3,753 research outputs found

    Object Detection in 20 Years: A Survey

    Full text link
    Object detection, as of one the most fundamental and challenging problems in computer vision, has received great attention in recent years. Its development in the past two decades can be regarded as an epitome of computer vision history. If we think of today's object detection as a technical aesthetics under the power of deep learning, then turning back the clock 20 years we would witness the wisdom of cold weapon era. This paper extensively reviews 400+ papers of object detection in the light of its technical evolution, spanning over a quarter-century's time (from the 1990s to 2019). A number of topics have been covered in this paper, including the milestone detectors in history, detection datasets, metrics, fundamental building blocks of the detection system, speed up techniques, and the recent state of the art detection methods. This paper also reviews some important detection applications, such as pedestrian detection, face detection, text detection, etc, and makes an in-deep analysis of their challenges as well as technical improvements in recent years.Comment: This work has been submitted to the IEEE TPAMI for possible publicatio

    Deep Learning for Vanishing Point Detection Using an Inverse Gnomonic Projection

    Full text link
    We present a novel approach for vanishing point detection from uncalibrated monocular images. In contrast to state-of-the-art, we make no a priori assumptions about the observed scene. Our method is based on a convolutional neural network (CNN) which does not use natural images, but a Gaussian sphere representation arising from an inverse gnomonic projection of lines detected in an image. This allows us to rely on synthetic data for training, eliminating the need for labelled images. Our method achieves competitive performance on three horizon estimation benchmark datasets. We further highlight some additional use cases for which our vanishing point detection algorithm can be used.Comment: Accepted for publication at German Conference on Pattern Recognition (GCPR) 2017. This research was supported by German Research Foundation DFG within Priority Research Programme 1894 "Volunteered Geographic Information: Interpretation, Visualisation and Social Computing

    MFL-YOLO: An Object Detection Model for Damaged Traffic Signs

    Full text link
    Traffic signs are important facilities to ensure traffic safety and smooth flow, but may be damaged due to many reasons, which poses a great safety hazard. Therefore, it is important to study a method to detect damaged traffic signs. Existing object detection techniques for damaged traffic signs are still absent. Since damaged traffic signs are closer in appearance to normal ones, it is difficult to capture the detailed local damage features of damaged traffic signs using traditional object detection methods. In this paper, we propose an improved object detection method based on YOLOv5s, namely MFL-YOLO (Mutual Feature Levels Loss enhanced YOLO). We designed a simple cross-level loss function so that each level of the model has its own role, which is beneficial for the model to be able to learn more diverse features and improve the fine granularity. The method can be applied as a plug-and-play module and it does not increase the structural complexity or the computational complexity while improving the accuracy. We also replaced the traditional convolution and CSP with the GSConv and VoVGSCSP in the neck of YOLOv5s to reduce the scale and computational complexity. Compared with YOLOv5s, our MFL-YOLO improves 4.3 and 5.1 in F1 scores and mAP, while reducing the FLOPs by 8.9%. The Grad-CAM heat map visualization shows that our model can better focus on the local details of the damaged traffic signs. In addition, we also conducted experiments on CCTSDB2021 and TT100K to further validate the generalization of our model.Comment: 11 pages, 8 figures, 4 table

    Traffic Sign Detection and Recognition with Voice Assistant

    Get PDF
    here are multitude of applications for detection and recognition of images across different fields. There are some specific applications for these systems used to help people to drive for example in autonomous driving as well as other applications. There has been another focus in the use of classification models used to help drivers providing details about their surrounding while driving. In places like Guadalajara, such models are a valuable tool to reduce traffic accidents. This document will explain the development of a detection and recognition of traffic signs model. This model has the intention of providing details about the meaning of the traffic signs. All this will happen close to real time and will be an additional information to the driver. This whole system could be used by anyone but specifically aimed to people with visual deficiencies. With the use of a robust machine learning and the use of Deep Learning (DL), the expectative is to achieve high accuracy levels on the traffic sign detection and recognition. This system is expected to be available and affordable for most of the drivers in Guadalajara.ITESO, A. C

    Dynamic texture recognition using time-causal and time-recursive spatio-temporal receptive fields

    Full text link
    This work presents a first evaluation of using spatio-temporal receptive fields from a recently proposed time-causal spatio-temporal scale-space framework as primitives for video analysis. We propose a new family of video descriptors based on regional statistics of spatio-temporal receptive field responses and evaluate this approach on the problem of dynamic texture recognition. Our approach generalises a previously used method, based on joint histograms of receptive field responses, from the spatial to the spatio-temporal domain and from object recognition to dynamic texture recognition. The time-recursive formulation enables computationally efficient time-causal recognition. The experimental evaluation demonstrates competitive performance compared to state-of-the-art. Especially, it is shown that binary versions of our dynamic texture descriptors achieve improved performance compared to a large range of similar methods using different primitives either handcrafted or learned from data. Further, our qualitative and quantitative investigation into parameter choices and the use of different sets of receptive fields highlights the robustness and flexibility of our approach. Together, these results support the descriptive power of this family of time-causal spatio-temporal receptive fields, validate our approach for dynamic texture recognition and point towards the possibility of designing a range of video analysis methods based on these new time-causal spatio-temporal primitives.Comment: 29 pages, 16 figure
    • …
    corecore