9 research outputs found

    Robust face recognition using convolutional neural networks combined with Krawtchouk moments

    Get PDF
    Face recognition is a challenging task due to the complexity of pose variations, occlusion and the variety of face expressions performed by distinct subjects. Thus, many features have been proposed, however each feature has its own drawbacks. Therefore, in this paper, we propose a robust model called Krawtchouk moments convolutional neural networks (KMCNN) for face recognition. Our model is divided into two main steps. Firstly, we use 2D discrete orthogonal Krawtchouk moments to represent features. Then, we fed it into convolutional neural networks (CNN) for classification. The main goal of the proposed approach is to improve the classification accuracy of noisy grayscale face images. In fact, Krawtchouk moments are less sensitive to noisy effects. Moreover, they can extract pertinent features from an image using only low orders. To investigate the robustness of the proposed approach, two types of noise (salt and pepper and speckle) are added to three datasets (YaleB extended, our database of faces (ORL), and a subset of labeled faces in the wild (LFW)). Experimental results show that KMCNN is flexible and performs significantly better than using just CNN or when we combine it with other discrete moments such as Tchebichef, Hahn, Racah moments in most densities of noises

    Integration of blcm and flbp in low resolution face recognition

    Get PDF
    Face recognition from face image has been a fast-growing topic in biometrics research community and a sizeable number of face recognition techniques based on texture analysis have been developed in the past few years. These techniques work well on grayscale and colour images with very few techniques deal with binary and low resolution image. With binary image becoming the preferred format for low face resolution analysis, there is need for further studies to provide a complete solution for image-based face recognition system with higher accuracy. To overcome the limitation of the existing techniques in extracting distinctive features in low resolution images due to the contrast between the face and background, we proposed a statistical feature analysis technique to fill in the gaps. To achieve this, the proposed technique integrates Binary Level Occurrence Matrix (BLCM) and Fuzzy Local Binary Pattern (FLBP) named BLCM-FLBP to extract global and local features of face from face low resolution images. The purpose of BLCM-FLBP is to distinctively improve performance of edge sharpness between black and white pixels in the binary image and to extract significant data relating to the features of face pattern. Experimental results on Yale and FEI datasets validates the superiority of the proposed technique over the other top-performing feature analysis techniques methods by utilizing different classifier which is Neural network (NN) and Random Forest (RF). The proposed technique achieved performance accuracy of 93.16% (RF), 95.27% (NN) when FEI dataset used, and the accuracy of 94.54% (RF), 93.61% (NN) when Yale.B used. Hence, the proposed technique outperforming other technique such as Gray Level Co-Occurrence Matrix (GLCM), Bag of Word (BOW), Fuzzy Local Binary Pattern (FLBP) respectively and Binary Level Occurrence Matrix (BLCM)

    Robust Face Recognition by Computing Distances from Multiple Histograms of Oriented Gradients

    Get PDF
    The Single Sample per Person Problem is a challenging problem for face recognition algorithms. Patch-based methods have obtained some promising results for this problem. In this paper, we propose a new face recognition algorithm that is based on a combination of different histograms of oriented gradients (HOG) which we call Multi-HOG. Each member of Multi-HOG is a HOG patch that belongs to a grid structure. To recognize faces, we create a vector of distances computed by comparing train and test face images. After this, a distance calculation method is employed to calculate the final distance value between a test and a reference image. We describe here two distance calculation methods: mean of minimum distances (MMD) and a multi-layer perceptron based distance (MLPD) method. To cope with aligning difficulties, we also propose another technique that finds the most similar regions for two compared images. We call it the most similar region selection algorithm (MSRS). The regions found by MSRS are given to the algorithms we proposed. Our results show that, while MMD and MLPD contribute to obtaining much higher accuracies than the use of a single histogram of oriented gradients, combining them with the most similar region selection algorithm results in state-of-the-art performances

    Optimisation des Systèmes Multimodaux pour l’Identification dans l’Imagerie

    Get PDF
    Parmi les médias les plus populaires qui ont pris une place incontournable pour le développement des systèmes de reconnaissances biométriques en général et les systèmes de la reconnaissance de visage en particulier on trouve l’Image. L’une des utilisations les plus courantes des images est l’identification/vérification en biométrie qui connaît un intérêt grandissant depuis quelques années. L’efficacité des techniques d’identification en imagerie est aujourd’hui très fortement liée à des contraintes fortes imposées à l’utilisateur. Une voie de recherche actuelle se tourne donc vers la gestion de situations où l’acquisition des données est moins contrainte. Finalement, l’usage d’une seule modalité est souvent limité en termes de performance ou de difficultés d’usage, c’est pourquoi il apparaît intéressant d’évaluer l’apport de la multi-modalité dans ce contexte. L’objectif de la thèse est de mener un travail pour poursuivre une recherche tournée à la fois vers les techniques d’optimisation basées d’une part sur les descripteurs hybrides et les patchs ainsi que leurs techniques de fusions, et d’autre part sur le Deep Learning (Transfer Learning). Nous nous intéressons plus particulièrement à l’image du visage et nos approches sont validées sur plusieurs bases de données universelles pour défier tous les aléas d’acquisition et d’environnements non contrôlés

    Face Recognition: A Comparative Approach from Traditional to Recent Trends

    Get PDF
    Face recognition, an important biometric method used extensively by researchers, has become more popular recently due to development of mobile applications and frequent usages of facial images in social media. A major development is attained in facial recognition methods due to the emergence of deep learning methods. As a result, the performance of face recognition systems reached a matured state. The objectives of this research are to improve the accuracy rate of both traditional and modern methods of face recognition system under illumination variation by applying various preprocessing techniques. In the proposed face recognition approach, various preprocessing methods like SQI, HE, LTISN, GIC and DoG are applied to the Local Binary Pattern (LBP) feature extraction method and by using the Weighted Entropy based method to fuse the output of classifiers on FERET database, we have shown improvement in recognition accuracy of as high as 88.2 % can be obtained after applying DoG . In a recently used approach, deep CNN model is suggested. The Experiments are conducted in Extended Yale B and FERET Database. The suggested model provides good accuracy rates. To improve the accuracy rates further, preprocessing methods like SQI, HE, LTISN, GIC and DoG are applied to both the models. As a result, higher accuracy rates are achieved in deep CNN model both in Extended Yale B Database and FERET Database. Extended Yale B Database provides the highest accuracy rate of 99.8% after the application of SQI and an accuracy rate of 99.7% is achieved by applying HE

    Reconnaissance Biométrique par Fusion Multimodale de Visages

    Get PDF
    Biometric systems are considered to be one of the most effective methods of protecting and securing private or public life against all types of theft. Facial recognition is one of the most widely used methods, not because it is the most efficient and reliable, but rather because it is natural and non-intrusive and relatively accepted compared to other biometrics such as fingerprint and iris. The goal of developing biometric applications, such as facial recognition, has recently become important in smart cities. Over the past decades, many techniques, the applications of which include videoconferencing systems, facial reconstruction, security, etc. proposed to recognize a face in a 2D or 3D image. Generally, the change in lighting, variations in pose and facial expressions make 2D facial recognition less than reliable. However, 3D models may be able to overcome these constraints, except that most 3D facial recognition methods still treat the human face as a rigid object. This means that these methods are not able to handle facial expressions. In this thesis, we propose a new approach for automatic face verification by encoding the local information of 2D and 3D facial images as a high order tensor. First, the histograms of two local multiscale descriptors (LPQ and BSIF) are used to characterize both 2D and 3D facial images. Next, a tensor-based facial representation is designed to combine all the features extracted from 2D and 3D faces. Moreover, to improve the discrimination of the proposed tensor face representation, we used two multilinear subspace methods (MWPCA and MDA combined with WCCN). In addition, the WCCN technique is applied to face tensors to reduce the effect of intra-class directions using a normalization transform, as well as to improve the discriminating power of MDA. Our experiments were carried out on the three largest databases: FRGC v2.0, Bosphorus and CASIA 3D under different facial expressions, variations in pose and occlusions. The experimental results have shown the superiority of the proposed approach in terms of verification rate compared to the recent state-of-the-art method

    15th SC@RUG 2018 proceedings 2017-2018

    Get PDF
    corecore