1,021 research outputs found

    Multivariate Statistical Process Control Charts: An Overview

    Get PDF
    In this paper we discuss the basic procedures for the implementation of multivariate statistical process control via control charting. Furthermore, we review multivariate extensions for all kinds of univariate control charts, such as multivariate Shewhart-type control charts, multivariate CUSUM control charts and multivariate EWMA control charts. In addition, we review unique procedures for the construction of multivariate control charts, based on multivariate statistical techniques such as principal components analysis (PCA) and partial lest squares (PLS). Finally, we describe the most significant methods for the interpretation of an out-of-control signal.quality control, process control, multivariate statistical process control, Hotelling's T-square, CUSUM, EWMA, PCA, PLS

    Multivariate control charts based on Bayesian state space models

    Full text link
    This paper develops a new multivariate control charting method for vector autocorrelated and serially correlated processes. The main idea is to propose a Bayesian multivariate local level model, which is a generalization of the Shewhart-Deming model for autocorrelated processes, in order to provide the predictive error distribution of the process and then to apply a univariate modified EWMA control chart to the logarithm of the Bayes' factors of the predictive error density versus the target error density. The resulting chart is proposed as capable to deal with both the non-normality and the autocorrelation structure of the log Bayes' factors. The new control charting scheme is general in application and it has the advantage to control simultaneously not only the process mean vector and the dispersion covariance matrix, but also the entire target distribution of the process. Two examples of London metal exchange data and of production time series data illustrate the capabilities of the new control chart.Comment: 19 pages, 6 figure

    Assessment of a diagnostic procedure for the monitoring and control of industrial processes

    Get PDF
    The definition of “energy efficiency” entails programming, planning and implementation of operational tools and strategies leading to the reduction of energy demand for the same offered services. Among the typical industrial energy uses, the production of compressed air represents certainly an important segment of potential saving. The present work studies the monitoring of the compressed air used for blow moulding of a packaging solution company. The study addresses the monitoring of compressed air line in term of operational and energy variables. The available measured data are used to evaluate the energy performance evolution during a year time. The work tackles the problem with two different approaches based on univariate and multivariate methods. The first method aims at finding a key performance index and a new univariate control chart related to energy/operational parameters to better monitor the performance of the compressed air plant. Besides, the multivariate analysis of the production process is applied in order to analyse the energy efficiency by also considering the multiple variables influencing the whole process itself. Final purposes are identify a new methodology for the production process analysis and evaluate flaws and strengths of these models

    An Examination of the Robustness to Non Normality of the EWMA Control Charts for the Dispersion

    Get PDF
    The EWMA control chart is used to detect small shifts in a process. It has been shown that, for certain values of the smoothing parameter, the EWMA chart for the mean is robust to non normality. In this article, we examine the case of non normality in the EWMA charts for the dispersion. It is shown that we can have an EWMA chart for dispersion robust to non normality when non normality is not extreme.Average run length, Control charts, Exponntially weighted moving average control chart, Median run length, Non normality, Statistical process control

    Multivariate Statistical Process Control Charts and the Problem of Interpretation: A Short Overview and Some Applications in Industry

    Get PDF
    Woodall and Montgomery in a discussion paper, state that multivariate process control is one of the most rapidly developing sections of statistical process control. Nowadays, in industry, there are many situations in which the simultaneous monitoring or control, of two or more related quality - process characteristics is necessary. Process monitoring problems in which several related variables are of interest are collectively known as Multivariate Statistical Process Control (MSPC). This article has three parts. In the first part, we discuss in brief the basic procedures for the implementation of multivariate statistical process control via control charting. In the second part we present the most useful procedures for interpreting the out-of-control variable when a control charting procedure gives an out-of-control signal in a multivariate process. Finally, in the third, we present applications of multivariate statistical process control in the area of industrial process control, informatics, and businessQuality Control, Process Control, Multivariate Statistical Process Control, Hotelling's T², CUSUM, EWMA, PCA, PLS, Identification, Interpretation

    Parametric, Nonparametric, and Semiparametric Linear Regression in Classical and Bayesian Statistical Quality Control

    Get PDF
    Statistical process control (SPC) is used in many fields to understand and monitor desired processes, such as manufacturing, public health, and network traffic. SPC is categorized into two phases; in Phase I historical data is used to inform parameter estimates for a statistical model and Phase II implements this statistical model to monitor a live ongoing process. Within both phases, profile monitoring is a method to understand the functional relationship between response and explanatory variables by estimating and tracking its parameters. In profile monitoring, control charts are often used as graphical tools to visually observe process behaviors. We construct a practitioner’s guide to provide a stepby- step application for parametric, nonparametric, and semiparametric methods in profile monitoring, creating an in-depth guideline for novice practitioners. We then consider the commonly used cumulative sum (CUSUM), multivariate CUSUM (mCUSUM), exponentially weighted moving average (EWMA), multivariate EWMA (mEWMA) charts under a Bayesian framework for monitoring respiratory disease related hospitalizations and global suicide rates with parametric, nonparametric, and semiparametric linear models
    corecore