171 research outputs found

    A Survey of Digital Watermarking Techniques

    Full text link
    Volume 1 Issue 6 (August 2013

    A Hybrid Digital Watermarking Approach Using Wavelets and LSB

    Get PDF
    The present paper proposed a novel approach called Wavelet based Least Significant Bit Watermarking (WLSBWM) for high authentication, security and copyright protection. Alphabet Pattern (AP) approach is used to generate shuffled image in the first stage and Pell’s Cat Map (PCM) is used for providing more security and strong protection from attacks. PCM applied on each 5×5 sub images. A wavelet concept is used to reduce the dimensionality of the image until it equals to the size of the watermark image. Discrete Cosign Transform is applied in the first stage; later N level Discrete Wavelet Transform (DWT) is applied for reducing up to the size of the watermark image. The water mark image is inserted in LHn Sub band of the wavelet image using LSB concept. Simulation results show that the proposed technique produces better PSNR and similarity measure. The experimental results indicate that the present approach is more reliable and secure efficient.The robustness of the proposed scheme is evaluated against various image-processing attacks

    A Non-Blind Image Watermarking Method for Copyright Protection

    Get PDF
       في هذا البحث ، تم تقديم طريقة العلامة المائية غير العمياء لحماية حقوق النشر الخاصة بالصور الرقمية الملونة. تعتمد هذه الطريقة على مجموعة من التحويلات الرقمية (DWT ، DCT) في مجال التردد. تعتمد عملية التضمين في هذه الطريقة على تقسيم الصورة المضيفة إلى كتل غير متراكبة 16 × 16 واستخدام مقياس إنتروبيا الحافة لاختيار الكتل المناسبة لعملية التضمين لزيادة عدم الإدراك في النظام المقترح. أما بالنسبة لعملية الاستخراج ، فهي تتم بطريقة تتطلب وجود الصورة الأصلية ولكنها تتبع نفس بروتوكول التضمين لاستخراج العلامة المائية المشفرة المضمنة . و لرفع مستوى الأمان ، تم تطبيق طريقة تشفير هجينة باستخدام الخريطة الفوضوية وترميز الحمض النووي لتشفير العلامة المائية قبل تضمينها. تظهر النتائج التجريبية أن الاختلافات بين الصورة ذات العلامة المائية والصورة الأصلية لا يمكن تمييزها. الطريقة المقترحة قاومت بشكل فعال هجمات معالجة الصور الشائعة.    In this paper, a non-blind watermarking method for protecting the copyright of digital color images is introduced. This method based on the combination of digital transforms (DWT, DCT) in the frequency domain. The embedding process in this method depends on the partition of the host image into 16×16 non-overlapped blocks and the use of edge entropy metric to choose the appropriate blocks for the insertion process for the purpose of increasing the imperceptibility of the proposed system. As for the extraction process, it is carried out in a way that requires the presence of the original image but rather follows the same embedding protocol to extract the embedded encrypted watermark. To raise the security level, a hybrid encryption method using the chaotic map and DNA coding has been applied for encrypting the watermark before embedding it. Experimental results demonstrate that the differences between the watermarked image and the original image are indistinguishable. The proposed method is effectively resisted common image processing attacks

    A Study in Image Watermarking Schemes using Neural Networks

    Full text link
    The digital watermarking technique, an effective way to protect image, has become the research focus on neural network. The purpose of this paper is to provide a brief study on broad theories and discuss the different types of neural networks for image watermarking. Most of the research interest image watermarking based on neural network in discrete wavelet transform or discrete cosine transform. Generally image watermarking based on neural network to solve the problem on to reduce the error, improve the rate of the learning, achieves goods imperceptibility and robustness. It will be useful for researches to implement effective image watermarking by using neural network

    An Efficient Digital Image Watermarking Based on DCT and Advanced Image Data Embedding Method

    Get PDF
    Digital image enhancement and digital content or data image secure using DCT and advanced image data embedding method (AIDEM). AIDEM improved robustness based on particle shifting concept is reproduced secure image data and manipulated there’s a robust would like for a digital image copyright mechanism to be placed in secure image data. There’s a necessity for authentication of the content because of the owner. It’s become more accessible for malicious parties to create scalable copies of proprietary content with any compensation to the content owner. Advanced Watermarking is being viewed as a potential goal to the current downside. Astounding watermarking plans are arranged assaults on the watermarked picture are twisted and proposed to give insurance of proprietorship freedoms, information treating, and information uprightness. These methods guarantee unique information recuperation from watermarked information, while irreversible watermarking plans safeguard proprietorship freedoms. This attribute of reversible watermarking has arisen as an applicant answer for the assurance of proprietorship freedoms of information, unfortunate to alterations, for example, clinical information, genetic information, Visa, and financial balance information. These attacks are also intentional or unintentional. The attacks are classified as geometric attacks. This research presents a comprehensive and old method of these techniques that are developed and their effectiveness. Digital watermarking was developed to supply copyright protection and owners’ authentication. Digital image watermarking may be a methodology for embedding some information into digital image sequences, like text image, image data, during this research analysis on image watermarking and attacks on watermarking process time image data, classification of watermarking and applications. We aim to secure image data using advanced image data embedding method (AIDEM) improved robustness based particle shifting concept is reproduced secure image data. To develop compelling digital image watermarking methodology using mat lab tool and reliable and robust

    A dual watermarking scheme for identity protection

    Get PDF
    A novel dual watermarking scheme with potential applications in identity protection, media integrity maintenance and copyright protection in both electronic and printed media is presented. The proposed watermarking scheme uses the owner’s signature and fingerprint as watermarks through which the ownership and validity of the media can be proven and kept intact. To begin with, the proposed watermarking scheme is implemented on continuous-tone/greyscale images, and later extended to images achieved via multitoning, an advanced version of halftoning-based printing. The proposed watermark embedding is robust and imperceptible. Experimental simulations and evaluations of the proposed method show excellent results from both objective and subjective view-points

    A single watermark based scheme for both protection and authentication of identities

    Get PDF
    The security of a watermarking scheme is mainly categorised as either robust or fragile. The former can withstand an authorised alteration/attack, primarily used in copyright protection. The latter follows a zero tolerance towards any modification, used primarily in content authentication processes. The existing literature in the field projects that two separate watermarks are required to make a watermarking scheme robust and fragile, thus making the overall process cumbersome and complex. A novel image watermarking scheme that uses only one watermark while achieving both goals of copyright protection and authentication of identities is presented. An unconventional concept of checkpointing is introduced, which equips the proposed scheme to be either robust or fragile, making it superior in its application versatility. First, watermark embedding within the host/original image is achieved by a combination of transform domain techniques along with a novel median-based embedding block selection procedure. Second, checkpointing is performed in the spatial domain. The watermarked image in the absence of an attack is correlated to the one that is being attacked, using the template energy comparison-based approach. In the case of the robust watermark, such checkpointing can establish whether the carried out attack is authorised or not, determining the successful recovery of the watermark or vice-versa. Moreover, in the case of the fragile watermark, a sole confirmation of the occurrence of an attack is sufficient to make the watermark recovery impossible. Finally, the experimental analysis of the proposed scheme illustrates its excellent performance and superiority over state-of-the-art methods within the field
    corecore