43,380 research outputs found

    Lyapunov-Based Robust and Adaptive Control Design for nonlinear Uncertain Systems

    Get PDF
    The control of systems with uncertain nonlinear dynamics is an important field of control science attracting decades of focus. In this dissertation, four different control strategies are presented using sliding mode control, adaptive control, dynamic compensation, and neural network for a nonlinear aeroelastic system with bounded uncertainties and external disturbance. In Chapter 2, partial state feedback adaptive control designs are proposed for two different aeroelastic systems operating in unsteady flow. In Chapter 3, a continuous robust control design is proposed for a class of single input and single output system with uncertainties. An aeroelastic system with a trailingedge flap as its control input will be considered as the plant for demonstration of effectiveness of the controller. The controller is proved to be robust by both athematical proof and simulation results. In Chapter 3, a robust output feedback control strategy is discussed for the vibration suppression of an aeroelastic system operating in an unsteady incompressible flowfield. The aeroelastic system is actuated using a combination of leading-edge (LE) and trailing-edge (TE) flaps in the presence of different kinds of gust disturbances. In Chapter 5, a neural-network based model-free controller is designed for an aeroelastic system operating at supersonic speed. The controller is shown to be able to effectively asymptotically stabilize the system via both a Lyapunov-based stability proof and numerical simulation results

    Adaptive Control of Unknown Pure Feedback Systems with Pure State Constraints

    Full text link
    This paper deals with the tracking control problem for a class of unknown pure feedback system with pure state constraints on the state variables and unknown time-varying bounded disturbances. An adaptive controller is presented for such systems for the very first time. The controller is designed using the backstepping method. While designing it, Barrier Lyapunov Functions is used so that the state variables do not contravene its constraints. In order to cope with the unknown dynamics of the system, an online approximator is designed using a neural network with a novel adaptive law for its weight update. In the stability analysis of the system, the time derivative of Lyapunov function involves known virtual control coefficient with unknown direction and to deal with such problem Nussbaum gain is used to design the control law. Furthermore, to make the controller robust and computationally inexpensive, a novel disturbance observer is designed to estimate the disturbance along with neural network approximation error and the time derivative of virtual control input. The effectiveness of the proposed approach is demonstrated through a simulation study on the third-order nonlinear system

    Intelligent control of a class of nonlinear systems

    Get PDF
    The objective of this study is to improve and propose new fuzzy control algorithms for a class of nonlinear systems. In order to achieve the objectives, novel stability theorems as well as modeling techniques are also investigated. Fuzzy controllers in this work are designed based on the fuzzy basis function neural networks and the type-2 Takagi-Sugeno fuzzy models. For a class of single-input single-output nonlinear systems, a new stability condition is derived to facilitate the design process of proportional-integral Mamdani fuzzy controllers. The stability conditions require a new technique to calculate the dynamic gains of nonlinear systems represented by fuzzy basis function network models. The dynamic gain of a fuzzy basis function network can be approximated by finding the maximum of norm values of the locally linearized systems or by solving a non-smooth optimal control problem. Based on the new stability theorem, a multilevel fuzzy controller with self-tuning algorithm is proposed and simulated in a tower crane control system. For a class of multi-input multi-output nonlinear systems with measurable state variables, a new method for modeling unstructured uncertainties and robust control of unknown nonlinear dynamic systems is proposed by using a novel robust Takagi-Sugeno fuzzy controller. First, a new training algorithm for an interval type-2 fuzzy basis function network is presented. Next, a novel technique is derived to convert the interval type-2 fuzzy basis function network to an interval type-2 Takagi-Sugeno fuzzy model. Based on the interval type-2 Takagi-Sugeno and type-2 fuzzy basis function network models, a robust controller is presented with an adjustable convergence rate. Simulation results on an electrohydraulic actuator show that the robust Takagi-Sugeno fuzzy controller can reduce steady-state error under different conditions while maintaining better responses than the other robust sliding mode controllers can. Next, the study presents an implementation of type-2 fuzzy basis function networks and robust Takagi-Sugeno fuzzy controllers to data-driven modeling and robust control of a laser keyhole welding process. In this work, the variation of the keyhole diameter during the welding process is approximated by a type-2 fuzzy-basis-function network, while the keyhole penetration depth is modelled by a type-1 fuzzy basis function network. During the laser welding process, a CMOS camera integrated with the welding system was used to provide a feedback signal of the keyhole diameter. An observer was implemented to estimate the penetration depth in real time based on the adaptive divided difference filter and the feedback signal from the camera. A robust Takagi-Sugeno fuzzy controller was designed based on the fuzzy basis function networks representing the welding process with uncertainties to adjust the laser power to ensure that the penetration depth of the keyhole is maintained at a desired value. Experimental results demonstrated that the fuzzy models provided an accurate estimation of both the welding geometry and its variations due to uncertainties, and the robust Takagi-Sugeno fuzzy controller successfully reduced the penetration depth variation and improved the quality of the welding process

    Exponential ε-regulation for multi-input nonlinear systems using neural networks

    Get PDF
    This paper considers the problem of robust exponential ε-regulation for a class of multi-input nonlinear systems with uncertainties. The uncertainties appear not only in the feedback channel but also in the control channel. Under some mild assumptions, an adaptive neural network control scheme is developed such that all the signals of the closed-loop system are semiglobally uniformly ultimately bounded and, under the control scheme with initial data starting in some compact set, the states of the closed-loop system is guaranteed to exponentially converge to an arbitrarily specified ε-neighborhood about the origin. The important contributions of the present work are that a new exponential uniformly ultimately bounded performance is proposed and that the design parameters and initial condition set can be determined easily. The development generalizes and improves earlier results for the single-input case. © 2005 IEEE.published_or_final_versio

    Variable neural networks for adaptive control of nonlinear systems

    Get PDF
    This paper is concerned with the adaptive control of continuous-time nonlinear dynamical systems using neural networks. A novel neural network architecture, referred to as a variable neural network, is proposed and shown to be useful in approximating the unknown nonlinearities of dynamical systems. In the variable neural networks, the number of basis functions can be either increased or decreased with time, according to specified design strategies, so that the network will not overfit or underfit the data set. Based on the Gaussian radial basis function (GRBF) variable neural network, an adaptive control scheme is presented. The location of the centers and the determination of the widths of the GRBFs in the variable neural network are analyzed to make a compromise between orthogonality and smoothness. The weight-adaptive laws developed using the Lyapunov synthesis approach guarantee the stability of the overall control scheme, even in the presence of modeling error(s). The tracking errors converge to the required accuracy through the adaptive control algorithm derived by combining the variable neural network and Lyapunov synthesis techniques. The operation of an adaptive control scheme using the variable neural network is demonstrated using two simulated example

    Output feedback NN control for two classes of discrete-time systems with unknown control directions in a unified approach

    Get PDF
    10.1109/TNN.2008.2003290IEEE Transactions on Neural Networks19111873-1886ITNN
    corecore