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ABSTRACT OF THESIS 

 

 

 

A UNIVERSAL BACKGROUND SUBTRACTION SYSTEM 

 

 Background Subtraction is one of the fundamental pre-processing steps in video 

processing. It helps to distinguish between foreground and background for any given 

image and thus has numerous applications including security, privacy, surveillance and 

traffic monitoring to name a few. Unfortunately, no single algorithm exists that can 

handle various challenges associated with background subtraction such as illumination 

changes, dynamic background, camera jitter etc. In this work, we propose a Multiple 

Background Model based Background Subtraction (MB
2
S) system, which is universal in 

nature and is robust against real life challenges associated with background subtraction. It 

creates multiple background models of the scene followed by both pixel and frame based 

binary classification on both RGB and YCbCr color spaces. The masks generated after 

processing these input images are then combined in a framework to classify background 

and foreground pixels. Comprehensive evaluation of proposed approach on publicly 

available test sequences show superiority of our system over other state-of-the-art 

algorithms. 

 

KEYWORDS: Background Subtraction, Color Spaces, Binary Classifiers, Foreground 

Segmentation, Pixel Classification. 
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Chapter 1 

Introduction 

 

In this chapter, we provide an introduction to background subtraction, its applications and 

our contribution. In first section, we give an overview and concept of background 

subtraction. Next, we briefly touch the applications and then outline our contributions in 

third section. The last section presents organization of the thesis.  

1.1. Background 

 

Background Subtraction (BS) is one of the most widely studied topics in computer 

vision. Typically, a BS process produces foreground (FG) binary mask given an input 

image and a background (BG) model.  

BS is a difficult problem primarily because of diversity in background scenes and 

challenges that are linked to camera itself. Scene variations can be in many forms such as 

dynamic background, illumination changes, intermittent object motion, shadows, 

environmental conditions (rain, snow, night etc), highlights and camouflage to name a 

few [8]. Likewise the challenges linked to camera can be due to camera jitter, sensor 

noise and/or camera movement (pan, tilt and zoom) etc. The existing state-of-the-art 

techniques can address only a subset of these challenges but most are sensitive to 

illumination changes, camera/background motion and environmental conditions [22][23]. 

No single technique exists that is able to simultaneously handle all key challenges or 

produce satisfactory results if not accurate. 
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1.2. Applications 

Background subtraction is a basic pre-processing step in video processing and 

therefore has numerous applications. One of the typical examples include traffic 

monitoring, where background subtraction algorithms has been widely used to monitor 

and control traffic flow by counting number of vehicles at different signals at different 

times of day. 

Another example is video surveillance, tracking and privacy, in which the subject is 

being segmented out from the video using background subtraction algorithms for further 

processing. The shape of foreground mask produced by these algorithms can also be 

employed for human detection and gesture recognition.   

These are only a few of many applications these algorithms offer but clearly indicates 

the need for a robust background subtraction algorithm. 

1.3. Contribution of Thesis 

In this thesis, we propose a BS system that is robust against various challenges 

associated with real world videos. The proposed approach uses a Background Model 

Bank (BMB) that comprises of multiple Background (BG) models of the scene. To 

separate true foreground pixels from changing background pixels caused by scene 

variations or camera itself, we apply both pixel and frame level binary classification on 

different color spaces to obtain multiple Foreground (FG) masks. They are then 

combined to produce a final output FG mask. 

The major contribution of this paper is a real time universal background subtraction 

system with following major innovations: the background model,  analysis and blending 

of RGB and YCbCr color spaces for BS and fusion of pixel and frame level Binary 
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Classifiers (BC). Another important contribution of this thesis is a comprehensive 

evaluation of ours and other state-of-the-art algorithms on a set of publicly available 

challenging sequences across 11 different categories totaling to 52 video sets. This is 

unlike the other algorithms in which authors tend to select certain metrics, choose or 

make test sequences of their own and compare with algorithms of their own choice. This 

makes overall comparison somewhat unfair and biased. The extensive evaluation of our 

system illustrate better foreground segmentation and superiority of our system in 

comparison with existing state-of-the-art approaches.  

1.4. Organization 

The rest of thesis is organized as follows: relevant work is discussed in chapter 2. The 

proposed system is detailed in chapter 3, followed by experiments and result comparison 

in chapter 4. The thesis is concluded in chapter 5. 
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Chapter 2  

Related Work 

 

There are a plethora of BS techniques, many of which are reviewed in surveys like [7], 

[11] and [21]. We can broadly divide these into 3 categories: pixel-based, region-based, 

and frame-based [1].  

2.1. Pixel based techniques 

Pixel-based algorithms are based on forming a statistical BG model for each pixel 

separately. Such algorithms are based on simple statistics such as mean value to complex 

multimodal distributions. The most simple techniques in this category include use of 

previous frame as background model, median value of pixels from a fixed number of 

recent images, running average and modeling of each pixel as a Gaussian to name a few 

[7][11].  

Most of the techniques based on these simple statistics including unimodal Gaussian 

methods are very fast and computationally inexpensive but produce poor segmentation 

results due to complex real world scenarios such as camera noise, moving background, 

camera jitter, sudden illumination changes etc. The most popular techniques in pixel 

based category are pixel-wise Gaussian Mixture Model (GMM) [9] and kernel densities 

[10].  

The GMM based techniques model per-pixel distribution of values observed overtime 

with mixture of Gaussians. The multimodal nature of these techniques allow them to cope 

with various real life challenges such as dynamic background. It has gained a lot of 

popularity and various improved versions have been presented in [21]. For example, in 

[37] authors take advantage of color and texture invariance and combine them with 
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GMM algorithm resulting in a more robust algorithm but it has proved to be 

computationally expensive and unsuitable for real time operation.  

Another improvement to GMM algorithm is introduced in [38]. This improvement 

overcomes one of the problems of fixed number of components for GMM. In this 

scheme, instead of fixing the number of components for each pixel authors estimate the 

appropriate number of components for each pixel dynamically and thus it overcomes the 

problem of choosing right number of components for each pixel. 

Apart from GMM, many algorithms based on non-parametric kernel density estimates 

exist. Most popular techniques in this category are [10] and [12].  For each pixel, these 

methods accumulate values from pixel's recent history and then builds histogram of 

background values. The histogram is then used to classify that whether a pixel belongs to 

foreground or background. The kernel density estimates helps to overcome two problems 

inherent in GMM based models; (a) choice of suitable shape for pixel probability 

distribution function and, (b) constant need for parameter estimation.  

The pixel based algorithms in general suffer from loss of inter-pixel spatial 

dependencies and try to address this issue by constantly updating the distribution 

parameters or model. However, it is difficult to determine an appropriate update rate to 

differentiate true foreground from drastic background changes such as caused by sudden 

variation in illumination or fast moving object. 

Codebook [39] and [40] is another class of techniques that have been reported in 

literature. It comprises of codebook for each pixel and is basically a compressed form of 

background. Each codebook has codewords, which are formed based on a sequence of 

training images using a color distortion metric. Incoming pixels are matched against 
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corresponding codebooks for classification. These techniques generally require long 

training sequences and do not have model update mechanism i.e. creation of new 

codewords if there is permanent change in scene[2].  

2.2. Region based techniques 

The second class of techniques are region-based techniques, which unlike their pixel 

based counterpart exploit local spatial relationships among pixels. In [12], authors present 

non-parametric kernel density estimate to model probability of foreground and 

background pixels but they include pixel location in the model. This is done using 

Maximum A Posteriori - Markov Random Field framework, which enforces spatial 

context among pixels. Although this method incorporates spatial information but the 

ability of these methods to handle events at various speeds raises the question of 

determining proper time interval for model update[2]. Another region based method is 

presented in [4], which uses statistical circular shift moments (SCSM) in image regions 

for change detection.  

Apart from these, there are a number of region based techniques [2], [41] and [42] 

that take into account spatial dependencies by considering blocks of different sizes 

instead of pixels individually. The basic underlying assumption is that the neighboring 

pixels undergo similar variation as the pixel itself. The blocks are formed using a 

sequence of images, which is followed by training a Principal Component Analysis 

(PCA) Model for each block. In [41], classification is done by comparing a block in 

current frame to its reconstruction from PCA coefficients  and  declared as background if 

observation is close. In contrast to [41], [42]  performs classification using threshold 

based on difference between current image and back projection of PCA coefficients. 
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These techniques are more robust against noise and illumination changes in comparison 

to their pixel based counterparts but lack any update mechanism.  

2.3. Frame based techniques 

Frame-based methods create statistical BG models for the entire frame. Many of the 

frame-based techniques are based on a shading model, which calculates the ratio of 

intensities between an input image and the reference frame or BG model [1][13]. Frame-

based techniques have not gained as much as popularity as pixel based approaches but are 

known to offer more robust solution against gradual as well as sudden illumination 

changes [21]. 

Based on the shading model, Pilet et al.[3] proposed a method that makes use of the 

ratio of intensities between an input image and background image. The ratio of intensities 

are then modeled as a Mixture of Gaussians(MoG) resulting in a Statistical 

Illumination(SI) model. In this method, spatial dependence is also incorporated in the 

framework by learning a spatial-likelihood model. Although this technique is robust to 

global illumination changes, it is not able to handle local illumination changes [1].   

Eigen background (EB) is a frame-based method that builds an eigenspace over 

expected illumination changes and reconstructs the BG image by projecting input image 

on the learned eigenspace [6]. The performance of EB strongly depends on an ad-hoc 

threshold and whether the global and local illumination changes can be well represented 

by a linear combination of background scenes in training set.  

Vosters et al. present an improved version by combining both EB and SI models in 

[1] at the expense of higher computation cost. EB reconstructs the BG image and then SI 
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model segments the image into FG and BG regions. They also improved SI by 

introducing an online instead of an offline spatial-likelihood model.   

Another, frame based technique is Tonal Alignment (TA) [14]. For an input image, 

change detection algorithm [15] is used to extract out BG pixels, subset of which are then 

used for histogram specification transform computation. The transformation then tonally 

aligns the input and background image. FG segmentation is done by pixel wise 

comparison of input and tonally aligned background image. TA is able to handle global 

illumination changes but fails to deal with local lighting changes. 

Apart from these, there exists methods [17][18] in literature that take advantage of 

illumination invariant features such as texture with edge or color and combine them for 

reconstructing BG images but they suffer from the possibility of texture absence in 

certain areas of image or poor color discrimination in low lighting conditions. 
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Chapter 3  

Background Subtraction System 

 

Background Subtraction can be generalized as a four step process: preprocessing, 

background modeling, foreground detection, and data validation. Preprocessing involves 

simple image processing on input video such as format conversion, image resizing etc for 

subsequent steps. Background modeling is responsible for constructing a statistical model 

of the scene, which is followed by pixel classification in foreground detection step. The 

final step, data validation removes the falsely detected foreground pixels and outputs the 

final foreground mask [7].      

Two of our innovations are related to background modeling and foreground detection 

steps and therefore we focus more on these two steps. For better understanding of the 

system, first we discuss aforementioned innovations and their motivation. Then, we 

provide a general overview of system as how these contributions when combined 

together result in a robust universal BS system. Next we detail the system parameter 

settings and their sensitivity. Lastly, we briefly discuss system's real time performance. 

3.1. Fusion of RGB and YCbCr Color Spaces 

The choice of color space is very critical to accuracy of foreground segmentation. 

Different color space including RGB, YCbCr, HSV, HSI, lab2000, normalized-RGB 

(rgb) have been employed by existing state of the art techniques. Among these color 

spaces, we focus on the most widely used color spaces for background subtraction: RGB, 

YCbCr, HSV and HSI [28][31]. 
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RGB has been an automatic choice because, (a) first, the brightness and color 

information is equally/uniformly distributed in all of the 3 channels, (b) second, it 

handles noise well [28] (b) third, it is the output format of most devices and camera and 

(c) fourth, it is computationally inexpensive in comparison to other color spaces[31].  

The remaining three color spaces YCbCr, HSV and HSI differ from RGB and are 

motivated by human visual system, which tends to assign a constant color to an object 

even under changing illumination over time or space [28][29]. These color spaces 

segregate the brightness and color information, which makes these color spaces more 

robust against noise, shadow, highlights and illumination changes  but at the cost of loss 

of brightness information [27][28][29][30][32]. YCbCr uses Cartesian coordinates 

whereas HSV and HSI color spaces use polar coordinates. 

In comparative studies on color spaces [27][28][30][31], YCbCr has been proven to 

overall outperform RGB, HSI and HSV color spaces and considered most suitable color 

space for foreground segmentation [28][30][31].  YCbCr is least sensitive to noise due to 

independent color channels followed by RGB, while HSI and HSV are affected by noise 

due to their polar coordinate description [28]. YCbCr is second to RGB in terms of 

computational cost.  For shadow and highlights, [27], [29] and [31] clearly indicate the 

superiority of YCbCr in handling shadow and illumination changes in comparison to 

other color spaces. 

In YCbCr, all 3 channels are independent of each other. Y channel represents the 

luminance whereas Cb & Cr channels represent chrominance.  RGB and YCbCr color 

spaces are related by eq 3.1 as in [28]: 
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                                                            (3.1) 

Based on the above comparison, YCbCr becomes a natural choice for segmentation 

purposes but , [29] and [30] identifies problematic behavior of YCbCr color space, when 

current image contains very low RGB values. The misclassification chances of dark pixel 

increases since dark pixels are close to the origin in RGB space and the fact that all 

chromaticity lines in RGB space meet at the origin, thus the color point is considered to 

be close or similar to any chromaticity line. It is not necessary that such scenario occur 

only when illumination levels are low globally but rather it is also true when an image is 

affected partially or certain portions of image are darker. In real life videos, this is 

common depending on position of illumination sources and scene geometry. Shadows 

casted by objects is one such example. This results in decrease in foreground 

segmentation accuracy. 

In order to address this issue, we propose to use two color spaces; YCbCr and RGB. 

This is contrary to all existing techniques that employ only one color space. The use of 

two color spaces is motivated by human visual system. The human visual system 

provides color vision by using two types of cells; rods and cones. Rods are used for 

vision in low light levels known as scotopic, in which color vision is not possible. At 

intermediate light levels(0.01 - 1 cd/m
2
), our vision is mesopic, in which both rods and 

cones are active. In mesopic light conditions color discrimination is poor. At high levels 
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or above (>1cd/m
2
), our vision becomes photopic, where cone activity is best and allows 

for good color discrimination [26].  

Like the human visual system, in which the cells for different lighting levels work 

together, we employ RGB and YCbCr color spaces. RGB color space plays its part under 

poor lighting conditions since chromatic information is uniformly distributed across RGB 

channels, Whereas under sufficient lighting condition, the incorporation of illumination 

invariant channels (Cb and Cr) provide a robust BG/FG classification. Hence, the two 

color spaces complement each other resulting in better foreground segmentation.  

To support our claim, a detailed quantitative analysis is presented in section 4 by 

comparing segmentation accuracy when the two color spaces are used together and when 

both are tested individually.   

3.2. Background Modeling 

BG modeling is a very crucial and one of most important steps in a BS process. We 

are convinced that if the model being built is accurate, even weak binary classifiers can 

produce comparable segmentation results. The most widely adapted BG modeling 

approaches, in its basic form is to build a multi-modal pixel-wise statistical background 

model. Such approaches suffer due to 2 reasons; first, it is difficult to determine the 

correct number of modes for modeling the pixel probability distribution function, second, 

and more importantly, inter-pixel dependencies are overlooked, which leads to poor 

segmentation results. 

In order to model the BG, we follow the conventional approach but we retain the 

inter-pixel spatial dependencies and build a more simpler single-mode instead of multi-

modal pixel wise model. More specifically, we build a Background Model Bank(BMB) 
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comprising of multiple BG models instead of a single BG model. To form BMB, each 

training image is treated as a vector. All images are then grouped together into N clusters 

using the K-means algorithm. This is followed by an estimation of a pixel-wise single-

mode Gaussian model     
       

      for each color component   of each cluster  . It 

should be noted that component means one of the color channels (R, G, B, Y, Cb and Cr) 

of color spaces.  

The concept of multiple BG models allow us to capture scene more accurately while 

keeping spatial dependencies intact. Another important aspect is that it is computationally 

comparable to conventional approach, since for classification, first we choose a model at 

frame level and then for pixel wise comparison, choice of probability distributions are 

restricted to chosen model while remaining BG models are ignored. The only additional 

cost is choosing the model at frame level but at the same time computational cost is 

reduced since each pixel is represented by single-mode instead of multi-mode 

distribution.    

The approach of multiple BG models has proved to capture scene diversity and 

camera variations more robustly and allowed us to employ simple binary classifiers for 

pixel classification in comparison to complex and multi-modal techniques. This is evident 

from the results on various challenging test sequences. 

 

3.3. Binary Classifiers 

 

In our proposed scheme, we use three different types of Binary Classifiers(BC) based 

on the type of comparison and how they are thresholded. In a typical BS process, this step 

is known as foreground detection. The details of BCs are described in this section.  
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3.3.1. Pixel Level Binary Classifier(PBC) 

 

This BC performs a pixel-level comparison between each pixel in each color channel 

with the corresponding BG pixel distribution from the chosen BMB model. The threshold 

is also based solely on the pixel distribution itself. Specifically, for pixel classification we 

have eq 3.2. 

      
               

               

                             (3.2) 

 

where       is the input image,     
       

      is the chosen BMB model, 

and     is a parameter as discussed in system parameters section.  

3.3.2. Pixel and Frame Level Binary Classifier(PFBC) 

 

This BC is a hybrid approach in which comparison is done on pixel level but 

threshold is calculated at frame-level. The motivation behind this approach is that 

estimation of threshold at frame level allows us to account for inter-pixel dependencies 

and produces more accurate masks in comparison to if pixels are thresholded 

independently. For this purpose, we consider the global spatial statistics of the average 

BG frame given by eq 3.3 and eq 3.4: 

   
 

   
    

                                                      (3.3) 

and 

    
 

     
     

       
 

       (3.4) 
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and compute the foreground mask based on the deviation from this global statistics using 

eq 3.5: 

      
                                                        (3.5) 

    is a parameter as discussed in system parameters section.  

3.3.3. Frame Level Binary Classifier(FBC) 

 

This BC performs both comparison and thresholding at frame-level. It uses the 

Quotient Image        and its inverse         between the input and the BG average 

given by eq 3.6 and eq 3.7: 

       
     

      
                                                       (3.6) 

and 

          
 

      
                                                      (3.7) 

The motivation behind this BC is twofold: first is to keep pixel spatial dependencies 

intact and secondly, we assume that the chosen BG model is ideally the same as input 

image and therefore, BG pixels should have their QI and IQI values equal to 1 while 

remaining pixels represent FG. We use both QI and IQI so as to avoid using both a lower 

and an upper threshold. As the majority of the pixels are background, the mean value 

provides a good lower threshold to identify foreground pixels given by eq 3.8 and eq 3.9:  

 

      
                                                             (3.8) 

and  

      
                                                            (3.9) 
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where   is introduced to account for non-idealities between input image and average BG 

model and discussed in system parameters section.  

3.3.4. Discussion on Binary Classifiers 

 

Based on comprehensive analysis and evaluation, each of the BC has its own 

strengths and weaknesses. Let TP = True positive, TN = True negative, FP = False 

Positive and FN = False Negative. 

PBC is most accurate in terms of TP and FN but results in most number of FP and 

least TN. PFBC produces less TP and FN than PBC but at same time is more accurate by 

producing less FP and more TN than PBC. FBC produces least TP and most FN but is 

most accurate in terms of FP and TN. In terms of accuracy, we can easily conclude the 

superiority of PFBC over other two BCs, followed by FBC over PBC. The superiority of 

both PFBC and FBC over PBC also emphasizes the importance of inter-pixel spatial 

dependencies.  

In totality, when these simple and computationally inexpensive BCs are treated 

independently and then combined together in a framework, they complement each other 

well to produce more accurate foreground mask. This is contrary to all existing 

techniques in which a single but complex classifier is used. 

3.4. Process Overview 

 

In this section, we give an overview of the complete system and how different 

components of system work together. The proposed system consists of seven steps as 

shown in Figure 3.1. The first two steps are a part of training phase involving training 

images denoted by M. Training images are expected to comprise of scene and camera 
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variations. We split training images into two sets and then use them for BMB formation 

and parameter training.  Each step of proposed system is detailed below.  

Step 1: BMB Formation 

The first step is to build a BMB comprising of N number of background models from 

training images. For BMB, it is not necessary that training images are foreground free. 

This is one of fundamental requirements for any BS algorithm, since for every scene, it is 

impossible to obtain training images without foreground. The criteria to set N is 

discussed in parameter setting section.  

Step 2: Automatic Parameter Training  

The proposed system requires a number of parameters. In order to determine these 

parameters, a number of training images with foreground and their respective ground 

truths are used. The details of these parameters and the criteria on how we set them is 

detailed in system parameters section. Once the BMB is formed and optimal parameters 

are determined, the training phase ends. 

Step 3: Component BG Model Selection 

Next step is to select an appropriate BG Model for each of the color channels of an 

input image. The selection criterion is based on minimizing the total error given by eq 

3.10: 

                           
                                 (3.10) 

 

where   represents each of the color channels and       is the input frame. 

 

 



18 
 

Step 4: Components Mask Generation  

In this step, the color channels and their respective selected BG models are passed 

onto BCs, each generating a respective binary component mask. We denote the 

foreground mask for color channel   generated by the  th 
BC as       

   . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3.1. MB
2
S Background Subtraction System. 
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Step 5: Foreground Detection Mask  

Following the generation of component masks, we aggregate the component masks 

using eq 3.11 and eq 3.12: 

                    
                                        (3.11) 

 

                      
                                   (3.12) 

The aggregation computes an overall likelihood on whether a pixel belongs to FG or 

BG based on the results of all BCs. The procedure to determine       and        is 

described in system parameters section. We then dilate these masks and multiply them to 

obtain the Foreground Detection (FGD) mask given by eq 3.13:  

                                                               (3.13) 

The FGD mask is not the final mask. The relaxed thresholds and the dilation are to 

ensure that all true foreground pixels are captured in the FGD mask. 

Step 6: Component Mask Purging  

The FGD mask is then applied to each of the component masks obtained in step 3. 

This removes all of the falsely detected foreground regions and increases our confidence 

in classifying FG and BG pixels in the final step. The resulting component masks are 

given by eq 3.14: 

      

             
                                           (3.14) 

Step 7: Output FG Mask  

In the final step of the process, all of the       

       are combined to 

form        
       and          

       masks given by eq 3.15 and eq 3.16. 
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                                                (3.15) 

 

         
                 

                                            (3.16) 

The thresholds      and        differ from those in step 5 in that this final step 

provides tighter thresholds to eliminate BG pixels that are erroneously included in 

previous step. The final output FG mask is simply obtained by the logical OR of these 

two masks.  

 

3.5. System Parameters 

 

The system has six parameters; N, cPW, cSI, c, τRGB and       . Among the six 

parameters,     ,        and N are most critical in order of their importance. The 

evaluation on over 50 test sequences has show very little variance for remaining three 

parameters and use of default values are recommended. The default values are also 

discussed in this section.  

In order to understand the impact of      ,        and N on segmentation accuracy, 

we present a detailed analysis of these parameters on one of the test sequences using F-

measure metric. The F-measure metric is defined in chapter 4. Figure 3.2 depicts the 

variation of F-measure against N,      and        while fixing remaining parameters to 

default values. 
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(a)  

 
 

(b)  

 

 
 

(c)  

 

Figure 3.2. System Parameter Variations. (a) F-Measure variation with number of BG 

models (N). (b) F-Measure variation with      and        individually. (c) F-Measure 

variation with both      and        combined. 

 

It would be natural to think of a linear relationship between N and F-measure but 

looking at Figure 3.2a reveals that such a relationship does not hold and hence it is 

important to determine N for any given scenario. Furthermore, increasing N beyond 
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certain limit deteriorates the F-measure. Similar to N, optimal value of both      and 

       are dependent on the scene. In general, increasing both the values increases F-

measure but after a certain value the F-measure plummets. Another important observation 

is that optimal setting of        is lower than that of     . In Figure 3.2c, we illustrate 

the effect on F-measure, when      and        are varied i.e. the case when both color 

spaces are used. In this case, it is important to note that determining the values of      

and         independently does not necessarily result in optimal combination and 

therefore may affect the segmentation accuracy. Thus, it is important to find the right 

combination of      and       .  

In order to set these parameters, we devise three types of parameter settings; default, 

optimal and standard. Each type of setting has its own advantages and disadvantages.  

3.5.1. Default Setting 

 

In this mode, the system does not run the Automatic Parameter Training step rather 

default parameter values are used. This option allows quick system deployment and also 

removes the hassle of training step but may not produce optimal results. The default 

system parameters are: N=15, cPW = 350, cSI=0.75, c=1.2, τRGB=5, and       = 4. These 

settings are based on results obtained for more than 50 videos sequences of diverse nature 

and has proved to perform well.  

3.5.2. Optimal Setting 

 

This option runs the Automatic Parameter Training step and determines the setting of 

parameters that produce optimal results. In order to determine the parameters N, cPW, cSI, 
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c, τRGB, and       , a number of training images with foreground and their ground truth 

are passed on to the algorithm. A three step procedure is then followed: 

Step 1: The number of background models N in BMB ranges from 2 to 50. For each N, 

all of the BCs are run over training images to determine cPW, cSI and c parameters. Since, 

the BCs are independent of each other, their parameters are determined exclusively based 

on the masks generated from their respective BS modules. For each value of cPW, cSI  and 

c, the masks generated from respective BCs are evaluated using F-measure metric. The 

value of cPW, cSI  and c that results in highest F-measure is chosen and set.  

Step 2: After fixing cPW, cSI and c, we determine      and        parameters. Both 

threshold values are varied in combination and similar to cPW, cSI and c, the value of      

and        that results in highest F-measure is chosen.    

Step 3: The parameters      and        are simply one less than      and 

       respectively. 

Once the procedure is completed for all possible values of N, the optimal setting of 

parameters is determined by simply choosing the combination of parameters that offers 

the highest F-measure over training images. This completes the parameter setting and 

training.  

3.5.3. Standard Setting 

 

In this type of setting, all parameters are same as default settings except τRGB and 

      . Both of these parameters are determined using the step 2 of procedure outlined in 

optimal setting. This is done by simply fixing the other parameters to default values and 

then passing the training images and their respective ground truth. By considering two 

most critical parameters;      and       , this setting offers quick but more accurate 
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foreground segmentation than default setting. Table 3.1 reports the typical range of each 

of the parameters we found over 53 test sequences.       

     

Table 3.1. Typical range of parameters. 

 

Parameter 

Minimum 

Value 

Maximum 

Value 

Typical  

Value 

N 3 50 15 

M 100 1000 300 

cPW 300 400 350 

cSI 0.6 0.98 0.75 

c 1 1.5 1.2 

     4 7 6 

       3 6 4 

 

3.6. Real time operation 

 

The proposed system is currently implemented in Matlab and with default settings, it 

is able to achieve real time operation with 11 fps for images with a resolution of 320 x 

240 on an Intel core i7 PC with 16GB RAM.  

 

 Figure 3.3. Variation of Frames Per Second(FPS) with increase in Number of BG                

 Models (N). 
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 Figure 3.3 shows how the system performance is affected with increase in number 

of background models N. Clearly, there is a decrease in FPS with increasing N but it does 

not drops down sharply. With implementation in C/C++, naturally the processing time is 

further going to be decreased resulting in increase in FPS. 

In addition to this, although system uses 2 color spaces; RGB and YCbCr but for 

simple scenes or based on user choice, only one of the color spaces can be used. This will 

cut down the number of per-pixel operations by half and therefore significantly increase 

the speed but at the cost of segmentation accuracy.   
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Chapter 4  

Experiments and Results 

 

In this chapter, we compare proposed system with existing state of the art algorithms on 

publicly available test sequences. Two type of datasets are included; 

changedetection[22][23] and ESI[16]. 

The reason to choose these datasets is to avoid bias unlike other techniques and also 

offer comprehensive insight of strengths and weaknesses of our system. The two datasets, 

parameter setting and evaluation criteria  are detailed in following sections: 

4.1. Changedetection dataset 

 

The changedetection dataset[23] is one of the most comprehensive datasets available 

for evaluating BS algorithms and has become a defacto standard. It comprises of 11 

categories: Baseline(BL), Dynamic Background(DB), Camera Jitter(CJ), Intermittent 

Object Motion(IOM), Shadow(S), Thermal(TH), Bad Weather(BW), Low 

Framerate(LFR), Night Videos(NV), Pan Tilt Zoom(PTZ) and Turbulence(TB). Each 

category comprises of 4 to 6 videos and they total to 53 videos sequences. For details of 

these categories we refer authors to its official webpage at [23]. 

4.1.1. Evaluation Metrics 

 

For fair comparison, we use metrics recommended by authors in [22][23]. Seven 

different metrics have been used: 

1.              
  

     
 

2.                 
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3.                          
  

     
 

4.                          
  

     
 

5.                                               
       

             
 

6.               
  

     
 

7.             
     

     
 

For each video in a category, the seven metrics are calculated and then average value 

of each metric for all videos in that category is calculated. This is followed by calculating 

average rank which is defined as:  

                                                                

                             

4.1.2. Parameter Setting 

 

In this section we discuss the parameter setting of test sequences for all of 10 

categories. Table 4.1 presents the parameter settings for all test sequences. These 

parameters are calculated based on standard parameter setting procedure explained in 

System Parameters section. For each test sequence, we use 20 images with foreground 

and their respective ground truths from training images. Although more than 20 images 

could have been used for determining the optimal parameter setting but to simplify the 

evaluation procedure over large dataset, we limit the number to 20. For details of 

parameter used by other techniques, we refer readers to the website at [23]. 
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Table 4.1. Parameter values for Changedetection Dataset. 

Category Test Sequence MB
2
S-

RGB 

MB
2
S-

YCbCr 

MB
2
S-Standard 

                        

BL Highway 7 5 7 5 

Office 7 5 7 5 

Pedestrians 7 4 7 4 

PETS2006 7 5 7 5 

DB Boats 5 5 5 4 

Canoe 4 5 4 4 

Fountain01 6 4 6 4 

Fountain02 7 5 7 4 

Overpass 6 5 6 4 

Fall  5 4 5 4 

CJ Badminton 5 4 5 4 

Boulevard 5 4 5 4 

Sidewalk 3 3 3 3 

Traffic 5 4 5 4 

IOM AbandonedBox 6 5 5 4 

Parking 5 4 5 4 

Streetlight 5 4 5 5 

Sofa 5 5 5 4 

Tramstop 5 4 5 4 

winterDriveway 6 6 5 4 

TH Corridor 7 4 7 4 

Library 5 4 4 4 

park 6 4 5 4 

diningRoom 6 6 6 4 

lakeSide 4 3 4 3 

BW Blizzard 5 5 5 5 

Skating 5 5 5 5 

snowFall 5 5 5 5 

wetSnow 5 5 5 5 

LFR Port 6 4 6 4 

tramCrossroad 5 4 5 4 

tunnelExit 5 4 5 4 

Turnpike 4 4 4 4 

NV bridgeEntry 4 4 5 3 

busyBoulvard 4 4 5 3 

fluidHighway 6 5 6 5 

streetCorneratNight 5 4 5 4 

tramStation 6 5 6 5 

winterStreet 5 4 5 4 

PTZ continuousPan 6 5 6 5 

intermittentPan 6 5 6 5 

twoPositionPTZ 5 4 5 4 

zoomInzoomOut 5 5 6 5 

T Turbulence0 6 4 6 4 

Turbulence1 6 4 6 4 

Turbulence2 6 4 6 4 

Turbulence3 6 3 6 3 
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4.1.3. Quantitative Evaluation 

 

In this section, we compare proposed system with existing state of the art algorithms. 

[23] presents a detailed comparison of 14 state of the art algorithms on changedetection 

dataset. It contains overall as well as results for individual categories. Here, we only 

mention top 5 techniques but based on the statistics available on [23], comparison is done 

against all 14 algorithms. 

Table 4.2. MB
2
S Quantitative Evaluation. 

Method Category Avg 

rank 

Avg 

Re 

Avg 

Sp 

Avg 

FPR 

Avg 

FNR 

Avg 

PWC 

Avg F- 

Measure 

Avg 

Pr 

Rank  

MB2S-Standard BL 3.71 0.9396 0.9977 0.0023 0.0605 0.4587 0.9371 0.9348 3 

MB2S-default 8.85 0.9822 0.9914 0.0086 0.0179 0.8885 0.8974 0.8304 8 

MB2S-RGB 7.57 0.8692 0.9974 0.0026 0.1308 0.7449 0.8944 0.9224 7 

MB2S-YCbCr 9.42 0.9438 0.9948 0.0052 0.0562 0.6874 0.8823 0.8312 9 

MB2S-Standard CJ 2.14 0.8318 0.9921 0.0079 0.1682 1.4641 0.8394 0.8503 1 

MB2S-default 2.28 0.7718 0.9923 0.0077 0.2282 1.5956 0.8046 0.8561 1 

MB2S-RGB 4.57 0.7601 0.9873 0.0127 0.2399 2.2404 0.7709 0.7944 4 

MB2S-YCbCr 2.85 0.7849 0.9917 0.0083 0.2151 1.6906 0.8457 0.7931 3 

MB2S-Standard BW 10.42 0.7126 0.9936 0.0064 0.2874 1.0964 0.6995 0.7078 13 

MB2S-default 11.42 0.8095 0.9857 0.0143 0.1905 1.6956 0.6242 0.5177 14 

MB2S-RGB 10.14 0.7264 0.9938 0.0062 0.2736 1.0797 0.7062 0.7234 13 

MB2S-YCbCr 12.85 0.6127 0.9938 0.0062 0.3873 1.2317 0.6355 0.6862 14 

MB2S-Standard DB 4.71 0.8080 0.9989 0.0011 0.1921 0.3434 0.7862 0.8002 4 

MB2S-default 5.71 0.8750 0.9950 0.0050 0.1250 0.6520 0.7346 0.7007 5 

MB2S-RGB 8 0.6642 0.9987 0.0013 0.3358 0.5065 0.7067 0.8030 7 

MB2S-YCbCr 7.71 0.7482 0.9970 0.0030 0.2529 0.5560 0.7459 0.7512 7 

MB2S-Standard IOM 7 0.8134 0.9460 0.0540 0.1866 5.7699 0.6194 0.5681 4 

MB2S-default 7 0.8134 0.9460 0.0540 0.1866 5.7699 0.6194 0.5681 4 

MB2S-RGB 7.57 0.7391 0.9577 0.0423 0.2609 5.2722 0.6135 0.5787 6 

MB2S-YCbCr 7.57 0.8052 0.9347 0.0653 0.1948 6.7623 0.5986 0.5361 6 

MB2S-Standard LFR 4 0.6749 0.9971 0.0029 0.3250 1.2204 0.6611 0.6981 1 

MB2S-default 5.14 0.6834 0.9968 0.0032 0.3166 1.3981 0.6205 0.6803 3 

MB2S-RGB 5.28 0.6712 0.9958 0.0042 0.3288 1.1915 0.6512 0.6729 3 

MB2S-YCbCr 7.28 0.6434 0.9947 0.0053 0.3566 1.7530 0.5662 0.6294 7 

MB2S-Standard NV 6.28 0.5652 0.9786 0.0214 0.4348 2.9718 0.4235 0.3664 4 

MB2S-default 7.71 0.4536 0.9852 0.0148 0.5464 2.5945 0.3905 0.3931 7 

MB2S-RGB 5.28 0.6153 0.9771 0.0229 0.3847 3.0424 0.4389 0.3630 4 

MB2S-YCbCr 6.71 0.5463 0.9783 0.0217 0.4537 3.1147 0.3980 0.3502 4 

MB2S-Standard PTZ 4.85 0.6744 0.9430 0.0570 0.3254 5.9919 0.3630 0.3491 3 

MB2S-default 5.14 0.8283 0.8882 0.1118 0.1718 11.304 0.2831 0.2360 4 

MB2S-RGB 6.14 0.6226 0.9283 0.0717 0.3774 7.5276 0.3310 0.3516 4 

MB2S-YCbCr 6.28 0.7140 0.8426 0.1573 0.2859 15.758 0.0187 0.0095 5 

MB2S-Standard T 9 0.8547 0.9755 0.0245 0.1453 2.8995 0.7445 0.6681 10 

MB2S-default 9.42 0.8244 0.9681 0.0319 0.1756 3.5358 0.7030 0.6469 11 

MB2S-RGB 9.71 0.8018 0.9738 0.0262 0.1982 3.2405 0.6998 0.6417 12 

MB2S-YCbCr 9.71 0.9294 0.9574 0.0426 0.0706 4.3145 0.6687 0.5352 12 

MB2S-Standard TB 8.42 0.7420 0.9870 0.0130 0.2580 1.4230 0.5517 0.5630 8 

MB2S-default 10.14 0.7047 0.9851 0.0149 0.2952 1.7196 0.5062 0.5127 12 

MB2S-RGB 11.42 0.6228 0.9890 0.0110 0.3772 1.3817 0.3609 0.3192 15 

MB2S-YCbCr 9.57 0.8244 0.9830 0.0170 0.1756 1.7575 0.5134 0.4653 11 
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Table 4.2 details complete results of our algorithm for four different cases: standard 

parameter setting, default parameter setting, using RGB and YCbCr color spaces 

individually. These are denoted by MB
2
S-Standard, MB

2
S-default, MB

2
S-RGB and 

MB
2
S-YCbCr respectively. Such a comparison will later help us to analyze the 

robustness that is offered by using both color spaces together and separately. 

In 7 out of 10 categories, the proposed system is placed among top 4 with 1st position 

in CJ and LFR categories.  Table 4.3 presents an overall comparison of proposed system 

with top 5 algorithms; Flux Tensor with Split Gaussian models(FTSG)[24], 

suBSENSE[25], CwisarDH[33], Spectral-360[34] and Bin Wang Apr 2014 [35]. For 

overall comparison, Average Ranking across all Categories(ARC) is calculated, which is 

given by eq 4.1: 

    
                               

                    
                                    (4.1) 

Our proposed system achieves an ARC of 5.1 and is placed at 4th position out of 14 

existing state of the art algorithms. Also note that with default setting or use of one color 

space, the system is placed at 6th position. Note that this position is out of 14 existing 

state of the art.   

Table 4.3. Overall Comparison. 

Method ARC Position 

MB
2
S-Standard 5.1 4 

MB
2
S-default 6.9 6 

MB
2
S-RGB 7.5 6 

MB
2
S-YCbCr 7.8 6 

FTSG[24] 2.1 1 

suBSENSE[25] 2.7 2 

CwisarDH[33] 4.4 3 

Spectral-360[34] 5.2 5 

Bin Wang Apr 2014[35] 6.8 6 
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4.1.4. Qualitative Results 

 

Figure 4.1 presents some sample results of proposed system for different categories of 

changedetection dataset. Complete set of results for all categories will be made available 

at our website [36]. 

 

BL CJ DB LFR IOM NV BW TH PTZ T 

          

          

          

Figure 4.1. Foreground Segmentation results of example frames from changedetection 

dataset. (top row) input image, (middle row) ground truth and (bottom row) MB
2
S-

standard segmentation result. 

4.1.5. Discussion on Results 

 

There are several key points that are highlighted through comprehensive evaluation 

and results. First, the results support the claim that using RGB and YCbCr color spaces 

produce more accurate results in comparison to when they are employed individually. 

This is clear from overall higher position and ARC of both MB
2
S-Standard and MB

2
S-

default than MB
2
S-RGB and MB

2
S-YCbCr.  

Second important point is the performance of MB
2
S-RGB and MB

2
S-YCbCr for 

Night Videos(NV) and Bad Weather category. NV has low lighting conditions and BW 

has poor color discrimination problem. From Table 4.3, we can see that MB
2
S-RGB has 

an average ranking of 5.28, which is not only higher than that of 6.71 of MB
2
S-YCbCr 

but also higher than 6.28 and 7.71 of MB
2
S-Standard and MB

2
S-default, respectively. 

Likewise for BW, MB
2
S-RGB has higher average ranking than other three. This supports 



32 
 

our earlier claim that RGB is more robust under low lighting conditions or when color 

discrimination is poor.  

Third, in general, RGB performs well in simple background scenes with minimum 

noise, whereas YCbCr is more robust against noise. This is evident from higher average 

ranking of MB
2
S-RGB in categories such as BL and LFR and higher average ranking of 

MB
2
S-YCbCr in CJ and DB categories.    

 Fourth, despite use of standard parameter setting and fixed number of BG models N, 

our proposed system performs well in 7 categories, whereas it performs poorly in 3 

categories; Thermal, Bad Weather and Turbulence. This has resulted in overall position 

to drop down to 4th. The main reason is that in some of video sequences the scene 

changes over time and model update is required. This is lacking in our current system and 

has resulted in poor performance in  aforementioned categories. For example in case of 

thermal, in one of video sequences when a person sitting on a chair stands up after a 

while and leaves, the higher temperature of chair results in misclassifications of chair as 

foreground. Another example is from one of test sequences in bad weather in which when 

snow is cleared from pathway, it becomes foreground and remains foreground since 

model is not updated resulting in poor performance.  

Lastly, with the incorporation of BG model update and use of optimal parameter 

setting, the proposed system is expected to outperform the existing state of the art on all 

categories.  

4.2. ESI dataset 

 

Robustness of BS algorithm against sudden illumination changes is very critical to its 

success in real life scenarios. This is especially true for indoor environments, where 
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sudden lighting change occurs often such as opening and closing of door, switching light 

on and off etc. Changedetection dataset lacks any such category, therefore, we include 

ESI dataset and instead of comparing with general BS algorithms, we compare its 

performance with algorithms that specialize in dealing with this challenge. In our 

opinion, ESI dataset[16] is the most challenging publicly available test dataset in terms of 

sudden illumination changes.  

ESI dataset comprises of 5 of test sequences; sofa, walking, chair, scene1 and scene2 

[1]. They have 382, 734, 573, 750 and 154 frames respectively. For evaluation purposes, 

since the test sequences sofa, chair and walking have the same background scene/model, 

we combine  h s   hr    n o   s ng     s  s qu nc  “Hous ” compr s ng of 1689 fr m s. 

We now discuss the evaluation metrics, parameter setting for all test sequences and also 

present quantitative and qualitative results. 

4.2.1. Evaluation Metrics 

 

For quantitative evaluation of ESI dataset, we use three metrics as defined earlier; 

precision, recall and F- measure. Precision and Recall are calculated for whole of a test 

sequence as arithmetic mean over all frames. Using this precision and recall, F-Measure 

is calculated. 

4.2.2. Parameter Setting 

 

For parameter training, optimal setting procedure is used as described in System 

Parameters section. Table 4.4 reports the number of training images M used for making 

background models and parameters used for each test sequence.  
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Table 4.4. Parameter Values for ESI test sequences. 

Sequence M N CPW CSI C             

House 200 35 350 0.65 1.2 5 4 

Scene1 250 30 300 0.7 1.25 4 4 

Scene2 300 35 400 0.8 1.1 5 4 

 

 

4.2.3. Quantitative Evaluation 

 

The scores of our proposed approach for all test sequences are tabulated in Table 4.5. 

A comparison of existing state-of-the-art techniques with our proposed approach on the 

three test sequences: house, scene1 and scene2 [1] is depicted in Figure 4.2. The 

techniques include; Eigen background based Statistical Illumination (ESI) [1], Statistical 

Illumination (SI) [3], Eigen Background (EB) both dynamic and fixed [20][6], Tonal 

Alignment (TA) [14] and Adaptive Background Mixture Model (ABMM)[19]. The 

results for these techniques are obtained from [1].    

Table 4.5. Precision, Recall and F-Measure for MB
2
S. 

Sequence Precision% Recall% F1 score 

House 78.46 78.67 78.56 

Scene1 83.99 83.07 83.53 

Scene2 73.48 75.97 74.70 

 

4.2.4. Qualitative Results 

 

For qualitative results, we choose the ESI technique as benchmark for comparison 

purposes. Figure 4.3, Figure 4.4 and Figure 4.5 not only present comparative results of 

our approach on some of example frames from house, scene1 and scene2 test sequences, 

but also depict the challenging nature and variation of illumination in these test 
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sequences. Complete comparative video of all test sequences with ground truth and input 

images can be found at our website[36]. 

 
 

Figure 4.2. F-Measure of Test Sequences. 
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Figure 4.3. Foreground Segmentation results of example frames from test sequence 

house. 
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Figure 4.4. Foreground Segmentation results of example frames from test sequence 

scene1. 
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Figure 4.5. Foreground Segmentation results of example frames from test sequence 

scene2. 

4.2.5. Discussion on ESI dataset Results  

 

For scene1, scene2 and house test sequences, our proposed approach outperforms all 

of the other techniques. It should be noted that for scene2, where most of the techniques 

fail badly, our proposed approach outperforms other schemes with significant difference. 

We also calculated average F1 score of our proposed approach and second best technique, 

which is ESI. The average F1 score of our approach turned out to be 78.93 and higher 

than that of ESI's average F1 score of 69.24. 
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Chapter 5  

Conclusion and Future Work 

 

We have presented a universal BG subtraction system that exploits multiple uni-modal 

Gaussian BG models and combines the strengths of pixel and frame based binary 

classifiers in a single framework. The use of two color spaces; RGB and YCbCr has 

proved that both color spaces combined together provide more accurate foreground 

segmentation in comparison to using one of the color spaces. Comprehensive evaluation 

of proposed system over 11 different challenges demonstrates its capability for use in real 

life applications with an overall 4th position. 

In current implementation of our algorithm, it lacks model update, which is part of 

our future work. Model update is not only expected to improve our position but more 

importantly make it more robust for real life applications. Another important part of 

future work is code optimization and  implementation  of algorithm in C/C++. 

For fair comparison, the source code and results will be available at our website[36]. 

In addition to this, the results will also be made available at changedetection website[23]. 
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