5,367 research outputs found

    A Universal Background Subtraction System

    Get PDF
    Background Subtraction is one of the fundamental pre-processing steps in video processing. It helps to distinguish between foreground and background for any given image and thus has numerous applications including security, privacy, surveillance and traffic monitoring to name a few. Unfortunately, no single algorithm exists that can handle various challenges associated with background subtraction such as illumination changes, dynamic background, camera jitter etc. In this work, we propose a Multiple Background Model based Background Subtraction (MB2S) system, which is universal in nature and is robust against real life challenges associated with background subtraction. It creates multiple background models of the scene followed by both pixel and frame based binary classification on both RGB and YCbCr color spaces. The masks generated after processing these input images are then combined in a framework to classify background and foreground pixels. Comprehensive evaluation of proposed approach on publicly available test sequences show superiority of our system over other state-of-the-art algorithms

    Illumination-Based Data Augmentation for Robust Background Subtraction

    Get PDF
    A core challenge in background subtraction (BGS) is handling videos with sudden illumination changes in consecutive frames. In this paper, we tackle the problem from a data point-of-view using data augmentation. Our method performs data augmentation that not only creates endless data on the fly, but also features semantic transformations of illumination which enhance the generalisation of the model. It successfully simulates flashes and shadows by applying the Euclidean distance transform over a binary mask generated randomly. Such data allows us to effectively train an illumination-invariant deep learning model for BGS. Experimental results demonstrate the contribution of the synthetics in the ability of the models to perform BGS even when significant illumination changes take place

    GLOBAL CHANGE REACTIVE BACKGROUND SUBTRACTION

    Get PDF
    Background subtraction is the technique of segmenting moving foreground objects from stationary or dynamic background scenes. Background subtraction is a critical step in many computer vision applications including video surveillance, tracking, gesture recognition etc. This thesis addresses the challenges associated with the background subtraction systems due to the sudden illumination changes happening in an indoor environment. Most of the existing techniques adapt to gradual illumination changes, but fail to cope with the sudden illumination changes. Here, we introduce a Global change reactive background subtraction to model these changes as a regression function of spatial image coordinates. The regression model is learned from highly probable background regions and the background model is compensated for the illumination changes by the model parameters estimated. Experiments were performed in the indoor environment to show the effectiveness of our approach in modeling the sudden illumination changes by a higher order regression polynomial. The results of non-linear SVM regression were also presented to show the robustness of our regression model

    Scene Monitoring With A Forest Of Cooperative Sensors

    Get PDF
    In this dissertation, we present vision based scene interpretation methods for monitoring of people and vehicles, in real-time, within a busy environment using a forest of co-operative electro-optical (EO) sensors. We have developed novel video understanding algorithms with learning capability, to detect and categorize people and vehicles, track them with in a camera and hand-off this information across multiple networked cameras for multi-camera tracking. The ability to learn prevents the need for extensive manual intervention, site models and camera calibration, and provides adaptability to changing environmental conditions. For object detection and categorization in the video stream, a two step detection procedure is used. First, regions of interest are determined using a novel hierarchical background subtraction algorithm that uses color and gradient information for interest region detection. Second, objects are located and classified from within these regions using a weakly supervised learning mechanism based on co-training that employs motion and appearance features. The main contribution of this approach is that it is an online procedure in which separate views (features) of the data are used for co-training, while the combined view (all features) is used to make classification decisions in a single boosted framework. The advantage of this approach is that it requires only a few initial training samples and can automatically adjust its parameters online to improve the detection and classification performance. Once objects are detected and classified they are tracked in individual cameras. Single camera tracking is performed using a voting based approach that utilizes color and shape cues to establish correspondence in individual cameras. The tracker has the capability to handle multiple occluded objects. Next, the objects are tracked across a forest of cameras with non-overlapping views. This is a hard problem because of two reasons. First, the observations of an object are often widely separated in time and space when viewed from non-overlapping cameras. Secondly, the appearance of an object in one camera view might be very different from its appearance in another camera view due to the differences in illumination, pose and camera properties. To deal with the first problem, the system learns the inter-camera relationships to constrain track correspondences. These relationships are learned in the form of multivariate probability density of space-time variables (object entry and exit locations, velocities, and inter-camera transition times) using Parzen windows. To handle the appearance change of an object as it moves from one camera to another, we show that all color transfer functions from a given camera to another camera lie in a low dimensional subspace. The tracking algorithm learns this subspace by using probabilistic principal component analysis and uses it for appearance matching. The proposed system learns the camera topology and subspace of inter-camera color transfer functions during a training phase. Once the training is complete, correspondences are assigned using the maximum a posteriori (MAP) estimation framework using both the location and appearance cues. Extensive experiments and deployment of this system in realistic scenarios has demonstrated the robustness of the proposed methods. The proposed system was able to detect and classify targets, and seamlessly tracked them across multiple cameras. It also generated a summary in terms of key frames and textual description of trajectories to a monitoring officer for final analysis and response decision. This level of interpretation was the goal of our research effort, and we believe that it is a significant step forward in the development of intelligent systems that can deal with the complexities of real world scenarios

    Improved foreground detection via block-based classifier cascade with probabilistic decision integration

    Get PDF
    Background subtraction is a fundamental low-level processing task in numerous computer vision applications. The vast majority of algorithms process images on a pixel-by-pixel basis, where an independent decision is made for each pixel. A general limitation of such processing is that rich contextual information is not taken into account. We propose a block-based method capable of dealing with noise, illumination variations, and dynamic backgrounds, while still obtaining smooth contours of foreground objects. Specifically, image sequences are analyzed on an overlapping block-by-block basis. A low-dimensional texture descriptor obtained from each block is passed through an adaptive classifier cascade, where each stage handles a distinct problem. A probabilistic foreground mask generation approach then exploits block overlaps to integrate interim block-level decisions into final pixel-level foreground segmentation. Unlike many pixel-based methods, ad-hoc postprocessing of foreground masks is not required. Experiments on the difficult Wallflower and I2R datasets show that the proposed approach obtains on average better results (both qualitatively and quantitatively) than several prominent methods. We furthermore propose the use of tracking performance as an unbiased approach for assessing the practical usefulness of foreground segmentation methods, and show that the proposed approach leads to considerable improvements in tracking accuracy on the CAVIAR dataset
    corecore