3,681 research outputs found

    Attributes of Big Data Analytics for Data-Driven Decision Making in Cyber-Physical Power Systems

    Get PDF
    Big data analytics is a virtually new term in power system terminology. This concept delves into the way a massive volume of data is acquired, processed, analyzed to extract insight from available data. In particular, big data analytics alludes to applications of artificial intelligence, machine learning techniques, data mining techniques, time-series forecasting methods. Decision-makers in power systems have been long plagued by incapability and weakness of classical methods in dealing with large-scale real practical cases due to the existence of thousands or millions of variables, being time-consuming, the requirement of a high computation burden, divergence of results, unjustifiable errors, and poor accuracy of the model. Big data analytics is an ongoing topic, which pinpoints how to extract insights from these large data sets. The extant article has enumerated the applications of big data analytics in future power systems through several layers from grid-scale to local-scale. Big data analytics has many applications in the areas of smart grid implementation, electricity markets, execution of collaborative operation schemes, enhancement of microgrid operation autonomy, management of electric vehicle operations in smart grids, active distribution network control, district hub system management, multi-agent energy systems, electricity theft detection, stability and security assessment by PMUs, and better exploitation of renewable energy sources. The employment of big data analytics entails some prerequisites, such as the proliferation of IoT-enabled devices, easily-accessible cloud space, blockchain, etc. This paper has comprehensively conducted an extensive review of the applications of big data analytics along with the prevailing challenges and solutions

    Digitalization Processes in Distribution Grids: A Comprehensive Review of Strategies and Challenges

    Get PDF
    This systematic review meticulously explores the transformative impact of digital technologies on the grid planning, grid operations, and energy market dynamics of power distribution grids. Utilizing a robust methodological framework, over 54,000 scholarly articles were analyzed to investigate the integration and effects of artificial intelligence, machine learning, optimization, the Internet of Things, and advanced metering infrastructure within these key subsections. The literature was categorized to show how these technologies contribute specifically to grid planning, operation, and market mechanisms. It was found that digitalization significantly enhances grid planning through improved forecasting accuracy and robust infrastructure design. In operations, these technologies enable real-time management and advanced fault detection, thereby enhancing reliability and operational efficiency. Moreover, in the market domain, they support more efficient energy trading and help in achieving regulatory compliance, thus fostering transparent and competitive markets. However, challenges such as data complexity and system integration are identified as critical hurdles that must be overcome to fully harness the potential of smart grid technologies. This review not only highlights the comprehensive benefits but also maps out the interdependencies among the planning, operation, and market strategies, underlining the critical role of digital technologies in advancing sustainable and resilient energy systems

    Big Data Analytics in Smart Grids for Renewable Energy Networks: Systematic Review of Information and Communication Technology Tools

    Get PDF
    El desarrollo industrial y económico de los países industrializados, a partir del siglo XIX, ha ido de la mano del desarrollo de la electricidad, del motor de combustión interna, de los ordenadores, de Internet, de la utilización de datos y del uso intensivo del conocimiento centrado en la ciencia y la tecnología. La mayoría de las fuentes de energía convencionales han demostrado ser finitas y agotables. A su vez, las diferentes actividades de producción de bienes y servicios que utilizan combustibles fósiles y energía convencional, han aumentado significativamente la contaminación del medio ambiente, y con ello, han contribuido al calentamiento global. El objetivo de este trabajo fue realizar una aproximación teórica a las tecnologías de análisis de datos e inteligencia de negocio aplicadas a las redes de sistemas eléctricos inteligentes con energías renovables. Para este trabajo se realizó una revisión bibliométrica y bibliográfica sobre Big Data Analytics, herramientas TIC de la industria 4.0 y Business intelligence en diferentes bases de datos disponibles en el dominio público. Los resultados del análisis indican la importancia del uso de la analítica de datos y la inteligencia de negocio en la gestión de las empresas energéticas. El trabajo concluye señalando cómo se está aplicando la inteligencia de negocio y la analítica de datos en ejemplos concretos de empresas energéticas y su creciente importancia en la toma de decisiones estratégicas y operativasThe industrial and economic development of the industrialized countries, from the nineteenth century, has gone hand in hand with the development of electricity, the internal combustion engine, computers, the Internet, data use and the intensive use of knowledge focused on science and the technology. Most conventional energy sources have proven to be finite and exhaustible. In turn, the different production activities of goods and services using fossil fuels and conventional energy, have significantly increased the pollution of the environment, and with it, contributed to global warming. The objective of this work was to carry out a theoretical approach to data analytics and business intelligence technologies applied to smart electrical-system networks with renewable energies. For this paper, a bibliometric and bibliographic review about Big Data Analytics, ICT tools of industry 4.0 and Business intelligence was carried out in different databases available in the public domain. The results of the analysis indicate the importance of the use of data analytics and business intelligence in the management of energy companies. The paper concludes by pointing out how business intelligence and data analytics are being applied in specific examples of energy companies and their growing importance in strategic and operational decision makinghttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000192503https://scholar.google.com/citations?user=9HLAZYUAAAAJ&hl=eshttps://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000005961https://orcid.org/0000-0003-1166-198

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems
    corecore