spatial STAPLE are considered with varying numbers of 

observations per slice (or “coverages”). For all number of observations per slice, Spatial 

STAPLE exhibits statistically significant improvement over both majority vote and 

STAPLE. 
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each of the cancerous brains was          . The corresponding “ground truth” labels associated 

with each of the cancerous brains were obtained from an expert labeler. A collection of 60 minimally 

trained undergraduate students provided labels on a slice-by-slice basis (with the students providing 

anywhere between approximately 10 and 250 observed slices). 

The results for the fusion of 8 of these cancerous brains are presented in Figures III.5 and 6. The 

remaining 7 volumes were used as training data and were used to compute initial estimates of the 

performance level parameters (see [10] for details). Both STAPLE and Spatial STAPLE used these initial 

parameter estimates using a bias value of    . For both algorithms, consensus voxels were ignored so 

that the excessive background did not adversely affect the segmentation accuracy and a global prior was 

used (   , see Eq. 11). Lastly, instead of using regional performance level estimates on a window 

basis, unique performance level parameters were constructed for each observed slice for Spatial STAPLE. 

 

Figure III.6. Qualitative results for the human rater cancer labeling experiment. Four 

separate slices are shown, with the expert labels, majority vote, STAPLE and Spatial 

STAPLE presented for each example using 8 observations per slice. For all examples 

Spatial STAPLE is qualitatively superior to both majority vote and STAPLE. The arrows 

indicate areas of particular improvement exhibited by Spatial STAPLE. 
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This allows us to model the way in which raters evolve over time (e.g. a degradation over time or a 

learning curve). 

An overall accuracy comparison between the various models of human behavior is presented in 

Figure III.5 with respect to increasing numbers of observations per slice (from 3 to 10). The accuracy is 

reported in terms of the Dice Similarity Coefficient (DSC) [140] and the boxplots represent the spread of 

accuracy across the 8 fused volumes. For all numbers of observations per slice Spatial STAPLE 

significantly outperforms STAPLE and majority vote (in a paired t-test, p < 0.05). Interestingly, beyond 5 

observations per slice very little improvement in terms of overall accuracy is gained for any of the various 

algorithms. This improvement indicates that Spatial STAPLE is able to accurately characterize the 

spatially varying performance exhibited by the minimally trained undergraduate students. Lastly, 

qualitative results, using 8 observations per slice, are presented in Figure III.6. For each of the presented 

examples Spatial STAPLE provides a significantly more accurate estimate of the underlying segmentation 

than STAPLE or majority vote. Particularly, for the problem of cancer segmentation, accurately localizing 

cancerous regions is of the utmost of clinical importance.  

3.4. Simulation of Multi-Algorithm Fusion for Whole-Brain Segmentation 

Next, we evaluate the process of fusing multiple algorithms for whole brain segmentation by 

using a collection of 5 estimates from a locally weighted vote algorithm (using a random collection of 5 

atlases per estimate). A collection of 15 whole brain segmentations were utilized with 26 labels per brain. 

The labels range from large structures (e.g. cerebral gray matter) to small, deep brain structures (e.g. 

hippocampus). Each of the brains is part of the Open Access Series of Imaging Studies (OASIS) [145] 

data set and the labels were acquired using the brainCOLOR protocol (http://www.braincolor.org/). A 

representative segmentation can be seen in Figure III.1A. The pairwise registrations were performed 

using an affine registration using FLIRT [98]. Since this experiment involves fusing the results of a 

labeling approach (the output of a N=5 locally weighted vote), only fusion techniques that don’t utilize 

intensity differences are considered: majority vote, STAPLE and Spatial STAPLE. For both Spatial 
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STAPLE and STAPLE a spatially varying prior was used (i.e.,    , see Eq. 19) and consensus voxels 

were ignored. 

The results from a leave-one-out cross-validation (LOOCV) study for all 15 of the brains of 

interest are presented in Figure III.7. The accuracy of majority vote, STAPLE and Spatial STAPLE are 

considered for each of the labels individually. The boxplots represent the spread of results across the 

various atlases. The results indicate that Spatial STAPLE significantly outperforms (paired t-test, p < 

0.05) both STAPLE and majority vote for nearly all of the considered labels. The only exceptions are for 

the left amygdala, left pallidum and the left putamen, where the results are statistically indistinguishable. 

Note that, particularly for the small labels, the accuracy of the estimates is less than what could be 

achieved with non-rigid registration and label fusion.  

3.5. Empirical Experiments using Expert-labeled Head and Neck CT scans 

Lastly, we analyze the accuracy of statistical fusion algorithms on an empirical multi-atlas based 

study. Computed tomography (CT) images were acquired from 15 patients who underwent intensity-

modulated radiation therapy (IMRT) for larynx and base of tongue cancers and were expertly labeled by 

 

Figure III.7. Quantitative results for the simulation of meta-analysis fusion for whole brain 

segmentation. The presented results represent the accuracy of majority vote, STAPLE and 

Spatial STAPLE for all 26 labels across the 15 atlases considered in this experiment. Spatial 

STAPLE significantly outperforms the other algorithms for nearly all labels (excluding the 

left amygdala, pallidum and putamen).  
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an interventional radiologist. For details see [72]. Briefly, each data set has in-plane resolution of ~1mm 

and a slice thickness of 3mm (acquired on a Philips Brilliance Big Bore CT scanner with injection with 

80mL of Optiray 320, a 68% iversol-based nonionic contrast agent). Each volume contained four 

segmented structures: left parotid, right parotid, right lymph node regions and thyroid. Note that 15 

atlases are fairly meager for many applications, but this represents a situation where the accuracy and 

limits of fusion algorithms are truly tested. All analyses were performed on the full 3D volume. 

Following an initial affine registration to a common template, the atlases were registered using the 

Vectorized Adaptive Bases Registration Algorithm (VABRA) [38] and cropped to isolate the neck 

(~170 100 80 voxels).  

Here, we compare the results between majority vote, locally weighted vote, STAPLE and Spatial 

STAPLE. Spatial STAPLE was used with a 0.2 window size fraction and an overlap ratio of 0.5. For both 

Spatial STAPLE and STAPLE a spatially varying prior was used (i.e.,    , see Eq. 11) and consensus 

voxels were ignored. The global performance estimate utilized was from a majority vote estimate 

(ignoring consensus voxels) with a value of    . All accuracy comparisons were performed using the 

DSC. We analyze the overall accuracy across all labels as well as for each of the individual labels (i.e. the 

 

Figure III.8. Quantitative results for the segmented CT head and neck data. The mean DSC 

for all structures can be seen in (A). The DSC value for each of the individual algorithms 

can be seen in (B)-(E). Spatial STAPLE statistically outperforms locally weighted vote for 

all labels other than the thyroid despite the fact that Spatial STAPLE does not utilize 

intensity information. 



73 

 

left and right parotid, the right lymph node regions, and the thyroid) using a (LOOCV) study. 

The accuracy of majority vote, locally weighted vote, STAPLE and Spatial STAPLE were 

computed for each of the 15 LOOCV iterations and plotted in Figure III.8. A paired two-sided t-test was 

performed to evaluate significance between the observed DSC of each approach and that of Spatial 

STAPLE. Spatial STAPLE results in significantly higher DSC than the other algorithms for the mean 

DSC and all structures except for the thyroid (where it is statistically indistinguishable from a locally 

weighted vote). Furthermore Spatial STAPLE is significantly superior to majority vote and STAPLE for 

all structures. Note, unlike a locally weighted vote, Spatial STAPLE does not use intensity information 

when estimating the underlying segmentation. 

It is important to note that in this scenario (i.e., consensus voxels are ignored and each of the 

labels is primarily separated from one another), the STAPLE result is nearly equivalent to a structure-wise 

fusion approach (i.e. fusing each of the labels separately). Thus, the improvement with Spatial STAPLE 

show that the biasing prior, small window sizes (i.e. smaller than the individual structures) and large 

overlap provide important accuracy benefits over the traditional multi-label and structure-wise STAPLE 

approaches. 

On average, Spatial STAPLE improves upon locally weighted vote by a DSC value of 0.01. Thus, 

it is important to inspect whether or not this improvement is of qualitative relevance. Representative 

expert labels can be seen in Figure III.9A and estimates from each of the algorithms can be seen in Figure 

III.9B-E. Visual inspection shows that improvements provided by Spatial STAPLE result in superior label 

correspondence to anatomy — particularly in the right lymph node regions. Note that defining whether or 

 

Figure III.9. Qualitative results for the segmented CT head and neck data. The average 

mean DSC improvement exhibited by Spatial STAPLE was approximately 0.01 DSC (Fig. 

8A). Thus, it is important to assess whether or not this improvement is qualitatively visible. 

The truth labels can be seen in (A), with the corresponding majority vote, locally weighted 

vote, STAPLE and Spatial STAPLE estimates seen in (B) – (E).  
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not this is clinical relevance depends highly on the clinical application. Nevertheless, Spatial STAPLE 

significantly outperforms a locally weighted vote without using intensity information outlines the 

importance of regional performance level estimates in the field of label fusion.  

4. Discussion and Conclusion 

Herein, we derive and present Spatial STAPLE — a new algorithm for statistically fusing rater 

label information using a spatially varying model of rater behavior. Spatial STAPLE i) provides 

significant improvement over the premier label fusion techniques, ii) more accurately reflects the way in 

which raters and atlases make mistakes than traditional global performance metrics and iii) provides a 

unified framework that can be used for the gamut of label fusion applications (i.e. the fusion of human 

raters, multi-atlas applications and the fusion of multiple algorithms). Additionally, Spatial STAPLE is 

not particularly sensitive to model parameters (Figure III.4) which indicate a stable theoretical 

underpinning. 

Like other statistical fusion algorithms [8, 50], Spatial STAPLE utilizes an E-M based approach 

in which the algorithm simultaneously estimates rater performance and the underlying segmentation. 

However, unlike its predecessors, Spatial STAPLE explicitly estimates the spatially varying performance 

of a collection of raters by estimating a voxelwise performance level field for each rater. The traditional 

model of rater behavior utilizes a single global confusion matrix that is utilized at all voxels. However, for 

many applications, global performance level parameters may fail to model the complexities of the 

observed labels (Figures III.5-9). By introducing a smooth, spatially-varying performance level field, the 

inherent errors in registration, human performance and algorithmic performance are implicitly modeled. 

Thus, we dramatically relax the constricting assumptions of the typical rater models and allow for 

significantly more freedom when estimating the models by which raters make mistakes. 

Perhaps surprisingly, for the head and neck CT application, Spatial STAPLE is able to 

outperform a locally weighted vote in a multi-atlas context despite the fact that it is inherently a model of 

human behavior. This is due to several factors including 1) the registrations of the data are actually quite 
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poor, 2) the intensity profile for neighboring tissues are extremely similar, rendering intensity based 

segmentation difficult, and 3) the atlases exhibit largely spatially varying behavior due to the highly 

varying anatomy in the head and neck regions. While Spatial STAPLE cannot compete with intensity 

based techniques for many applications (e.g. whole brain segmentation), there exists a large collection of 

applications in a multi-atlas context for which intensity information is of limited use. 

An important result presented in this paper is the ability of Spatial STAPLE to accurately 

estimate segmentation in the full gamut of label fusion applications. Previously, the accuracy of label 

fusion techniques has been highly dependent upon the application. For example, when fusing human 

raters, STAPLE was generally considered the best algorithm, while for other scenarios; the voting based 

algorithms generally provided more accurate estimations. By formulating a framework in which spatially 

varying behavior is characterized and semi-local performance captured, Spatial STAPLE has been shown 

to provide a robust and consistent framework for the fusion of human raters, multiple algorithms as well 

as multi-atlas fusion. Additionally, Spatial STAPLE is very versatile by modifying the way in which the 

semi-local performance is captured. For example, in the cancer segmentation example (Figures III.5 and 

6) the semi-local performance was considered on a slice-by-slice basis, while for the multi-atlas and 

algorithm fusion problems the semi-local performance was modeled on a small window basis (Figures 

III.7-9). Given this versatility and robustness, we believe that Spatial STAPLE has the properties to 

cement itself as an algorithm to be considered regardless of the fusion application. 

The implementation of Spatial STAPLE presented in this paper extends the concept of 

performance level parameters to the concept of a performance level field that it is varying on a voxel 

(local) level through analysis of regional windows and interpolation. In general there are 3 parameters that 

determine the manner in which the local label fusion is performed 1) the number of windows, 2) the size 

of the windows and 3) the type of interpolation between windows. Unfortunately, the optimal settings for 

these parameters depend largely on the situation. For example, in multi-atlas based segmentation we 

would expect the registration-driven errors to be highly local, indicating a need for many, small windows 

in order to accurately characterize the performance of the raters (or registered atlases). On the other hand, 
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for fusion of multiple minimally-trained humans who are observing labels on a slice-by-slice basis (i.e. 

the cancer segmentation example), the optimal parameters would allow for unique performance level 

parameters on each slice. This type of framework would allow the algorithm to implicitly capture natural 

human labeling phenomena such as degradation over time, or a learning curve. Spatial STAPLE provides 

a valuable framework for modeling the manner in which raters observe labels, which can provide optimal 

techniques for highly varying situations through simple parameter manipulation. 
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  CHAPTER IV

FORMULATING IMPERFECT CORRESPONDENCE 

1. Overview 

Regardless of the approach, label fusion models have consistently made an implicit assumption 

that the use of multiple atlases results in a voxelwise, collectively unbiased representation of the target. 

This assumption is manifested through the fact that nearly all fusion algorithms determine the optimal 

label using only directly corresponding intensity and label information. Ergo, multi-atlas methods are 

generally dependent upon highly accurate registration and the use of large numbers of atlases. We are left 

with several problems in multi-atlas segmentation: (1) a dependence on large-scale, high-quality 

registrations, (2) voting-based algorithms lack the theoretical underpinning of statistical fusion 

observation models and (3) statistical fusion algorithms fail to incorporate intensity information. Thus, 

previous approaches have failed to accurately model the stochastic process of registered atlas observation 

error. 

Meanwhile, a relatively new framework in the field of image analysis, non-local means, has 

gained momentum in terms of quantifying complex image characteristics (e.g., noise structure, spatially 

varying correspondence). In non-local means, images are deconstructed into a collection of small 

volumetric patches and the similarity or correspondence between these patches is quantified to learn the 

underlying image structure [122]. The non-local means framework has emerged in the context of image 

de-noising [122-127]. However, more recent work has demonstrated the applicability of non-local means 

to new applications such as synthesizing image contrast [146], in-painting [147], and image segmentation 

[56, 148]. 
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Herein, we propose a novel statistical fusion algorithm (Non-Local STAPLE – NLS) that 

reformulates the STAPLE framework from a non-local means perspective. NLS models the registered 

atlases as collections of volumetric patches containing both intensity and label information and uses the 

non-local criteria [56, 122] to resolve imperfect correspondence. Through this reformulation, we 

seamlessly integrate exogenous intensity information into the estimation process to provide a theoretically 

consistent model of multi-atlas observation error. NLS provides a model in which we learn which label 

each atlas would have observed given perfect correspondence with the target. This presentation is an 

extension and generalization of a recently published conference paper [51].  Herein, we provide additional 

 

Figure IV.1. Flowchart of the Non-Local STAPLE (NLS) algorithm. NLS integrates a non-

local correspondence model (using the atlas-target intensity relationships) into the 

estimation process. Point-wise correspondence is constructed in a traditional non-local 

means approach. 
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examples, derivations and insights that were not part of the original conference publication. 

In this manuscript, we begin by deriving the theoretical basis and the parameters for initialization 

and convergence governing NLS. Next, we demonstrate significant improvement over the state-of-the-art 

fusion algorithms on two distinct datasets: (1) computed tomography (CT) images for thyroid 

segmentation and (2) structural magnetic resonance (MR) images for whole-brain segmentation. For 

whole-brain segmentation, we demonstrate that NLS dramatically lessens the need for large-scale and 

highly accurate non-rigid registration. Lastly, we provide insight into the sensitivity of NLS to the various 

model parameters, assess the optimality of the algorithm, and provide a comparison to a direct application 

of non-local voting. 

2. Theory 

The following presentation provides the theoretical model governing NLS in the commonly used 

Expectation-Maximization (EM) framework [116]. For clarity and consistency, the notation closely 

follows the presentation of the original STAPLE algorithm [8].  

2.1. Problem Definition 

Consider a target gray-level image represented as a vector,       . Let        be the latent 

representation of the true target segmentation, where              is the set of possible labels that 

can be assigned to a given voxel. Consider a collection of   registered atlases with associated intensity 

values,       , and label decisions,       . Let          parameterize the performance level of 

raters (registered atlases). Each element of  ,      , represents the probability that rater   observes label    

given that the true label is   at a given target voxel and the corresponding voxel on the associated atlas — 

i.e.,        (          |             ), where    is the voxel on atlas   that corresponds to target 

voxel  . Throughout, the index variables  ,    and    will be used to iterate over the voxels,   and    over 

the labels, and   over the registered atlases. 
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2.2. The Non-Local STAPLE Algorithm 

As with other statistical fusion algorithms, NLS uses EM to estimate the true (latent) 

segmentation based on the target intensities, atlas information, and the rater performance level parameters 

(see Figure IV.1 for a graphical summary of NLS). In traditional EM terminology, the underlying 

voxelwise label probabilities represent the hidden data that we are estimating, and the performance level 

parameters,  , represent the hidden model parameters that help determine the optimal solution for the 

target segmentation. The estimation of these parameters is accomplished by iterating between the E-step 

(i.e., the estimation of the voxelwise label probabilities) and the M-step (i.e., the estimation of the 

performance level parameters that maximize the expected value of the conditional log likelihood 

function). Before presenting the derivation of our EM-based approach, we define our non-local 

correspondence model, and an approximation of the performance level parameters that provides a 

technique for deriving the algorithm. 

2.3. Non-Local Correspondence Model 

In order to reformulate the traditional STAPLE model of rater behavior from a non-local means 

perspective, we need to define an appropriate non-local correspondence model. Given a voxel on the 

target image,  , this correspondence model provides a technique for determining the corresponding voxel 

on a given atlas,   . In our model, there are two primary components that are required to define the non-

local correspondence: (1) the intensity similarity model between a given atlas voxel and the target voxel 

of interest, and (2) the spatial compatibility between two voxel locations in the common target image 

coordinate system.  

First, there are several options that could be used to define the intensity similarity between a 

given atlas voxel and the target voxel (e.g., correlation coefficient [53], mutual information [48], 

Gaussian intensity difference [59]). Herein, we use a Gaussian difference model, which, assuming proper 

intensity normalization, has been shown to be highly successful, particularly on neurological applications 

[46, 59, 123]. 
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Second, we need to define a metric for the spatial compatibility between a given atlas voxel and 

the target voxel in image space. Traditional non-local means algorithms for image de-noising [122-125] 

weight all voxels equally, regardless of the distance between the voxels in image space. However, in 

order to translate non-local means to segmentation-based applications, limited search regions are typically 

defined in order to prevent confusion between structures with similar intensity profiles [56, 148]. Here, 

we employ a Gaussian window-based model so that highly local voxels are more highly weighted. This 

reflects our desire to estimate that the underlying corresponding voxel    is both similar to the target voxel 

and, due to the registration process, generally close in terms of the target image coordinate system. 

Together, we define the probability of correspondence between an atlas voxel and the given target 

voxel (i.e.,  (    |  )) to be the product of two Gaussian distributions. 

 (    |  )        
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‖ (    )       ‖ 

 

   
 )   ( 
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where the first distribution is the intensity similarity model, the second distribution is the spatial 

compatibility model, and    is a partition function. In the intensity similarity model,      is the set of 

intensities in the patch neighborhood of a given intensity location and    is the standard deviation of the 

assumed distribution. In the spatial compatibility model,      is the Euclidean distance between voxels   

and    in image space and    is the corresponding standard deviation.  

Lastly, the partition function,    enforces the constraint that 

∑      

       

    (4.2) 

where      is the set of voxels in the search neighborhood of a given target voxel. Through this 

constraint,       can be directly interpreted as the probability that voxel    on atlas   is the latent 

corresponding voxel,   , to a given target voxel  . 
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2.4. Approximation of the Latent Performance Level Parameters 

The following derivation of NLS hinges upon knowledge of the voxel    on atlas   that directly 

corresponds to voxel   on the target image. If the directly corresponding voxel was known, then the ideal 

non-local correspondence model would be known and we could ignore the intensity relationships to use a 

typical definition of the underlying performance level parameters. 

 (          |             )    (       |          )        (4.3) 

Unfortunately, this corresponding voxel,   , is unknown and we are forced to approximate it using the 

previously defined non-local correspondence model. Using the model in Eq. 1, we can approximate this 

relationship by taking the expected value of                             across the atlas image. Using 

an assumption of conditional independence between the labels and intensity, we approximate the desired 

density function 

                             [ (     |           )]

  [ (  |        ) (  |  )]

 ∑  (       |          ) (    |  )

       

 ∑           

       

 (4.4) 

where      is the set of voxels in the search neighborhood of voxel  , and       is the previously defined 

non-local correspondence model (Eq. 1). 

As in [59], we assume conditional independence between the labels and intensity, which 

seemingly neglects their complex relationships. However, our assumption is that the information gained 

from inclusion of the atlas intensity is related to understanding the lack of local correspondence between 

the target and the atlas, which, through the estimation process, indirectly models the complex label-

intensity relationships. 

Additionally, it is important to note that this model of the performance level parameters is 

inherently an approximation based upon an assumed a priori distribution (Eq. 1) governing the non-local 

correspondence between the target and the atlases. Ideally, the non-local correspondence parameters 
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would be treated as additional model parameters that are iteratively updated in the M-step of the 

subsequent EM algorithm. Unfortunately, there are two primary limitations that prevent the construction 

of this type of idealized model. First, this model makes solving the M-step of the algorithm 

mathematically difficult as we would be forced to simultaneously estimate the raters’ performance and the 

voxel(s) that represent the true underlying correspondence. Second, it dramatically increases the number 

of parameters that we would be attempting to estimate. To illustrate, given a non-local search 

neighborhood consisting of K voxels, the number of augmented model parameters would be 

approximately       which leaves an underdetermined system given the amount of data that is 

available to estimate these parameters. Regardless, despite these limitations, the proposed model 

approximation captures many of the same benefits that would likely be achieved assuming the “ideal” 

approach were possible to construct. 

2.5. E-Step: Estimation of the Voxelwise Label Probabilities 

Let       , where    
   

 represents the probability that the true label associated with voxel   

is label   at iteration   of the algorithm given the provided information and model parameters 

   
   

  (    |          )  (4.5) 

Using a Bayesian expansion and the assumed conditional independence between the registered atlas 

observations, Eq. 5 can be re-written as 

   
   

 
       ∏                           
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 (4.6) 

where         is a voxelwise a priori distribution of the underlying segmentation, and      is the label 

decision by atlas   at the atlas image voxel    that corresponds to voxel   on the target image. Note that the 

denominator of Eq. 6 is simply the solution for the partition function that enables   to be a valid 

probability mass function (i.e., ∑       ). 
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As previously noted, we do not know the corresponding atlas voxel. Thus, using the non-local 

correspondence model (Eq. 1) and the provided approximation (Eq. 4), we can approximate the final 

solution for the voxelwise label probabilities 
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  (4.7) 

where, it is assumed that        . 

2.6. M-Step: Estimation of the Performance Level Parameters 

The estimate of the performance level parameters (M-step) is obtained by finding the parameters 

that maximize the expected value of the conditional log likelihood function (i.e., using the result in Eq. 7). 
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Noting the constraint that each row of the rater performance level parameters must sum to unity to be a 

valid probability mass function (i.e., ∑  
    

   
    ), we can maximize the performance level parameters 

for each element by using a Lagrange Multiplier (   [117] to formulate the constrained optimization 

problem. Following this procedure, we obtain 

  
 

      
[∑∑   

   
  ( (          |          

   
))

  

  ∑     

  

]

  ∑   
   

 
      

[ (          |          
   

)]

 (          |          
   

) 

   

 (4.9) 

However, in order to solve for       we have to utilize the approximation presented in Eq. 4. The density 

function of interest,  (          |          
   

), appears in both the numerator and the denominator. 

In the denominator, we see the exact density function that we are trying to maximize; thus, we substitute 

the direct definition of the performance level parameters presented in Eq. 3.  In the numerator, however, 

we need to take the derivative of this density function with respect to the current element of the 
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performance level parameters (and the dependence structure is not apparent in Eq. 3). To capture the 

inherent noise and lack of local correspondence between the target and the atlases, we use the 

approximation of this density function (i.e., Eq. 4) in the numerator. Using these substitutions and some 

straightforward algebraic manipulation we obtain 
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Finally, solving for the Lagrange Multiplier leaves the final solution for each element of the performance 

level parameters 
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2.7. Initialization, Model Parameters, and Detection of Convergence 

As with all of the algorithms that have been presented in the STAPLE family, NLS can be 

initialized using either an initial estimate of the performance level parameters or the voxelwise label 

probabilities. For all of the presented experiments, NLS was initialized with performance parameters 

equal to 0.95 along the diagonal and randomly setting the off-diagonal elements to fulfill the required 

constraints. Note that initializing NLS in this way is essentially the same as initializing the voxelwise 

label probabilities to that of a majority vote. 

For all presented experiments, the voxelwise label prior,        , was initialized using the label 

probabilities from a “weak” log-odds majority vote (i.e., decay coefficient set to 0.5 voxels) [59]. We 

found that initializing in this manner provided enough spatial information for NLS to consistently 

converge to a desired optimum, without being too spatially restrictive. Alternative approaches could be to 



86 

 

(1) initialize using a global prior (i.e., the same probabilities for every voxel), or (2) use the output of 

another segmentation algorithm. 

There are several parameters in the non-local correspondence model that need to be set in order to 

efficiently utilize NLS.  First, there are two neighborhood parameters that need to be initialized: the 

search neighborhood,     , and the patch neighborhood,     . Both of these parameters are functions of 

the input data (e.g., the resolution of the images, the quality of registration). For all of the presented 

experiments we used a search neighborhood of size          voxels centered at the target voxel of 

interest. We found that inter-subject registrations were of a high enough quality that a search 

neighborhood of this size was able to consistently capture the underlying non-local correspondence. For 

the patch neighborhood, several potential sizes are considered (all of which are centered at the voxel of 

interest) and the benefits and detriments of varying this value are discussed later in this manuscript. The 

two standard deviation parameters that need to be set are    and   , which control the impact of the 

intensity difference and the Euclidean distance-based decay, respectively. In general,    is a function of 

the intensity normalization process and, thus, spread of intensity values. The parameter    can be thought 

of as a proxy for the search neighborhood. Unless otherwise noted, these values were set to 0.1 and 2, for 

   and   , respectively. These “default” values were obtained during the coding implementation of the 

proposed algorithm and were tested on a single whole-brain volume in order to obtain reasonable results. 

Note that this is a non-ideal approach for determining these parameters as it (1) slightly biases the 

presentation of results, and (2) does not guarantee the optimality of the parameters (as indicated in Figure 

IV.8). For future applications, where  distinct and independent testing and training data are available, it 

would be more appropriate to determine the optimal parameter values using the training data only (i.e., 

the available atlases). 

Convergence of NLS was detected by monitoring the change in the performance level parameters 

between consecutive iterations. As with the original STAPLE algorithm, we considered the algorithm to 

have converged when the average change in the on-diagonal elements of the performance level 
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parameters fell below     .  For all presented experiments, convergence occurred in fewer than 10 

iterations. 

Lastly, while not necessarily a model parameter, “consensus voxels” (i.e., voxels where all raters 

agree) were ignored during the estimation process. Due to the non-local nature of the algorithm, 

consensus voxels were determined in two subsequent steps. First, an initial “consensus voxels” estimate 

was obtained by finding all voxels for which                 . Second, this initial estimate was 

post-processed to include a safety margin around the estimated non-consensus voxels that is defined by 

the search neighborhood (i.e., all voxels within the search neighborhood of a non-consensus voxel were 

determined to be non-consensus as well). This accomplishes two tasks: (1) it improves the runtime of the 

algorithm and (2) it prevents the performance level parameters from being unnecessarily biased due to the 

inclusion of highly “consensus” regions [9, 50]. 

3. Methods and Results 

An implementation of the Non-Local STAPLE algorithm is available as part of the Java Image 

Science Toolkit (JIST, www.nitrc.org/projects/jist). 

3.1. Baseline Algorithms 

Our first baseline algorithm is a log-odds majority vote (MV) [59]. For all presented experiments 

the decay coefficient was set to unity, as suggested in [59].  Our second baseline is a locally weighted 

vote (LWV) [48, 57, 59]. LWV procedures have come to represent the state-of-the-art fusion strategy as 

they provide consistent improvement over both MV and globally-weighted approaches. The 

implementation presented here is the same as suggested in [59]. Note that a LWV has a parameter that is 

essentially identical to the    parameter in NLS (see Eq. 1). For fairness of comparison, this parameter 

was initialized to the same value (herein,    ) for both algorithms. Our next baseline is the original 

STAPLE algorithm [8]. Due to the amount of overlap between STAPLE and NLS the same parameter 

values were used when applicable. Thus, the algorithms were equivalently initialized, the same values 
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were used for the voxelwise label prior,        , “consensus voxels” were ignored using the same 

discriminant criteria, and convergence was detected using the same threshold. 

Our last baseline algorithm is Spatial STAPLE [49, 52, 54]. Spatial STAPLE represents an 

extension to the traditional STAPLE framework that allows for the estimation of a smooth spatially-

varying performance level field instead of global performance level parameters and has been shown to 

provide robust and accurate multi-atlas segmentations. Where applicable, Spatial STAPLE was utilized 

using identical parameters to NLS and STAPLE. In addition, the performance level parameters were 

calculated on a voxelwise basis using a half-window size of 10mm in all cardinal directions. Note that 

Spatial STAPLE is very similar to another recently proposed algorithm – Local STAPLE MAP [54]. The 

primary difference is the way in which the performance level parameters are kept stable. Here, Spatial 

STAPLE uses a non-parametric distribution governed by an initial estimate from the original STAPLE 

algorithm as opposed to the parametric beta distribution that is proposed in Local STAPLE MAP. 

Investigation into the optimal way to maintain performance level stability is outside of the scope of this 

manuscript. 

3.2. Motivating Simulation 

 Before presenting the empirical results, we present a toy simulation to demonstrate the limitations 

of the traditional STAPLE model of rater behavior (Figure IV.2). A single 2D slice (144 x 191 voxels) 

from a manually labeled whole-brain dataset was used as the basis for the presented simulation models 

(see the “Empirical Evaluation” section for details on the dataset). The presented slice has 4 non-

background labels (left/right cerebral gray matter and left/right cerebral white matter) and the accuracy of 

the presented algorithms is presented in terms of the mean Dice Similarity Coefficient [140] across these 

labels. For each presented example, 8 label observations were simulated per fusion estimate. In Figure 

IV.2 we present three different models of rater observation behavior: 



89 

 

 The first observation model represents a “voxelwise random rater model” [8, 11, 50] in which 

simulated confusion matrices are constructed for each rater. Simulated observations are generated 

through Monte Carlo sampling of these confusion matrices given the true segmentation. Here, 

confusion matrices were randomly constructed with constant on-diagonal values linearly distributed 

between 0.5 and 0.9. 

 

Figure IV.2. Simulated models of rater behavior and their impact on fusion performance. 

The first two examples present traditional models of human observation behavior, and, for 

both models, STAPLE substantially outperforms a majority voting based approach. In 

contrast, the third example simulates a typical multi-atlas observation model. In this case, 

STAPLE is outperformed by a majority vote. Additionally, the multi-atlas fusion 

approaches that utilize the target-atlas intensity relationships (e.g., locally weighted vote 

and the proposed Non-Local STAPLE) provide substantial improvement. 
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 The second observation model represents a “boundary random rater model” [10, 11, 49, 50] in which 

the boundary voxels on the true segmentation are randomly shifted. The shift amount was randomly 

sampled from a zero-mean Gaussian distribution that is unique to each rater. The standard deviation 

values of these distributions were linearly distributed between 0.5 and 2. 

 The last observation model represents a “simulated deformation field model” in which simulated 

deformation fields are applied to the true labels by sampling a sixth-order Chebyshev polynomial 

with random coefficients unique to each rater. These coefficients were randomly sampled from a 

zero-mean Gaussian distribution with standard deviation equal to unity. 

The first two examples are typical simulated models of human rater observation behavior, and, in both 

cases, STAPLE provides substantial improvement over a MV. To contrast, the third example simulates a 

typical multi-atlas observation model, in which random deformations are applied to a target image. In this 

case, STAPLE is slightly outperformed by a MV, which highlights the lack of applicability of STAPLE’s 

observations model to a multi-atlas context. Additionally, using the intensity images of the simulated 

“atlases” in the third simulation model, we show that a LWV and NLS provide substantial improvement 

over the traditional “human rater” fusion models (i.e., MV and STAPLE) that ignore the target-atlas 

intensity relationships. 

3.3. Empirical Evaluation 

We consider two distinct empirical datasets. Our first dataset is a collection of 15 CT head and 

neck atlases used for thyroid segmentation. The images used in this experiment were collected from 

consenting patients who underwent intensity-modulated radiation therapy. The patients were injected with 

80mL of Optiray 320, a 68% iversol-based nonionic contrast agent.  Each image has a voxel size of 

         . The expert labels were obtained from a local expert radiologist and verified by multiple 

experienced human raters. Note that 5 of the 15 patients in this data set underwent a surgical procedure 

that split their thyroid into two distinct sections. 
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Our second dataset is a collection of 15 Magnetic Resonance (MR) images of the brain as part of 

the Open Access Series of Imaging Studies (OASIS) [145] dataset. This data was expertly labeled 

courtesy of Neuromorphometrics, Inc. (Somerville, MA) and provided under a non-disclosure agreement. 

A refined dataset (using the OASIS brains and a subtly revised labeling protocol) has recently been made 

available as part of the MICCAI 2012 workshop on multi-atlas labeling. This data is available at the 

following URL: https://masi.vuse.vanderbilt.edu/workshop2012/ or directly from Neuromorphometrics. 

For each atlas, a collection of 26 labels (including background) were considered: ranging from large 

structures (e.g., cortical gray matter) to smaller deep brain structures (see Figure IV.5 for a list of all 

labels). Note that all of the cortical surface labels were combined to form left and right cortical gray 

matter labels. All images are 1mm isotropic resolution and, for ease of analysis, the brain region was 

extracted.  

Note that, while all baseline algorithms were considered, the STAPLE results are not shown for 

the whole-brain segmentation problem as it has been demonstrated to be consistently outperformed by a 

LWV for whole-brain segmentation [48, 49, 57, 59]. Nevertheless, the MV results are shown in order to 

provide a reference baseline for registration performance and segmentation accuracy. 

3.4. Pre-Processing and Analysis 

All pairwise registrations were performed using an initial affine registration [98], and, when 

noted, all pairwise non-rigid registrations were performed using the Vectorized Adaptive Bases 

Registration Algorithm (VABRA) [38]. After registration, the images were (1) cropped so that excess 

background was removed, and (2) intensity normalized such that the 25
th
 and 75

th
 percentiles of the range 

of the non-background intensity values were set to 0 and 1, respectively. Quantitative accuracy was 

assessed using the Dice Similarity Coefficient (DSC) [140], Hausdorff distance [149], and mean surface 

distance. The surface distance metrics were computed unidirectionally in terms of the distance from the 

expert labels to the estimated segmentation. 
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3.5. Thyroid Segmentation Results 

Our first experiment analyzes the fusion accuracy for segmentation of the thyroid. In addition to 

the benchmarks, NLS was run using various patch neighborhood,     , sizes (      , 

     ,      , and       voxels), all of which were centered at the voxel of interest. Due to 

the slice thickness of    , the third dimension of the patch neighborhoods were not increased beyond 3 

voxels. We performed a leave-one-out cross-validation experiment (i.e., 14 atlases per segmentation 

estimate) to assess fusion accuracy. The results of this experiment are presented in Figure IV.3. 

The quantitative results, in terms of the spread across the 15 atlases, can be seen in Figure IV.3A. 

 

Figure IV.3. Results of the empirical multi-atlas segmentation of the thyroid. The 

quantitative results (A) show that NLS provides significant improvement in terms of the 

DSC, Hausdorff distance, and mean surface distance, with a       patch neighborhood 

as the most consistent performer. The qualitative results (B) support the quantitative 

improvement and demonstrate that NLS provides substantial improvement in shape, 

boundary, and point-wise surface distance error. Note that “Subject Type 1” underwent a 

surgery to surgically bisect the thyroid. 
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The NLS based approaches provide significant improvement (p < 0.01, paired t-test) over all of the 

considered baseline algorithms in terms of the DSC, Hausdorff distance and mean surface distance. NLS 

using a       (voxels) patch neighborhood size was the most consistent performer as it significantly 

outperformed (p < 0.01, paired t-test) the other NLS based approaches in terms of the DSC and the mean 

surface distance. The median DSC performance was improved by 0.05 over a LWV and 0.08 over 

STAPLE. Only the NLS based approaches achieved submillimetric accuracy in terms of the mean surface 

distance between the expert labels and the segmentation estimates. Additionally, NLS using a       

(voxels) patch neighborhood provided over     improvement over a LWV and over     improvement 

over STAPLE and Spatial STAPLE in terms of the Hausdorff distance. 

 

Figure IV.4. Overall accuracy, in terms of mean DSC, comparison for whole-brain 

segmentation. For both pairwise non-rigid and pairwise affine registration procedures, NLS 

provides significant improvement over traditional fusion approaches. 
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Qualitative results are presented in Figure IV.3B, where, for all considered algorithms a 

representative slice and a 3D rendering of the point-wise surface distance error is presented. Example 

results are presented for a representative patient that underwent a surgery to bisect the thyroid (subject 

type 1) and a representative subject that did not (subject type 2). The segmentations from NLS are all 

qualitatively superior to the other baseline algorithms as they more accurately estimated the underlying 

shape and size and resulted in substantial reductions in point-wise surface distance error. For small patch 

neighborhoods (e.g.,       – a single voxel) it is evident that high quality boundaries are estimated, 

but “speckle noise” is more likely to be apparent. Alternatively, for larger windows, estimations are 

smoother but sacrifice the high quality boundary estimation. Note that only the NLS based approaches 

correctly estimated the connected topography of the second subject. 

3.6. Whole-Brain Segmentation Results 

Our second experiment analyzes fusion accuracy for whole-brain segmentation. For this 

experiment, NLS was run using both       (voxel) and       (voxel) patch neighborhoods. The 

results of this experiment are presented using a pairwise non-rigid registration procedure and a pairwise 

affine registration procedure. For both registration procedures, the overall accuracy (in terms of mean 

 

Figure IV.5. Per-label accuracy comparison on the whole-brain segmentation problem 

using a pairwise non-rigid registration procedure. NLS provides consistent improvement 

over locally weighted voting. In this case, NLS using a single voxel patch neighborhood 

consistently outperformed a larger (     ) patch neighborhood. 
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DSC) was assessed using a cross-validation experiment with between 5 and 14 atlases per target. 

Additionally, the per-label accuracy was assessed using 5 atlases per target.  

The results of the overall accuracy comparison for both registration procedures are summarized in 

Figure IV.4. The results indicate that, for both the pairwise non-rigid registration (Figure IV.4A) and the 

pairwise affine registration (Figure IV.4B), NLS demonstrates significant improvement (p < 0.001, paired 

t-test) over MV, LWV and Spatial STAPLE regardless of the number of atlases fused. For the non-rigid 

registration, NLS using a single voxel patch neighborhood provided a small, yet consistent, improvement 

over the larger       (voxels) patch neighborhood. Interestingly, the opposite was true for the affine 

registration, where the larger neighborhood provided consistent improvement over the single voxel 

neighborhood. This difference indicates the importance of using larger patch neighborhoods when the 

quality of registration is diminished, and the expected correspondence is highly non-local. Additionally, 

for both registration procedures, NLS using only 5 atlases exhibited significant improvement (p < 0.05) 

over a LWV using all 14 available atlases. Note that, unlike [54], Spatial STAPLE is consistently 

outperformed by a LWV. This disparity is primarily due to the fact that the structures presented here are 

highly dependent upon their intensity characteristics. In [54], they focus on cortical segmentation – a 

problem in which intensity information provides little benefit in terms of distinguishing between adjacent 

 

Figure IV.6. Per-label accuracy comparison on the whole-brain segmentation problem 

using a pairwise affine registration procedure. As in Figure IV.5, NLS provides consistent 

improvement over locally weighted voting. In this case, NLS using a larger (     ) 

patch neighborhood consistently outperformed a single voxel patch neighborhood. 
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labels. 

The per-label results for the non-rigid (Figure IV.5) and affine (Figure IV.6) registration 

procedures demonstrate consistent improvement over a LWV regardless of label size, location and shape. 

For the non-rigid results, NLS using a single voxel patch neighborhood resulted in significantly superior 

(p < 0.05) results over LWV on 23 out of 25 labels and for 16 out of 25 labels over NLS using a     

  (voxels) patch neighborhood. For the affine results, NLS using a       (voxels) patch 

neighborhood resulted in significant improvement (p < 0.05) over LWV on all considered labels and for 

 

Figure IV.7. Qualitative comparison between the various fusion algorithms for whole-brain 

segmentation using 5 atlases. For both registration procedures, the qualitative results 

support the quantitative improvement demonstrated by NLS in Figures IV.4-6. The NLS 

results are qualitatively superior to alternative voting-based procedures in terms of overall 

shape, size, location and appearance. Note that the mean DSC labels indicate the mean 

observed DSC for all labels for the corresponding subject (row) and algorithm (column). 
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20 out of 25 labels over NLS using a single voxel patch neighborhood. For both registration procedures, 

none of the baseline algorithms were significantly superior to either NLS approach for any label. 

The qualitative results (Figure IV.7) support the quantitative improvement exhibited by NLS over 

previous algorithms (Figures IV.4-6). Figure IV.7 shows four different subjects (two for non-rigid and 

two for affine) with the associated expert labels and cropped estimates from the considered baseline 

algorithms using 5 atlases per estimate. Spatial STAPLE is not shown as it was consistently outperformed 

by LWV for all considered target images. For reference, MV estimates are provided in order to provide 

important insight into the quality of the registration. For each presented estimate, the mean DSC value on 

the presented subject is available below the image. Each example demonstrates the type of improvement 

exhibited by NLS over voting-based algorithms. NLS provides consistent improvement in terms of shape, 

size and location of the various labels. Additionally, through the process of finding non-local 

correspondence, NLS results in segmentation estimates that are qualitatively more consistent in terms of 

the associated intensity profile, and less dependent upon using high-quality non-rigid registration with 

large numbers of atlases.  

 

Figure IV.8. Sensitivity to NLS model parameters. The sensitivity of NLS to    (A) and    

(B) demonstrate degraded performance for values that are either too small or too large. 

Regardless, consistent improvement over a locally weighted vote is achieved. Gray outlines 

indicate the values used in the previously presented experiments. The qualitative results 

demonstrate the benefits and detriments of optimal and sub-optimal model parameters. 
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3.7. Sensitivity to Model Parameters 

The sensitivity of an algorithm to the model parameters plays a critical role in determining the 

robustness and applicability of the approach to new problem spaces. The sensitivity of NLS to patch 

window sizes, quality of registration, and the number of atlases has been presented throughout Figures 

IV.3-7. Here, we assess the sensitivity of NLS to the two standard deviation parameters,    and    (see 

Eq. 1). First,    is the standard deviation of the Gaussian intensity difference model and controls how 

selective the non-local approach is in determining the correspondence between the various voxels. 

Second,    is the standard deviation of the Gaussian distance model and it weights voxels based upon 

their distance to the current target voxel of interest. The parameter    can be thought of as a proxy for the 

size of the search neighborhood (i.e., as the value of    decreases the impact of the extreme elements in 

the search neighborhood approaches zero). Note, due to this relationship, alternative values for the search 

neighborhood are not considered. Here, we utilize NLS with a single voxel patch neighborhood on the 

non-rigidly registered whole-brain data set. Unless the parameter values are being explicitly modified, the 

previously discussed default parameter values are used. 

The results of this sensitivity test (Figure IV.8) demonstrate that NLS is not particularly sensitive 

to the standard deviation parameters, and continues to exhibit consistent improvement over LWV across a 

large range of parameter values. Figure IV.8A demonstrates the NLS sensitivity to the    parameter with 

associated qualitative estimates for various parameter values shown to the right. For values of    that are 

too small, NLS results in noisy estimates that contain undesired “holes” in the segmentation. On the other 

hand, large values result in segmentations that are overly smooth and fail to accurately model the 

underlying intensity profile. While not shown, one important case for this parameter is when      (i.e., 

ignoring intensity characteristics and only incorporating registration uncertainty via spatial locality). If we 

set    to   then the algorithm converges to a mean overall accuracy of 0.8746 – an accuracy level 

statistically indistinguishable from Spatial STAPLE. This provides two important insights (1): it 

highlights the need of incorporating intensity information into the estimation framework for this particular 
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application, and (2) it demonstrates that, despite using global performance level parameters, NLS is able 

to overcome some of the inherent registration uncertainty without directly utilizing the image intensity 

characteristics. Figure IV.8B shows the sensitivity to the    parameter. In this case, values that are too 

small cause NLS to use too few voxels to capture the non-local correspondence between the atlases and 

the target. Values that are too high result in the inclusion of regions of the image that are not anatomically 

indicative of the label of interest. The gray bars on Figure IV.8 indicate the default values used in the 

previous experiments. 

3.8. Model Optimality 

Like STAPLE, NLS is derived in an EM framework in which parameters are iteratively computed 

in order to estimate the optimal solution for the underlying segmentation. While EM algorithms are 

guaranteed to converge to a local optimum, convergence to a global optimum is not guaranteed. Thus, it is 

important to assess the ability of NLS to converge to a reasonable local optimum. Given the true 

segmentation and a provided non-local correspondence model, it is straightforward to calculate the 

globally ideal performance level parameters for NLS by replacing the voxelwise label probabilities (i.e., 

   ) with the true segmentation in Eq. 11 

     
  

∑ (∑                      )         

∑         
  (4.12) 

 where      
  represents the globally ideal performance level parameters,    is the true segmentation at 

voxel   and,         is the Kronecker delta function which is equal 1 if      and 0 otherwise. For the 

traditional STAPLE model, the globally ideal performance level parameters can be calculated in a similar 

manner: 

     
  

∑                

∑         
  (4.13) 

Here, for both STAPLE and NLS, we compare the results of the converged algorithm to the 

results of the algorithm using the globally ideal performance level parameters. We enumerate ideal 

STAPLE and ideal NLS to indicate the results of the algorithms using the globally ideal performance 
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level parameters. We assess the results across the 15 whole-brain images using 5 non-rigidly registered 

atlases per estimate and a single voxel patch neighborhood. 

The results of this experiment (Figure IV.9) demonstrate multiple important concepts. The 

converged NLS estimate is nearly identical to the accuracy of the ideal NLS estimate, which is an 

indication that, despite using only 5 atlases, NLS is able to converge to an estimate that is very close to 

the global optimum. To contrast, the converged STAPLE estimate is significantly lower than the ideal 

STAPLE estimate, which indicates a strong need for using larger numbers of atlases. Additionally, the 

ideal STAPLE estimate is only slightly better than the MV estimate. Thus, regardless of converging to the 

global optimum or not, the STAPLE model of rater behavior does not accurately model the observation 

behavior exhibited in this multi-atlas context. While perhaps surprising, these results are supported by the 

literature, where, even when large numbers of atlases are used (i.e., the probability of converging to 

global optimum is increased), STAPLE is, at best, slightly better than a MV in a multi-atlas context [48, 

49, 59, 60]. 

 

Figure IV.9. Assessment of the model optimality of the NLS approach. The results using 

ideal STAPLE and ideal NLS represent the estimates using the globally ideal performance 

level parameters with 5 atlases per estimate.  NLS consistently converged to an estimate 

that is very close to “ideal” NLS (i.e., the global optimum). On the other hand, STAPLE 

consistently converged to a value significantly less than the global optimum. Additionally, 

the results of the “Ideal STAPLE” approach are only slightly better than a MV, which 

indicates the non-optimality of the traditional STAPLE observation model. 



101 

 

3.9. Comparison to Non-Local Voting 

Heretofore, we have limited our comparisons to the algorithms that represent the state-of-the art 

label fusion algorithms (i.e., the algorithms that are most commonly utilized in the label fusion literature). 

However, like NLS, recent techniques have been proposed that integrate a non-local correspondence 

model into a voting-based fusion approach [56, 148]. In order to more fully characterize the performance 

of NLS to premier segmentation approaches, we compare the results of NLS to a straightforward non-

local voting-based procedure [56] for the affine registration whole-brain segmentation problem using 5 

atlases per target. For fairness of comparison, identical values were used for NLS and the non-local 

voting-based approach where applicable (i.e., search neighborhood set to          voxels, patch 

neighborhood set to       voxels, and    set to 0.1). 

 

Figure IV.10. Comparison to non-local voting fusion. NLS provided consistent improvement 

over non-local voting, particularly for the smaller deep brain structures (A). NLS provided 

significant improvement on 18 of the 25 considered labels. Particularly for the smaller 

labels, the benefits of the proposed multi-atlas rater model are evident. The qualitative 

comparison (B) supports the per-label comparison and demonstrates the type of 

improvement achieved by NLS. 
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The results of this comparison (Figure IV.10) indicate that NLS provides significant improvement 

over non-local voting approaches, particularly when estimating small and more complex deep brain 

structures. First, a per-label comparison (Figure IV.10A) demonstrates that NLS provides significant 

improvement (p < 0.05, paired t-test) over the non-local voting approach on 18 out of the 25 considered 

labels. For the larger labels that are more easily distinguishable from the surrounding structures (e.g., 

CSF, cerebral/cerebellar white and gray matter), NLS and the non-local voting approaches are statistically 

indistinguishable. However, for the smaller, more complex deep-brain structures (e.g., hippocampus, 

thalamus, and putamen) NLS provides consistent and significant improvement. The qualitative results 

(Figure IV.10B) support the quantitative improvement. Here, a representative example from the two 

approaches is visually presented and NLS is qualitatively superior to the non-local voting approach. 

4. Discussion 

Non-Local STAPLE represents the first statistical fusion algorithm that seamlessly incorporates 

intensity into the estimation process and creates a cohesive theoretical model specifically targeting 

registered atlas observation behavior. Additionally, NLS largely overcomes several of the current 

obstacles that plague multi-atlas segmentation including the need for high-quality non-rigid registration 

and large numbers of atlases. These goals are accomplished through the reformulation of the STAPLE 

algorithm from a non-local means perspective and the integration of the concept of non-local 

correspondence into the estimation process. Intriguingly, despite this reformulation, the interpretation of 

the NLS rater model remains straightforward. In words, using a model of non-local correspondence, NLS 

provides a weighted sum over the non-local search neighborhood to determine what labels would have 

been observed given perfect correspondence between the target and the atlases. Herein, we demonstrated 

superior performance over state-of-the-art fusion algorithms on two empirical datasets.  For thyroid 

segmentation (Figure IV.3), significant improvement was shown in terms of the DSC, Hausdorff distance, 

and mean surface distance. For whole-brain segmentation, significant improvement was demonstrated in 
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terms of overall accuracy (Figure IV.4), per-label accuracy (Figures IV.5 and 6) and qualitative 

assessment (Figure IV.7). 

The sensitivity of the NLS approach was demonstrated with respect to the various model and 

multi-atlas parameters. In terms of the multi-atlas parameters, NLS is significantly less dependent upon 

the number of atlases (Figure IV.4) and the quality of the registration (Figures IV.4-7). In terms of the 

NLS model parameters, the size of the patch neighborhood seems to be particularly dependent upon the 

quality of registration. For both the thyroid (Figure IV.3) and the pairwise affine whole-brain results 

(Figure IV.6), where the registration is relatively poor compared to the non-rigid whole-brain registration, 

patch neighborhoods greater than a single voxel provided significant improvement over smaller patch 

neighborhoods. Additionally, NLS is fairly insensitive to the two standard deviation parameters in the 

non-local correspondence model, which further demonstrates the stability of the approach (Figure IV.8). 

Lastly, and importantly, despite using only 5 atlases, NLS consistently converged to an estimate that is 

very close to the global optimum (Figure IV.9). While not a definitive proof, this is a strong indication of 

the optimality of the NLS model of multi-atlas observation behavior. 

While the primary focus of this paper is to investigate the theoretical advancements provided by 

NLS when compared to the state-of-the-art fusion algorithms, we also demonstrate significant 

improvement over a recently proposed non-local voting-based approach (Figure IV.10). The results of 

this comparison highlight the benefits of the proposed framework.  First, the observed performance 

increase by NLS is a strong indication that the proposed model of multi-atlas observation error accurately 

captures empirically observed atlas performance. Second, it indicates a need for the inclusion of a 

cohesive rater model into the estimation framework so that informed judgment can be made about the 

applicability of a given atlas to the label estimates, particularly when estimating the complex relationships 

between easily confused structures. Moreover, while NLS and non-local voting-based approaches 

similarly include non-local correspondence models, there are stark contrasts in the way in which these 

techniques estimate the underlying segmentation. In NLS, the non-local correspondence model is used to 

learn which label an atlas would have observed given perfect correspondence. As a result, all atlases have 
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an equal opportunity to contribute at all considered voxels, and the quality of an atlas observation is 

captured by the rater performance parameters. To contrast, in non-local voting, atlases can be completely 

de-weighted from the estimation process if their intensity characteristics are too different from the target 

intensity characteristics. As a result, non-local voting-based procedures are susceptible to being biased 

towards particular atlases and labels as they are more dependent upon accurate intensity normalization 

and highly representative atlas intensity profiles. 

Despite the promise of the NLS fusion model, several questions still persist in order to understand 

the optimality of the algorithm. For example, the effect of using an alternative similarity metric (e.g., 

normalized correlation coefficient, mutual information) to the assumed Gaussian difference model 

presented here (Eq. 1) needs to be investigated. Alternative similarity measures may dramatically lessen 

the potential impact of noise and the need for accurate intensity normalization between the target and the 

atlases. Additionally, the procedure for determining the optimal parameter values for a given problem 

remains primarily ad hoc. Statistically driven maximum likelihood and maximum a posteriori models to 

estimate the optimal parameter values through (1) the use of the training data, or (2) direct integration into 

the estimation model, would provide valuable advancements for the applicability of NLS to new problem 

spaces. 

Additionally, other than Spatial STAPLE, notably absent from the list of considered baseline 

algorithms are some of the more recent advancements to the STAPLE algorithm. There are two primary 

reasons for not directly comparing to these extensions. First, it is straightforward to illustrate that NLS is 

a direct extension of the original STAPLE algorithm. NLS can be thought of as a family of algorithms 

governed by the non-local correspondence model. From this perspective, the original STAPLE algorithm 

can be seen as simply a special case of the proposed NLS framework. To illustrate, consider a non-local 

correspondence model where         if and only if      and, otherwise,         . In this case, the E- 

and M-steps (Eq. 7 and Eq. 11, respectively) simplify to the original STAPLE algorithm. Second, we 

propose that NLS is not mutually exclusive to these proposed advancements. For example, (1) 

incorporations of spatially varying performance level estimates [49, 52, 54, 67], (2) capturing task 
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difficulty through the augmentation of the E-step with “consensus levels” [50], (3) locally ignoring atlas 

voxels based upon a priori intensity characteristics [53, 67], and (4) models for stabilizing the 

performance level parameters [11, 55] could all be seamlessly integrated into the NLS framework.  In 

particular, the recent advancements that allow for local spatially-varying performance level parameters 

within the STAPLE framework (e.g., Spatial STAPLE and Local STAPLE MAP) represent fascinating 

potential improvements to the NLS framework. Despite the fact that NLS uses local intensity information 

in order to reformulate the rater performance model, it remains an inherently global approach as, like the 

original STAPLE algorithm, the performance level parameters describe global atlas performance. A 

reformulation of this type of approach to allow for both local intensity characteristics and local 

performance level parameters could potentially provide significant benefit in terms of overall accuracy 

and robustness. Continued investigation into the integration of the proposed STAPLE advancements 

represents fascinating avenues of continued research into rater performance model optimality. 
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  CHAPTER V

FORMULATING HIERARCHICAL PERFORMANCE 

1. Overview 

Label fusion algorithms typically treat all of the considered labels equally. As a result, the 

complex anatomical relationships that are often exhibited in multi-label segmentation problems are 

neglected. To illustrate, consider a typical whole-brain segmentation problem in which there are often 

upwards of 100 unique labels that are estimated. Within those structures there are known anatomical and 

hierarchical relationships which could be leveraged – e.g., one such relationship might be medial frontal 

cortex → frontal cortex → cerebral cortex → cerebrum → brain (where “→” could be interpreted as “is 

part of”). While generalized hierarchical segmentation frameworks have been around for almost two 

decades (e.g., [150, 151]) and recently considered for an application-specific voting fusion approach [75], 

a generalized hierarchical fusion framework has not been considered in the statistical fusion context. 

We propose a generalized statistical fusion framework using hierarchical models of rater 

performance. Building on the seminal STAPLE algorithm, we reformulate the rater performance model to 

utilize hierarchical relationships through a multi-tier performance model (Figure V.1). The proposed 

model is built on the simple concept that the performance of a rater at the higher levels of the hierarchical 

model (e.g., brain vs. non-brain or cerebrum vs. cerebellum) is indicative of the rater’s performance at the 

lower levels of the hierarchy (i.e., the individual labels-of-interest). Thus, the performance at the higher 

levels of the hierarchy should propagate to lower levels of the hierarchy in a theoretically and 

probabilistically consistent manner.  
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This chapter is organized in the following manner. First, the theory for the generalized 

hierarchical statistical fusion framework is derived and the pertinent details for extension to state-of-the-

art statistical fusion are provided. Second, we demonstrate superior performance on both simulated and 

empirical multi-atlas segmentation data – herein, whole-brain and orbital data. Finally, we conclude with 

a brief discussion on the optimality of the approach and the potential for improvement. The research 

presented in this manuscript is an extension of a previously published conference paper [79]. Herein, we 

provide valuable additions to the theoretical derivations and apply the proposed framework to additional 

simulated and empirical data. 

2. Theory  

2.1. Problem Definition 

Let        be the latent representation of the true target segmentation, where          

    is the set of possible labels that can be assigned to a given voxel. Consider a collection of   raters (or 

registered atlases) with associated label decisions,       . The goal of any statistical fusion algorithm 

 

Figure V.1. Hierarchical representation of rater performance. Volumetric renderings of the 

brain anatomy at the various levels are shown. At each level, the rater performance is 

quantified using a representative confusion matrix. Each level is then unified through a 

complete hierarchical performance model. 
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is to estimate the latent segmentation,  , using the observed labels,  , and the provided generative model 

of rater performance. 

2.2. Hierarchical Performance Model 

Consider a pre-defined hierarchical model with   levels. At each level of the hierarchy, let 

                 be a mapping vector that maps a label in the original collection of labels,    , 

to the corresponding label at the     level of the hierarchy,       , where                is the 

collection labels at the     level of the hierarchy. Additionally, let the performance of the raters at 

hierarchical level   be parameterized by            
 (i.e.,       confusion matrix for each rater). 

Specifically,    
   

   

  is the probability that rater   observes label    given that the true label is   at the 

    level of the hierarchy. Additionally, let        be a collection of exponential normalization values 

that ensure that the generative model is properly normalized. Thus, the generative model is described by 

 (      |                    ) (5.1)  

which can be directly interpreted as the probability that rater   observes label    given the true label, 

hierarchical model, and the corresponding model parameters. To directly estimate this distribution we 

propose a formulation in which the complete model of hierarchical performance (Eq. 1) is unified through 

a constrained geometric mean across the multi-tier estimate of rater performance.  

 (      |                  )  (∏  (        |        
 )

   

   

)

   

 (∏    
   

   

 

   

   

)

   
 (5.2) 

where,     is an exponent that maintains the following constraint:  

∑(∏   
   

   

 

 

)

   

  

   (5.3) 

In other words,     ensures that the model in Eq. 1 is a valid discrete probability mass function. Note, 

given the constraints on each individual    (i.e., a valid confusion matrix) a unique value for     is 
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guaranteed to exist and can easily be found using a standard searching algorithm (e.g., binary search, 

gradient descent). Given the model in Eq. 2 and constraint in Eq. 3, it is now possible to utilize the 

provided hierarchical model within the statistical fusion EM framework. See Figure V.1 for a graphical 

representation of the newly proposed generative model of hierarchical performance. 

2.3. E-Step: Estimation of the Voxelwise Label Probabilities 

Let       , where    
   

 represents the probability that the true label associated with voxel   

is label   at iteration   of the algorithm given the provided information and model parameters 

   
   

  (    |                       )  (5.4) 

Using a Bayesian expansion and the assumed conditional independence between the registered 

atlas observations, Eq. 4 can be re-written as 

   
   

 
       ∏  (      |                          ) 

∑        ∏  (      |                          )  

 (5.5) 

where         is a voxelwise a priori distribution of the underlying segmentation. Note that the 

denominator of Eq. 5 is simply the solution for the partition function that enables   to be a valid 

probability mass function (i.e., ∑       ). Using the simplified generative model in Eq. 2, the final 

form for the E-step of the EM algorithm can be written as 
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 (5.6) 

2.4. M-Step: Estimation of the Hierarchical Performance Level Parameters 

The estimate of the performance level parameters (M-step) is obtained by finding the parameters 

that maximize the expected value of the conditional log likelihood function (i.e., using the result in Eq. 6). 

Unlike the traditional STAPLE approach, however, the parameters for each level of the hierarchy are 

maximized independently. 
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Noting the constraint that each row of the rater performance level parameters must sum to unity to be a 

valid probability mass function (i.e., ∑    
   

   

 
    ), we can maximize the performance level 

parameters at each level of the hierarchical model by differentiating with respect to each element and 

using a Lagrange Multiplier (   to formulate the constrained optimization problem. Following this 

procedure, we obtain 
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where               is the collection of all labels that map to the true label of interest,    , and 

       
      is the collection of all voxels in which the observed label,    , maps to the observed label 

of interest,     . At this point, it is important to note: (1) the performance model formulation in Eq. 2 

allows for each level of the hierarchy to be maximized independently when maximizing the log-likelihood 

function, and (2) the result in Eq. 8 uses    
   

 which can then be updated,    
   

     
     

 following the 

constraint: 
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2.5. Extension to state-of-the-art Statistical Fusion Approaches 

Recently, there have been several advancements to the statistical fusion framework, for instance 

(1) characterizing spatially varying performance – Spatial STAPLE [52], (2) incorporation of non-local 

correspondence models – Non-Local STAPLE (NLS) [78], and (3) a combination of the two – Non-Local 

Spatial STAPLE (NLSS). In the interest of brevity, we only fully derive the hierarchical version of 

STAPLE in this manuscript. However, we will briefly describe the extension to each of the above 

advancements to the statistical fusion framework. Note, while this is certainly not an exhaustive collection 

of advancements to the statistical fusion framework, the point is demonstrating the amenability of the 

proposed hierarchical reformulation to the new  advancements to the STAPLE framework. 

2.5.1. Hierarchical Spatial STAPLE 

Background: Spatial STAPLE [49, 52] is an extension to the original STAPLE formulation to allow for 

smooth voxelwise estimates of rater performance. As a result, the confusion matrix describing rater 

performance,   , becomes a function of the location in the image,    , defined over a pre-defined window 

surrounding the voxel of interest,     Where    is the set of voxels that are part of the window (or 

“pooling region”) for the current voxel of interest,  .  
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M-Step: 
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where     is a regularizing scale factor that biases the local performance estimate to be closer to the global 

estimate of rater performance (Eq. 8). We formulate     to be equal to relative amount that the current 

label of interest,  , is estimated to be the correct answer over the pooling region,   : 

         ∑    
   

    

 (5.13)  

where      is the number of elements in the pooling region centered at voxel  . Using this formulation,     

allows consistent estimates of rater performance despite the fact that only certain labels may be estimated 

in a given local region of the image – see [52] for further details. 

Note, while Spatial STAPLE uses a non-parametric biasing function to prevent instabilities in the 

local performance estimates, alternative techniques could be used. For instance, one could use a 

maximum a posteriori (MAP) approach and assume a prior Beta distribution on the performance 

parameters – e.g., [54, 55]. It is straightforward to see that the hierarchical formulation using a MAP 

formulation would remain valid. Regardless, the optimal framework for characterizing spatially varying 

performance remains an open problem and outside the scope of this manuscript. 

2.5.2. Hierarchical Non-Local STAPLE (NLS) 

Background: NLS [51, 78] is another alternative to the original STAPLE algorithm in which the rater 

performance model is reformulated from a non-local means perspective. Briefly, using the intensity image 

provided for the target image,     , and the corresponding registered intensity images from the atlases, 

      , the goal is the estimate the likelihood that      is the true corresponding voxel to the target 

image   , where    is an element in the search neighborhood defined for voxel   –     . Mathematically, 

we estimate this likelihood as  (    |    

 (    |  )        
 

  
 (       )    ( 

    
 

   
 ) (5.14)  
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where  (       ) is a generic similarity model,    ( 
 

   
 

   
 ) is the spatial compatibility model, and    is a 

partition function that ensures that ∑               . For the similarity model, there are many different 

techniques that could be used (e.g., Gaussian difference model [57, 59, 78], locally normalized correlation 

coefficient [118, 132], mutual information [48]). In the spatial compatibility model,      is the Euclidean 

distance between voxels   and    in image space and    is the corresponding standard deviation. For 

additional information on NLS see [78]. 
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M-Step: 
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where    ̅̅̅̅  (∑                  
   

     
), and the update of             is the same as Eq. 9. 

2.5.3. Hierarchical Non-Local Spatial STAPLE (NLSS) 

Background: NLSS is a unified statistical fusion algorithm that combines the formulations of Spatial 

STAPLE and NLS into a single unified framework that (1) allows for smooth spatially varying estimates 

of rater performance, and (2) reformulates the local performance estimates from a non-local means 

perspective. 
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M-Step: 
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where all of the mathematical formulations are the same as described above for Spatial STAPLE and 

NLS. 

2.6. Initialization, Detection of Convergence and Implementation 

Given an a priori hierarchical model, there are no additional parameters in the proposed approach 

when compared to the non-hierarchical implementations of the statistical fusion framework. As a result, 

the hierarchical statistical fusion algorithms can be initialized in exactly the same was their traditional 

counterparts. Specifically, for all of the statistical fusion approaches, the performance parameters were 

initialized by setting the on-diagonal elements to      and randomly setting the off-diagonal elements to 

fulfill the required constraints. The voxelwise label prior,        , was initialized using the label 

probabilities from a “weak” log-odds majority vote (i.e., decay coefficient set to 0.5 voxels) [59]. For 

Spatial STAPLE, NLSS, and their hierarchical implementations, the pooling region,   , was set with a 

half window radius of     along all of the principal directions. For NLS, NLSS, and their hierarchical 

formulations, a Gaussian difference metric (using an intensity standard deviation of      was used with a 

half-window radius of     along all of the principal directions for both the patch neighborhood and 

search neighborhood and the spatial standard deviation,   , was set to        

Detection of convergence in the hierarchical statistical fusion framework is slightly different than 

the traditional approach as we utilize all levels of the hierarchy. Thus, convergence is detected when the 

normalized trace of the raters’ performance parameters at each level of the hierarchy falls below some 

arbitrary threshold (herein,       ) between consecutive iterations of the EM algorithm.  
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Finally, the implementation of all of the considered statistical fusion algorithms presented in this 

paper are publicly available as part of the Java Image Science Toolkit (JIST) -- [152], 

http://www.nitrc.org/projects/jist. 

3. Methods and Results 

For all of the presented simulations and experiments, the segmentation accuracy is measured 

using the Dice similarity coefficient (DSC) [140]. Additionally, any claims of statistical significance refer 

to the results of a Wilcoxon signed-rank test [153] with a p-value threshold of     . 

3.1. Motivating Simulation 

Before assessing the empirical performance, we present a motivating simulation to demonstrate 

the manner in which hierarchical models can be integrated into the statistical fusion framework (Figure 

V.2). 

3.1.1. Experimental Design 

A single 2D slice model (        voxels, with 7 unique labels) was constructed to loosely 

approximate the types of relationships that are exhibited in the brain. Given the provided truth model, a 

collection of 15 labeled observations were constructed by randomly applying boundary errors of varying 

strength (see Figure V.2A for the best/worst observations). Additional details on the simulation model can 

be found in [52, 78]. As a baseline, a representative STAPLE result is presented. For incorporating 

hierarchical models into the statistical fusion framework, a single reference hierarchical structure was 

established (Figure V.2B). Given, this structure, all unique trees (630 in total) were constructed via label 

permutation, and the resulting segmentation was estimated using hierarchical STAPLE. 
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3.1.2. Experimental Results 

The quantitative results, measured by the mean DSC across 10 Monte Carlo iterations, for each of 

the considered hierarchical representations can be seen in Figure V.2C. Here, it is evident that the 

hierarchical label representation plays a substantial role in determining overall segmentation accuracy. 

For reference, the accuracy of the traditional STAPLE framework and the accuracy using a “logical” 

hierarchical representation (Figure 2D) are highlighted. The qualitative results (Figure V.2D-2F) support 

the quantitative assessment of accuracy. Specifically, the accuracy of the “logical” (Figure V.2D), “best” 

(Figure V.2E), and “worst” (Figure V.2F) hierarchical label representations are presented. While not the 

 

Figure V.2.. Motivating simulation data and results. A simple 2D simulated dataset was 

constructed with observations using a boundary error model (A). Given a pre-defined 

hierarchical structure (B), the accuracy of all possible unique hierarchies via label 

permutation was quantified (C). Representative estimates using the “logical” (D), “best” 

(E), and “worst” (F) hierarchies are also presented. 



117 

 

absolute optimal representation in terms of overall mean DSC, the “logical” hierarchical representation: 

(1) results in a substantial qualitative improvement over the traditional STAPLE estimate and (2) results 

in a quantitatively superior segmentation estimate than more than 99.5% of the considered hierarchical 

representations. The “best” hierarchical representation is extremely similar to and results in a very minor 

improvement over the “logical” representation. Meanwhile, the “worst” representation completely ignores 

the underlying relationships exhibited in the truth model, and, not surprisingly, results in a very poor 

estimate of the final segmentation. 

3.2. Whole Brain Multi-Atlas Segmentation 

3.2.1. Data 

For the empirical whole-brain experiments, a collection of 45 MPRAGE images from unique 

subjects are considered as part of the Open Access Series of Imaging Studies (OASIS, http://www.oasis-

brains.org) [145]  with subjects ranging in age from 18 to 90. All images had a resolution of     

 

Figure V.3. Mean accuracy of the various benchmarks and their corresponding hierarchical 

implementations for both the affine and the non-rigid registration frameworks. The 

accuracy of a majority vote (MV) and locally-weighted vote (LWV) are presented to 

provide a reference baseline. The hierarchical implementations for STAPLE, Spatial 

STAPLE (SS), Non-Local STAPLE (NLS), and Non-Local Spatial STAPLE (NLSS) provide 

consistent and statistically significant improvement over their non-hierarchical 

counterparts. 
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    . All images were labeled using the BrainCOLOR protocol (http://www.braincolor.org/) [154] and 

provided by Neuromorphometrics, Inc. (Somerville, MA, www.neuromorphometrics.com). Each labeled 

image contained exactly 133 unique labels (including background). For the purposes of evaluation, 15 of 

these images were randomly selected as training data, and the remaining 30 were selected as testing data. 

3.2.2. Experimental Design 

We consider two separate registration frameworks. First we consider an affine-only pairwise 

registration framework [101] (using “reg_aladin” as part of the “NiftyReg” package – 

http://sourceforge.net/projects/niftyreg/). Additionally, we consider a pairwise non-rigid registration 

framework in which the provided affine registrations are augmented with a non-rigid registration [155] 

(using the Advanced Normalization Tools (ANTs) package – http://stnava.github.io/ANTs/). For both 

registration frameworks, all 15 training atlases were independently registered to all 30 of the testing 

atlases – resulting in 450 registrations. 

To evaluate fusion performance, we consider several label fusion algorithms. First, in order to 

provide a benchmark of algorithmic performance, we consider a majority vote [26] and a locally weighted 

vote (as described in [59]). Additionally, we consider STAPLE [8], Spatial STAPLE [52], NLS [78], and 

NLSS as well as the hierarchical versions of each, referred to as Hierarchical STAPLE, Hierarchical 

Spatial STAPLE, Hierarchical NLS, and Hierarchical NLSS, respectively. For the hierarchical algorithms, 

we constructed a 12-level hierarchical model (manually constructed by an experienced neuroimaging 

analyst). 

3.2.3. Experimental Results 

To summarize the improvements exhibited through the use hierarchical performance estimation, 

the results of the whole-brain multi-atlas segmentation experiment are presented in Figures V.3-V.7. First, 

to quantitatively summarize the overall improvement for both registration frameworks, the mean DSC 

(across the 132 non-background labels) is presented in Figure V.3. It is evident that regardless of the 

registration framework or the specific statistical fusion framework used, the hierarchical reformulation of 
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the performance parameters provides significant improvement in overall accuracy. For the affine 

registration framework, the hierarchical implementations provided a mean improvement across the testing 

data of       ,       ,       , and        for STAPLE, Spatial STAPLE, NLS, and NLSS, 

respectively. All improvements were statistically significant. For the non-rigid registration framework, the 

hierarchical implementations provided a mean improvement across the testing data of       ,       , 

      , and        for STAPLE, Spatial STAPLE, NLS, and NLSS, respectively. Again, all 

improvements were statistically significant. Given the overall improvement in registration quality, the 

drop in improvement exhibited by the hierarchical implementations for the non-rigid registration 

framework is expected. Note, for both registration frameworks, the relatively poor performance by 

STAPLE and Spatial STAPLE are not surprising considering the fact that they do not utilize the atlas-

target intensity differences when estimating the final segmentation. Additionally, it is important to note 

 

Figure V.4. Per-label accuracy for non-cortical labels for hierarchical implementations of 

NLS and NLSS using the affine registration framework. The hierarchical reformulations 

provide substantial and significant improvement for many of the considered labels. 
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that STAPLE and Hierarchical STAPLE are both out performed by majority vote for the non-rigid 

registration framework. This highlights the limitations of using a single global performance metric when 

estimating the final segmentation. 

In addition to the overall results, the per-label accuracy for the non-cortical labels using the affine 

and non-rigid registration frameworks is presented in Figures V.4 and V.5, respectively. Here, for both 

registration frameworks, only the results using the NLS and NLSS and their hierarchical implementations 

are presented to avoid obfuscating the improvement provided by their corresponding hierarchical 

implementations. For the affine registration (Figure V.4), Hierarchical NLS resulted in statistically 

significant improvement over NLS for 22 of the considered 34 non-cortical labels. Similarly, Hierarchical 

NLSS resulted in statistically significant improvement for 26 of the 34 non-cortical labels. NLS and 

NLSS were not significantly superior to their corresponding hierarchical implementations for any of the 

 

Figure V.5. Per-label accuracy for non-cortical labels for hierarchical implementations of 

NLS and NLSS using the non-rigid registration framework. As with the affine-only 

registration framework (Figure V.4), the hierarchical implementations provide substantial 

and significant improvement for many of the considered labels. 
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Figure V.6. Mean per-label accuracy improvement for cortical labels using the hierarchical 

implementations of NLS and NLSS for the both of the considered registration frameworks. 

Particularly for the affine registration framework, the hierarchical reformulations provide 

substantial improvement in mean DSC accuracy for many of the cortical labels. 

considered labels. For the non-rigid registration (Figure V.5), Hierarchical NLS resulted in statistically 

significant improvement over NLS for 12 of the 34 considered labels, while Hierarchical NLSS resulted 

in statistically significant improvement for 19 of the 34 non-cortical labels. As with the affine registration, 

NLS and NLSS were not significantly superior to their corresponding hierarchical implementations for 

any of the considered labels.  

The quantitative improvement (in terms of the DSC) in the cerebral cortex is summarized in 

Figure V.6. As with before, only the results using the NLS and NLSS and their hierarchical 

implementations are presented. Here, it is evident that the hierarchical implementation of each algorithm 

provides substantial improvement in cortical segmentation accuracy, particularly for the affine-only 
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registration framework. To summarize, for the affine registration, Hierarchical NLS resulted in 

statistically significant improvement over NLS for 57 of the 98 considered cortical labels and was 

statistically outperformed by NLS on 2 of the 98 cortical labels. Similarly, Hierarchical NLSS resulted in 

statistically significant improvement for 52 of the 98 cortical labels; however, it was not statistically 

outperformed by NLSS for any of the considered cortical labels. For the non-rigid registration, 

Hierarchical NLS resulted in statistically significant improvement over NLS for 28 of the considered 98 

cortical labels and was statistically outperformed by NLS on 3 of the 98 cortical labels; while Hierarchical 

NLSS resulted in statistically significant improvement for 22 of the 98 cortical labels and, again, was not 

statistically outperformed by NLSS for any of the cortical labels.  

The qualitative results (Figure V.7) support the quantitative improvement. Using the affine 

registration framework, all of the considered statistical fusion algorithms exhibit substantial visual 

improvement for many of the considered labels. In particular, there appears to be marked improvement in 

 

Figure V.7. Qualitative improvement exhibited by several state-of-the-art statistical fusion 

algorithms with the reformulated hierarchical performance model for the affine 

registration framework. For each of the considered statistical fusion algorithms we see 

substantial visual improvement for many of the considered labels. In particular, there 

appears to be marked improvement in the quality of the lateral ventricle labels and many of 

the cortical labels. The ellipses highlight regions exhibiting particular qualitative 

improvement. 
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the quality of the lateral ventricle labels and many of the cortical labels. 

3.3. CT Orbit Multi-Atlas Segmentation 

3.3.1. Data 

A collection of 31 clinically acquired computed tomography (CT) images of the orbital region 

were retrieved in anonymous form under IRB supervision. The voxel size of the various images varied 

wildly, with in-plane resolution of approximately 0.5 mm and slice thickness ranging from 0.4 mm to 5 

mm for the various target images. The “ground truth” labels were obtained from an experienced rater and 

were verified by multiple additional raters. In total, there were 5 considered labels on each dataset: 

background, left and right optic nerves, and left and right globe/orbital muscles. 

3.3.2. Experimental Design 

Using a leave-one-out cross-validation (LOOCV) we performed a multi-tier multi-atlas 

segmentation framework – see [104] for additional details.  Briefly, the images were affinely registered 

[101] and then cropped to form a reasonable region of interest surrounding the orbital area. After 

cropping, the images were non-rigidly registered [155] and the resulting label conflicts were resolved 

using label fusion.  

Unlike the whole-brain segmentation experiments, the goal of this experiment was two-fold. 

First, we want to demonstrate the impact of reasonable and logical hierarchical representations of the 

orbital anatomy on the hierarchical statistical fusion accuracy. To accomplish this, we constructed three 

logical hierarchical representations (see Figure V.8A). Each of these hierarchical representations could be 

considered a reasonable representation of the orbital anatomy (e.g., left optic nerve → optic nerves → 

non-background [“Hierarchy 2” in Figure V.8A] or left optic nerve → left orbit → non-background 

[“Hierarchy 3” in Figure V.8A]). 

Second, we want to assess the accuracy of the statistical fusion model compared to the “ideal” 

segmentation estimate (i.e., the segmentation estimate obtained using the “ideal” performance parameters 
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that are directly calculated using the desired manual segmentation). Obviously, in a typical empirical 

study, these ideal performance parameters are unknown, and we rely on EM to optimally estimate these 

parameters. Regardless, given the desired segmentation, obtaining the “ideal” performance parameters is 

straightforward. For STAPLE, the “ideal” performance parameters are computed as:  
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∑         
 (5.20)  

where        is the Kronecker delta function which is equal to 1 if      and 0 otherwise. Likewise, for 

Hierarchical STAPLE the computation of the “ideal” performance parameters is:  
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where the corresponding exponential normalization factors,    
       

, are then chosen based upon the 

following constraint 
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3.3.3. Experimental Results 

The results from the LOOCV experiment for multi-atlas segmentation of the orbital region are 

summarized in Figure V.8. The considered logical hierarchical label representations for this segmentation 

task are presented in Figure V.8A. The quantitative comparison of STAPLE and the corresponding 

Hierarchical STAPLE estimates are presented in Figure V.8B. Here, for each of the considered 

hierarchical representations, Hierarchical STAPLE estimates result in statistically significant 

improvement over the traditional STAPLE framework. Additionally, the “ideal” Hierarchical STAPLE 

estimates result in statistically significant improvement over the corresponding “ideal” STAPLE estimate. 

As a result, it can be directly inferred that empirically and theoretically, using a reasonable and logical 

hierarchical representation for Hierarchical STAPLE results in substantial improvement in overall 

accuracy. Interestingly, “Hierarchy 3” which utilizes the relationships between the left and right orbital 
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regions, results in best overall performance when estimated using EM and using the ideal parameters. 

While not definitive, this illustrates the importance of hierarchically grouping labels that are (1) likely to 

be confused with one another, and (2) indicative of one another’s performance. 

 

Figure V.8. Empirical evaluation of Hierarchical STAPLE applied to multi-atlas 

segmentation of orbital anatomy on CT. The considered logical hierarchical representations 

are shown in (A). The quantitative (B) and qualitative (C) comparisons demonstrate that 

Hierarchical STAPLE provides significant improvement using both the EM and “ideal” 

performance parameters. 
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The “ideal” performance parameters represent an upper bound on potential performance achieved 

by the statistical fusion framework. In addition to providing statistically significant improvement in 

overall accuracy over the other considered approaches (Figure V.8B – left), Hierarchical STAPLE using 

“Hierarchy 3” results in segmentation estimates that are closest the “ideal” performance estimate (Figure 

V.8B – right). This strongly implies that utilizing a logical representation of the hierarchical relationships 

exhibited in the data results in an increased likelihood of converging to a local optimum that is closer to 

the ideal global optimum. 

The qualitative results (Figure V.8C) support the quantitative improvement exhibited by 

Hierarchical STAPLE. Here, it is evident that each of the proposed hierarchical label representations 

results in: (1) substantial improvement over traditional STAPLE and (2) segmentation estimates that are 

qualitatively closer to the upper bound provided by the “ideal” segmentation estimate. Again, 

Hierarchical STAPLE using “Hierarchy 3” results in the largest improvement in mean DSC across the 

considered labels with an improvement of 0.0957, while “Hierarchy 1” and “Hierarchy 2” result in 

smaller, yet substantial improvement: 0.0752 and 0.0525, respectively. 

4. Discussion 

Herein, we propose a novel statistical fusion framework using a reformulated hierarchical 

performance model. Given an a priori model of the hierarchical label relationships for a given 

segmentation task, the proposed generative model of rater performance provides a straightforward 

mechanism for quantifying rater performance at each level of the hierarchy. The primary contributions of 

this manuscript are: (1) we have provided a theoretical advancement to the statistical fusion framework 

that enables the simultaneous estimation of multiple (hierarchical) confusion matrices for each rater, (2) 

we have shown that the proposed hierarchical formulation is highly amenable to many of the state-of-the-

art advancements that have been made to the statistical fusion framework, and (3) we have demonstrated 

statistically significant improvement on both simulated and empirical data. 
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Specifically, through a motivating simulation we have demonstrated the substantial impact that 

hierarchical label representations have on segmentation accuracy (Figure V.2). For a 133 label whole-

brain multi-atlas segmentation task, we have shown substantial and significant accuracy improvement in 

terms of overall accuracy (Figure V.3), non-cortical segmentation (Figures V.4 and V.5), and cerebral 

cortex segmentation (Figure V.6). These accuracy improvements are supported by qualitative inspection 

(Figure V.7). Finally, using a multi-atlas segmentation framework for the orbital region on CT, we 

evaluated the accuracy of Hierarchical STAPLE using 3 different logical hierarchical representations of 

the orbital anatomy (Figure V.8). Additionally, using the “ideal” performance parameters as an upper 

bound, the empirical and theoretical benefits of the hierarchical performance estimation framework is 

highlighted. 

Despite the promise of the proposed framework, there are several potential advancements that 

require future exploration. First, all of the presented experiments have relied upon an a priori model of 

the hierarchical relationships within the data. The ability to infer these hierarchical relationships directly 

from a provided training set would dramatically increase the potential applications for this type of 

framework, and provide an underlying foundation for estimating the optimal hierarchical formulation for 

a given application. Second, we have derived this approach from the perspective of hierarchical 

relationships between labels. However, the same (or very similar) estimation framework could potentially 

be used to estimate rater performance using multiple labeling protocols. For example, if one had a 

collection of datasets that were labeled using two separate protocols (either manually or automatically) it 

may be possible to (1) estimate the relationships between the protocols, and (2) simultaneously estimate 

rater performance in terms of both protocols. This type of framework is fascinating and certainly warrants 

further investigation. 

In the end, we have presented a powerful theoretical advancement to the statistical fusion context 

for leveraging the complex inter-structure relationships. While traditional fusion approaches treat all 

labels equally, the proposed rater model more accurately infers the types of errors that raters (or atlases) 

make within a hierarchically consistent formulation.  
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PART 2 

APPLICATIONS 

The second part of this thesis focuses on translating the previously proposed statistical fusion 

advancements to clinically and scientifically relevant applications. Herein, we provide three separate 

applications that build on the theoretical advancements presented in the previous chapters. For the first 

application (Chapter VI), we build a generalized statistical model for anomaly detection (referred to as 

“out-of-atlas likelihood estimation”) that uses fusion-based segmentations to estimate the likelihood of the 

observed data. For the second application (Chapter VII), we build a groupwise multi-atlas segmentation 

framework to model the shape/appearance of the highly variable internal structure of the spinal cord. 

Lastly, we derive a machine learning based framework (referred to as “Geodesic Learner Fusion” – 

Chapter VIII) to remove the need for computationally expensive registrations for whole-brain multi-atlas 

segmentation. These applications highlight the breadth of applications that are enabled by the theoretical 

foundation governing statistical label fusion and multi-atlas segmentation. 
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  CHAPTER VI

OUT-OF-ATLAS LIKELIHOOD ESTIMATION 

1. Introduction 

The ability to detect abnormalities and anomalies in medical images plays a critical role in the 

detection of diseases and pathologies as well as maintaining image quality assurance. A common way to 

detect abnormalities or anomalies is through the use of a normal template (or atlas) and finding deviations 

from that template in order to determine the likelihood of an abnormality [156-161]. However, the ability 

to discover these deviations relies upon the definition of meaningful structure within a target image so 

that inference can be made about the underlying anatomy. Thus, segmentation plays a critical role in the 

discovery and quantification of abnormalities and anomalies in medical images. 

In multi-atlas segmentation [9, 26], multiple atlases are separately registered to the target and the 

voxelwise label conflicts between the registered atlases are resolved using label fusion. In general, there 

are two primary fields of study in label fusion. (1) voting-based strategies which include a majority voting 

[26, 62-64] and weighted voting strategies [48, 56, 57, 59-61, 72] and (2) statistical fusion strategies 

based upon Simultaneous Truth And Performance Level Estimation (STAPLE) [8] and the proposed 

extensions [9, 11, 49-52, 54, 55, 67]. Multi-atlas segmentation has been shown to be highly robust across 

an extraordinary range of potential applications (e.g., segmentation of the thyroid [51], hippocampus [60], 

neonatal brain anatomy [162], and the optic nerve [163]). 

Nevertheless, there are two primary concerns that limit the generalizability of multi-atlas 

segmentation. Firstly, we are limited to structures that are represented by the atlases — multi-atlas 

segmentation cannot be used segment structures that are not present on the available atlases. Secondly, we 

are limited to structures that are anatomically consistent across potential target subjects. For example, 
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regardless of whether there are atlases available, a direct multi-atlas segmentation procedure cannot be 

used to segment malignant gliomas in the human brain as tumor characteristics (e.g., location, size, shape) 

are widely varying across a given target population. As a result, the potential scope of multi-atlas 

segmentation applications is limited, particularly in the case of anatomical abnormalities (e.g., the 

detection of highly-varying pathologies) and quality control (e.g., the detection of imaging and quality-

based artifacts). We enumerate this problem as the fact that multi-atlas segmentation is limited to “in-

 

Figure VI.1. Flowchart demonstrating the out-of-atlas likelihood estimation procedure. 

First the provided atlas information is used to both (1) perform a multi-atlas segmentation 

estimate of the target image, and (2) estimate the per-label density functions. Next, these 

per-label density functions and the target information are used to estimate the observed and 

expected density functions. These two density functions are then used to construct a 

voxelwise estimate of the out-of-atlas likelihood. Lastly, the background and edge effects are 

diminished through a post-processing smoothing step. 
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atlas” applications (e.g., applications where the atlases are anatomically and structurally indicative of the 

target image).  

Herein, we propose a technique to estimate the out-of-atlas (OOA) likelihood for every voxel in 

the target image (Figure VI.1). The OOA approach provides an intuitive and fully general 

abnormality/outlier detection framework that (1) overcomes several of the current limitations with multi-

atlas segmentation and (2) has the potential to dramatically increase the scope of potential multi-atlas-

based applications.  

This chapter is organized as follows. We begin by deriving the theoretical basis and the model 

parameters for the proposed OOA likelihood estimation framework. Next, using a collection of manually 

labeled whole-brain datasets, we demonstrate the efficacy of the proposed framework on two distinct 

applications. First, we demonstrate the ability to detect malignant gliomas in the human brain -- an 

aggressive class of central nervous system neoplasms. For this application, we both quantitatively and 

qualitatively assess the accuracy of the proposed algorithm and demonstrate its sensitivity to the various 

model parameters and initializations. Second, we demonstrate how this OOA likelihood estimation 

framework can be used within a quality control context for Diffusion Tensor Imaging (DTI) datasets. 

Using a clinically acquired dataset, we qualitatively demonstrate that we can detect large-scale quality 

control issues (e.g., aliasing, shading artifacts) within the proposed estimation framework.  

2. Theory 

In the following presentation of theory we derive the theoretical basis for the OOA likelihood 

estimation framework and provide a brief overview of the model parameters and initialization procedure. 

2.1. Problem Definition 

Consider an image of N voxels with unknown target labels  ,          (i.e. 0: “in-atlas” and 1: 

“out-of-atlas”). R registered atlases (or “raters” in common fusion terminology) each provide an observed 

delineation of all N voxels exactly once. The set of labels on these atlases,  , represents the set of possible 
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values that an atlas can assign to all N voxels. Let   be an N × R matrix that indicates the label decisions 

of the R registered at all N voxels where each element                . Let A be another N × R 

matrix that indicates the associated post-registration atlas intensities for all R atlases and N voxels where 

     . Lastly, let        be the N-vector representing the target intensities, and let        be the 

N-vector representing the multi-atlas segmentation estimate of the target image. 

2.2. Construction of the Expected Intensity Distributions 

We define the expected intensity distribution as the approximate semi-local intensity distribution 

that would be observed given the provided atlas label-intensity relationships and the multi-atlas 

segmentation estimate at each voxel on the target image. This expected intensity distribution is 

approximated by summing the observed label-intensity relationships from the atlases across the multi-

atlas segmentation estimate of the target within the semi-local neighborhood around the current voxel of 

interest. Thus, the first step is to construct the label-intensity relationships that can be inferred from the 

provided atlas information. In other words, we need to construct           which represents the 

probability of all possible intensities given that the estimated label is  . We infer this distribution fully 

from the atlas intensities and labels using a non-parametric Kernel Density Estimation (KDE) approach 

          
∑ ∑  (

     

 
)        

 ∑ ∑           
 (6.1) 

where   is all possible intensities,   is a standard Gaussian kernel, and   is the bandwidth associated with 

the Gaussian kernel, and   is the Kronecker delta function. Given Eq. 1, which is an estimation of the 

complex label-intensity relationships inferred from the atlases, the expected intensity distribution within a 

semi-local neighborhood can then be estimated using the multi-atlas segmentation estimate of the 

underlying target image 
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where    is the semi-local neighborhood surrounding the target voxel   and   
  is the partition function 

that enforces that   
     is a valid probability density function across all potential image intensities. In 

other words,   
  enforces the constraint that  

∫   
    

  

  

      (6.3) 

2.3. Construction of the Observed Intensity Distributions 

We define the observed intensity distribution at a given target voxel as simply the KDE of the 

intensities within a semi-local neighborhood surrounding the current voxel of interest on the target image. 

The observed intensity distribution is approximated using a similar approach to Eq. 1 
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where   ,  , and   are defined in the same way as Eqs. 1 and 2, and      is the cardinality of the set    

(i.e., the number of elements in the semi-local neighborhood). 

2.4. Estimation of the Voxelwise Out-of-Atlas Likelihood 

We define the out-of-atlas likelihood as the voxelwise difference between the expected and the 

observed intensity distributions. There are several potential techniques that could be used to capture the 

difference between these two density functions (e.g., Kullback-Leibler Divergence [164]). Here, we have 

found that the best way to capture the difference between these distributions is by integrating over the 

intensities by which   
     is greater than   

     (i.e., the intensities for which the observed probabilities 

are greater than the expected probabilities). Mathematically, this quantity is defined as: 

           ∫  (  
       

    ) [  
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 (6.5) 

where    represents the OOA likelihood at target voxel  , and      is the indicator function. This 

formulation of the OOA likelihood has several benefits. First, it is guaranteed that the value of          

given that   
     and   

     are properly normalized density functions. Second, this formulation has an 
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easily understood probabilistic interpretation where      indicates an out-of-atlas likelihood of unity, 

and      indicates an out-of-atlas likelihood of zero.  

2.5. Model Parameter Initialization, and Implementation Details 

There are two primary model parameters that need to set in order to use the OOA likelihood 

estimation framework: (1) the neighborhood structure,   , and (2) the bandwidth for the KDE 

formulation. First, for all presented experiments we used an approximately            window 

centered at the target voxel of interest for all voxels within the neighborhood structure. For cases where 

this this window size resulted in fractional number of voxels in a given direction, the number of voxels 

was rounded appropriately. Second, unless otherwise noted, the bandwidth parameter,  , was set to 1.0. 

Note that this parameter is inherently related to the variance of the observed data, and, thus, a function of 

the intensity normalization process. 

Additionally, one extremely important aspect of this algorithm is the way in which the multi-atlas 

segmentation estimate is acquired. For all presented experiments, all atlases were registered to the target 

image using a pairwise registration procedure (i.e., all atlases were independently registered to the target). 

The intensities between the target and the atlas images were normalized in a two-step process. First, both 

the target and the registered atlas images are normalized so that the intensities are distributed as a unit 

Gaussian distribution within the brain region. Second, a second order polynomial is fit to each atlas by 

finding a least squares solution for the polynomial coefficients that map the mean of each label on the 

target (via an initial majority vote) to the corresponding labels on the atlases. Lastly, the registered atlases 

were then fused using Non-Local STAPLE (NLS) [51]. For all presented experiments, NLS was 

initialized with performance parameters equal to      along the diagonal and randomly setting the off-

diagonal elements to fulfill the required constraints. For all presented results, the voxelwise label prior 

was initialized using the probabilities from a “weak” log-odds majority vote (i.e., decay coefficient set to 

   ) [59], the search neighborhood,      , was initialized to an          mm window centered at the 

target voxel of interest, and the patch neighborhood,      , was initialized to a       mm window. 
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The values of the standard deviation parameters,    and   , were set to     and  , respectively. Consensus 

voxels were ignored during the estimation process. Convergence of NLS was detected when the average 

change in the trace of the performance level parameters fell below     . For a full derivation of NLS and 

additional details on NLS initialization, we refer the reader to [51]. 

Lastly, there are a couple of important implementation details that need to be discussed. First, the 

OOA likelihood,   , was only calculated on voxels for which the multi-atlas segmentation estimate was 

non-background. Background voxels were ignored because (1) as both of our empirical experiments are 

for whole-brain analysis, it is assumed that we are only interested in abnormalities that take place within 

the brain region and (2) it dramatically decreases the runtime of the algorithm. Secondly, a post-

processing step that decreased the potential edge effects on the image was performed. Due to the fact that 

we are ignoring background voxels, it is possible that undesired likelihood estimates could be achieved 

along the boundaries between background and non-background voxels. To alleviate this problem, we 

multiplied the final OOA likelihood estimate by an inverse log-odds estimate (decay coefficient set to 1.0 

[59]) of the background label (see Figure VI.1 for a visual representation of this process). 

3. Methods and Results 

We present two starkly different whole-brain empirical experiments in order to assess the efficacy 

of the proposed OOA likelihood estimation framework. For our first experiment, we both quantitatively 

and qualitatively assess the ability of our framework to detect malignant gliomas in the human brain 

based on clinically acquired MRI data. Additionally, we provide insight into the sensitivity of the 

proposed framework with respect to the KDE bandwidth parameter and the accuracy of the multi-atlas 

segmentation estimate. For our second experiment, we provide a qualitative example for how this OOA 

model could be used to provide a quality control framework for acquired DTI images and demonstrate the 

type of imaging artifacts and quality control metrics that could be performed. 
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3.1. Multi-Atlas Data 

The collection of whole-brain atlases used in the following experiments is a collection of 15 T1-

weighted Magnetic Resonance (MR) images of the brain as part of the Open Access Series of Imaging 

Studies (OASIS) [145] dataset. This data was expertly labeled courtesy of Neuromorphometrics, Inc. 

(Somerville, MA) and provided under a non-disclosure agreement. A refined dataset (using the OASIS 

brains and a subtly revised labeling protocol) has recently been made available as part of the MICCAI 

2012 workshop on multi-atlas labeling. This data is available at the following URL: 

https://masi.vuse.vanderbilt.edu/workshop2012/ or directly from Neuromorphometrics. For each atlas, a 

collection of 26 labels (including background) were considered: ranging from large structures (e.g., 

cortical gray matter) to smaller deep brain structures. Note that all of the cortical surface labels were 

combined to form left and right cortical gray matter labels. All images are 1mm isotropic resolution. 

3.2. Detection of Malignant Gliomas 

Thirty pre-operative gadolinium-enhanced T1-weighted brain MRI scans based on varied (but 

standard of care) imaging protocols with malignant gliomas were obtained in anonymous form under 

Institutional Review Board (IRB) approval. On average, the resolution of each of the patient image is  

             . The corresponding “ground truth” labels associated with each of the tumor regions 

were manually drawn using the Medical Image Processing And Visualization software [165].  

For each target image, all pairwise affine registrations between the 15 labeled atlases and the 

target image were performed using FLIRT (FMRIB, Oxford, UK). Note that non-rigid registration was 

not performed due to the highly variable imaging characteristics of the malignant gliomas on the target 

subjects. We assess the quantitative accuracy of the proposed approach by analyzing the positive 

predictive value (PPV), negative predictive value (NPV) and the corresponding Receiver Operating 

Characteristic (ROC) associated with each target image for varying threshold values of the estimated 

OOA likelihood. All quantitative results are presented in reference to the corresponding manual labels. 
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Additionally, we present the sensitivity of the approach to the KDE bandwidth parameter, and various 

multi-atlas label fusion approaches.  

3.3. Glioma Detection Results 

The quantitative results (Figure VI.2) demonstrate the ability of the proposed framework to detect 

large-scale abnormalities in the human brain. The proposed framework can consistently and reliably 

declare voxels to be cancerous in terms of increasing declaration threshold (Figure VI.2A). For a 

declaration threshold above approximately 0.7 the resulting PPV was equal to unity (i.e., all voxels 

declared to be OOA were cancerous voxels). To support these PPV values, the NPV values (Figure 

VI.2B) show that, despite increasing the threshold, the negative predictive value remains over 0.97. The 

per-subject ROC curves (Figure VI.2C) confirm that this performance is consistent across the target 

population with an average area under curve (AUC) value of greater than 0.95. Qualitative results (Figure 

VI.3) support the quantitative accuracy. While the resulting likelihood estimates are far from perfect (e.g., 

“holes” in the likelihood estimates), it is evident that the proposed framework is consistently detecting the 

cancerous regions. The representative example in the fifth column represents the worst-case of the 

considered subjects, and it is shown that while none of the image has an OOA likelihood of greater than 

 

Figure VI.2. Quantitative results for the detection of malignant gliomas across 30 target 

subjects. The positive and negative predictive values for varying declaration thresholds can 

be seen in (A) and (B), respectively. The “declaration threshold” indicates the threshold 

probability for which we declare a voxel to be anomalous (in this case, a cancerous voxel). 

Finally, the per-subject Receiver Operating Characteristic (ROC) curves can be seen in (C) 

in the various thin lines, with the mean ROC curve across the subjects represented with the 

thick black line. 
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0.6, the values greater 0.3 are outside of the “core” of the glioma. Note that this example is represented by 

the outlier case in Figure VI.2C. 

The OOA approach is not particularly sensitive to the bandwidth parameter (Figure VI.4), with 

the optimal setting being approximately 1.0. Note that this value is not particularly surprising as the atlas 

and target images were normalized to a unit Gaussian distribution as part of the pre-processing steps. The 

qualitative results in Figure VI.4B-4G demonstrate the effect of the various bandwidth values. For values 

that are too small (e.g., 0.5) largely normal regions of the anatomy are declared OOA, while, for values 

 

Figure VI.3. Qualitative results for the detection of malignant gliomas. Five representative 

examples are presented. For each example, the target volume, expert labeling, label fusion 

estimate, and the out-of-atlas likelihood are presented. The first four examples represent 

cases where the tumor region is correctly identified. The last example represents the outlier 

case (seen in red in Figure VI.2C) in which the cancerous region was almost completely 

missed. 
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that are too large (e.g., 1.5), the OOA likelihoods are not strict enough and fail to discover a large portion 

of the malignant glioma. Fusion of multiple atlases consistently outperforms using the best individual 

atlas (in terms of the mean ROC curve across the target population - Figure VI.5). NLS (which utilizes the 

intensity information of the atlas-target relationships) consistently results in more accurate labels, and, 

thus, more accurate OOA likelihood estimates than traditional STAPLE and a majority vote fusion 

approaches.  

3.4. DTI Quality Control 

For our second experiment, we demonstrate the ability of the proposed algorithm to be used in a 

DTI quality control framework. Here, a collection of 45 subjects consisting of both a T1-weighted image 

and corresponding DTI images were retrieved from an ongoing study in anonymous from under IRB 

approval. The T1-weighted images were oriented axially and consisted of             voxels at     

mm isotropic resolution. The DTI images contained a single    image and 92 diffusion weighted images, 

with all images consisting of          voxels and 2.5mm isotropic resolution mm. Due to the 

difficulty in acquiring consistent and robust DTI images, several of the images within these datasets 

exhibit problems in terms of image quality (e.g., various degrees of aliasing and shading artifacts). 

 

Figure VI.4. Sensitivity of the approach to the bandwidth parameter. The spread of area 

under curve (AUC) values across the 30 subjects for various bandwidth values is seen in 

(A). Note that the optimal value is approximately 1.0, which is not surprising given the 

intensity normalization procedure.  In (B)-(G) qualitative results are presented with various 

out-of-atlas likelihood estimations for varying bandwidth values presented in (E)-(G). 
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We employed a two-tier multi-atlas segmentation framework to obtain labels for the DTI images 

(Figure VI.6). The 15 atlases were registered to the T1-weighted subjects in a pairwise fashion using the 

SyN non-rigid registration algorithm [36] and the corresponding label observations were fused using 

NLS. Next, the T1-weighted labels were then transferred to the corresponding    image using an intra-

subject rigid registration. Lastly, each of the diffusion weighted images was rigidly registered to their 

corresponding    image to account for patient movement and to obtain consistent labels for all of the 

images within each DTI dataset. To assess DTI quality, five of the resulting DTI images were chosen as 

“atlases” so that the OOA likelihood estimation framework could be applied to the remaining 40 subjects. 

Note that the    images were normalized to one another using the previously described intensity 

normalization process and each of the diffusion weighted images were normalized to their corresponding 

   images in order to obtain consistent intensity values across subjects. 

3.5. DTI Results 

Qualitative results for this DTI quality control experiment are presented in Figure VI.7. Here, we 

show 6 representative examples that exhibit varying degrees of image quality issues. The first two 

examples (the top two rows) represent well controlled datasets and this is supported by the lack of any 

 

Figure VI.5. Sensitivity of the approach to the label fusion algorithm. A comparison is made 

between 4 different fusion approaches: (1) best individual atlas, (2) majority vote, (3) 

STAPLE, and (4) Non-Local STAPLE. Non-Local STAPLE provides both quantitatively 

and qualitatively the best results due to the fact that it incorporates both label and intensity 

information into the fusion process. Note that all of the multi-atlas fusion approaches 

outperform the best individual atlas which highlights the importance of using multiple 

template images to account for atlas bias. 
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OOA likelihoods greater than 0.3. The example in the third row represents a    image that exhibits an 

aliasing issue. Here, the OOA likelihood estimate catches this aliasing issue and indicates this anomalous 

behavior in the appropriate image location. The final three exemplars (the bottom 3 rows) represent 

diffusion weighted images that exhibit varying degrees of aliasing and shading artifacts. For example, the 

example in the bottom row represents an example that has severe shading artifacts across more than half 

of the image. The proposed algorithm clearly detects this large-scale issue and provides consistently high 

OOA likelihoods across the observed slice. 

4. Discussion 

The proposed OOA framework extends the multi-atlas labeling paradigm to be sensitive to 

abnormalities present in the medical images. Previous work on the problem of abnormality detection has 

primarily relied on a single atlas (or template) [156, 161] and, as a result, has been largely dependent on 

highly accurate non-rigid registration. Moreover, previous abnormality detection algorithms have been 

 

Figure VI.6. Flowchart demonstrating the multi-atlas labeling process for the DTI study. 

First, the provided atlases are used to label each subject’s T1-weighted image. Next, this 

label information is transferred to all of the DTI datasets via an intra-subject rigid 

registration. Note that all of the diffusion weighted volumes were rigidly registered to their 

associated    volume to account for patient movement. 
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highly tuned for specific applications (e.g., brain tumor segmentation [156-158, 161], lung nodule 

detection [159], intestinal abnormalities [160]). The proposed method provides a fully general framework 

that (1) uses multiple normal atlases to limit the inherent bias of using a single atlas and avoid the need 

for non-rigid registration, and (2) can be used in a large number of potential applications. 

 

Figure VI.7. Qualitative results for the quality control framework for DTI images. Six 

representative examples are presented demonstrating the gamut of potential image qualities 

in the provided dataset. The first two examples (top two rows) represent examples where no 

abnormalities are present and the out-of-atlas likelihood estimate supports this observation. 

The final four examples demonstrate images with varying degrees of aliasing and shading 

artifacts, and the out-of-atlas likelihood estimate consistently detects and localizes these 

image quality issues. 
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Despite the promise of the OOA likelihood estimation framework, there are limitations to the 

proposed approach. First, we use a collection of normal (non-gadolinium enhanced) T1-weighted atlases 

and use them to assess images that were acquired using clinical imaging protocols (e.g., differing imaging 

sequence). As a result, the ability to intensity normalize these images is limited and we are forced to limit 

ourselves to applications where the intensity profile of the desired abnormality is dramatically different 

than normal anatomy (e.g., malignant gliomas). The use of the proposed framework for the detection of 

more subtle anatomical pathologies would be inherently limited unless the atlases were constructed using 

the appropriate imaging characteristics.  

Along the same limes, the proposed framework is limited in its ability to detect anomalies that 

have similar intensity profiles to normal anatomy. For example, differentiating between white matter 

lesions and gray matter would be difficult using the proposed framework due to the fact that lesions often 

have similar intensity characteristics as cerebral gray matter. Thus, incorporation of more sophisticated 

comparison techniques and/or feature vectors would be a promising area of investigation. Direct modeling 

of texture and shape characteristics into the OOA model, for example, could improve the potential 

applications by which the model could be applied. Additionally, direct incorporation of label constraints 

(e.g., topology, symmetry across the cerebral hemispheres) could enable the OOA likelihood estimation 

framework to use both intensity and label information simultaneously. 

In conclusion, the out-of-atlas likelihood estimation framework shows great promise for robust 

and rapid identification of brain abnormalities and imaging artifacts. Using only weak dependencies on 

anomaly morphometry and appearance, we demonstrate the ability to (1) detect malignant gliomas on T1-

weighted images and (2) identify quality control issues for DTI images. We envision that this approach 

would allow for application-specific algorithms to focus directly on regions of high OOA likelihood, 

which would (1) reduce the need for human intervention, and (2) reduce the propensity for false positives. 

Alternatively, this technique may allow for algorithms to focus on regions of relatively normal anatomy to 

ascertain image quality or model/adapt to image appearance characteristics. 
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  CHAPTER VII

GROUPWISE SEGMENTATION OF THE SPINAL CORD’S INTERNAL STRUCTURE 

1. Overview 

The spinal cord is an essential and vulnerable component of the central nervous system which can 

be significantly affected by numerous neurological conditions – e.g., amyotrophic lateral sclerosis, 

multiple sclerosis, and neuromyelitis optica [166-170]. Differentiating and localizing 

pathology/degeneration of the gray matter (GM) and white matter (WM) plays a critical role in assessing 

the magnitude of tissue damage, therapeutic impacts and determining prognosis of these conditions [171, 

172]. While automated methods have been used to segment the spinal cord from the surrounding 

cerebrospinal fluid (CSF) [173-177] and semi-automated methods have been used for more detailed 

parcellation of the individual spinal columns [178, 179], automated delineation of internal spinal cord 

structures (i.e., GM/WM) has not been reported for any imaging modalities. In fact, high-resolution MRI 

that can provide contrast among spinal cord internal structures has only recently become feasible in 

clinically acceptable scan times [170, 180-183]. Moreover, MRI of the cervical spinal cord is hindered by 

numerous technical challenges [184-186] – including (1) the small dimensions (1-2 cm in diameter) with 

subsequent signal to noise limitations, (2) similarity between WM and GM T1 and T2 values resulting in 

poor intra-cord contrast [187], (3) involuntary/physiological patient motion, and (4) imaging 

inhomogeneities and artifacts. Given the challenges associated with spinal anatomy, imaging data, and 

subsequent processing, developing a robust system to consistently and accurately overcome these 

challenges is essential. The goal of this manuscript is to provide an efficient and accurate segmentation 

framework specifically focused on segmenting the spinal cord’s internal structure and enabling future 

clinically relevant inference about the anatomy and its associated conditions. 
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Over the past decade, multi-atlas segmentation has come to represent the de facto standard 

segmentation framework for its ability to rapidly and accurately generalize structural information from 

labeled examples (i.e., atlases) [9, 26]. In multi-atlas segmentation, multiple atlases are registered to the 

target [36, 101] and the resulting voxelwise label conflicts are resolved using label fusion [8, 48, 56, 59, 

61, 78]. Since its inception, multi-atlas segmentation has exploded in popularity and has been used across 

a wide range of potential applications – including, but not limited to, whole-brain [26, 48, 49, 51, 59, 63, 

65], hippocampus [56, 61, 118], cardiac [57], prostate [58], and abdomen [75]. 

 

Figure VII.1. Problems associated with non-rigid volumetric registration of cervical spinal 

cord MRI. Non-rigid volumetric registration of cervical spinal cord MRI is challenging and 

may yield suboptimal results, including (A) poor global initialization, (B) undesired 

boundary conditions, and (C) overly smoothed deformations as a result of poor local 

correspondence. 
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The manner in which the atlas-target registrations are performed has a substantial impact on 

multi-atlas segmentation quality [39]. In a typical multi-atlas framework, each atlas is non-rigidly 

registered to the target in a pairwise fashion (i.e., each atlas-target registration is computed 

independently). More recently, “groupwise” registration approaches (i.e., pre-alignment of the atlas 

information to a common groupwise space) have become increasingly popular [65, 105, 106, 109, 188-

190]. Groupwise registrations have several benefits, primarily: (1) they reduce the computational burden 

by requiring only a single registration from the groupwise space to the target space, and (2) through 

projecting the co-registered atlas information into a low dimensional space (i.e., a “manifold”) [65, 188, 

191], they provide a natural framework for modeling the relationships between atlases – e.g., for atlas 

selection [63, 64]. 

However, regardless of the registration framework, if consistent 3-D deformable registration 

between the atlases and the target cannot consistently and accurately find structurally-meaningful 

correspondence, then the applicability of multi-atlas segmentation is unlikely. Unfortunately, due to the 

extreme variability exhibited among cervical spinal cord 3-D MRI of individual subjects, deformable 

atlas-target registrations consistently suffer (Figure VII.1) from (a) poor global initialization, (b) 

undesired boundary conditions, and (c) dramatic over-smoothing due to lack of local correspondence. 

Comparatively speaking, when viewed from a 2-D axial cross-section within the acquisition plane (i.e., a 

slice), the inter-subject variability is notably lessened. As a result, when viewed from a slice-based 

perspective, robustly discovering structurally relevant homology becomes substantially easier. 

Additionally, a slice-based perspective on the segmentation of cervical MRI (1) enables the use of 

significantly more (slice-based) atlases, and (2) dramatically reduces the computational burden of 

individual atlas-target registrations. 

Herein, we propose the first approach for fully automated segmentation of cervical spinal cord 

internal structure using a groupwise slice-based multi-atlas registration framework. Building on the 

seminal work on “eigenfaces” [192] and active shape/appearance models [105, 106], we provide a method 

for (1) pre-aligning the slice-based atlas information into a common, groupwise-consistent coordinate 
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system, (2) constructing a model describing spinal cord variability (i.e., “eigenspines”), (3) registering the 

target image slice to the model space using a simultaneous intensity- and model-driven cost function, and 

(4) estimating a final segmentation by fusing the provided atlas information. Additionally, the proposed 

framework provides a natural mechanism for selecting geodesically appropriate atlases (i.e., atlas 

selection) and initializing the free model parameters in an informed model-specific context. This 

presentation is a reformulation of a recently published conference paper [132] in which we provide a 

completely re-derived groupwise registration framework to provide substantial improvements in overall 

robustness and accuracy. 

In this chapter, we begin by deriving the theoretical framework governing our proposed slice-

based groupwise registration framework. Next, we perform a cross-validation experiment (using 67 

subjects) in which we demonstrate significant quantitative and qualitative improvement over comparable 

volumetric and slice-based pairwise registration frameworks (in terms of GM and WM segmentation 

accuracy). Lastly, the sensitivity of the proposed model is addressed with respect to the free model 

parameters.  

2. Theory  

2.1. Problem Definition 

Consider a target gray-level image represented as a vector,       , where   is the number of 

voxels in the image. Let        be the latent representation of the true target segmentation, where 

             is the set of possible labels that can be assigned to a given voxel. Consider a collection 

of   atlases with associated intensity values,       , and label decisions,       . The index 

variables  ,  , and   will be used to iterate over the voxels, atlases, and labels, respectively. To summarize, 

the goal of the proposed approach is to: 

 Rigidly register all of the atlas information,      , to a common groupwise space. In other 

words, we need to construct                    , where      is the number of 
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voxels that are consistent among the atlases in the common model space (i.e., the relevant subset 

cropped from each slice).  

 Construct the appearance model using the groupwise-consistent atlas representations. The 

appearance model consists of (1) the mean image,        (2) the orthogonal eigenvectors 

(“eigenspines”) describing the modes of variation,        , (3) the associated eigenvalues, 

      , and (4) the weights associated with each atlas when projected into the model space, 

       . Note,        represents the number of modes of variation that are used in the 

model. 

 Find the optimal rigid transformation,  , that maps the target image,  , to the groupwise model 

space,       , by minimizing a model-driven cost function. Project     into the low-

dimensional model space, described by       .  

 Using   and   , select the geodesically-closest     atlases to use. Label fusion is then used to 

fuse the selected   atlases resulting in a segmentation estimate of   :  ̂       ,. 

 Transform  ̂  to  ̂             ̂ , an estimate of the desired segmentation in the original 

target space. 

Note, as the model we are constructing describes a 2-D (slice-based) representation of the spinal 

cord, all rigid transformations described in this manuscript are 2-D three degree-of-freedom 

transformations. In other words, a given transformation matrix,  , can be described by          , where 

        represent a two-dimensional translation, and   represents a rotation angle. We will use the 

notation,    , to denote the application of transformation matrix   to image  . 

2.2. Creation of a Groupwise Consistent Atlas Representation 

The first step in constructing the appearance model describing the slice-based representations of 

the spinal cord is to register the atlas information,      , to a common groupwise space (i.e., a space in 



149 

 

which all atlas slices are co-aligned). Here, we use an iterative process to construct the groupwise 

consistent representation of the atlases.  

Let             represent the “mean” segmentation image (herein, via majority vote – see eq. 

2) at the     iteration of the described procedure. Then, for each individual atlas,         the goal is to 

optimize the following label-based cost function: 

  
          

  
 

‖       
    ‖ 

        
  

 
‖       

 ‖
 

 (7.1)  

where   
  is the rigid transformation that minimizes the    norm (i.e., the discrete metric) between the 

current estimate of the groupwise mean segmentation,     , and the     atlas segmentation transformed 

into the current model space,   
 

   
    . 

After the optimized rigid transformations are computed for each individual atlas, the mean 

segmentation estimate can be updated using majority vote fusion: 

  
     

        
   

∑ (   
   )

 

 (7.2)  

where        is the Kronecker delta function. The process defined by (1) and (2) is then iterated until the 

mean segmentation estimate converges to a consistent segmentation (i.e., no change in the    norm 

between successive iterations: ‖           ‖
 

  ). In practice, convergence typically occurred in fewer 

than 5 iterations. Note, an alternative approach could be to use Expectation-Maximization (EM) to fuse 

the initial registered atlases for construction of the groupwise consistent mean (e.g., [193]); however, 

unlike the proposed method, this type of framework would largely rely on the success of the initial 

registrations. Lastly, the groupwise consistent representation of the atlases (i.e.,              

      ) is then constructed using the final transformations,   
 , after the iterative registration procedure 

has converged: 

{  
    

 }     
       

      (7.3)  
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2.3. Appearance Model Construction 

Now that we have all of the atlas information in a groupwise consistent representation,        , 

it is possible to construct an appearance model. The first step is to find the mean atlas image,         

using the aligned atlas image information  

  
 

 
∑  

 

 

  (7.4)  

Next, we find the eigenvectors (referred to as “eigenspines”),        , and eigenvalues, 

       using principal component analysis (PCA) [194]. As a result, for the     eigenspine/eigenvalue 

pair,    is chosen such that the following function is maximized 
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 (  
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 (7.5)  

subject to the constraint that all eigenspines are unit vectors (i.e.,       ) and orthogonal (i.e., 

  
                  ). Note that the number of eigenspine/eigenvalue pairs that are constructed is 

a function of the desired fraction of the total variance that the model should explain,  . This number,  , is 

chosen as the minimum value for which  

∑   
 
   

∑    
 
    

   (7.6)  

Finally, we compute the projection weights for each of the atlases that were used in constructing 

the model. These weights,        , where each element,   
      

 is found through a vector 

projection: 

  
    (  

   ) (7.7)  

Thus,   
  can be directly interpreted as the relative amount of variance explained by each of the    

available modes of variation, for a given atlas  . 

As an important aside, in standard practical applications, the creation of the groupwise consistent 

atlas representation (eqs. 1-3) and the construction of the appearance model (eqs. 4-7) would be 
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performed entirely “offline” (i.e., a new model would not need to be constructed for each desired target 

volume). 

Figure VII.2 provides a visual representation of the theoretically described process of both 

creating the groupwise-consistent atlas representations and, subsequently, understanding the resulting 

appearance model. Figure VII.3 visualizes local relationships between the atlases when they are projected 

into the low-dimensional appearance model space, and demonstrates that the low dimensional 

representation maintains the relationships between the visually expected atlas similarities. 

2.4. Groupwise Registration and Segmentation using the Appearance Model 

Once the appearance model for the atlases has been constructed, the primary remaining challenge 

is to find the rigid transformation,  , that maps each target image,  , into the model space – represented 

by   . We define a cost function that is a function of both (1) how well the model represents   , and (2) 

the image similarity between    and a weighted average representation of the atlases,  ̂ . Thus, for a 

given transformation,  , the projection weights for the target image,        can be found similarly to 

(7) as 

 

Figure VII.2. Flowchart describing the construction of the groupwise consistent atlas 

representation and the resulting groupwise appearance model. In an iterative procedure, all 

of the atlases registered to the current estimate of the mean, which is then updated. Using 

the co-registered atlas data, the groupwise appearance model is constructed using principal 

component analysis. 
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 (7.8)  

We can then define the model similarity between all of the individual atlases and the projected target 

image,       , using the current estimate of the desired transformation matrix,  . Let    (i.e., the 

similarity between the     atlas and the projected target image) be defined as 

   
 

 
   (  ‖    

 ‖
 
) (7.9)  

where   is the partition function which enforces the constraint that ∑      , and   is a model weighting 

parameter indicating the decay constant associated with the geodesic distance between a given atlas and 

the projected target image in model space. Using these similarity weights, we construct (1) the weighted 

mean of the atlas projection weights,       , (2) the weighted standard deviation of the projection 

weights       , and (3) the weighted image representation of the projected target image from the 

 

Figure VII.3. Example local atlas image content with respect to the primary modes of 

variation constructed in the model. The geodesic distance between co-registered atlases (i.e., 

the distance in the low-dimensional model) visually corresponds to anatomical similarity. 
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atlases,  ̂       , where 

      (7.10)  
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  ̂      (7.12)  

Using (10)-(12), we define the registration cost function for aligning the target image to the model space, 

 , to be 
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 (7.13)  

where the first term, (‖ ̂    ‖
 

 
), represents the squared    norm between the projected target image 

and the weighted average representation of the projected target image (i.e., using the model weights and 

the atlas image information), and the second term, (∑
       

 

  
  )  approximates the Gaussian log-

likelihood of the observed weights of the projected target image,  , given the provided appearance 

model. 

Given the optimal rigid registration,  , that maps the target image into the appearance model 

space, it is possible to estimate the underlying target segmentation using label fusion. The geodesic 

distance-based similarity weights,  , provide a natural and straightforward mechanism for performing 

informed atlas selection [63, 64] – a claim qualitatively supported in Figure VII.3. Here, we select the set 

of all atlases for which    is greater than some arbitrary constant,  . Let {  
    

 } be the set of selected 

atlases, where           . Thus, the segmentation estimate of the target image in model space,  ̂ , 

is 

 ̂ 
         

   
 ( ̂ 

   |{  
    

 }   ) (7.14)  

where  ( ̂ 
   |{  

    
 }   ) can be approximated using a pre-defined label fusion framework – e.g.,  

[8, 26, 51, 59, 61, 78]. 
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Finally, the last remaining step is to transfer the segmentation estimate from model space,  ̂ , to 

the original space defined by the target image  ̂.  This can be easily accomplished using the inverse of the 

optimal rigid transformation found in (13). 

 ̂        ̂  (7.15)  

Figure VII.4 provides a visual representation of the described framework for both registering and 

projecting the target image into the low-dimensional model space, and constructing and transferring the 

label fusion estimate into the original target coordinate system.  

2.5. Model Parameters and Initialization 

The proposed model has three primary parameters: 

1. The fraction of the explained model variance to use,  , and, thus, the number of modes of 

variation to use,   (eq. 6). 

2. The weighting parameter indicating the decay constant associated with the geodesic distance 

between a given atlas and the projected target image in model space,   (eq. 9). 

3. The threshold for determining which atlases to keep when performing the label fusion step,   (eq. 

14). 

 

Figure VII.4. Flowchart describing the process of (1) registering the target image with the 

model space, and (2) constructing the final segmentation estimate. For a given rigid 

transform, the registered target is projected into the model space enable a model-informed 

cost function to be evaluated. This process is repeated until the optimal rigid 

transformation is found. Using the optimal parameters (i.e., the transform and the selected 

atlas content), the segmentation estimate is constructed through label fusion and, finally, 

transferred back to the original target coordinate system. 
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First, the fraction of the explained model variance to use,  , and, thus, the number of modes of 

variation to use,  , plays a critical role in both registration and segmentation accuracy. Sub-optimal 

values for this parameter can have adverse effects on the quality of the registration and segmentation. A 

value that is too small (i.e., using too few modes of variation) can result in an inability to accurately 

represent the variability exhibited within the target image. As a result, the projection of the registered 

target image could indicate erroneous relationships with the provided atlases. Alternatively, values that 

are too large (i.e., using too many modes of variation) could lead to the inclusion of modes of variation 

that are simply noise (i.e., modes that do not provide meaningful information on the variability of the 

cervical spinal cord). 

Second, the weighting parameter,   (eq. 9), provides a mechanism for converting the geodesic 

distance between each individual atlas and the projected target image into relative weights for each atlas. 

This parameter can be viewed as a proxy for determining the influence of geodesic distance within the 

low-dimensional model space. To illustrate, for values of   that are too small, the influence of atlases that 

are far away from the projected target image will be given too much influence on the 

registration/segmentation framework. Alternatively, for values of   that are too large, only the closest 

atlases to the projected target image will be given any substantial influence, resulting in a representation 

of the target image that is too sparse. Fortunately, the estimated model provides a natural mechanism for a 

priori estimation of this parameter. For ease of representation, let 

   {    |    (  ‖  
   

  
 ‖

 
)   } represent the collection of atlases that would be chosen for 

atlas   given the model parameters      . For a fixed  , the optimal value for   can be approximated as: 
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where  ̂ 
 

        
   

∑ ∑  ( 
   
   )       

 is an estimate (via a majority vote) of the     atlas segmentation 

of voxel   using a given parameter value,  , and the remaining     atlas segmentations. In other words, 

we choose      such that the resulting estimated atlas segmentations are closest to the original, known, 

atlas segmentations.  

Lastly, observe that the threshold for determining which atlases to keep when performing the 

label fusion step,  , is very tightly related to the value chosen for the weighting parameter,  . In eq. 16, 

we fixed the value of   in order to directly optimize  . Empirically, we found that for a given change in  , 

the optimal value for   would change accordingly (i.e., an increase/decrease in   would cause a 

corresponding increase/decrease in  ) without affecting the resulting segmentation accuracy. As a result 

of this direct relationship, we use a constant value of        for all subsequent experiments.  

3. Methods and Results 

3.1. Data 

Herein, we study a dataset consisting of 67 MR volumes of the cervical spinal cord. All data were 

acquired axially on a 3T Philips Achieva scanner (Philips Medical Systems, Best, The Netherlands) using 

a single channel body coil for transmission and a 16-channel neurovascular coil for signal reception. The 

center of the imaging volume was aligned to the space between the 3rd and 4th cervical vertebrae. T2*-

weighted data were obtained using a 3D gradient echo (TR/TE/a = 121/12ms/9°) with a multi-shot EPI 

(EPI factor = 3) covering a field of view of 190 x 224 x 90 mm
3
 with nominal resolution of 0.6 x 0.6 x 3 

mm
3
. Fat saturation was implemented using a 1331 binomial water excitation (ProSet), 2 signal averages, 

and a SENSE factor of 2.  

The “gold standard” manual labels were constructed by an experienced rater who is familiar with 

MR images of the cervical spinal cord. The labeling process was performed using the Medical Image 

Processing, Analysis and Visualization (MIPAV) software [165].  For each slice, two labels were 

considered: the white matter (WM) and the gray matter (GM) (often referred to as the gray matter horns). 
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Due to imaging artifacts and lack of reasonable contrast, not all slices on each volume were labeled (in 

total, a collection of 1538 slices were labeled). As a result, all volumetric accuracy measurements were 

constructed using only the slices that were labeled by the experienced rater and all un-labeled slices were 

ignored. 

3.2. Implementation of Proposed Framework 

All computations for the proposed groupwise registration framework were performed using 

MATLAB (Mathworks, Natick, MA) on a 64-bit quad-core 3.07 GHz desktop computer with 13GB of 

RAM, running Ubuntu 12.04. The minimization/maximization procedures found in eqs. 1, 13 and 16 were 

coarsely initialized using a line search and finely optimized using the Nelder-Mead simplex direct search 

algorithm [195]. Additionally, for registering the target image to model space (eq. 13), the rigid 

transformations were initialized such that they aligned the center of mass of the target image with the 

model space. To eliminate undue impact of uninformative voxels, all image representations in the derived 

model space were cropped to include all voxels that were within 10mm of the final mean segmentation of 

the groupwise-consistent slice-based atlases (forming    in eq. 2) obtained from the model (see Figure 

VII.2). While this value could certainly be considered an additional model parameter, we empirically 

found that, as long as we ignored most of the background information, the exact amount of cropping did 

not noticeably impact registration/segmentation accuracy. Lastly, to simplify the direct comparison of 

image intensities (e.g., eq. 13), the registered target image and all of the atlas images were normalized to a 

unit Gaussian distribution within the region-of-interest specified by the defined model space. 

3.3. Baseline Approaches 

3.3.1. Registration 

To assess the accuracy of the proposed framework we consider three registration procedures: (1) 

a pairwise volumetric non-rigid registration framework, (2) a pairwise slice-based rigid registration 

framework, and, (3) the proposed groupwise slice-based rigid registration framework – as described 
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above. The procedures for the baseline pairwise volumetric and slice-based registration frameworks are 

described below. 

For the pairwise volumetric non-rigid registration, we used the SyN non-rigid registration 

algorithm [36] (as part of the Advanced Normalization Tools [ANTs] toolkit, 

http://stnava.github.io/ANTs/). In recent comparisons [39, 196], the SyN registration algorithm has been 

consistently shown to be the premier registration algorithm for multi-atlas segmentation. For all presented 

results, we used the default parameters for large deformation mapping described in [197]. 

For the pairwise slice-based rigid registration, we used the symmetric rigid registration algorithm 

based on [101] (available as “reg_aladin”  in the “NiftyReg” registration package --  

http://sourceforge.net/projects/niftyreg/). Due to the symmetric constraint on the resulting registration, we 

have empirically found this method to consistently result in fewer failures when compared to alternative 

unidirectional rigid registration approaches – e.g., [98]. The default parameters provided by the NiftyReg 

software package were used for all presented results. Note, for fairness of comparison, atlas images in the 

slice-based pairwise registration procedure were cropped in the same manner as the described groupwise 

registration framework to minimize failures due to the inclusion of uninformative background 

information.  

3.3.2. Label Fusion 

As we are interested in multi-atlas segmentation, the label fusion technique used to combine (or 

“fuse”) the resulting registered atlases plays a critical role in segmentation accuracy. Herein, we consider 

a variety of label fusion algorithms that represent the gamut of the state-of-the-art label fusion 

approaches. The label fusion approaches we consider are: (1) majority vote (MV) [26, 59], (2) locally 

weighted vote (LWV) [48, 57, 59, 61], (3) patch-based segmentation (PBS) [56], (4) Simultaneous Truth 

and Performance Level Estimation (STAPLE) [8, 9], and (5) Non-Local STAPLE (NLS) [51, 78]. 

For MV and LWV, the results were obtained using the exact same approach as described in [59]. 

For STAPLE, convergence of the Expectation-Maximization (EM) [116] framework was detected when 
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the average change in the trace of the performance-level parameters fell below     , “consensus voxels” 

(i.e., voxels where all raters agree) were ignored in the estimation process, and a voxelwise label prior 

(governed by the result of a probabilistic majority vote) was used. For PBS, a     isotropic search 

neighborhood and     isotropic patch neighborhood were used. The remaining parameters were chosen 

in exactly the same manner as described in [56]. Finally, where applicable, NLS used the same 

initialization parameters as described above for STAPLE and the same non-local correspondence 

parameters as described for PBS. Additionally, for NLS, the locally normalized correlation coefficient 

(LNCC) [48, 118] was used for the weighting in the non-local correspondence model – see [132] for 

details. 

The implementation of all label fusion algorithms presented in this manuscript are available as 

part of the Java Image Science Toolkit (JIST, www.nitrc.org/projects/jist) [152]. 

3.4. Experimental Methods 

Herein, we present two experiments to demonstrate the benefits of the proposed slice-based 

groupwise registration framework.  

3.4.1. Leave-One-Out Cross-Validation 

For the first experiment, we perform a leave-one-out cross-validation (LOOCV) to demonstrate 

the effects of (1) the three considered registration frameworks, and (2) label fusion accuracy for each 

registration framework. For the pairwise volumetric registration, we non-rigidly registered all 66 non-

target volumes to the target volume independently. For the pairwise slice-based registration, due to 

practical limitations in registering over 1500 slices to each target slice, we chose the 85 slice atlases 

(excluding the slices from the target) that exhibited the largest GM/WM contrast (difference in intensity 

profiles) – measured using the Kullback-Leibler divergence [164] between kernel density estimates of the 

intensity values associated with each structure. Finally, for the proposed groupwise slice-based 

registration framework, the groupwise appearance model was constructed uniquely for each target volume 

(i.e., the slices in the target volume were not used in the construction of the model). Note, for standard use 
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(i.e., situations with a well-defined labeled training set and an unlabeled testing set), the model would be 

identical for all target volumes in the testing set and, thus, could be computed entirely offline. For all 

presented experiments, the fraction of explained model variance,  , was set to 0.99, the model weighting 

parameter,  , was set to      (see Eq. 16), and the atlas selection threshold,  , was set to     . For 

reference, using these values for       resulted in the use of, on average, 460 modes of variation and 25 

atlases per target image slice.  

For each registration framework, the accuracy of the resulting segmentations are presented both 

quantitatively (Figure VII.5) and qualitatively (Figures VII.6 and VII.7). For the quantitative results, the 

volumetric accuracy of the resulting segmentations when compared to the manual labels for both gray 

matter and white matter are considered using: (1) the Dice similarity coefficient (DSC) [140], (2) the 

symmetric (or bi-directional) mean surface distance error (MSDE), and (3) the symmetric (or bi-

directional) Hausdorff distance error (HDE) [149]. For the qualitative results, we show representative 

example segmentations from both a slice-based perspective (Figure VII.6) and volumetric perspective 

(Figure VII.7). Due to the consistently poor performance of the typical pairwise volumetric registration 

framework (e.g., Figure VII.1), only the results of a majority vote are considered in the quantitative 

results (Figure VII.5). Additionally, this approach is excluded in the qualitative comparison (Figures 

VII.6 and VII.7) to simplify the visual comparison.  

3.4.2. Sensitivity to Model Parameters 

For the second experiment, we assess the accuracy of the proposed groupwise slice-based 

registration framework with respect to the free model parameters. As discussed above, there are two 

primary parameters that need to be assessed: (1) the fraction of the explained model variance to use,  , 

and, thus, the number of modes of variation to use,   (see eq. 6) and (2) the weighting parameter 

indicating the decay constant associated with the geodesic distance between a given atlas and the 

projected target image in model space,   (see eq. 9). For  , eight unique values are considered ranging 

from       to         , while holding the weighting parameter constant,        (Figure VII.8A). 
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For  , 21 unique values are considered in reference to the estimated parameter value      (Eq. 16) ranging 

from             to           , while holding the explained model variance constant,       , 

(Figure VII.8B). For both parameters, the accuracy of the resulting segmentations is assessed using the 

mean DSC across both labels. Lastly, in order to isolate the impact of the considered parameter, the 

results are assessed using a simple majority vote fusion – alternative fusion approaches would obfuscate 

the impact of the considered parameter with the impact of the more sophisticated fusion approaches.  

3.5. Experimental Results 

3.5.1. Leave-One-Out Cross-Validation 

The quantitative results of the LOOCV experiment (Figure VII.5) demonstrate consistent 

improvement in overall segmentation accuracy for each of the considered metrics. First, due to the 

inherent limitations of the traditional pairwise volumetric registration framework when applied to the 

spinal cord, it is immediately evident that the volumetric approach is consistently outperformed by both of 

the slice-based approaches for both WM and GM across all of the considered metrics.  In particular, due 

to the poor initialization and the resulting boundary errors, the volumetric approach performs 

considerably worse than the slice-based approaches in terms of the resulting HDE (the median HDE is 

approximately 5mm worse than the pairwise slice-based registration and close to 8mm worse than the 

proposed groupwise registration). 

Second, the proposed groupwise slice-based registration framework provides substantial 

improvement in terms of both robustness and accuracy over the pairwise slice-based registration 

framework. For a given label fusion algorithm, the segmentations using the groupwise framework 

significantly outperformed its pairwise counterpart (paired t-test,       ) for both GM and WM across 

each of the considered accuracy metrics. In particular, the distance-based metrics demonstrate substantial 

improvements in terms of overall robustness provided by the proposed approach. For the worst case, the 

groupwise framework provides an improvement of approximately 5mm and 8.5mm in MSDE for the GM 
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and WM, respectively, and an improvement of approximately 7mm and 10mm in HDE error for the GM 

and WM, respectively. 

As expected, the label fusion approach significantly impacts overall segmentation accuracy. 

However, perhaps surprisingly, no label fusion algorithm was statistically significantly better across all 

 

Figure VII.5. Quantitative comparison of the considered registration frameworks and label 

fusion approaches for the accuracy of both gray matter and white matter segmentation. For 

both structures, the accuracy is measured in terms of the Dice similarity coefficient, mean 

surface distance error, and Hausdorff distance error. The proposed groupwise slice-based 

registration framework provides consistent improvement across both structures and by all 

of the considered metrics. 
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metrics and anatomy considered. NLS appears to be the most consistent performer as it results in 

statistically significant improvement (paired t-test,       ) over the other considered fusion algorithms 

in terms of 4 of the 6 metrics – DSC and MSDE for GM, and MSDE and HDE for WM.  

Both the slice-based (Figure VII.6) and volumetric (Figure VII.7) qualitative analysis corroborate 

the quantitative improvement provided by the proposed registration framework. In Figure VII.6, two 

representative slices are presented for both the proposed groupwise and the baseline pairwise slice-based 

registration frameworks. The first example (top of Figure VII.6) provides an example where 

inconsistencies in the pairwise registrations result in highly inaccurate and inconsistent segmentation 

results. To contrast, the corresponding groupwise results are substantially closer to the manual labels 

despite the lack of contrast on the corresponding target image. The second example (bottom of Figure 

VII.6) shows one of the best-case scenarios for the slice-based pairwise registration framework. 

Nevertheless, the proposed groupwise framework is consistently more accurate in its ability to maintain 

 

Figure VII.6. Slice-based qualitative comparison of a pairwise slice-based registration 

framework and the proposed groupwise slice-based registration framework. For both 

examples, the proposed framework provides significantly more accurate segmentations and 

is able to maintain the complex structure of the GM horn. 
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the shape of the GM structure and, thus, results in substantially more accurate segmentation estimates. 

Likewise, the representative volumetric example (Figure VII.7) illustrates consistent improvement in 

terms of voxelwise surface distance error for the estimation of the GM horn. In particular, it is evident 

that all of the fusion algorithms are capable of consistently estimating the complex shape of the GM 

structure throughout the volume, given the proposed groupwise registration framework. Note the different 

scale on the axes for the two registration frameworks, which was used to provide finer detail on the 

voxelwise accuracy of the GM segmentations. 

3.5.2. Sensitivity to Model Parameters 

The accuracy of the proposed registration framework is not particularly sensitive to either of the 

considered model parameters (Figure VII.8). In terms of sensitivity to the fraction of explained model 

variance (Figure VII.8A), it is clear that, in general, increasing the number of modes of variation provides 

valuable benefits in terms of segmentation accuracy. Thus, it can be inferred that the complex appearance 

of the spinal cord requires the use of a significant fraction of the explained variance in order to accurately 

approximate the relationships between the projected target and the groupwise representation of the 

 

Figure VII.7. Volumetric qualitative comparison of the accuracy of the segmented gray 

matter for the pairwise slice-based framework, and the proposed groupwise slice-based 

framework. The proposed registration framework consistently estimates the complex shape 

of the GM horn more accurately than its pairwise counterpart. Note the different axes for 

the two different registration frameworks. 
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atlases. However, utilizing too many modes of variation (e.g.,         ) results in sub-optimal 

performance as these additional modes are modeling the noise in the atlases, as opposed to structurally-

meaningful spinal cord variability. 

In terms of the sensitivity to the model weighting parameter,  , it is evident that the estimated 

parameter value (     in eq. 16) properly scales the geodesic relationships between the projected model 

image and the projected atlas information (Figure VII.8B). As a result, when         , the approach 

is more selective, and inaccurately discards the impact of atlases that are relatively close in the low-

 

Figure VII.8. Quantitative analysis of the sensitivity of the proposed registration framework 

to the free model parameters. For the fraction of explained variance, (A), the inclusion of a 

significant portion of the modes of variation provides valuable benefits in terms of 

segmentation accuracy (i.e., up to       ). However, inclusion of too many modes (i.e., 

        ) results in sub-optimal performance. For the model weighting parameter, (B), 

the estimated parameter value inferred from the model appears to be the near-optimal 

parameter value across the considered targets. For both parameters, the gray bar indicates 

the value used in the other presented experiments. Note, for (A) and (B) the accuracy 

measures are the result of a majority vote so that the effect of the parameter is not 

obfuscated by more sophisticated fusion algorithms. 
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dimensional model space. Alternatively, when         , the impact of unrepresentative atlases is 

disproportionately large in the registration and segmentation results, resulting in sub-optimal 

segmentation accuracy. Interestingly, inclusion of fewer atlases (i.e.,         ) is more detrimental to 

segmentation accuracy than the inclusion of extra atlases (i.e.,         ). As a result, it can be 

inferred that the inclusion of extra atlases in the fusion process provides valuable improvement in 

segmentation accuracy – a strong indicator for the complexity and variability of the human cervical spinal 

cord.  

4. Discussion 

We propose a groupwise slice-based registration framework through the construction of an 

appearance model representation of the cervical spinal cord (Figures VII.2-VII.4). The proposed 

framework provides a powerful mechanism for: (1) modeling the variability exhibited within the cervical 

spinal cord population (Figure VII.2), (2) naturally and rapidly registering a target slice to the modeled 

spinal cord population (Figure VII.4), and (3) selecting a collection of geodesically appropriate atlases for 

segmenting the target image (Figures VII.3 and VII.4). While none of the individual components of the 

proposed framework are fully unique to this work, together, these techniques enable the first fully-

automated framework for robust and accurate segmentation of the cervical spinal cord’s internal structure. 

We have demonstrated superior performance over typical pairwise (volumetric and slice-based) multi-

atlas registration frameworks. Quantitatively, we demonstrate significant segmentation accuracy 

improvements for both GM and WM segmentation across five different fusion approaches and three 

different accuracy metrics (Figure VII.5). Additionally, qualitative segmentation assessment supports the 

quantitative improvement in both slice-based (Figure VII.6) and volumetric (Figure VII.7) 

representations. 

The sensitivity of the proposed model-based groupwise representation of the spinal cord was 

assessed with respect to the primary model parameters. The results of this sensitivity analysis (Figure 

VII.8) demonstrate that the proposed approach is not particularly sensitive to (1) the fraction of explained 
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variance (Figure VII.8A) or (2) the weighting parameter for determining the optimal collection of 

representative atlases (Figure VII.8B). The results of this analysis provide several important insights into 

the robustness of the proposed framework. First, modeling the complex inter-subject variability in the 

spinal cord requires a significant fraction (i.e.,       ) of the explained model variance to be utilized. 

However, not surprisingly, the inclusion of nearly all of the modes of variation (i.e.,         ) has a 

detrimental impact on registration/segmentation accuracy. Secondly, the inclusion of extra atlases by 

means of a larger model weighting parameter,  , is less detrimental than the inclusion of fewer atlases, 

which strongly implies the utility of selecting appropriate and sufficient atlases when modeling the 

complexity and variability of the human cervical spinal cord. 

Although label fusion is certainly not the focus of this manuscript, it is worth noting the fact that 

none of the fusion algorithms used in this manuscript reported superior performance across all of the 

considered metrics (Figure VII.5). While NLS was the most consistent performer, resulting in statistically 

significant improvement in 4 of the 6 considered metrics, the lack of a consistently superior fusion 

algorithm is problematic. Thus, investigation into label fusion optimality (e.g., through re-formulating 

rater models [50, 52, 54, 55] or corrective learning [69, 70]) remains an open problem and certainly 

warrants continued investigation. 

Despite the promise of the proposed framework, there are several areas for future investigation 

that could provide increased applicability to new problem spaces. First, all of the registrations performed 

in this manuscript were simple, 2-D (three degree-of-freedom) rigid transformations. Additional degrees 

of freedom (e.g., scale, skew) and/or deformable registration techniques would enable a more compact 

representation (i.e., fewer modes of variation) of the cervical spinal cord variability. However, this more 

compact representation would come at the cost of more complex parameter optimization, and, thus, 

increased likelihood in converging to an undesired local minimum. In our experiments, the three degree-

of-freedom approach was found to (1) succinctly model observed spinal cord variability, and (2) quickly 

and robustly find inter-subject correspondence. Second, the proposed framework was performed entirely 

on the 2-D cross-section of the spinal cord, without regard for introducing or enforcing 3-D consistency. 
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Consistency throughout the image volume could theoretically be maintained through the use of (1) 

Markov Random Fields [18, 198], or (2) constraints on the slice-based rigid transformations [199]. Due to 

the consistent performance provided by the proposed framework and concerns with the degree of anterior-

posterior image distortion, we did not feel that this was necessary at this time. Lastly, and probably most 

obviously, further investigation into modeling complex 3-D structures (as opposed to the 2-D approach 

presented here) would increase the applicability of the proposed groupwise approach.  

Finally, given the known anatomical context of the spinal canal and the vast research that has 

gone into the optimality and design of non-rigid registration algorithms, there is no doubt that 3-D 

volumetric registrations could be more successful than the results presented in this manuscript (Figures 

VII.1 and VII.5). However, one of the primary motivations for this work was to demonstrate that typical 

approaches, which are often highly successful on oft-studied structures (e.g., the brain), are problematic 

when applied to new, highly difficult structures (i.e., structures exhibiting large imaging and anatomical 

variability). As a result, reasonable segmentation of the spinal cord’s internal structures through 3-D 

deformable registrations often require (1) a priori structural information, (2) a highly-tuned application-

specific registration framework – e.g., [200], or (3) a multi-contrast cost function (e.g., using T1- and 

T2*-weighted images). Additionally, and potentially most importantly, pairwise 3-D non-rigid 

registration algorithms can often take upwards of an hour to perform each individual registration on a 

modern CPU. For the LOOCV presented above, estimating a complete 3-D segmentation took almost 

three days of CPU time per target. Given offline construction of the appearance model, the framework 

presented in this manuscript took approximately one minute per target slice, resulting in a complete 3-D 

segmentation in approximately 30 minutes – less than the time it would take to perform a single atlas-

target non-rigid registration. 
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  CHAPTER VIII

GEODESIC LEARNER FUSION 

1. Overview 

Multi-atlas segmentation is a powerful generalize-from-example framework for image 

segmentation [9, 26]. In multi-atlas segmentation, a set of labeled atlases are non-rigidly registered to a 

target image [36, 101] and the resulting label conflicts are resolved using label fusion [61, 78]. Due to the 

robustness and lack of anatomical assumptions, multi-atlas segmentation has grown tremendously over 

the past decade. Unfortunately, this robustness comes at the cost of computational complexity as typical 

multi-atlas approaches rely on an expensive pairwise registration framework. While these independent 

registrations play a critical role in overcoming the deficiencies in the individual atlas observations, each 

registration can take on the order of hours to converge to an acceptable local correspondence. 

We propose a whole-brain (133 label) multi-atlas segmentation framework using a big data 

paradigm. Building on seminal works in machine learning (e.g., AdaBoost [114] and Principal 

Component Analysis – PCA),  we use a learning-based approach to emulate the accuracy of a premier 

multi-atlas segmentation framework while dramatically lessening the computational burden. Given a large 

collection of training data which was pre-processed using a state-of-the-art multi-atlas segmentation 

procedure, we: (1) construct a low-dimensional representation of our training data for computing 

neighborhood relationships and (2) optimize an AdaBoost classifier for each training image that maps a 

weak segmentation estimate (e.g., a majority vote of the geodesic neighbors) to the expensive, yet highly 

accurate, multi-atlas segmentation estimate. Thus, when a new target image needs to be segmented we 

simply need to (1) project the image into the low-dimensional space, (2) construct a weak initial 
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segmentation, and (3) fuse the geodesically appropriate learners from the training phase. We refer to the 

algorithm as geodesic learner fusion (GLF) – Figure VIII.1. 

2. Data and Pre-Processing 

Herein, the complete data aggregates 7 unique datasets (4 of which are publicly available) 

covering a wide range of demographics, ages, and neurological states (Table VIII.1). In total, a set of 

3,505 subjects were scanned resulting in a total of 3,886 T1-weighted MR whole-brain volumes. For 

validation, the data was separated into three groups: training, testing, and reproducibility. First, the 

MMMRR dataset was used in its entirety as the reproducibility set as it consists of 21 subjects identically 

scanned twice. The remaining datasets were split 90%/10% into the training/testing cohorts. Note, all 

intra-subject scans were placed accordingly in the same training/testing group. 

For all 3,886 images, a state-of-the-art multi-atlas segmentation was performed. The original 

atlases are a set of 45 MPRAGE images (from unique subjects) as part of the OASIS dataset [145]. All 

atlases were labeled with 133 labels (BrainCOLOR protocol [154]). For consistency, all images were 

affinely registered [101]  to the MNI305 atlas [86]. For each image, the 15 closest atlases were selected 

 

Figure VIII.1. Flowchart demonstrating the geodesic learner fusion (GLF) framework. A 

large collection of training images are processed offline using a typical multi-atlas 

segmentation pipeline. The dimensionality of the training images is then reduced, and 

learners are constructed to map a weak initial estimate to the multi-atlas segmentation. 

Finally, for a new testing image, the image needs to be projected into the low-dimensional 

space and the geodesically appropriate learners can be fused to efficiently and accurately 

estimate the final segmentation. 
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(using a naïve PCA projection), pairwise registered [36, 101], fused [52, 78], and corrected through 

implicit error modeling [70]. On average, this process took 36 hours on a modern computer. 

Finally, for all 3464 training images, a low-dimensional representation was computed using PCA. 

Briefly, all images were down-sampled to 2mm isotropic and the principal components were computed 

over the brain region defined by the multi-atlas segmentation estimates. Geodesic distances are computed 

using the projection weights onto the first 15 modes of variation (representing 15.33% of the total 

variation). The results of the pre-processing framework are summarized in Figure VIII.2. 

3. Geodesic Learner Fusion Theory 

The theory presented below builds on the foundation for learning-based error correction presented 

in [70]. For training image  , we assume that we are given (1) the target image,      , (2) the initial 

Table VIII.1. Data summary. Each value is represents: number of subjects (number of 

images) 
 Training Testing Reproducibility 

1000 Functional Connectome (fcon_1000)a 1055 (1055) 117 (117)  

Baltimore Longitudinal Study on Aging (BLSA) 578 (883) 64 (94)  

Information eXtraction from Images (IXI)b 523 (523) 58 (58)  

Deep Brain Stimulation (DBS) 493 (493) 54 (54)  

Open Access Series on Imaging Studies (OASIS)c 375 (392) 41 (44)  

Tennessee Twins Study (TTS) 113 (118) 13 (13)  

Multi-Modal MRI Reproducibility Resource (MMMRR)d   21 (42) 

Total: 3137 (3464) 347 (380) 21(42) 
a: https://www.nitrc.org/projects/fcon_1000/ c: http://biomedic.doc.ic.ac.uk/brain-development/ 

b: http://www.oasis-brains.org/ d: https://www.nitrc.org/projects/multimodal 

 

 

Figure VIII.2. Summary of the training data processed through multi-atlas segmentation 

and their corresponding representation in the estimated low-dimensional space. The inlays 

in (A) and (B) illustrate that the geodesic distance metric leads to clustering of similar 

anatomical features. 
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weak segmentation,      , and (3) the multi-atlas segmentation,      , where   is the total number 

of voxels, and   is the set of possible labels (herein,        ). As in [70], the AdaBoost training 

procedure is computed for all of the labels independently. For each label, let   , such that    , be the 

collection of voxels for which any of the training images observe label  .  

For the classifier, let the feature matrix be defined as        , such that each element,    
 , is 

the feature value for feature   at sample   and label  , where   is the number of features, and        

is the number of samples (or voxels). For simplicity, we define the features at each sample the same way 

as  [70]. Briefly, these consist of the voxel coordinates, the observed labels (i.e., all             ), the 

target intensities (i.e., all             ), and the corresponding spatial correlations – where   is the 

collection of voxels within the feature window defined for sample   (herein, a 5mm isotropic window 

centered at the current sample). This feature collection strategy results in a total number of features of 

      . Finally, we define the class vector as,           , where each element   
    if      , 

and   
     otherwise. 

For the AdaBoost training, let    
      , be the distribution of relative weights for all samples at 

iteration     (where     
   

 
 

 
 initially). The goal of the training process at iteration   is to optimize the 

weak learner,     , where        
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where,        is the Kronecker delta function. Note, herein, the weak learner in (1) is a decision tree and 

optimization of this learner is addressed later in the manuscript. Next, the weight associated with the 

current iteration,       , is defined as  
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and the sample weight can be updated with 
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where   is a partition function ensuring that ∑     
     

     This process is then iterated until we have 

reached the desired number of iterations,   (herein,     ). 

Once the training process has been performed on all training images, we can then approximate the 

desired multi-atlas segmentation through fusing the trained AdaBoost learners associated with the 

corresponding geodesically selected training images. If we let   be the set of selected training images, and 

     be the approximated multi-atlas segmentation, then   
  (i.e., the estimated label at voxel  ) is 

computed as 

  
         

   
∑∑        [  

 ]

    

 (8.4)  

where the feature matrix,  , is defined in exactly the same way for the testing image as it was previously 

defined for the training images. 

4. Methods and Results 

Throughout, all segmentation comparisons are assessed with the mean Dice Similarity Coefficient 

 

Figure VIII.3. Parameter optimization and sensitivity for the number of atlases fused for 

the initial majority vote (A), and the type of weak learner used for the AdaBoost classifiers 

(B). A representative segmentation using the optimized parameters can be seen in (C). Note, 

on (B), “*” indicates statistically significant difference, and “NS” indicates no significant 

difference. 
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(DSC) [140] across the 132 non-background labels, and all claims of statistical significance are made 

using a Wilcoxon signed rank test (p < 0.01) [153]. 

4.1. Parameter Optimization and Sensitivity 

First, we optimize: (1) the number of geodesically selected atlases for the initial weak 

segmentation (via a majority vote), and (2) the weak learner used in the AdaBoost classifier. For 

optimization, the desired parameters were swept across an appropriate range for a random subset of 50 

training images. The results can be seen in Figure VIII.3. For the initial majority vote accuracy (Figure 

VIII.3A), using too few (e.g., 5) or too many (e.g., all available training data) results in sub-optimal 

accuracy. Additionally, there is marginal return when increasing the number of selected atlases beyond 

25. Thus, as computation time is of primary concern, the geodesically closest 25 training images were 

used for all subsequent analysis. For the AdaBoost weak learner optimization (Figure VIII.3B), we 

consider decision trees with depths ranging from 1 (i.e., a “decision stump”) to 4. Additionally, we 

consider two sampling methods, unequal and equal. For unequal sampling, all available samples were 

 

Figure VIII.4. Mean accuracy assessment for the defined testing data using the multi-atlas 

segmentation estimate as a “silver standard”. The results demonstrate (1) the GLF 

framework provides a dramatic decrease in total segmentation time, (2) increasing the 

number of fused learners has valuable benefits in terms of segmentation accuracy, and (3) 

when fusing more than 5 geodesic learners the GLF framework provides substantial and 

significant accuracy benefits over the joint label fusion baseline. 



175 

 

used for each label, regardless of the resulting class imbalance. For equal sampling, a random subset of 

the possible samples was selected to enforce class balance. Here, it is evident that (1) increasing the 

decision tree depth improves training accuracy, and (2) equal class sampling provides a marginal, yet 

significant, improvement in segmentation accuracy. Given the marginal return and dramatic runtime 

increase of a depth 4 decision tree, a depth 3 decision tree with equal class sampling was used for all 

subsequent experiments. 

4.2. Testing Data Accuracy and Assessment 

Next, we quantify our ability to replicate the expensive multi-atlas segmentation result using the 

GLF framework. Using the multi-atlas segmentation estimate on our testing data (380 images) as a “silver 

standard” we applied the GLF framework with varying numbers of geodesic learners (from 1 to 25). As a 

benchmark, we consider fusing the 25 geodesically nearest training images using the premier joint label 

fusion (JLF) algorithm [61]. The results of this experiment across the 380 testing images (Figure VIII.4) 

demonstrate: (1) increasing the number of geodesic learners results in an improved ability to replicate the 

multi-atlas segmentation result, (2) using at least 5 learners results in significant and substantial 

improvement over the JLF benchmark, and (3) increasing the number of learners from 1 to 25 increases 

the total segmentation time from approximately 2 minutes to approximately 8 minutes – which remains a 

speedup of      over the JLF benchmark and       over the multi-atlas framework. The qualitative 

results support the quantitative accuracy analysis for both the worst and median cases from the testing set. 

4.3. Reproducibility Data Accuracy and Assessment 

Lastly, we assess the reproducibility of the GLF framework using the MMMRR dataset (see 

Table VIII.1). Within this dataset, all 21 subjects were scanned twice with exactly the same scanning 

parameters. The intra-subject reproducibility was assessed by comparing the mean DSC for: (1) the GLF 

result vs. the corresponding multi-atlas result, (2) the intra-subject multi-atlas estimates, and (3) the intra-

subject GLF framework estimates. The results (Figure VIII.5) demonstrate: (1) the GLF similarity to the 
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multi-atlas segmentation result approaches the intra-subject reproducibility for multi-atlas segmentation, 

and (2) GLF is significantly more reproducible than multi-atlas segmentation with a mean intra-subject 

DSC improvement of       .  

5. Discussion 

We present geodesic learner fusion (GLF), a framework for replicating the robust and accurate 

multi-atlas segmentation model, while dramatically lessening the computational burden.  Using a training 

set of 3464 images, we estimate a low-dimensional representation of brain anatomy for selecting 

geodesically appropriate example images, and build AdaBoost learners that map weak initial 

segmentations to the more accurate multi-atlas segmentation result. By completely bypassing the 

deformable atlas-target registrations, the GLF framework, cuts the runtime on a modern computer from 

36 hours down to 3-8 minutes – a speedup that could be further enhanced through GPU-based 

optimization. Specifically, we: (1) describe a technique for optimizing the initial segmentation and the 

AdaBoost learning parameters (Figure VIII.3), (2) quantify the ability to replicate the multi-atlas result 

with mean DSC of approximately 0.85 on a testing set of 380 images (Figure VIII.4), and (3) demonstrate 

accuracies that are approaching the intra-subject multi-atlas reproducibility on a separate reproducibility 

dataset, and show significant increases in GLF reproducibility (Figure VIII.5). 

 

Figure VIII.5. Reproducibility analysis on the MMMRR dataset.  Note, (1) the GLF 

similarity to the multi-atlas segmentation result approaches the intra-subject 

reproducibility for multi-atlas segmentation, and (2) GLF is significantly more reproducible 

than multi-atlas segmentation on this dataset. 
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In the interest of brevity, all of our comparisons have been against the standard pairwise 

registration framework for multi-atlas segmentation, and have not included the more recent advancements 

in groupwise registration (e.g., [188]). The primary reason for not directly including this comparison is: 

(1) groupwise registration is still a very active area of continuing research, and (2) the GLF framework is, 

in its essence, a machine learning perspective on the groupwise registration model. 

In the end, while the GLF framework shows great promise for rapid and accurate multi-atlas 

segmentation, there are certainly areas for which further investigation is warranted. Namely, first, we used 

a naïve PCA projection to model the geodesic relationships between the training images. More recent 

advancements in the manifold learning literature (e.g., [201]) present fascinating opportunities for more 

accurately modeling these relationships. Second, while highly successful, we do not claim any optimality 

of our AdaBoost-based learners. Investigation into alternative classification techniques (e.g., [76]) could 

provide valuable improvements in segmentation modeling without dramatically altering the GLF 

framework. 
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  CHAPTER IX

CONCLUSIONS AND FUTURE WORK 

1. Summary 

The ability to generalize information from examples has been the driving force behind decades of 

statistical modeling and machine learning research. Building on this fundamental concept, this 

dissertation addresses the ability to generalize structural context, or segmentations, from medical images 

using labeled examples (i.e., atlases). Specifically, this research focuses on the problem of multi-atlas 

segmentation, in which image correspondences between a set of atlases and the target-of-interest are 

discovered and the underlying target segmentation is estimated using statistical fusion – a supervised 

learning approach for resolving label conflicts. Using this general framework, several theoretical 

advancements to the statistical fusion model are presented (Chapters II-V), and the results of these 

contributions are highlighted on clinically and scientifically relevant applications (Chapters VI-VIII). 

2. Theoretical Advancements to Statistical Fusion 

2.1. Summary 

We present theoretical reformulations to the statistical fusion framework to more accurately 

characterize rater (or atlas) performance (Part 1). Specifically, these advancements provide methods for: 

(1) estimating task difficulty (Chapter II), (2) formulating spatially varying performance (Chapter III), 

(3) accounting for registration uncertainty and imperfect correspondence (Chapter IV), and (4) 

estimating hierarchically consistent models of performance (Chapter V). Together, these theoretical 

advancements provide powerful mechanisms for more accurately understanding and estimating rater-

driven models and, thus, more accurately estimating the desired target segmentations. 
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2.2. Main Contributions 

1. We present COLLATE, an algorithm for fusing a collection of rater label observations to 

estimate the consensus level, labeler accuracy and truth labels. Like its predecessors, 

COLLATE takes a collection of input observations from a group of raters (human or 

otherwise) and simultaneously estimates the truth labels and the rater performance parameters 

(“labeler accuracy”). However, COLLATE also estimates the consensus level of each voxel, 

which can be viewed as an inherent property of each voxel that determines the likelihood that 

a given rater would be confused about the label associated with a given voxel. 

2. We present Spatial STAPLE — a new algorithm for statistically fusing rater label 

information using a spatially varying model of rater behavior. Spatial STAPLE: (i) provides 

significant improvement over the premier label fusion techniques, (ii) more accurately 

reflects the way in which raters and atlases make mistakes than traditional global 

performance metrics, and (iii) provides a unified framework that can be used for the gamut of 

label fusion applications (i.e. the fusion of human raters, multi-atlas applications and the 

fusion of multiple algorithms). 

3. We present Non-Local STAPLE, a statistical fusion algorithm for multi-atlas segmentation. 

Through a reformulation from a non-local means perspective, NLS represents the first 

statistical fusion algorithm that (i) creates a cohesive theoretical model specifically targeting 

registered atlas observation behavior, and (ii) seamlessly incorporates intensity into the core 

of the STAPLE estimation framework. As a result, NLS largely overcomes the need for high-

quality non-rigid registration and large numbers of atlases. 

4. We propose a novel statistical fusion framework using a reformulated hierarchical 

performance model. Given an a priori model of the hierarchical label relationships for a 

given segmentation task, the proposed generative model of rater performance provides a 

straightforward mechanism for quantifying rater performance at each level of the hierarchy. 

The primary contributions of this work are we: (i) provide a theoretical advancement to the 
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statistical fusion framework that enables the simultaneous estimation of multiple 

(hierarchical) confusion matrices for each rater, (ii) show that the proposed hierarchical 

formulation is highly amenable to many of the state-of-the-art advancements that have been 

made to the statistical fusion framework, and (iii) demonstrate statistically significant 

improvement on both simulated and empirical data. 

2.3. Future Work 

While the proposed advancements have provided valuable theoretical perspectives on the 

statistical label fusion problem, the primary remaining question is to define a unified model in which (1) 

task difficulty, (2) spatially varying performance, (3) non-local correspondence models, and (4) 

hierarchical performance models can be presented as a single statistical fusion performance model [202]. 

While these advancements are fully compatible with one another, exploration into the optimal 

combination of these advancements remains an open problem and represents fascinating avenues of 

continuing research. 

3. Out-of-Atlas Likelihood Estimation 

3.1. Summary 

The ability to detect abnormalities and anomalies in medical images plays a critical role in the 

detection of diseases and pathologies as well as maintaining image quality assurance. Unfortunately 

multi-atlas segmentation is limited to “in-atlas” applications (e.g., applications where the atlases are 

anatomically and structurally indicative of the target image). We propose a technique to estimate the out-

of-atlas (OOA) likelihood for every voxel in the target image (Chapter VI). The OOA approach provides 

an intuitive and fully general abnormality/outlier detection framework 
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3.2. Main Contributions 

1. The proposed OOA framework extends the multi-atlas labeling paradigm to be sensitive to 

abnormalities present in medical images. Previous work on the problem of abnormality 

detection has primarily relied on a single atlas (or template) and, as a result, has been largely 

dependent on highly accurate non-rigid registration. The proposed method provides a fully 

general framework that (1) uses multiple normal atlases to limit the inherent bias of using a 

single atlas and avoid the need for non-rigid registration, and (2) can be used in a large 

number of potential applications. 

2. On an empirical experiment for detecting malignant gliomas in the human brain, the OOA 

algorithm demonstrates a natural model for detecting large-scale abnormalities in the human 

brain. The proposed framework can consistently and reliably declare voxels to be cancerous 

in terms of an increasing declaration threshold. 

3. In a second experiment, we demonstrate the ability of the proposed algorithm to be used in a 

DTI quality control framework. The proposed algorithm clearly detects large-scale quality 

control issues and provides consistently high OOA likelihoods across the observed data. 

3.3. Future Work 

Despite the promise of the OOA likelihood estimation framework, there are limitations to the 

proposed approach. First, we use a collection of normal (non-gadolinium enhanced) T1-weighted atlases 

and use them to assess images that were acquired using clinical imaging protocols (e.g., differing imaging 

sequence). As a result, the ability to intensity normalize these images is limited and we are forced to limit 

ourselves to applications where the intensity profile of the desired abnormality is dramatically different 

than normal anatomy (e.g., malignant gliomas). The use of the proposed framework for the detection of 

more subtle anatomical pathologies would be inherently limited unless the atlases were constructed using 

the appropriate imaging characteristics. 
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4. Groupwise Segmentation of the Spinal Cord 

4.1. Summary 

The spinal cord is an essential and vulnerable component of the central nervous system which can 

be significantly affected by numerous neurological conditions. Differentiating and localizing 

pathology/degeneration of the gray matter (GM) and white matter (WM) plays a critical role in assessing 

the magnitude of tissue damage, therapeutic impacts and determining prognosis of these conditions. We 

propose the first approach for fully automated segmentation of cervical spinal cord internal structure 

using a groupwise slice-based multi-atlas registration framework (Chapter VII). 

4.2. Main Contributions 

1. We provide a method for (i) pre-aligning the slice-based atlas information into a common, 

groupwise-consistent coordinate system, (ii) constructing a model describing spinal cord 

variability (i.e., “eigenspines”), (iii) registering the target image slice to the model space 

using a simultaneous intensity- and model-driven cost function, and (iv) estimating a final 

segmentation by fusing the provided atlas information. 

2. The proposed framework provides a natural mechanism for selecting geodesically appropriate 

atlases (i.e., atlas selection) and initializing the free model parameters in an informed model-

specific context. 

3. We have demonstrate superior performance over typical pairwise (volumetric and slice-

based) multi-atlas registration frameworks. Quantitatively, we demonstrate significant 

segmentation accuracy improvements for both GM and WM segmentation across five 

different fusion approaches and three different accuracy metrics. 

4.3. Future Work 

There are several areas for future investigation that could provide increased applicability to new 

problem spaces. First, all of the registrations performed in this manuscript were simple, 2-D (three 
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degree-of-freedom) rigid transformations. Additional degrees of freedom (e.g., scale, skew) and/or 

deformable registration techniques would enable a more compact representation (i.e., fewer modes of 

variation) of the cervical spinal cord variability. However, this more compact representation would come 

at the cost of more complex parameter optimization, and, thus, increased likelihood in converging to an 

undesired local minimum. In our experiments, the three degree-of-freedom approach was found to (1) 

succinctly model observed spinal cord variability, and (2) quickly and robustly find inter-subject 

correspondence. Second, the proposed framework was performed entirely on the 2-D cross-section of the 

spinal cord, without regard for introducing or enforcing 3-D consistency. Due to the consistent 

performance provided by the proposed framework and concerns with the degree of anterior-posterior 

image distortion, we did not feel that this was necessary at this time. Lastly, and probably most obviously, 

further investigation into modeling complex 3-D structures (as opposed to the 2-D approach presented 

here) would increase the applicability of the proposed groupwise approach.  

5. Geodesic Learner Fusion 

5.1. Summary 

We propose geodesic learner fusion (GLF), a framework for rapidly and accurately replicating the 

highly accurate, yet computationally expensive, multi-atlas segmentation framework based on fusing 

geodesically appropriate learners (Chapter VIII).  In the largest whole-brain multi-atlas study ever 

reported, multi-atlas segmentations are estimated for a training set of 3,464 MR brain images. Using these 

mulit-atlas estimates we (1) estimate a low-dimensional representation for selecting geodesically 

appropriate example images, and (2) build AdaBoost learners that map a weak initial segmentation to the 

multi-atlas segmentation result. Thus, to segment a new target image we simply project the image into the 

low-dimensional space, construct a weak initial segmentation, and fuse the trained, geodesically 

appropriate, learners.  
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5.2. Main Contributions 

1. We describe a technique for optimizing the weak initial segmentation and the AdaBoost 

learning parameters. Resulting in a framework that can be optimally trained in the largest 

whole-brain multi-atlas study ever reported (3,886 total whole brain MR images). 

2.  We quantify the ability to replicate the multi-atlas result with mean DSC of approximately 

0.85 on a testing set of 380 images. 

3. We demonstrate accuracies that are approaching the intra-subject multi-atlas reproducibility 

on a separate reproducibility dataset, and show significant increases in GLF reproducibility 

when compared to a state-of-the-art multi-atlas segmentation framework. 

4. By completely bypassing the need for deformable atlas-target registrations, the GLF 

framework, cuts the runtime on a modern computer from 36 hours down to 3-8 minutes – a 

     speedup. 

5.3. Future Work 

In the end, while the GLF framework shows great promise for rapid and accurate multi-atlas 

segmentation, there are certainly areas for which further investigation is warranted. Namely, first, we used 

a naïve PCA projection to model the geodesic relationships between the training images. More recent 

advancements in the manifold learning literature present fascinating opportunities for more accurately 

modeling these relationships. Second, while highly successful, we do not claim any optimality of our 

AdaBoost-based learners. Investigation into alternative classification techniques could provide valuable 

improvements in segmentation modeling without dramatically altering the GLF framework. 

6. Concluding Remarks 

In early 2010, multi-atlas segmentation was growing in popularity because of its ability robustly 

label difficult anatomy, but was typically considered to be less accurate than parametric segmentation 

models and relegated to applications for which automated algorithms had not previously been developed. 
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In particular, the label fusion component of multi-atlas segmentation was limited to voting and weighting 

voting based approaches which (1) required a large number of representative atlases, and (2) resulted in 

sub-optimal accuracy when compared to state-of-the-art segmentation approaches. Since that time, 

however, the label fusion field has become a prominent area of continuing research, and optimal 

statistical and probabilistic models of atlas performance and atlas voting have been derived. As a result, 

the gap between highly optimized parametric segmentation algorithms and the generalized multi-atlas 

segmentation framework has dramatically closed. This dissertation has played a pivotal role in advancing 

the statistical label fusion theory and, thus, advancing the applicability of multi-atlas segmentation to 

new, previously ignored problem spaces. 

Moving forward, the momentum of multi-atlas segmentation seems to be heading towards 

applications for which discovering dense and accurate correspondence is increasingly difficult (e.g., 

abdomen, cardiac). Moreover, we see an increased emphasis on (1) accurate and applicable label fusion 

models for atlas selection and atlas performance, and (2) building shape/appearance models of anatomical 

variability to avoid confounding factors in regions of low contrast (and/or high noise). Given this 

momentum, we believe the benefits of this dissertation have not fully been discovered and should remain 

relevant as the field of multi-atlas segmentation extends outside of the cranial vault and into new and 

more challenging anatomies. 
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