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ABSTRACT OF THESIS

GLOBAL CHANGE REACTIVE BACKGROUND SUBTRACTION

Background subtraction is the technique of segmenting moving foreground ob-
jects from stationary or dynamic background scenes. Background subtraction is a
critical step in many computer vision applications including video surveillance, track-
ing, gesture recognition etc. This thesis addresses the challenges associated with the
background subtraction systems due to the sudden illumination changes happening
in an indoor environment. Most of the existing techniques adapt to gradual illu-
mination changes, but fail to cope with the sudden illumination changes. Here, we
introduce a Global change reactive background subtraction to model these changes
as a regression function of spatial image coordinates. The regression model is learned
from highly probable background regions and the background model is compensated
for the illumination changes by the model parameters estimated. Experiments were
performed in the indoor environment to show the effectiveness of our approach in
modeling the sudden illumination changes by a higher order regression polynomial.
The results of non-linear SVM regression were also presented to show the robustness
of our regression model.

KEYWORDS: Background Subtraction, Illumination change, Regression, Illumina-
tion compensation, Least squares, Event detection
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Chapter 1

Introduction

Background Subtraction is a widely used approach for identifying moving objects in

a video sequence, where each and every frame in the sequence is compared against

a reference model. The reference model is commonly known as Background Model

with no moving objects in the scene. The most important and fundamental task for

background subtraction algorithms is to correctly identify the foreground pixels from

a static or dynamic backgrounds. Pixels that differ significantly from the background

model are usually considered to be foreground pixels. Background subtraction be-

comes a basic and critical step for numerous computer vision applications such as

video surveillance and tracking, traffic monitoring, human gait and gesture recogni-

tion. There are several challenges that a good background subtraction must be able

to handle. The most common problems are sudden illumination changes, motion

changes such as camera oscillations, swaying tree branches, sea waves and changes

in the background geometry like parked vehicles. A background update algorithm to

cope with the real world environment is a challenging task especially for real time

tracking applications. In this thesis, we identify those challenges associated with the

sudden, fast illumination changes and build a regression model as a compensation to

update the background model.
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1.1 Sudden Illumination Changes

Illumination changes often occur in both indoor and outdoor environments. These

illumination variations are gradual and fast variations depending on the speed in

which they change the background scene. The gradual illumination changes like

moving clouds, long shadows are common in outdoor environments. The sudden il-

lumination changes often happen in indoor scenes due to human interferences such

as opening curtains or blinds to control the natural lighting coming into the room,

switching artificial lights from high to low or vice versa. Figure 1.1 shows consecutive

frames of a walking person video sequence taken from a single camera. In figure 1.1(a)

we can observe the illumination of the scene changes from high to low between two

frames. Similarly figure 1.1(b) shows the illumination level of the scene changes from

low to high. These sudden variations in the scene can cause the background sub-

traction systems to incorrectly identify the moving object resulting in poor tracking

for surveillance applications. The background model needs to be periodically up-

dated adhering to these changes to preserve good segmentation. So it is imperative

to develop a compensation algorithm to handle these problems

1.2 Computer Vision Applications

With the advent of tracking and surveillance systems, world has been made a safer

place to live in. Most of the tracking applications involve continuous monitoring of the

scene and therefore the background model must be quickly updated during the sudden

illumination changes. Object tracking will be impossible unless the background model

is accurate for detecting the foreground objects in realistic scenarios. Poor background

2



Figure 1.1: Sudden Illumination changes in a indoor tracking environment: a) the
top 2 figures show the change in illumination level from high lights to low. b) the
bottom 2 figures show the change in illumination level from low to high when lights
are switched on

subtraction leads to false and missing objects which directly affect subsequent steps to

object tracking. By applying our proposed regression model during the illumination

variations, a better foreground detection and accurate tracking is possible. Due to

recent advancement in gesture recognition technology, there has been a significant

increase in the use of gesture in interface design. People generally prefer human

gestures such as eye blinks, head and body motions like face, hand etc compared to

inputs from keyboard and joysticks. Good segmentation is a key factor for the gesture
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recognition softwares to interpret the human gestures correctly. Most applications

are bound to be affected by sudden illumination changes happening in the real time

environment. Human gestures can be processed better if the algorithm can handle

the inconsistent lighting.

1.3 Our Contributions

In this thesis, we identify the problems associated with background subtraction

techniques in indoor environments. One of the main challenges is to make the back-

ground subtraction algorithms adapt quickly whenever the scene undergoes a sudden

illumination change. Most of the existing techniques adapt to gradual illumination

changes, but fail to cope with the sudden illumination changes. We propose a novel

background subtraction technique to model the illumination change as a regression

function of spatial coordinates. Our key contribution is developing a computationally

efficient model for background replacement, thereby avoiding the background model

to be learned again during the illumination changes. We present a fast and robust

background subtraction system to handle these problems in real time without any

prior information.

1.4 Organization

This thesis is organized as follows: In chapter 1 we discuss the importance of

having a robust background subtraction for computer vision applications and a brief

motivation for this research work is proposed. Chapter 2 analyzes the existing litera-

ture of background subtraction systems handling the sudden illumination changes. In

chapter 3, we explain the motivation for background pixel modeling and introduce a

4



linear regression mathematical model to explain our approach for solving the sudden

illumination change problem in real world scenarios. Chapter 4 gives us an overview

of the entire system and discusses the real time implementation of the proposed ap-

proach. In chapter 5 we present our experimental results of the regression model

and also evaluate our proposed scheme. The thesis concludes in chapter 6, where the

scope of future work is discussed.

5



Chapter 2

Literature Review

In this section we review existing techniques for background subtraction systems. We

also analyze the different approaches and provide relevant work for the sudden illu-

mination changes in background subtraction algorithms. To motivate our approach

we also review different illumination models and their illumination equations.

2.1 Background subtraction algorithms for changing illuminations

Before we discuss about the earlier approaches, we provide a brief survey about

the background subtraction techniques.

Cheung et.al [1] discuss about the challenges for the background subtraction al-

gorithms and classifies the functional flow of it into four components namely prepro-

cessing, background modeling, foreground detection and data validation. The authors

compare various background subtraction techniques like frame differencing, adaptive

median filtering, Kalman filtering and mixture of Gaussians for detecting moving

vehicles and pedestrians in urban traffic video sequences. Radke et.al [2] provides

a detailed survey of common preprocessing techniques and decision rules in image

change detection algorithms. The author also present a number of intensity adjust-

ment methods used as preprocessing step to precompensate the illumination varia-

tions between images. Piccardi in [3] compares the background subtraction methods

based on factors like speed, memory requirements and accuracy. The author discusses

the practical implementations of both the simple and complex methods resulting in

6



a tradeoff of accuracy with memory and computational complexity. Parks et.al [4]

evaluate seven popular background subtraction algorithms with different post process-

ing techniques like noise removal, morphological closing, area thresholding, saliency

test, optical flow test etc. The author demonstrates the impact of these techniques

to improve the performance of the background subtraction algorithms. Background

modeling forms a key step in choosing a model to be robust against all the envi-

ronmental conditions. There are a number of algorithms to solve the illumination

problem in background subtraction systems. We discuss only a few based on the

approach and relevance to the work presented here. We broadly classify them into

two different categories

1. Illumination invariant features - color normalization, intensity normalization,

texture are used to build the background model

2. Background update - algorithms use illumination compensation techniques to

update the background model

2.1.1 Illumination invariant features

In this section we discuss some of the illumination invariant feature based ap-

proaches for illumination change in background subtraction algorithms. Gevers et.al [5]

used RGB channels to compute illumination invariant color coordinates l1, l2, l3 and

given by

l1 = (R−G)2/D; l2 = (R−B)2/D; l3 = (G−B)2/D (2.1)

where D = (R−G)2 + (R−B)2 + (G−B)2

Matsuyama et.al [6] developed a background subtraction system for varying illu-

7



minations. The authors propose two methods for the background subtraction pro-

cess. The first method compares the background image and the observed image using

illumination invariant feature normalized vector distance (NVD). The statistical

characteristics like mean and variance of the normalized vector distance of the image

blocks were analyzed by adaptively varying the threshold value. The spatial proper-

ties of the variation in a block are evaluated to enhance normalized vector distance.

This method works under the assumption that the brightness variation due to moving

object is concentrated in a specific area within a block. The second method estimates

the illumination conditions of the image block using eigen image analysis using an illu-

mination cone model. The detection and the accuracy of the background subtraction

system improves when both the methods were integrated. Noreiga et.al [7] proposed

illumination invariant background subtraction using local kernel histograms and con-

tour based features. Contour based features are robust compared to color during the

illumination changes.

Liyuan et.al [8] proposed a Bayesian framework to incorporate spatial, spectral

and temporal features for complex background models. Principal features for different

background objects are used. For stationary background pixels, the color and gradient

features are used. For dynamic background pixels, color-coocurrences are used as

principal features. The statistics of the principal features are periodically updated

for the gradual and once off background changes. Tian et.al [9] used three Gaussian

mixtures [10] to model the background and integrated texture information to remove

the false positive areas affected by the lighting changes. Zhao et.al [11] used Markov

random field based probabilistic approach for modeling the background. The sudden

8



illumination changes are handled by fusing the intensity and texture information in

an adaptive way. Xue et.al [12] proposed a background subtraction based on pixel

phase features and distance transform. Phase features are extracted and modeled

independently by Gaussian mixtures and distance transform is applied to get the

foreground detection. Pilet et.al [13] proposed a statistical illumination model to

replace the statistical background model during sudden illumination changes. The

ratio of intensities between the background image and the input image is modeled as

Gaussian mixtures in all three channels. The drawback of this model is that it relies

on similar texture prior information and the spatial dependencies are not handled on

texture-less regions.

2.1.2 Background update algorithms

Most of the background subtraction algorithms update the background during the

illumination changes in the scene. These algorithms can be classified into slow and

fast update algorithms. Comparatively all algorithms handle the slow changes very

well. The sudden and fast changes are difficult to handle. The slow update algorithms

are typically like the running average given by

Bt = α · It + (1− α)Bt−1 (2.2)

where Bt is the previous average of the pixel values, It is the current pixel value and

α is the learning rate.

Toyama et.al proposed [14] the Wallflower algorithm for background maintenance.

The algorithm uses three component system for background maintenance; pixel, re-

gion and frame level. The pixel level background maintenance is based on Weiner

9



prediction filter that uses past pixel values to predict the next pixel value in time.

Pixels which deviate from the predicted value are classified as foreground. Frame

level component detects the sudden and global changes in the image and swaps with

alternate background models. The alternate background models are collections of

many pixel level models predicted using Weiner filtering. The algorithm chooses

background model via k−means clustering, where k defines the number of states for

which the background is changing. Wallflower algorithm becomes complex in real

time and performs better when the value of k is small, since it has smaller dataset of

past pixel values to choose from. The system fails if no model matches with the new

illumination conditions.

One of the earlier methods for illumination invariant change detection is accom-

plished by matching the intensity statistics like mean and variance of one image into

another. The images are divided into small subregions and normalized independently

based on the local statistics of each region [15]. The intensity of the second image

Ĩ2(x) is normalized to have the same mean and variance of the first image I1(x).

Ĩ2(x) =
σ1

σ2

{I2(x)− µ2}+ µ1 (2.3)

Intensity change at any pixel is due to the varying illumination and the light

reflected by the objects present in the scene. For Lambertian surfaces, the observed

intensity at a pixel is modeled as a product of Il illumination component and Ir

reflectance component.

I(x) = Il · Ir (2.4)

The illumination invariant change detection is performed by taking natural logarithms

10



and filtering out the illumination component separately [16].

ln(I(x)) = ln(Il) + ln(Ir) (2.5)

The drawback of the model is it assumes the illumination changes are always slowly

varying and cannot accommodate fast and sudden changes.

Messelodi et.al [17] proposed a background update algorithm based on Kalman

filtering. The global illumination changes are measured and modeled as median of

distribution of ratios by Kalman filtering framework. Parameswaran et.al [18] repre-

sented the global and local illumination changes as an illumination transfer function

and used rank order consistency to remove the outliers present in the transfer function.

Tombari et.al [19] used a non-linear parametric approach to model the sudden illumi-

nation changes on a neighbourhood of pixel intensities. Vijverberg et.al [20] modeled

the global illumination changes as histogram of the difference image by fitting mul-

tiple Gaussian and Laplacian distributions. The assumption is that the foreground

is small over the entire frame and results in a uniform histogram of the difference

image. This assumption may not hold as the foreground could be lost during the

illumination compensation over the entire image.

2.2 Illumination models

To model the interaction of light with the surface to determine the brightness and

color at a given point, illumination models are used. Illumination models can be clas-

sified into two main categories, local illumination and global illumination models [21].

Illumination model can be invoked for every pixel or only for some pixels in the im-

age. Many computer vision algorithms use simple illumination models because they

11



yield attractive results with minimal computation. Simple illumination models take

into account for an individual point on a surface and the light sources illuminating

it. The global illumination model take into account the interaction of light from all

the surfaces in the scene. Modeling the reflection, refraction and shadows requires

additional computation and hence increases the complexity. In this section, we shall

see some simple illumination models for calculating the intensity at a given surface

point.

2.2.1 Ambient light model

The simplest illumination model, which has no external light source describing

unrealistic world of non reflective and self luminous objects. Ambient light is the result

of light reflecting off other surfaces in the environment. The illumination equation of

this ambient model is given by

I = Iaka (2.6)

where Ia is the intensity of ambient light and ka is the ambient reflection coefficient.

2.2.2 Diffuse light model

Diffuse reflection model illuminates an object by a point light source and reflects

with equal intensity in all directions. This type of reflection is called Lambertian

reflection. The diffuse illumination equation is based on Lambert’s law and is given

by

I = Ipkd cos θ (2.7)

12



where Ip is the intensity of point source, kd is the diffuse reflection coefficient and θ

is the angle between the surface normal N⃗ and the light vector L⃗. Equation (2.7) is

rewritten as

I = Ipkd(N⃗ · L⃗) (2.8)

The ambient light is added to diffuse reflection component to produce a more realistic

illumination equation

I = Iaka + Ipkd(N⃗ · L⃗) (2.9)

2.2.3 Specular reflection model

Specular reflection produces bright spots on shiny surfaces, due to light being

reflected unequally in all directions. Phong developed an illumination model for

specular reflection [22], assuming maximum specular reflectance occurs when α is

zero and falls off as α increases. Phong illumination model is given by

I = Iaka + Ipkd(N⃗ · L⃗) + ks cos
n α (2.10)

where ks is the material’s specular reflection coefficient and α is the angle between

the reflected light R⃗ and viewpoint V⃗ .

13



Chapter 3

Regression for Background Modeling

In this chapter we propose a regression function to model the illumination changes in

the background subtraction system. The regression model is applied as a compensa-

tion whenever the background undergoes a sudden or gradual illumination changes.

Handling the illumination changes can be considered as a prediction problem. In sec-

tion 3.1 we provide the motivations for using a spatially adaptive illumination model

to cope with sudden change in illumination. In section 3.2 we discuss how the illumi-

nation component is modeled into a regression function. By modeling the intensity

ratios of background pixels before the light change and the background pixels after

the light change as a function of spatial coordinates, a linear regression problem is

formed. Following this in section 3.3 we discuss the formulations involved in building

the regression model. We also discuss about the algorithm for generating higher order

terms in the independent variable vector and least squares approximations to esti-

mate the prediction parameters. Finally in section 3.4 we discuss about minimizing

the error function in non-linear SVM regression.

3.1 Spatially-adaptive Illumination Modeling

In this section, we motivate the use of a spatially-adaptive illumination model to

cope with sudden change of indoor illumination. Consider a small fixed Lambertian

surface patch of area dA on a planar surface. This patch is at distance d from a fixed

camera C with pixel size dP . The patch is projected onto the camera plane at the

14



homogenous image coordinate XI . Before the change of illumination, we assume this

patch is illuminated by an ambient light source with radiant flux G steradians and

N point light sources with radiant flux E1, E2, ..., EN steradians. After the change,

the patch is illuminated by the same ambient light source and a new set of M point

light sources with radiant flux F1, F2, ..., FM steradians. The situation is illustrated

in Figure 3.1.

Figure 3.1: Change of Illumination on a surface patch

The radiance Lbefore(XI) at pixel location XI can be calculated as follows:

Lbefore(XI) =
ρ · dA · γC · dP

d2
·

(
G+

N∑
i=1

Ei · αi

s2i

)
(3.1)

where ρ is the surface reflectance, γC is the foreshortening factor between the camera

and the incoming light ray from the patch, αi and si are the foreshortening factor

and the distance between light source Ei and the surface respectively. The radiance

Lafter(XI) after the change of illumination is analogously given below:

Lafter(XI) =
ρ · dA · γC · dP

d2
·

(
G+

M∑
i=1

Fi · γi
t2i

)
(3.2)

where γi and ti are the foreshortening factor and distance between light source Fi

and the surface respectively. The ratio between the two radiances before and after is

15



given by

R(XI) =
Lafter(XI)

Lbefore(XI)
=

G+
∑M

i=1(Fi · γi)/t2i
G+

∑N
i=1(Ei · αi)/s2i

(3.3)

By considering only the ratio between intensities, we eliminate the dependance on

the surface reflectance and the specific camera position and pose. Just as the color

or texture of an object is independent of the camera, the homogeneity of common

object surfaces supports the notion of using a smooth spatial function in modeling

their appearances on a camera image. If the intensity ratios of a portion of the surface

can be directly measured, one can interpolate the intensity ratios of the rest of the

surface based on the image coordinate. To illustrate this idea, we consider a simple

situation in which there is only a single light source being switched on. Equation

(3.3) becomes

R(XI) = 1 +
F · γ
G · t2

(3.4)

Denote the 3D homogeneous location of the light source as XS, the pseudo inverse of

the camera projection matrix as P+ and the depth of the surface as λ, we have

R(XI) = 1 +
F · γ

G · ∥XS − λ · P+XI∥2

= 1 +
F ·NT · (XS − λ · P+XI)

G · ∥XS − λ · P+XI∥3
(3.5)

In Equation (3.5), we replace the foreshortening factor γ with its definition as the

inner product between the surface normal N and the unit direction from the source

to the surface patch XS −λ ·P+XI. The depth λ homogenizes the back projection so

that we can obtain the actual 3-D distance using the 4-D homogenous coordinates.

The factors F , G, P+ and XS are all constants. The surface normal N is the same for

the entire planar surface and the depth of the surface from the camera cannot change
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abruptly. As such, R(XI) can be represented as a continuous function of XI and

can be directly estimated given adequate training data to estimate all the constant

factors. Our proposed approach uses the available intensity ratios over the confirmed

background regions to fit a smooth regression function on XI , which can then be

used for compensation in possible foreground areas. If there are significant variation

in depths or the surface is not planar, we can still approximate it by segmenting it

into multiple constant-depth planar surfaces and fit a regression function for each

surface. Even in the presence of specular reflection on non-Lambertian surfaces,

such an divide-and-conquer approach allows us to minimize problematic areas and

adequately compensates the background for the change in appearance.

3.2 Background pixel modeling

The frame differencing model is one of the simplest techniques for foreground

extraction. A background frame B(i, j, t) with no foreground objects at time t is

estimated. We replace XI with explicit coordinates i and j so as to highlight our

model dependence on i and j. The new frame I(i, j, t) is subtracted from the back-

ground frame. A global threshold value is applied to the difference image to get

the foreground mask. This model works relatively well as long as there are no illu-

mination changes in the background scene. The regression model update algorithm

proposed here handles both sudden and gradual changes in the background scene. In

our proposed approach we model the luminance as a function of spatial coordinates

of a image. Due to the effects of sudden illumination changes on global threshold-

ing we model the image f(i, j) as a product of the illumination component and the
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reflectance component. The illumination component is characterized by the type of

illumination source and the reflectance component by the characteristics of the im-

aged objects. Let us denote I(i, j, t) as a background pixel at time t. This is given

by

I(i, j, t) = L(i, j, t) ·R(i, j) (3.6)

where L(i, j, t) is the illumination function and R(i, j) is the reflectance of the ma-

terial. The luminance function is a piece wise continuous function. Each pixel in a

background image is modeled as a function of spatial coordinates (i, j) in a 2-d image

plane.

I(i, j, t) = a(i, j) · L(i, j, t− 1) ·R(i, j) (3.7)

The time averaged background pixel before the illumination change B(i, j, t− 1) and

the background pixel after the illumination change I(i, j, t) is modeled as a simple

linear function a(i, j). We begin our discussion using a first order polynomial which

has a i, j and a constant term. The second order polynomial would contain i2, j2, the

cross product term ij, i, j and the constant term. However higher order polynomials

could be used to model the background pixel. For the theory and results shown, we

limit the discussion till fifth order due to numerical stability constraints.

a(i, j) = Ai+Bj + C (3.8)

Combining equations (3.6) and (3.7)

a(i, j) =
L(i, j, t)

L(i, j, t− 1)
(3.9)
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The a(i, j) is expressed as the ratio of illumination of background pixel after the

change to the illumination of background pixel before the change. We update the

background model based on these functions, where the spatial parameters are taken

into consideration.

3.3 Linear regression model

Linear regression often used as a predictive approach, models relationship between

known observed data points and unknown parameters to be estimated from data.

Due to sudden illumination changes in the scene, the background model needs to be

updated to have a good foreground estimation. The regression analysis estimates

the conditional expectation of the dependent variable vector Yi given independent

variable vector Xi. Assuming the background pixel before and after the light change

is linear, the first order regression function is given by

I(i, j, t) = a(i, j) ·B(i, j, t− 1) (3.10)

Substituting equation (3.8) in (3.10)

I(i, j, t) = (Ai+Bj + C) ·B(i, j, t− 1) (3.11)

Combining equations (3.10) and (3.11)

I(i, j, t) = Ai ·B(i, j, t− 1) +Bj ·B(i, j, t− 1) + C ·B(i, j, t− 1) (3.12)
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The independent variable vector and the dependent variable vector for the above

linear equation (3.12) is given by

Xi = [i j 1] (3.13)

Yi = [
I(i, j, t)

B(i, j, t− 1)
] (3.14)

In Matrix notation we rewrite as

I(0,0,t)
B(0,0,t−1)
I(0,1,t)

B(0,1,t−1)
I(0,2,t)

B(0,2,t−1)

.

.

.
I(m,n,t)

B(m,n,t−1)


=



0 0 1
0 1 1
0 2 1
. . .
. . .
. . .
m n 1


 A

B
C

 (3.15)

Independent variable vector Xi for the regression model consists of (m×n)× p input

vectors and the dependent variable vector consists of (m×n)×1 output vectors where

m and n are the height and width of the given background image. We estimate the

parameters by least squares approximation.

3.3.1 Independent variable vector

In this section we describe how the higher order independent variable vector Xi

is generated. We define a nth order degree polynomial containing nth order terms,

(n − 1)th order terms, (n − 2)th order terms and so on. Let k denotes the degree

of the ith term in the polynomial and m denotes the degree of the jth term in the

polynomial, where i and j being the coordinates of the image. For any polynomial

of order n, the degree of ith polynomial term varies from 0 to n and degree of jth

polynomial term varies from 0 to n− k. The independent variable vector polynomial
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terms are generated by the following equation

Xi =
n∑

k=0

n−k∑
m=0

ikjm (3.16)

Hence the independent variable vector consists of i coordinate term, j coordinate

term, combination of (i, j) coordinates and a constant term. Choosing the right

degree polynomial is important for this curve fitting problem. Higher the polynomial

degree chosen, closer the fit is. Let us denote the degree of the polynomial be n. The

number of terms in the polynomial Pt is given by

Pt =
n2 + 3n+ 2

2
(3.17)

Number of terms in the degree polynomial denotes the number of parameters to be

estimated.

3.3.2 Approximation using least squares

Least squares approximation is a standard technique for estimating the unknown

parameters and for fitting the data to a line or a polynomial. Modeling the illumina-

tion changes could be considered as a data fitting problem. We try to fit a function

to a set of data which minimizes the sum of squares between the measurements and

the predicted values. For the linear regression model Yi = Xiβ̂ + ϵ, the ordinary least

squares method minimizes the sum of squared residuals to find the unknown param-

eter β̂, which is a p dimensional vector

β̂ = (X ′X)+X ′y (3.18)
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Solving the above equation by taking pseudo inverse or using QR decomposition

gives the least square estimates. The regression coefficient β̂ is multiplied with the

independent variable vector X provides us the predicted value ŷ

ŷ = X · β̂ (3.19)

The difference between the actual value y and the predicted value ŷ provides us the

residual or error value. We compute the residual sum of squares RSS by summing

up the squared difference between the actual value and the predicted value for the

total number of data points and given by

RSS =
n∑

i=1

(y − ŷ)2 (3.20)

3.4 Support Vector Machine Regression

In this section we motivate the use of non-linear SVM regression model to cope

with the sudden illumination change problem. In linear regression for a given a set of

data points (x1, y1), (x2, y2)...(xN , yN), the estimator E(Y |X) is linear. When fitting

polynomial functions the choice of the degree polynomial has to be made before hand.

Also the function estimated for higher order polynomial becomes ill-conditioned easily

and may not give a accurate solution for overdetermined systems. To prevent this,

we use a kernel regression method to model the functional relationship between the

independent variable vector Xi and the dependent variable vector Yi nonlinearly.

Support vector machines are characterized by usage of kernels, where non linear

functions are learned by mapping data points in linear space into high dimensional

induced feature space. The kernel is defined by k(x, y) =< ϕ(x), ϕ(y) >, where ϕ(x)
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and ϕ(y) are the non-linear feature space vectors. The kernel function assign weights

to each data point and estimates the predicted points (y(xn) by minimizing the error

function. For our model we choose a Gaussian Kernel given by

k(x, y) = exp(−||x− y||2/2(σ)2) (3.21)

Let t1, t2, ...tN be the target values for the corresponding training input data

points x1, x2...xN , the quadratic error function is replaced with a ϵ-insensitive error

function Eϵ having linear cost.

C

N∑
i=1

Eϵ(y(xn)− tn) +
1

2
||w||2 (3.22)

where C and 1
2
||w||2 is the regularization and the conditioning parameter. Slack

variables ζn and ζ̂n for each data point is introduced to allow the points lie outside

the ϵ tube. We empirically fine tune these parameters in our model to minimize the

error function.

23



Chapter 4

Fast and robust real time background subtraction

In Chapter 3, we presented a mathematical model for solving the problem of sudden

illumination changes that occur in the background scene. We assumed that the illu-

mination variations can be modeled as a function and developed a regression model

to fit the background regions affected by the illumination changes. In section 3.2

we described these polynomial functions are expressed as a ratio of illumination of

background pixels before the change to illumination of background pixels after the

change. In this chapter, we describe our proposed fast and robust real time back-

ground subtraction technique to the challenges mentioned in section 1.1. In section

4.1, we present a overview of our real time background subtraction system to com-

pensate the sudden illumination changes. We discuss about the background modeling

and foreground detection in section 4.2. In section 4.3, we discuss the details of our

real time application and explain how the regression model is applied. In section

4.4, we introduce our event detection algorithm to make the system understand the

sudden and gradual illumination changes in the indoor environment.

4.1 Overview of the Background Subtraction system

In this section, we present an overview of our proposed background subtraction

system. We assume that the scene consists of a stationary background with moving

foreground objects. Our system has a simple frame differencing model for the back-

ground subtraction and the background is updated by a compensation model if the
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background scene undergoes illumination changes. Figure 4.1 shows the schematic

diagram of the proposed robust background subtraction system. The incoming video

Figure 4.1: Schematic diagram of the proposed background subtraction system with
compensation module

frames are subtracted from the background model and thresholded to give the fore-

ground masks. Background model affected by the illumination changes are updated

by a linear regression model. We have implemented a event detection mechanism

to make the system understand when the compensation model needs to triggered.

We have also implemented a twin comparison approach in the event detection for

detecting the sudden and gradual illumination changes. We detect the illumination

changes in the background subtraction using a two step process. In the first step we

calculate the average count of the foreground pixels from the buffer. In the second

step, decision is taken if the event is detected or not. The event is detected if the

difference between the foreground pixel count of the incoming frame and the average

25



foreground pixel count of all the frames in the buffer is large. Our compensation algo-

rithm computes the model parameters based on the regression function and updates

the background model.

4.2 Background modeling

In this section we discuss about the background modeling and the foreground

detection. We have implemented the robust background subtraction system using

a simple frame difference model. An initial background model estimate is obtained

from the first few frames of the input video. These frames are stored in a video

queue and are time averaged to give the initial background model. We use a video

queue for storing 30 frames to compute the mean and standard deviation. Subsequent

frames are subtracted from the background model and threshold is set to classify the

foreground regions from the background. Each pixel in the incoming frame is classified

as a foreground pixel or a background pixel based on the threshold computed by

minimizing the standard deviation.

Ft(x, y) =

{
1 I(x, y, t)− I(x, y, t− 1) > Th

0 otherwise
(4.1)

The pixels greater than the threshold value are set to be foreground. Although the

frame differencing model does a good foreground segmentation in indoor environ-

ments, the background model does not adapt itself to the sudden and gradual illumi-

nation changes in the background. In such cases, the background model is updated

by a regression model to compensate for the illumination changes in the background

scene.
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4.3 Regression model

To update the background model during sudden and gradual illumination changes

in the background scene, we employ our proposed regression modeling approach. We

specify the assumptions on which our background subtraction algorithm work effec-

tively. The regression model applied as a compensation for background subtraction

systems during the sudden illumination variations is suited well for indoor environ-

ments. In section 3.2, we discussed how the background pixel is modeled as a function

of luminance for illumination changes. If we include the reflectance component along

with the illumination function, the segmentation process will be really difficult dur-

ing single thresholding. We assumed that the background pixel can be modeled as

a function of illumination as defined by equation (3.9). We begin to explain our

algorithm implementation by finding a relationship between the background model

frame and the frame where the illumination change occur. From now on, lets call

the background model frame as frame A and the frame which undergoes the illumi-

nation change as frame B. Since we are looking at only the intensity information of

an image, we convert both frame A and frame B into gray-scale images. Here frame

A and frame B are expressed as ratio in the dependent vector and the independent

variable vector is expressed in terms of the spatial coordinates of the 2-d image. The

size of independent variable vector is (m × n) × p, where p is the number of terms

in the polynomial. To estimate the transform parameters, we begin by computing

the powers of the polynomial terms for a given order N defined by equation (3.16).

A large bounding box containing the foreground region is cropped out from the pre-

vious frame before the illumination change, so that we include only the background
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regions for estimating the model parameters. For all the test sequences shown, the

value of N is varied from 2 to 5 to get a good foreground estimate. The model pa-

rameters β̂ are computed by least squares method as defined in equation (3.18). we

update the background model by multiplying the regression coefficient β̂ with the old

background. The regression model compensates for the illumination change in the

subsequent frames by computing the necessary parameters to model these changes.

4.4 Event detection system

In this section we discuss about the event detection system used in our real time

background subtraction system. Automated event detection is a critical process for

video surveillance systems in uncontrolled environments. Motion and illumination

changes are the common examples of the scene changes in real world scenarios. In

an adaptive real time background subtraction system, the background model should

be updated based on these scene variations by a event detection algorithm. We have

used twin comparison approach to check if the background is affected by sudden

or gradual illumination changes. Detecting these changes correctly is an important

practical application in segmentation algorithms. The event detection algorithms are

useful to find whether the frame is significantly different from the previous frames.

Some of the common event detection algorithms are based on edge change ratio,

histogram differences, standard deviation of pixel intensities, edge-based contrast,

pixel differences etc. The implemented algorithm uses pixel differences as a metric

to detect the sudden and gradual illumination changes. Lets now discuss about the

algorithm implementation of the event detection system in detail. Figure 4.2 shows
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the schematic diagram of our event detection system. Let FB be the frame buffer to

store n consecutive frames and fc be the frame count respectively. The frame buffer

FB stores the foreground extracted frames in it. For every new incoming frame, the

buffer gets filled if the frame count fc is less than or equal to n. In the process a

new frame is fetched simultaneously. Once the frame buffer is filled, we compute

the average foreground pixels Fgav over n − 1 frames. The foreground count of the

frames gets accumulated in a Fgacc accumulator. Fgacc is averaged over frames to

give Fgav. We then check for the relative change for the new incoming frame. The

buffer is updated using first in first out(FIFO) process. The frame buffer value is set

Figure 4.2: Overview of the event detection system using twin comparison method

to five for our real time experiments. The first four frames in the buffer are averaged

and compared with every new incoming frame. If the average foreground count in
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the buffer is certain percentage higher than the new incoming foreground count, the

event detection triggers the regression model to update the background frame.

4.4.1 Twin Comparison approach

To identify the sudden and gradual illumination changes, we employ the twin

threshold or twin comparison approach. The idea is to have a common background

and similar objects of interest between the two compared frames. The simplest way of

detecting a event is to use a single threshold. This approach mainly detects the sudden

illumination changes and are not suitable to detect gradual illumination variations.

To detect both these changes we adopt the following decision rule

|Fg − Fgav| =

{
> Th Sudden illumination changes

> Tl Gradual illumination changes
(4.2)

Where Th is set to a higher threshold and Tl is set to a lower threshold value. In

the first pass, the event detector checks if the difference between the foreground pixel

count in the new frame and the accumulated foreground pixel count in the buffer is

higher than Th. This is to ensure that the sudden illumination changes are accurately

detected. If there is no such change, during the second pass the event detector checks

for gradual illumination changes if difference pixel count is higher than Tl. If any

of the above conditions are satisifed, then background model is compensated by the

regression model. Figure 4.3 and 4.4 shows the sudden illumination changes detected

by the event detection system.
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Figure 4.3: Background change detection: low to high

Figure 4.4: Background change detection: high to low

4.5 Time Complexity analysis

In this section, we analyze the time complexity of our algorithm to compensate

the illumination changes in the background. Our algorithm was implemented in

MATLAB version 7.0 and the real time implementation was done in C++. The best

case analysis of regression algorithms have a O(n3) complexity [26], but a probabilistic

speed up of the algorithm could result in much lesser complexity. Let us assume

that the image I(i, j) with N pixels is affected by the changing illumination, the

computational complexity of the compensation algorithm depends on the polynomial

function used to fit the background. The complexity of generating the independent

vector X for the compensation algorithm in equation (3.16) is linear in terms of the

regression parameters. Hence the overall cost of the compensation algorithm depends

only on the data points N and is given by O(N).
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Chapter 5

Experiments and discussion

In this chapter we present our results of the proposed global change reactive back-

ground subtraction by modeling the illumination changes as a regression function.

The algorithm presented in the section 4.3 are tested on different indoor video se-

quences. Each of the sequences presented here demonstrate the effectiveness of our

algorithm including scenarios like lights turn on and off from low to high, high to low

etc. Figure 5.1 shows the video sequence of a person walking in a indoor environment

captured from a stationary camera. The scene contains various reflective objects in

the background making them difficult to model the spherical and diffuse reflections.

We do not include any priori information about the type of illumination change that

could potentially happen. Also our model did not include any of the Phong’s model

assumptions considering these reflections. In section 5.2 we evaluate our proposed

scheme using statistical classifications like recall and precision etc.

5.1 Foreground detection during different illumination conditions

In figure 5.1 the first row shows two frames from the input video sequence. The

first frame of the first row is the frame before the illumination change. The second

frame of the first row shows the impact of segmentation where the actual illumina-

tion change occurs. The second and third row shows the compensated output using

different orders of the regression function. As discussed, the regression model doesn’t

have any assumptions on Phong’s model to handle the specular reflections and also
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Figure 5.1: Illustration of compensation using regression polynomial 2nd to 5th order:
a) frame before illumination change. b) illumination change from low to high. c)
compensation by second order. d) third order. e) fourth order. f) fifth order

the shadows. From the figure 5.1, we show the results of segmentation with a con-

stant threshold which improves till the 4th order. This is illustrated by mean square

error analysis in figure 5.2. The graph shows the mean square error values of differ-

ent orders of the polynomial. The compensation is better for the 4th order, due to

the numerical properties of the 5th order polynomial. This is due to the presence of

too many predictor variables in comparison with the number of the observations, the

matrix becomes rank deficient. Table 5.1 shows the mean square error values of the

video sequences presented in this section.

The Figure 5.3 shows the input sequence of the same video, with the lights

switched back from high to low. The results of the compensation for second or-

der, third order and fourth order are presented in each row. The first column shows

the frame before the illumination change. The second column shows the effect of
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Figure 5.2: Mean square error

Table 5.1: Mean square error analysis
Mean Square error

Polynomial order fig 5.1 fig 5.3 fig 5.4
0 288.37 151.04 417.51
1 280.43 150.58 391.42
2 258.62 127.24 301.13
3 209.61 105.69 148.38
4 201.94 88.94 107.58
5 468.99 157.34 359.47
6 731.27 286.19 621.92

illumination change on background subtraction. The third column shows the effect

of compensation by 2nd, 3rd and 4th order polynomial.

Accurate foreground detection becomes a difficult task if the background scene

contains reflective objects. Figure 5.4 shows the effect of compensation on video se-

quences in the presence of many complex objects like white boards, iron bars etc.

The 4th order polynomial with least mean square error value has a better compensa-

tion. More noisy areas in the segmented image can be cleaned using morphological

methods or by a median filter, which is beyond the scope of discussion of this thesis.
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Figure 5.3: Illustration of illumination compensation from high to low : a) The first
column shows the frame before the illumination change for 2nd, 3rd and 4th. b) The
second column shows the actual illumination change. c) The third column shows the
compensation by 2nd, 3rd and 4th.

The demo sequences are available in our project website at http://vis.uky.edu/ ed-

win/demos.html.

5.2 Evaluation of the regression model

In this section, we perform a quantitative evaluation of the performance of our

algorithm compensated by 2nd, 3rd, 4th order polynomial function. In order to have

a fair comparison, we select the frame after the illumination change of each video

sequence and perform hand segmentation to estimate the ground truth. We then

compute the precision and recall values from these frames for the video sequences

shown in this section. Precision is the number of correctly identified foreground

pixels by the regression algorithm to the number of foreground pixels detected by the

regression algorithm. Recall is the number of correctly identified foreground pixels

by the regression algorithm to the number of foreground pixels in the ground truth.

Table 5.2, 5.3 and 5.4 summarizes the precision and recall values of the frames after
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Figure 5.4: Illustration of compensation: a) frame before illumination change. b)
illumination change from low to high. c) compensation by zero order. d) first order.
e) second order. f) third order. g) fourth order. h) fifth order

illumination change.

Table 5.2: Precision and Recall values of the frames after illumination change in low
to high sequence

Order Precision Recall
4 0.6779 0.6943
3 0.5988 0.7222
2 0.5678 0.7235

Table 5.3: Precision and Recall values of the frames after illumination change in high
to low sequence

Order Precision Recall
4 0.9417 0.6142
3 0.1203 0.7607
2 0.1368 0.7613

From our experiments, visually and statistically we see a good precision and higher

recall values for frames compensated by 4th order regression polynomial function. Fig-

ure 5.5 (a) and (b) shows the hand segmented and the ground truth of the low to high

sequence. Figure 5.5 (c) and (d) respectively shows the foreground pixels detected
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and correctly identified by the algorithm by 4th order regression polynomial function.

Figure 5.6 (a) and (b) shows the hand segmented and the ground truth of the high to

low sequence. Figure 5.6 (c) and (d) respectively shows the foreground pixels detected

and correctly identified by the algorithm by 4th order regression polynomial function.

Figure 5.7 (a) and (b) shows the hand segmented and the ground truth of the com-

plex object sequence. Figure 5.7 (c) and (d) respectively shows the foreground pixels

detected and correctly identified by the algorithm by 4th order regression polynomial

function.

Figure 5.5: Foreground masks obtained - low to high sequence: a) Hand segmented
image. b) Ground truth. c) Foreground pixels detected by 4th order regression model.
d) Foreground pixels correctly identified by 4th order regression model.
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Figure 5.6: Foreground masks obtained - high to low sequence: a) Hand segmented
image. b) Ground truth. c) Foreground pixels detected by 4th order regression model.
d) Foreground pixels correctly identified by 4th order regression model.

Figure 5.7: Foreground masks obtained - complex object sequence: a) Hand seg-
mented image. b) Ground truth. c) Foreground pixels detected by 4th order regression
model. d) Foreground pixels correctly identified by the 4th order regression model.
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Table 5.4: Precision and Recall values of the frames after illumination change in
complex object sequence

Order Precision Recall
4 0.7309 0.8237
3 0.5627 0.8152
2 0.2559 0.8188

5.3 SVM regression results

In this section we discuss our simulation results for the illumination compensation

by SVM regression on the three sequences. This implementation is based on the

toolbox [27] for the support vector machines. The training data for the model is built

by cropping out a large bounding box containing the foreground region from the frame

before the illumination change, to make sure we include more background pixels for

the training. The model computes the support vectors list based on input training

data and set of predefined parameters for SVM regression. We have selected the

Gaussian Kernel function with conditioning parameter λ = e−7, ϵ = .05 and bound

on the lagrangian multipliers value set as 1000 for our model. The model parameters

are estimated from the regression analysis and the new background model is updated

based on these values. Figure 5.8 shows the illumination compensation by SVM

regression. The first column shows the frame after the illumination change and the

second column shows the results of compensation on low to high, high to low and

complex object sequences. Table 5.5 summarizes the precision, recall values for the

results in figure 5.8.
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Figure 5.8: SVM regression compensation: The first column shows the frame after
the illumination change. The second column shows the illumination compensation by
SVM regression
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Table 5.5: Precision and Recall values of sequences using SVM regression
Sequence Precision Recall
low to high 0.8796 0.7408
high to low 0.9611 0.6918

complex object 0.8424 0.8451

In section 5.2, we show the precision and recall values of the 4th order regression

model was higher than the lower order polynomials. We also compare the results of the

SVM regression with the 4th order regression model. There is an increase in precision

value from 0.67 to 0.73 for the low to high sequence. For the high to low sequence

the precision improves from 0.94 to 0.96. In the complex object sequence, modeling

the sudden illumination changes by SVM regression shows a significant increase from

0.73 to 0.84. Recall values for the complex object and the low to high sequence shows

a marginal increase from 0.82 to 0.84 and 0.69 to 0.74 respectively. For the high

to low sequence the increase in recall is much higher from 0.61 to 0.69. From the

results we conclude, the SVM regression model does a better job in compensating the

illumination changes in different areas of the background scene.
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Chapter 6

Conclusion and Future Work

In this thesis we have proposed a single regression model to compensate the fast

and sudden illumination changes in the indoor environment. This thesis addressed

the challenges due to light switch sequences associated with background subtraction

techniques in indoor environments. We have modeled the intensity ratios as a function

of spatial coordinates to handle these global and local illumination changes. We have

developed a real time implementation of the proposed approach to demonstrate the

effectiveness of our regression algorithm to handle these sudden illumination changes

in a simpler background subtraction framework. We have experimentally and statis-

tically shown that these changes are handled better by the higher order polynomials

having the minimum mean square error. We have tested our algorithm on light switch

sequences from low illumination to high illumination, high illumination to low illumi-

nation and also in the presence of reflective surfaces like white boards, shining rods

etc.

We can extend our single regression framework to multiple regression model to

better handle the real world scenarios. The objects in the real world are not perfectly

lambertian and also cast shadows. A single regression model is not sufficient to fit

the complex scenes due to depth discontinuities. We highlight a few possible research

directions to make the regression framework to be more robust to these challenges.

By segmenting the scene into multiple regions and each region could be fitted with a
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single regression model. This is likely to provide a good illumination compensation

compared to the single regression model for complex background scenes.
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