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ABSTRACT

The control of systems with uncertain nonlinear dynamics is an important field of control science

attracting decades of focus. In this dissertation, four different control strategies are presented

using sliding mode control, adaptive control, dynamic compensation, and neural network for a

nonlinear aeroelastic system with bounded uncertainties and external disturbance. In Chapter 2,

partial state feedback adaptive control designs are proposed for two different aeroelastic systems

operating in unsteady flow. In Chapter 3, a continuous robust control design is proposed for a class

of single input and single output system with uncertainties. An aeroelastic system with a trailing-

edge flap as its control input will be considered as the plant for demonstration of effectiveness of the

controller. The controller is proved to be robust by both mathematical proof and simulation results.

In Chapter 3, a robust output feedback control strategy is discussed for the vibration suppression

of an aeroelastic system operating in an unsteady incompressible flowfield. The aeroelastic system

is actuated using a combination of leading-edge (LE) and trailing-edge (TE) flaps in the presence

of different kinds of gust disturbances. In Chapter 5, a neural-network based model-free controller

is designed for an aeroelastic system operating at supersonic speed. The controller is shown to be

able to effectively asymptotically stabilize the system via both a Lyapunov-based stability proof

and numerical simulation results.
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CHAPTER 1: INTRODUCTION

The control of systems with uncertain nonlinear dynamics has been an important field of control

science attracting decades of focus. Engineering systems can be modeled with different kinds of

mathematical tools. One of them is differential equation based modeling method which occupies

a significant place in control science. However, due to the complexity of real world systems, it is

extremely hard to model a system with 100% accuracy. Unpredictable uncertainties and nonlinear-

ities in the real systems are always the obstacles that prevent engineers from modeling real systems

perfectly. Control techniques like robust and adaptive control are explored to control these engi-

neering systems. In this dissertation, several new robust- and adaptive-based control strategies are

proposed to stabilize different classes of engineering systems with uncertainties and disturbances.

Specially, we consider aeroelastic systems operated under various conditions as our application

choice. These new control strategies are proved to be effective with both mathematical proofs and

simulation results.

In Chapter 2, a particular class of trailing-edge flap-controlled 2-D aeroelastic systems with struc-

tural nonlinearities in plunging and pitching and operated in an unsteady aerodynamic incompress-

ible flowfield is considered. By using the flap hinge torque of the trailing edge flap surface as the

control input, a partial state feedback continuous adaptive controller is proposed in order to sup-

press the aeroelastic vibrations of the wing section model. It is shown that the control design with

respect to an appropriately chosen output variable yields an asymptotic stability result for all three

of the pitching, plunging, and flapping degrees-of-freedom. As an extension to the single-input and

single-output (SISO) system, an extra control flap is introduced to the original model for control

design. By introducing another control input, the torque of the leading-edge flap, the wing section

model becomes an multiple-input-multiple-output (MIMO) system akin to the system considered

in [1]. Numerical simulation results clearly demonstrate the effectiveness of the control strategy
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toward suppressing aeroelastic vibration at both pre- and post-flutter flight speed regimes for SISO

and MIMO aeroelastic systems.

The same SISO mathematical model of aeroelastic systems from Chapter 2 is taken into consid-

eration in Chapter 3. By using the flap hinge torque of a trailing edge flap surface as the control

input, a continuous controller is proposed to suppress the aeroelastic vibrations of the wing sec-

tion model which is theoretically shown to be robust with respect to external disturbances. By

exploiting an Input-to-State-Stability (ISS) property, the control design of a chosen output variable

yields a semi-global asymptotic stability result. Numerical simulation results verify the efficacy of

the proposed control strategy toward suppressing aeroelastic vibration in both pre- and post-flutter

flight speed regimes under a multitude of external disturbances.

In Chapter 4, an output feedback controller without observer is proposed to asymptotically stabilize

a 4-DOF (plunging, pitching, LE flapping, TE flapping) airfoil system under unsteady flow with

unstructured nonlinear uncertainties and bounded unknown external disturbances. The goal of

this control design is to design a robust controller to suppress the vibrations for the aeroelastic

system only using position feedback for the aeroelastic system by taking LE and TE flap as the

actuator. A specific filter error is built based on output errors to avoid using velocity sensors to

measure the rates of output variables and actuator deflections. The robustness of the system to

external disturbance is theoretically guaranteed by a Lyapunov function based stability proof. The

proposed controller requires only minimal knowledge of the system model, namely, the signs of

the leading principal minors of control gain matrix. A SDU(Symmetric Diagonal Upper triangular

factorization) decomposition[2] is applied to the control gain matrix to decouple the control inputs.

A Lyapunov-based analysis is applied to show that semi-global asymptotic stability can be obtained

for the pitching and plunging tracking errors under application of the proposed continuous robust

controller.

2



The model-free control of aeroelastic vibrations of a non-linear 2-D wing-flap system operating

in a supersonic flight speed regime is discussed in the Chapter 5. A novel continuous robust con-

troller design yields asymptotically stable vibration suppression in both the pitching and plunging

degrees of freedom using the flap deflection as a control input. The controller also ensures that all

system states remain bounded at all times during closed-loop operation. A Lyapunov method is

used to obtain the global asymptotic stability result. An unsteady aerodynamic load is considered

by utilization of the non-linear Piston Theory Aerodynamics (PTA) modified to account for the

effect of the flap deflection. Simulation results demonstrate the performance of the robust control

strategy in suppressing dynamic aeroelastic instabilities, such as non-linear flutter and limit cycle

oscillations

3



CHAPTER 2: ADAPTIVE CONTROL FOR SISO/MIMO NONLINEAR

AEROELASTIC SYSTEM

Introduction

In this chapter, two novel adaptive control strategies are proposed for aeroelastic systems with

single and multiple flaps. The aeroelastic system with single control flap is considered as a single-

input-single-output (SISO) system while the one with two control flaps is taken as a multiple-input-

multiple-output (MIMO) system. The aeroelastic system with two control flaps is considered as

an extension of the system with one control flap and an SDU decomposition is applied to decouple

the control inputs. Both aeroelastic systems are operated in subsonic incompressible unsteady flow

field. The unsteady aerodynamic model is based on Wagner indicial function with a description of

the aerodynamic loads provided in terms of the added lag state model. For facilitation of control

design without using the immeasurable aerodynamic lag states, the Duhamel integration is shown

to be linearly parameterizable. Based on the linearly parameterized system, a partial state adaptive

feedback controller is designed to suppress the aeroelastic vibrations on a nonlinear wing section

model in pre- and post-flutter conditions. A Lyapunov-based method has been utilized to obtain

the asymptotic stability result for the plunging displacement error. The system is shown to be

minimum-phase when considering the plunging displacement as the system output, thereby, assur-

ing the convergence of the internal dynamics as the plunging displacement motion is suppressed.

Simulation results under different conditions show the efficacy of the control design. Although the

observable states of the aeroelastic system converge to zero as time goes to infinite, it is not guar-

anteed that all estimations of the uncertain parameters will converge to their real values. However,

the stability can be guaranteed even when the parameters are off from their nominal values.
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Aeroelastic Model Configuration

A 2-D wing flap structural model is illustrated in Fig. 2.1. The equations governing the aeroelastic

motion of the system can be written as follows [3], [5]

MŸ(t)+KY(t) = −L(t) + Lc(t). (2.1)

In the above equation, the variable Y(t) is defined as a column vector Y(t) , [
h(t)

b
α(t) β(t)]T ,

where
h(t)

b
denotes the dimensionless plunge displacement (positive downwards), α(t) denotes

the pitch angle (measured at the elastic axis of the airfoil, positive nose-up) and β(t) denotes the

flap deflection of the trailing edge. In (2.1), the mass and stiffness matricesM andK, respectively,

are defined as follows

M=


bm Sα Sβ

bSα Iα Iβ + Sβb (c− a)

bSβ Iβ + Sβb (c− a) Iβ



K=


bkh(h) 0 0

0 kα(α) 0

0 0 Kβ

 ,
(2.2)

while Lc is the control load which is defined as

Lc =

[
0 0 1

]T
Tc(t),

where Tc(t) is the control input, which is the additional flap hinge torque used to control the flap

deflection β. L(t) represents the unsteady aerodynamic load vector which can be expressed in
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terms of its components as

L(t) =

[
L M T

]T
where the lift L, the aerodynamic pitching moment M(t) and the flap torque T (t) are explicitly

defined as follows [5]

L(t) = πρb2[ḧ(t)− bxEAα̈(t) + b
2π

Φ4β̈(t) + V α̇(t) + V
π

Φ3β̇(t)] + 2πρV bD (t)

M(t) = πρb3[−aḧ(t) + b
(

1
8

+ a2
)
α̈(t) + b

4π
Φ7β̈(t) +

(
1
2
− a
)
V α̇(t) + V

2π
Φ6β̇(t)

+V 2

πb
Φ5β(t)]− 2πρb2

(
1
2

+ a
)
V D (t)

T (t) = πρb2[ b
2π

Φ4ḧ(t) + b2

4π
Φ7α̈(t) + b2

2π2 Φ12β̈(t) +
(
bVf
2π

Φ9

)
α̇(t) + bV

2π2 Φ11β̇(t)

+V 2

π2 Φ10β(t)] + ρV b2
8Φ8D (t) ,

(2.3)

In (2.3) above, Φi = Φi(φ) are Theodorsen’s constants [6][7] which have been listed in Appendix

A, φ = arccos(−c), while D (t) denotes the Duhamel integration which yields

D(t) = Q(t)− A1B1(t)− A2B2(t) (2.4)

based on the following standard two-term Jones’ approximation of Wagner’s function [8]

Φ (τ) = 1− A1e
−β1τ − A2e

−β2τ (2.5)

where τ = V t/b is dimensionless time and A1, A2, β1, β2 are constants whose values will be

explicitly chosen in the sequel. In (2.4), Q (t) is a measure of circulation that is expressed as

follows

Q(t) = ḣ+ b

(
1

2
− a
)
α̇ +

b

2π
Φ2β̇ +

V

π
Φ1β + V α (2.6)
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and B1(t),B2(t) are the state variables associated with the unsteady aerodynamics that are repre-

sented as follows
Ḃ1(t) + w1B1(t) = Q̇(t)

Ḃ2(t) + w2B2(t) = Q̇(t)
. (2.7)

where wi = βi(
V
b
), i = 1, 2.

Given the expressions of (2.6) and (2.4), the aerodynamic loads given in (2.3) can be rewritten as

follows

L(t) = πρb2[b
ḧ(t)

b
− baα̈(t) +

b

2π
Φ4β̈(t) + 2V

ḣ(t)

b
+ 2V (1− a) α̇ +

V

π
(Φ3 + Φ2)β̇

+
2V 2

b
α(t) +

2V 2

πb
Φ1β(t)− 2V A1

b
B1(t)− 2V A2

b
B2(t)].

M(t) = πρb2[−ab2 ḧ(t)

b
+ b2

(
1

8
+ a2

)
α̈(t) +

b2

4π
Φ7β̈(t)− 2bVf

(
1

2
+ a

)
ḣ(t)

b

−2bV a

(
1

2
− a
)
α̇(t) + V b

π

{
1

2
Φ6 −

(
1

2
+ a

)
Φ2

}
β̇(t)− 2V 2

(
1

2
+ a

)
α(t)

+
V 2

π

{
Φ5 − 2

(
1

2
+ a

)
Φ1

}
β(t) + 2V

(
1

2
+ a

)
A1B1(t) + 2V

(
1

2
+ a

)
A2B2(t)].

T (t) = πρb2[
b2

2π
Φ4
ḧ(t)

b
+
b2

4π
Φ7α̈(t) +

b2

4π
Φ12β̈(t) +

V b

π
Φ8
ḣ(t)

b
+
V b

π

(
Φ9

2
+
(

1
2
− a
)

Φ8

)
α̇(t)

+
V b

2π2
(Φ11 + Φ2Φ8)β̇(t) +

V 2

π
Φ8α(t) +

V 2

π2
(Φ10 + Φ1Φ8)β(t)

−V
π

Φ8A1B1(t)− V

π
Φ8A2B2(t)].

(2.8)

Based on the expressions in (2.8) above, the dynamics represented by (2.1) and (2.7) can be ma-

nipulated into the following state-space form

ẋ = Ax + f(
h

b
, α) + Bu

y = CTx
(2.9)
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where the state variable vector x is defined as follows

x =

[
ḣ(t)
b

α̇(t) β̇(t) h(t)
b

α(t) β(t) B1(t) B2(t)

]T
, (2.10)

while u is used to denote the flap hinge torque Tc(t). Explicit definitions for the system matrices

A,B,C and the nonlinear vector f(h
b
, α) are provided in Appendix A.

Figure 2.1: A 2-D wing flap structural model

Problem Definition and Open-Loop Error System Development

Based on the knowledge of the structure of the aeroelastic model, the control objective is to design

a control strategy to drive the dimensionless plunge displacement h
b

to zero while adaptively com-

pensating for parametric uncertainties in the system model. In next section, the system is shown to

be minimum-phase with respect to the chosen input and output, thereby, assuring the stability of

the zero dynamics to prove that the pitching and trailing edge flap deflections will converge to the

origin along with the convergence of the plunging displacement. The state variables h
b
, α, β, ḣ

b
, α̇,
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and β̇ are considered to be measurable, since these six variables are deflections (and rates of de-

flection) associated with the physical structure of the airfoil. However, the state variables B1 and

B2 are immeasurable for they are modeling approximations for the unsteady aerodynamics. All

model parameters are considered to be unknown except for the sign of the coefficient of the control

input.

To facilitate the subsequent stability analysis, an error signal e(t) ∈ < for the plunging degree of

freedom can be defined as

e
∆
=
hd
b
− h

b
, (2.11)

where
hd
b
∈ < is the desired output variable. Since the control objective is to suppress the plunging

aeroelastic vibrations,
hd
b

will be simply chosen to be zero for all time. Next, to simplify the

subsequent control design, a filtered error signal r (t) ∈ < is introduced as follows

r = ė+ κe (2.12)

where κ is a control gain.

Motivated by [9], by utilizing (2.2), (2.3) and the governing equation (2.1), one can obtain the

following input-output representation of the plunging variable which is amenable to the ensuing

adaptive feedback control design

ḧ

b
= c1

h

b
+ c2

ḣ

b
+ c3α + c4α̇ + c5β + c6β̇ + g1D(t) + fn1(

h

b
, α) + b1u (2.13)

The definitions of the parameters and expressions in (2.13) are given in Appendix A. Then the

above open-loop dynamics of (2.13) can be compactly rewritten as follows

ḧ

b
= F (x1, x2, x3, x4, x5, x6, D(t)) + b1u, (2.14)
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where xi, ∀ i = 1− 6 denote the measurable system state variables and F (·) is expressed as

F (·) , c1
h

b
+ c2

ḣ

b
+ c3α + c4α̇ + c5β + c6β̇ + g1D(t) + fn1(

h

b
, α)

However, the Duhamel integral term D(t) in (2.14) appears to be immeasurable. In order to cir-

cumvent this issue, the solution for (2.7) is written as follows

B1(t) = e−w1tB1(0) + Q̇(t) ∗ e−w1t

B2(t) = e−w1tB2(0) + Q̇(t) ∗ e−w2t
(2.15)

where ‘*’ denotes the convolution operator. By substituting (2.15) into (2.4), one can obtain an

expression for D(t) as follows

D(t) = Q(t)− A1e
−w1tB1(0)− A2e

−w1tB2(0)− Q̇(t) ∗
[
A1e

−w1t + A2e
−w2t

]
. (2.16)

By taking advantage of the fact that the convolution terms in (2.16) can be written as follows

Q̇(t) ∗ Aie−wit = Ai
∫ t

0
Q̇(τ)e−wi(t−τ)dτ ,∀i = 1, 2, (2.17)

one can utilize integration by parts to rewrite (2.17) into

Q̇(t) ∗ Aie−wit = Ai
[
Q (t)−Q (0) e−wit − wiQ(t) ∗ e−wit

]
,∀i = 1, 2. (2.18)

By Substituting (2.18) into (2.16), one can write D (t) as follows

D(t) = (1− A1 − A2)Q(t) + (A1e
−w1t + A2e

−w2t)Q (0) +Q(t) ∗ (A1w1e
−w1t + A2w2e

−w2t)

−A1e
−w1tB1(0)− A2e

−w1tB2(0)
.

(2.19)
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The third terms in the left side of can be written in the Laplace domain as follows

L
[
Q(t) ∗

(
A1w1e

−w1t + A2w2e
−w2t

)]
= G1(s)Q(s) (2.20)

where G1(s) ,

[
A1w1

s+ w1

+
A2w2

s+ w1

]
. After utilizing (2.20), with a slight abuse of notation, D(t)

of (2.19) can be rewritten as follows

D(t) = G(s)Q(t) + A1e
−w1t [Q (0)−B1(0)] + A2e

−w2t [Q (0)−B2(0)] . (2.21)

where

G(s) , 1− A1 − A2 +G1(s). (2.22)

By using (2.6), D(t) can be linearly parameterizable as follows

D(t) = W∆θ∆ (2.23)

where the measurable regression vector W∆ and the unknown parameter vector θ∆ are explicitly

defined as follows

W∆ =

[
G(s)

ḣ

b
G(s)α̇ G(s)β̇ G(s)β G(s)α e−w1t e−w2t

]
,

θ∆ =

[
b b

(
1

2
− a
)

b

2π
Φ2 V

V

π
Φ1 A1 [Q (0)−B1(0)] A2 [Q (0)−B2(0)]

]T
(2.24)

Since the structural nonlinearity fn1(h
b
, α) is also linear parameterizable, the function F (·) in open-

loop dynamic (2.14) can be linearly parameterized as follows

F (x1, x2, x3, x4, x5, x6, D(t)) = WFθF , (2.25)

where WF is a measurable nonlinear regression vector and θF is a vector of unknown parameters.
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After taking the time derivative of (2.12), premultiplying both sides of the result by
1

|b1|
and taking

advantage of (2.14), one can obtain

1

|b1|
ṙ = Wθ − sgn(b1)u, (2.26)

where the linear parameterization Wθ ∈ < is defined as follows

Wθ =
1

|b1|
[−WFθF + κė] . (2.27)

Analysis of Zero Dynamics

Since the subsequent control design is predicated on the system being minimum-phase, the stability

of the system zero dynamics need to be assured, i.e., the system dynamics when the output has been

regulated to the origin. Given our choice of h
b

as the output variable, it is straightforward to see

from (2.13) that the system has strong relative degree 2. The analysis begins by defining a linear

state transformation

z : x→
(
µ, ζT

)T ∈ R8.
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where µ =

[
µ1 µ2

]T
∈ R2 and ζ ∈ R6 are partitions of the state vector with the system

represented in the normal form. Specifically, µ and ζ are defined as follows

zx =
(
µ, ζT

)
,



h
b

ḣ
b

b2
h
b
− b1α̇

b3α̇− b2β̇

b2
h
b
− b1α

b3α− b2β

b7
h
b
− b2B1

B1 −B2



. (2.28)

It can be verified that the transformation matrix z is non-singular by computing its determinant.

By taking the time derivative of (2.28), one can find that the control variable u does not appear in

ζ̇. Hence, the state space equations (2.9) can be transformed into following normal form

µ̇1 = µ2

µ̇2 = a (µ, ζ) + b1u

ζ̇ = w (µ, ζ)

. (2.29)

Explicit expressions for a (µ, ζ) ∈ R and w (µ, ζ) ∈ R6 are nonlinear functions that can be

computed from the matrix A, vectors B,C and the nonlinear vector f(h
b
, α) defined in (2.9). By

substituting µ1 = µ2 ≡ 0 into (2.29), the zero dynamics can be obtain as follows

ζ̇ = Π(ζ) (2.30)
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where Π(ζ) = w (0, ζ) denotes a nonlinear vector function of ζ with Π(0) = 0 which implies

that ζ = 0 is an equilibrium point (EP) for the system (2.30). The local stability of the origin of

this system can be verified by checking the eigenvalues of the linearized system

ζ̇ = K∗ζ (2.31)

where K∗ ,
∂Π(ζ)

∂ζ
(0) . Thus, the origin of the zero dynamics is locally exponentially stable if

K∗ is a Hurwitz matrix. By utilizing nominal values of the system parameters, the eigenvalues of

K∗ were seen to lie in the open left half of the complex plane. The aforementioned facts imply that

the zero dynamics of the nominal system are locally stable. Thus, as the plunging displacement

is asymptotically regulated to the origin, the internal dynamics of the system will simultaneously

converge to the origin.

Control Design and Stability Analysis

Based on the open-loop dynamics of Eq. (2.26) and the subsequent stability analysis, the following

state feedback adaptive control law is proposed

u (t) = sgn(b1)
(
Wθ̂ +Krr

)
(2.32)

where Kr ∈ < is a control gain and θ̂ (t) ∈ <p denotes a gradient-based online estimation of θ

which is dynamically generated as follows

.

θ̂ = Proj
{

ΓWT r, θ̂
}

(2.33)
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where Γ ∈ <p×p is a constant diagonal, positive definite matrix and p is determined by the dimen-

sion of the regression vector W. Motivated by [10], the parameter projection operator Proj {·} is

designed to bound θ̂ (t) in a known compact set Ωε in the sense that

θ̂ (t) ∈ Ωε ∀t > 0 if θ̂ (0) ∈ Ωε. (2.34)

where the numerical definition of Ωε is given in next Section. After substituting the control law

(2.32) into Eq. (2.26), one can obtain the following closed-loop system dynamics

1

|b1|
ṙ = Wθ̃ −Krr (2.35)

where θ̃ (t) ∈ <p is a parameter estimation error defined as follows

θ̃ (t) , θ − θ̂.

A non-negative Lyapunov candidate function V1 (t, r) ∈ < as follows

V1 (t, r) =
1

2 |b1|
r2+

1

2
θ̃
T

Γ−1θ̃. (2.36)

By taking the time derivative of (2.36) along the dynamics of (2.35) and the adaptive update law

of (2.33), one can obtain the following result for V̇1 (t, r)

V̇1 (t, r) ≤ −Krr
2 (2.37)

where the fact that
·
θ̃(t) = −θ̂ is used. In (2.37), the equality is in effect when θ̂ (t) lies inside

the compact set Ωε defined in (2.34) while the inequality is in force on the boundary of Ωε. From

(2.36) and (2.37), one can conclude that r (t) ∈ L2 ∩L∞ and θ̃ ∈ L∞, which also directly implies
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that e (t), ė (t) ∈ L2 ∩ L∞ and θ̂ (t) ∈ L∞. Since hd = ḣd ≡ 0, it is straightforward to see that
h

b
,
ḣ

b
∈ L∞.

h

b
and

ḣ

b
are bounded to a compact set as follows. From (2.36) and (2.37), one can

have

V1 (t, r) ≤ V1 (0, r0) (2.38)

where r0 = r (t0) denotes the initial condition for r (t). Substituting (2.36) into (2.38), one can

obtain the following inequality

1

2 |b1|
r2 ≤ V1 (0, r0)− 1

2
θ̃
T

Γ−1θ̃.

Since 1
2
θ̃
T

Γ−1θ̃ ≥ 0, r can be bounded as

|r| ≤
√

2 |b1|V1 (0, r0). (2.39)

Given hd = ḣd ≡ 0, from the definitions of (2.11), (2.12), and (2.36), the bound given in (2.39),

as well as the fact that θ̃ (0) remains inside a compact set, one can state that
h

b
,
ḣ

b
remain inside a

compact set D1 ,
{
µ ∈ R2

∣∣ ‖µ‖ ≤ K (|r0| ,Γ)
}
∀t where K (·) is a monotonically increasing

function of r0 and Γ−1. Furthermore, by an appropriate choice of r0 and Γ, the bound K (·) can

be made as small as possible.Before the remainder of the stability analysis, motivated by [11], a

critical Lemma is given to establish the conditions for boundedness of the system states.

Lemma 1 : Given that the zero dynamics (2.30) of the nonlinear system (2.29) are locally expo-

nentially stable and that w (µ, ζ) defined in (2.29) is locally Lipschitz in µ, ζ, then, the internal

dynamics ζ of system (2.29) are bounded provided that the state vector initial condition lies inside

an appropriately defined compact set.

Based on Lemma 1, it is clear to see that the state vector x (t)∈L∞. Since + (·) is a bounded
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function of the system states, this also implies that the control input u(t) remains bounded for all

time by virtue of (2.32). Furthermore, from (2.35), it is clear to see that ṙ (t)∈L∞ which implies

the uniform continuity of r (t). Thus, Barbalat’s Lemma [4] is utilized to show that r (t) → 0

as t → ∞. From (2.12), it is clear to see that e1 (t) , ė1 (t) → 0 as t → ∞ which implies that
h

b
,
ḣ

b
→ 0 as t→∞. Furthermore, from the asymptotic stability of the zero dynamics, all system

states are guaranteed to asymptotically converge to the origin.

Simulations and Results

Model and Control Parameters

In (2.2), the nonlinear stiffness functions bkh(h) and kα(α) are considered to be polynomial nonlin-

earities and are explicitly defined in the sequel. Section of fourth- and second- degree, respectively.

They are defined as [12]

bkh(h) = bKh (1 + 0.09h2) N/m

= bKh + knh (h)

kα(α) = Kα(1− 22.1α + 1315.5α2 + 8580α3 − 17289.7α4) Nm/rad

= kh0 + knα(α).

(2.40)

Numerical simulation results are presented for a nonlinear aeroelastic system controlled by the flap

torque of trailing-edge. The nonlinear unsteady aerodynamic model was simulated using (2.1)

and (2.3). Within this aeroelastic formulation the aerodynamic-lag states B1, B2 were introduced

to substitute the Duhamel Integration D(t) as show in (2.4). The plunging and pitching spring

stuffiness were modeled as polynomial nonlinearities as shown in (2.40). Model parameters ar

given in Table 2.1. Note that all the parameters used in the aeroelastic and aerodynamic model
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were considered to be unknown for the purpose of control design, except the sign of b1.

In this simulation example, the desired trajectory variable ḣd
b

and hd
b

were simply selected as zero.

The initial conditions for pitch angle α(t) and plunge displacement h(t) were set to be α(0) =

5.729 [deg] and h(0) = 0 [m] while all other state variables were also selected as zero. The model

parameters used in the simulation were the same as those used in [5], listed in Table 1 and lead to

a flutter speed of Vf = 128.87 [m.s−1]. The controller parameter is selected as Kr = 10, while

the estimator gain are set as Γ=500I19×19 and the initial parameter estimates are set to zero. The

compact set Ωε is given as

Ωε =


θεR19×1

∣∣∣∣∣∣∣∣∣∣∣∣∣

|θi| < 20, i = 1, 2, 3, 4, 10, 11, 19

|θj| < 6000, j = 5, 6, 7, 12, 13

|θk| < 1000, k = 8, 9, 14,

|θl| < 1e+ 6, l = 15, 16, 17, 18


where θi, θj, θk, θl are the components of vector θ.

Table 2.1: Model Parameters

Parameter Value Parameter Value
b 0.305 [m] Kh 500m
a −1

2
Kα 2000Iα

c 1.0 Kβ 18000Iβ
m 90.04 [kg] ρ 1.225 [kg/m3]
Iβ 0.552 [kg·m2] Iα 1.512 [kg·m2]
Sβ 0.441 [kg] Sα 7.062 [kg]
Vf 128.87 [m/s] A1 0.165
A2 0.335 β1 0.041
β2 0.300

For validating the effectiveness of the control strategy with respect to external disturbance, a trian-

gular external disturbances is considered according to [5]. The external gust disturbance Lg(t) is
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given as

Lg(t) = [ Lg Mg 0 ],

where
Lg = 4πψ̇wG(τ)

Mg = Lg
(

1
2

+ a
b

) . (2.41)

In (2.41), ψ (t) denotes Kussner’s function which is approximated by

ψ(t) = 1− 0.5e−0.13t − 0.5e−t

while wG(τ) denotes the disturbance velocity; here, τ is a dimensionless time variable. The veloc-

ity distribution function for wG(τ) is given as

wG(τ) = 2w0
τ

τG

(
H (τ)−H

(
τ − τG

2

))
− 2w0

(
τ

τG
− 1

)(
H (τ − τG)−H

(
τ − τG

2

))

where H(·) denotes a unit step function and given tG = 0.25 [s]. This triangular gust lasts 0.5 [s]

from t = 5 to 5.5 [s].

Results

In this section, two set of simulations are investigated: in the pre-flutter condition, V = 103.09

[m.s−1] and in the post-flutter condition V = 141.7556 [m.s−1]. Fig. (2.2) shows the open-

loop response of the wing-section model at pre-flutter speed V = 103.09 [m.s−1]< Vf = 128.87

[m.s−1].Both the plunging and pitching responses to initial conditions along with the flap deflection

are displayed. Consistent with their dynamic parameters, the response of the individual states

occurs at different frequencies. In particular, the higher frequency content in the torsional modes

is evident when compared with the corresponding bending frequency. These frequencies are flight
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speed dependent, and in this case with the simulations conducted well below the flutter speed, no

coalescence of frequencies is evident. Instead, the three main frequencies, i.e., bending, pitch and

flap torsion are well distinct. In this uncontrolled open-loop case, the control torque applied at the

flap is zero. Fig. (2.3) is the response of the aerodynamic lag states B1 and B2.
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Figure 2.2: Open-loop system response at pre-flutter speed V = 0.8Vf

In Fig. (2.4), one can see that the proposed control law suppresses the plunging displacement in

3[s] while the pitching displacement is driven to zero in 6[s]. In Fig. (2.5), the aerodynamic lag

states B1, B2 are affected by the control that in turn changes the dynamics of the system. It is

expected that the dynamic response of the states B1 and B2 is quickly controlled when compared

to the uncontrolled open-loop case. Note that in these simulations the controller was turned on at

t = 0 [s].

Figs. (2.6) and (2.7) show the system response at a post-flutter speed V = 141.76 [m.s−1]>128.87

[m.s−1]. Without any control input, limit cycle oscillations appear in the system response due to
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the nonlinearities in the system model. The plunging and pitching post-flutter responses are now in

synchronization and the bending and torsional frequencies of the system reach close proximity. A

linear flutter analysis will show that a coalescence of frequency has been reached, since this system

does not include structural damping.
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Figure 2.3: Open-loop aerodynamic lag states B1,B2 pre-flutter speed V = 0.8Vf

In Figs. (2.8) and (2.9), the control is turned on at t = 5 [s]. The vibration of plunging displacement

is suppressed in less than 2[s] without oscillation, while it takes a little longer for pitch degree and

aerodynamic lag states to converge to zero.
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Figure 2.4: Closed-loop system response at pre-flutter speed V = 0.8Vf
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Figure 2.5: Closed-loop aerodynamic lag states B1,B2 at pre-flutter speed V = 0.8Vf

22



0 1 2 3 4 5
−0.15

−0.1

−0.05

0

0.05

0.1

P
lu

ng
e 

 d
is

pl
ac

em
en

t  
h/

b[
m

]

time[s]
(a)

0 1 2 3 4 5
−0.1

−0.05

0

0.05

0.1

P
itc

h 
 a

ng
le

 α
[r

ad
]

time[s]
(b)

0 1 2 3 4 5
−0.4

−0.2

0

0.2

0.4

F
la

p 
 d

ef
le

ct
io

n 
β[

ra
d]

time[s]
(c)

0 1 2 3 4 5
−1

−0.5

0

0.5

1

C
on

tr
ol

  t
or

qu
e 

 T
s[

N
.m

]
time[s]

(d)

Figure 2.6: Open-loop system response at post-flutter speed V = 1.2Vf
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Figure 2.7: Open-loop aerodynamic lag states B1,B2 at post-flutter speed V = 1.2Vf
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Figure 2.8: Closed-loop system response at post-flutter speed V = 1.2Vf
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Figure 2.9: Closed-loop aerodynamic lag states B1,B2 at post-flutter speed V = 1.2Vf
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Figure 2.10: Closed-loop system response at post-flutter speed V = 1.2Vf under triangular gust
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Figure 2.11: Closed-loop aerodynamic lag states B1,B2 at post-flutter speed V = 1.2Vf under
triangular gust
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The closed-loop responses of the system at post-flutter speed under a triangular gust disturbance

are shown in Fig. (2.10) and (2.11). The disturbance is applied at t = 5 [s] and lasts for 0.5 [s]. One

can see from Fig. (2.10) and (2.11) that the pitching and plunging displacements are suppressed

in 5 [s] and the internal dynamics B1 and B2 also converge in less than 5 [s]. Note that in this

case the control is turned on at t = 3 [s]. These simulation results reveal that the control strategy

proposed effectively suppresses the oscillation of the plunging displacement and consequently the

system internal dynamics at both pre- and post-flutter speeds.

MIMO system Extension

Model Derivation and Control Design

In this section, we will briefly discuss extension an adaptive control strategy for the wing section

model as a 4-DOF system (plunging, pitching, LE flapping, TE flapping) with two control inputs

and accounting for unsteady aerodynamics loads. A wing section model with 4-DOFs in plunging

displacement h (t), pitching angle α (t), TE flap deflection β (t) , and LE flap deflection γ (t) is

presented in Figure 2.12. The hinge torques uβ and uγ of the TE- and LE-flaps, respectively, are

taken as control inputs. The aeroelastic governing equations are developed based on the model

proposed in [6][5]

Msẍ = −Ksx−K (h, α) x +
1

msb2
L + Tu (2.42)

where L(t) represents the unsteady aerodynamic load, ms is the total mass of wing and flaps per

unit length, b is the semi-chord, the state vector x
∆
=

[
h
b

α β γ

]T
, while Ms and Ks de-

note the structural mass and stiffness matrices which are explicitly given in the Appendix. The

control gain matrix T is defined as T ∆
=

[
02

1
msb2

I2

]T
1, u

∆
=

[
uβ uγ

]T
, while K (h, α)

∆
=

1Throughout the note, the notation 0n and In denote, respectively, the n× n zero and identity matrices.
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diag{kh (h) , kα (α) , 0, 0} denotes the structural nonlinearity in the pitching and plunging stiff-

nesses explicit choices are presented in next part. The aerodynamical load L (t) in (2.42) is ex-

pressed as sum of circulatory and non-circulatory components as

L = Lc + Lnc. (2.43)

In the above equation, the non-circulatory aerodynamic load component is defined as

Lnc = ρ∞b
4Mncẍ + ρ∞b

3U∞Bncẋ + ρ∞b
2U2
∞Kncx (2.44)

whereU∞ is the freestream velocity, ρ∞ is the air density,Mnc, Bnc, Knc denote the non-circulatory

loads aerodynamic matrices reported in the Appendix, while Lc (t) is the circulatory load defined

as follows

Lc = ρ∞b
2U∞P

TRD(t). (2.45)

In the above equation, R ∈ R4×1 is a constant vector and P ∈ R4×4 denotes a coordination

transformation matrix (see the Appendix for explicit definitions), while D(t), commonly referred

to as the Duhamel integral, is expressed as follows

D (t) = Q (t)− a1B1 (t)− a2B2 (t) . (2.46)

The expression above is based on Jones’ approximation of Wagner’s function as shown in (2.5). In

(2.46), Q(t) ∈ R is a measure of circulation expressed as follows

Q(t)
∆
= U∞S1Px + bS2P ẋ, (2.47)
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while B1 and B2 are aerodynamic lag state variables satisfying the following dynamics

Ḃi (t) + wiBi (t) = Q̇ (t) , i = 1, 2 (2.48)

where wi
∆
= βiU∞/b, i = 1, 2. We note that S1,S2 ∈ R1×4 used in (2.47) are constant vec-

tors whose expressions are also given in the Appendix. For more details about the unsteady

aerodynamic development above, the readers are referred to [13]. After defining a state vector

X
∆
=

[
ẋT xT xTB

]T
∈ R10×1 where xB =

[
B1 B2

]T
, one can utilize (2.42), (2.43),

(2.45), (2.46), (2.47), and (2.48) to obtain the system state-space dynamics as

Ẋ = AX + f (y) +Hu

y
∆
=

[
h
b

α

]T (2.49)

where y ∈ R2 is the system output, while the system matrix A, the nonlinearity f (y), and the

control gain matrix H ∈ R10×2 are explicitly defined in the Appendix. Given the above choice

of the output variable, it is straightforward to demonstrate that the internal dynamics of (2.49)

is globally exponentially stable from the eigenvalues of the nominal system matrix of the zero

dynamics.
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Figure 2.12: Wing Section with Leading- and Trailing-Edge Flaps

Then the output dynamics can be cast as follows

ÿ = Ψ (x, ẋ) + FD (t) +Gu (2.50)

whereΨ (x, ẋ) ∈ R2 is an auxiliary function defined in Appendix, F ∈ <2×1 is a constant parame-

ter matrix whileG is an input gain matrix with nonzero leading principal minors defined as the first

two rows of the control gain matrix H . Since the aerodynamic lag states B1, B2 are immeasurable,

(2.46) suggests that D (t) cannot be directly obtained as a linear regression. However, using a

convolution based method described in previous section in (2.23)[13] that utilizes (2.46), (2.47),

and (2.48), D (t) can be linearly parameterized as follows

D (t) = WT
∆θ∆ (2.51)

where the measurable regression vector W∆ (x, ẋ, t) ∈ R10 and the unknown parameter vector
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θ∆ ∈ R10 are explicitly defined as follows

W∆ =

[
G(s)ẋT G(s)xT e−w1t e−w2t

]T
,

θ∆ =

[
(S2P )T (S1P )T a1 [Q (0)−B1(0)] a2 [Q (0)−B2(0)]

]T
where G(s) is given in 2.22. Similar to the error definition given in (2.11)(2.12), we define a group

of error signals as follows

e = yd − y,

r = ė + κe
(2.52)

where yd
∆
=

[
hd
b

αd

]T
∈ R2×1, yd can either be simply chosen to be zero for all time or

it can be allowed to smoothly converge to the origin, κ is a positive, diagonal gain matrix. The

open-loop error dynamics is obtained by taking the derivative of r in (2.52) as follows

ṙ = ÿd + κė− Φ (x, ẋ)− FWT
∆θ∆ −Gu. (2.53)

Since the leading principal minors of G are nonzero, it can be decomposed as G = SD̄U, where

S is a symmetric positive-definite matrix, D̄ is a diagonal matrix with diagonal entries +1 or −1,

and U is an unknown unity upper-triangular matrix . The reader is referred to [14] for explicit

definitions of S, D̄, and U . Based on this SDU decomposition, one can perform some algebraic

manipulations on (2.53) in order to obtain the following convenient form of the open-loop error

dynamics.

M ṙ = N−D̄u. (2.54)

where M ∆
= S−1, while the vector N (x, ẋ,u,t) ∈ R2×1 is defined as

N = M
[
ÿd + κė− Φ (x, ẋ)− FWT

∆θ∆

]
+
(
D̄ − D̄U

)
u. (2.55)
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The matrix
(
D̄ − D̄U

)
is strictly upper triangular so that

N (·) =

[
N1 (x, ẋ, u2,t) N2 (x, ẋ, t)

]T
.

It is clear to see from (2.55) that N (·) can be linearly parameterized as follows

N = W (x, ẋ,u,t)θ =

 WT
3 (x, ẋ, u2,t) 0

0 WT
4 (x, ẋ, t)


 θ1

θ2


where the measurable regression vectors W3 (·) ∈ R24 and W4 (·) ∈ R23 are defined as follows

W3
∆
=

[
WT

∆ WT
1 u2

]T
W4

∆
=

[
WT

∆ WT
1

]T
W1

∆
=

[
ḣ α̇ h α β̇ γ̇ β γ h3 α2 α3 α4 ė

] (2.56)

while θ1 ∈ R24 and θ2 ∈ R23 denote unknown parameter vectors defined as follows

θ1 =

[
θ1,1 ... θ1,23 θu

]T
θ2 =

[
θ2,1 ... θ2,23

]T . (2.57)

Under knowledge of the signs of the leading principal minors (i.e., knowledge of control direction),

an adaptive control law is postulated as follows

u =D̄−1
[
W θ̂+Kr

]
(2.58)

where K =diag{k1, k2} ∈ R2×2 is a constant, positive definite control gain matrix, while the
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parameter estimate θ̂ (t) is dynamically generated by the following update law

·

θ̂ = ΓWT r (2.59)

where Γ ∈ R41×41 is a constant, positive definite adaptive gain matrix. By substituting (2.58) into

(2.54), one can obtain the closed-loop error dynamics as follows

M ṙ = Wθ̃−Kr (2.60)

where θ̃ , θ − θ̂ ∈ R41 denotes the parameter estimation errors. To analyze the stability of the

proposed control law, a non-negative Lyapunov function V0(t) is given as follows

V0(t) =
1

2
rTMr +

1

2
θ̃
T

Γ−1θ̃ (2.61)

After taking the time derivative of (2.61) along the dynamics of (2.60) and (2.59), one obtains

V̇0 = −rTKr ≤ 0 (2.62)

From (2.61) and (2.62), one can conclude that r (t) ∈ L2 ∩ L∞, θ̃ ∈ L∞, which also implies that

e(t), ė(t) ∈ L2 ∩ L∞ and θ̂ ∈ L∞. By virtue of the boundedness and smoothness properties of

the reference trajectory, one can conclude that h
b
, ḣ
b
, α, and α̇ ∈ L∞. Since the system of (2.49) is

minimum-phase, one can straightforwardly prove that the internal states β, γ, β̇, γ , B1, and B2 ∈

L∞. From the aforementioned boundedness assertions, one can conclude that u2 (t) ∈ L∞ and

consequently u1(t) ∈ L∞. Based on all previous boundedness assertions, from (2.54) ṙ(t) ∈ L∞

which implies uniform continuity of r (t). Now, using Barbalat’s Lemma [4], one can show that

lim
t→∞

r(t) = 0, and from (2.52), one can state that lim
t→∞

h (t) , α (t) = 0. Finally, from the asymptotic

stability of the zero dynamics, one can also guarantee the asymptotic convergence of all system
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states to the origin.

Simulation Results and Discussion

The wing section model is based on the structural and aerodynamic equations of (2.42) and (2.43).

The model parameter settings are quite similar to those utilized in [6] and are given in Table 2.2 as

follows.

Table 2.2: Model parameters

Parameter Value Parameter Value
ωα 40 [rad/s] b 1 [m]
ωh 35 [rad/s] d -0.8
ωβ 300 [rad/s] c 0.8
ωγ 300 [rad/s] xα 0.2
µ 40 r2

α 0.25
a −0.4 xβ, xγ 0.0125
ζβ, ζγ 0.1 r2

β, r
2
γ 0.00625

ρ∞ 1.292 [kg/m3]

The nonlinear stiffness functions are selected as kα(α) = Kα(1− 22.1α+ 1315.5α2) and kh(h) =

Kh (1 + 0.09h2) whileKh
∆
= ω2

hms, Kα
∆
= ω2

αIα, wherems = πρb2µ denotes the mass of wing per

unit length and Iα = r2
αmsb

2 denotes the inertia per unit length of wing section about elastic EA.

The dimensionless flight speed V ∆
= U∞

bωα
.Given the parameters settings in Table 1, one can compute

the flutter speed to be Uf = 100.40 [m/s] while the dimensionless flutter speed Vf
∆
=

Uf
bωα

= 2.51.

The desired trajectory variables ḣd, hd, α̇d, αd are simply set to zero. The initial conditions for

pitching angle α(t) and plunge displacement h(t) are set to be α(0) = 5 [deg] and h(0) = 0.1

[m], respectively, while all other plant state variables are initially selected to be zero. The adaptive

controller law is implemented via (2.58) and (2.59). From (2.57) and (2.56) one can see that the

regression variables corresponding to θi,15 and θi,16, i = 1, 2 are β̇ and γ̇, respectively; therefore,
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damping in the β and γ dynamics is introduced by specifying the initial value of θi,15 and θi,16 in

the controller to limit the maximum amplitude of the flap deflections. In this case, there is no need

to consider structural damping structure in the wing section model. Thus, parameter estimates are

initialized to zero except for θi,15 and θi,16, i = 1, 2 that are initialized to 1. Table 2.3 shows the

controller gain settings that were utilized to ensure satisfactory system closed-loop performance.

Table 2.3: Controller Parameters

Parameter Pre-flutter Post-flutter
k1 2 5
k2 2 5
κ 2 5
Γ 5I41 2I41

Figure (2.15) represents the closed-loop response of the pitching, plunging, and flap deflections at

pre-flutter speed. In this simulation, the controller is turned on at t = 0.2 [s].
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Figure 2.13: Open-loop response at pre-flutter speed V∞ = 2.26 < Vf
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Figure 2.14: Open-loop response at pre-flutter speed V∞ = 2.26 < Vf
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Figure 2.15: Closed-loop response at pre-flutter speed V∞ = 2.26 < Vf
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Figure 2.16: LE- and TE-flap hinge torque inputs at pre-flutter speed V∞ = 2.26 < Vf
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Figure 2.17: Time evolution of sample parameter estimates at pre-flutter speed V∞ = 2.26 < Vf
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By comparing Figures (2.14) and (2.15), one can find that the adaptive control law can significantly

decrease the system settling time. The control input is presented in Figure (2.16) and sample

parameter estimates are shown in Figure (2.17).

The second simulation is carried out at post-flutter speed V∞ = 2.76 > Vf . The controller is

also turned on at t = 0.2 [s]. As one can see from Figure (2.18), both the pitching and plunging

DOFs are stabilized in 0.2 [s] and the LCOs are effectively suppressed by the proposed adaptive

controller. The control torque input is shown in Figure (2.19), while the estimates of selected

parameters are shown in Figure (2.20).

Figures (2.21) and (2.22) show the advantages of the proposed control strategy implemented with

two control flaps as compared with only the TE flap. The controller was turned on at t = 0.2 [s]

for both cases and the same parameters settings were used. The solid line is system response with

LE and TE flaps. The dotted line is system response with only TE flap as control input.
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Figure 2.18: Closed-loop response at post-flutter speed V = 2.76 > Vf
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Figure 2.19: LE- and TE-flap hinge torque inputs at post-flutter speed V = 2.76 > Vf
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Figure 2.20: Time evolution of sample parameter estimates at post-flutter speed V = 2.76 > Vf

38



0 0.5 1 1.5 2
−0.1

0

0.1

h 
[m

]

0 0.5 1 1.5 2
−20

0

20
α 

[d
eg

]

0 0.5 1 1.5 2
−20

0

20

β 
[d

eg
]

0 0.5 1 1.5 2
−10

0

10

γ 
[d

eg
]

Time [s]

 

 

TE
LE&TE

Figure 2.21: Closed-loop system response at pre-flutter speed V∞ = 2.26 < Vf .
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Figure 2.22: Closed-loop system response at post-flutter speed V∞ = 2.76 > Vf .
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Results illustrate that at both pre- and post- flutter speeds the pitching and plunging displacements

of the system converge much faster when using the two flaps collectively. With only the TE flap,

the plunging displacement converges fast (being the directly controlled variable) while the pitching

displacement converges naturally according to the internal dynamics of the system. Another ad-

vantage of the proposed control strategy with two flaps is that the maximum amplitude of the both

the TE and LE control flap deflections is much smaller than that of control strategy with only the

TE flap. Furthermore, the very low amplitude of the leading edge deflection minimizes potential

flow separation induced by the control surface operation.

Conclusion

Partial state feedback adaptive control designs are developed for SISO/MIMO aeroelastic systems

exposed to incompressible unsteady flow. The immeasurable unsteady aerodynamic states resulted

from the formulation based on Wagner’s indicial function were estimated implicitly during the

control design using a convolution based method. Both system is shown to be minimum-phase

with the chosen variables as the system output, thereby, assuring the convergence of the internal

dynamics as the plunging displacement motion is suppressed. Lyapunov-based method has been

utilized to obtain the asymptotic stability result for both situations.

In the control design for MIMO system, an SDU (Symmetric p.d. + Diagonal + Upper Triangular)

decomposition was utilized to decouple the control inputs resulting in a singularity free controller

that produced a global asymptotic stability result. Numerical simulations showed that the controller

could suppress Limit Cycle Oscillations (LCOs) at post-flutter speed while also having the ability

to dramatically decrease the settling time of the system at pre-flutter speed.
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CHAPTER 3: CONTINUOUS ROBUST CONTROL FOR AEROELASTIC

SYSTEM

Introduction

In this chapter, a continuous robust controller is proposed to asymptotically stabilize the 2-D airfoil

system that presented in Chapter 2. However, several kinds of bounded unknown external distur-

bances are applied to the system. A single-input/single-output (SISO) continuous robust controller

is designed to suppress the vibrations for the aeroelastic system using a TE flap as the actuator. The

novelty of this work is that we theoretically guarantee robustness to external disturbances which

(to the best of our knowledge) has not been achieved before using an unsteady formulation. The

proposed controller requires only minimal knowledge of the system model, namely, the sign of

the control gain. The design of this control law is motivated by a continuous robust SISO result

presented in [15] which was applicable to flat systems. The challenge in extending the controller

of [15] to the 2-D system model utilized in this paper lies in proving the stability of the inter-

nal dynamics induced by the combination of the unsteady aerodynamics and the dynamics of the

plunging degree of freedom which is not directly controlled. These internal dynamics appear as a

disturbance term in the dynamics of the pitching displacement. We address these internal dynamics

in a two-step fashion by utilizing Input-to-State Stability (ISS) concepts [4]. First, we prove that

the system internal dynamics can be bounded as the summation of a nondecreasing function of the

tracking error of the chosen output variable (specifically, the pitching DOF) and the bounds of the

external disturbance. Then, given this boundedness of the internal states of the system as a func-

tion of the output error, a Lyapunov-based analysis is applied to show that semi-global asymptotic

stability can be obtained for the pitching angle tracking error under application of the proposed

continuous robust controller. The advantages of the proposed robust controller compared with the
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adaptive control designed in our previous work in [13] are three-fold: firstly, the proposed control

design is low-order since there are no parameters that need to be estimated; secondly, this is a par-

tial state feedback controller in which only the output variable and its derivative are utilized, and

finally, the control design theoretically guarantees robustness to a class of bounded disturbances..

Dynamic System and Open-Loop Error System Development

The 2-D wing flap structural model presented in Chapter 2 and illustrated in Fig. 2.1 is taken into

consideration. While different from the situation in Chapter 2, pitching displacement is taken as

the system output and nonlinearity are restricted in pitching displacement. We can get a similar

state space representation of the overall system dynamics as shown in (2.1) such that

MŸ(t)+KY(t) = −L(t) + Lc(t)− Lg (t) . (3.1)

where Lg(t) represent the unsteady aerodynamic load and gust loads. All the matrices definition

in (3.1) is the same as those in (2.1) except the stiffness matrix is defined as

K=


Kh 0 0

0 kα(α) 0

0 0 Kβ


In (3.1), the gust loading Lg(τ) is defined as follows [16][5].

Lg(τ) =

[
LG(τ) MyG(τ) TT (τ)

]T
= ρV b

∫ τ
0

[
ILG(τ − τ 0) IMG(τ − τ 0) IfG(τ − τ 0)

]T
wG(τ 0)dτ

(3.2)
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where τ = V t/b is the dimensionless time and wG(τ) is the gust variable velocity which is as-

sumed to be C0, while ILG, IMG and IfG are the related aerodynamic indicial functions. For

incompressible flow, they are expressed as

[
ILG(τ − τ 0) IMG(τ − τ 0) IfG(τ − τ 0)

]T
=

[
4πψ̇ bILG

(
1
2
− a
)

0

]T
(3.3)

where ψ denotes the Kussner function which is approximated by

ψ = 1− 0.5e−0.13τ − 0.5e−τ . (3.4)

From Eqs.(3.1)-(3.3), the state space representation of the overall system dynamics can be obtained

as follows
ẋ = Ax + f(α) + Bu+Gwg

y = CTx
(3.5)

where wg
∆
=

[
wL (t) wM (t) wT (t)

]T
denotes the external gust disturbance which is C1

since wG(τ) ∈ C0, A,B,C,G, and f(α) are, respectively, parameter matrices and a nonlinear

vector, whose explicit definitions have been given in Appendix A.

From (3.5), the pitching displacement dynamics are expressed as follows

α̈ = λ (x) + b2u+ G2wg, (3.6)

where the expression for λ (x) is given in Appendix B, while b2 and G2, respectively, denote the

second component of the control input vector B and the second row of the disturbance matrix G.

For the sake of design of a continuous controller using an integral of the standard signum function,

we begin by taking the derivative of (3.6) and utilizing (3.5) to obtain the dynamics in the following
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form amenable to further analysis

α(3) = λ̇ (x) + b2u̇+ d(t) (3.7)

where d(t) is a time-varying bounded disturbance term for which an explicit expression has been

provided in Appendix B. To facilitate the following controller design, the tracking error e1 is de-

fined as

e1 = αd − α, (3.8)

where αd is the desired bounded output variable that is designed to be C3 smooth in deference to

the requirements of the subsequent control design. Next, the auxiliary error signals e2 and r are

defined as follows

e2 = ė1 + e1, (3.9)

r = ė2 + e2. (3.10)

Based on above definitions, a composite error signal e(t) can be defined as follows

e =

[
e1 e2 r

]T
. (3.11)

By taking the derivative of r, substituting from the derivative of (3.9) and applying the definitions

given in (3.7), (3.9), and (3.10), we obtain

1

|b2|
ṙ =

1

|b2|

[
(
...
αd + 2ė2 − ė1)− λ̇ (x)

]
− sgn(b2)u̇− 1

|b2|
d(t) (3.12)
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We now arrange (3.12) into following open-loop dynamics form

1

|b2|
ṙ = N(x, ẋ,t)− sgn(b2)u̇− e2 (3.13)

where the auxiliary function N(x, ẋ, t) is defined as follows

N =
1

|b2|

[
(
...
αd + 2ė2 − ė1)− λ̇ (x)

]
− 1

|b2|
d(t) + e2. (3.14)

Note here that the function N(x, ẋ, t) will be split into different parts based on their boundedness

to facilitate the subsequent control design.

Boundedness of Internal Dynamics

Before we delve into the control design, we introduce a Lemma which can provide the boundedness

of system states in terms of the input, output, and initial state values. We start by transforming (3.5)

into a normal form by applying a linear diffeomorphism [13] z : R8 → R8 to the original system

states x (t) as follows

zx=

[
α α̇ ζT

]T
(3.15)

such that

d

dt


α

α̇

ζ

 = FAx+ F f(α) + zBu+ zGwg(t) (3.16)
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where (3.5) has been utilized; here, z has been designed s.t. zB =

[
0 b2 06×1

]T
, which

implies that the ζ
∆
=zsubx ∈ R6×1 dynamics are independent of the control variable u as follows

ζ̇ =zsubAx+zsubf(α) + zsubGwg(t) (3.17)

where zsub is the appropriate submatrix of z derived from (3.15). Then a higher-order state vector

Z =

[
µT ηT

]T
is defined as follows where µ

∆
=

[
α α̇ α̈

]T
and η

∆
=

[
ζT ζ̇

T

]T
. By

utilizing (3.7) and the time derivative of (3.17), the dynamics of Z (t) can be succinctly written as

follows

Ż = F (Z) + Tu̇+ D(t) (3.18)

while F,T, and D are defined as follows

F (Z)
∆
=



α̇

α̈

ẋT
∂λ (x)

∂x

fη (µ,η)


, T

∆
=



0

0

b2

012×1


, D(t)

∆
=



0

0

d(t)

dζ(t)


(3.19)

where the auxiliary vector fη (µ,η) ∈ R12×1 and the disturbance vector function dζ(t) ∈ R12×1

are defined as follows

fη (µ,η)
∆
=

[
ζ̇
T

zsubAẋ+zsubḟ(α)

]T
dζ(t)

∆
=

[
01×6 (zsubGẇg(t))

T

]T
.

(3.20)

It is clear to see from the definitions above that fη (µ,η) can be written out as follows

fη (µ,η) = fη (0,η) + fη (µ,0) . (3.21)
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Since fη (0,η) denotes the nominal zero dynamics and the system is assumed to be minimum

phase, a converse theorem [4] can be employed to obtain the following upperbound

ηT fη (0,η) ≤ −Kη ‖η‖2 (3.22)

where Kη is a system constant. With all of the above definitions, a Input-to-State Stability like

Lemma is introduced as follows

Lemma 2 Consider the system (3.19) with a bounded initial state Z0; given a positive constant C0

such that
∥∥∥η0 , η (t0)

∥∥∥ < C0, there exists a corresponding positive constant C1 such that ∀t > t0,

the internal dynamics η satisfy

‖η‖ ≤ ρ1 (‖e‖) ‖e‖+ C1, (3.23)

where ρ1 (·) is a positive invertible nondecreasing function.

Proof. We define a positive definite function V1 (t) as follows

V1 =
1

2
ηTη (3.24)

Taking the time derivative of V1 along the trajectory of (3.18) yields

V̇1 = ηT fη (0,η) + ηT (fη (µ,0) + dζ(t)) (3.25)

where we have utilized (3.21). By adding and subtracting ηT fη (µd,0) to the right hand side of

the above expression and using (3.22), V̇1 can be bounded as

V̇1 ≤ −Kη ‖η‖2 + ‖η‖ (‖fη (µ,0)− fη (µd,0)‖+ ‖fη (µd,0) + dζ(t)‖) .
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An application of the Mean Value Theorem [15] allows us to obtain the inequality

‖fη (µ,0)− fη (µd,0)‖ ≤ ρ0 (‖e‖) ‖e‖

where ρ0 (·) is a positive nondecreasing function and e (t) is a composite error signal previously

defined in (3.11). The desired higher-order output trajectory µd
∆
=

[
αd α̇d α̈d

]
∈ L∞ is

bounded by design while the disturbance dζ(t) is bounded by assumption. Thus, one can obtain a

further upperbound on V̇1 as follows

V̇1 ≤ −Kη ‖η‖ (‖η‖ − ρ1 (‖e‖) ‖e‖ − C) (3.26)

where C ∆
=

1

Kη

‖fη (µd,0) + dζ(t)‖
∞

and ρ1 (·) ∆
=

1

Kη

ρ1 (‖e‖) ‖e‖ is an invertible nondecreas-

ing function. We define a set D1 as follows

D1 = {η| ‖η‖ ≤ ρ1 (‖e‖) ‖e‖+ C}

which is invariant because V̇1 is negative on its boundary. Based on this definition, we define

another set Dη s.t. D1 ⊂ Dη as follows

Dη = {η| ‖η‖ ≤ ρ1 (‖e‖) ‖e‖+ C1}

where C1 is a positive constant defined as

C1
∆
= C0 + C (3.27)

where C0 is the least upper bound of ‖η0‖. It is clear to see that Dη is invariant for ∀t > t0 which

implies that η (t)∈Dη ∀t ≥ t0 since ‖η0‖ ∈ Dη. This completes the proof.
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Control Development and Stability Analysis

Given that both the pitch degree and its derivative are measurable and the sign of control gain

is known, we are motivated by the structure of open-loop error dynamics in (3.13) to propose a

continuous controller as follows

u = sgn(b2)

[
(ks + 1)e2 − (ks + 1) e2(t0) +

∫ t

t0

[(ks + 1) e2 (τ) + kdsgn(e2 (τ))] dτ

]
(3.28)

where ks and kd are positive gain constants. The derivation of (3.28) is given as

u̇ = sgn(b2) [(ks + 1)r + kdsgn (e2 (t))] (3.29)

After substituting (3.29) into (3.13), the closed-loop dynamics can be expressed in the following

manner
1

|b2|
ṙ = N − (ks + 1)r − kdsgn(e2 (t))− e2. (3.30)

It is clear to see from the definitions of µ and η as well as (3.15) and (3.16) that N (x, ẋ, t) defined

in (3.14) can be split into two parts as follows

N (x, ẋ, t) = Nµ (µ, t) +Nη (η) (3.31)

where Nη (η)
∆
= KNηη and KNη ∈ R1×12 is a constant vector comprised of system constants.

After defining Nµd (t)
∆
= Nµ (µd, t) and Ñµ

∆
= Nµ (µ, t)−Nµd (t), one can rewrite the closed-loop

dynamics of (3.30) as follows

1

|b2|
ṙ = Nµd + Ñµ +Nη − (ks + 1)r − kdsgn(e2 (t))− e2. (3.32)
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One can utilize (3.23) to upperbound Nη as follows

‖Nη‖ ≤ ρ2 (‖e‖) ‖e‖+ C2 (3.33)

while the Mean Value Theorem [15] can be utilized to upperbound Ñµ in the following manner

∥∥∥Ñµ

∥∥∥ ≤ ρ3 (‖e‖) ‖e‖ (3.34)

where ρ2 (·) and ρ3 (·) are positive nondecreasing functions while C2 is a system constant. To

facilitate the subsequent stability analysis, the following Lemmas are needed.

Lemma 3 For any differentiable function e (t) : R+ → R with e (t) , ė (t) ∈ L∞, there exist

positive constants ε1 and ε2 such that

∫ t

t0

|ė (t)| dτ ≤ ε1 + ε2

∫ t

t0

|e (t)| dτ + |e (t)| ∀t > t0.

Proof. The proof of Lemma 3 can be found in [35].

Lemma 4 An auxiliary function L(t) ∈ R is defined as follows

L(t) = r(N̄µd − kdsgn(e2)). (3.35)

where

N̄µd = Nµd + C2sgn (r)

If the control gain kd is chosen to be sufficient large as follows

kd > (1 + ε2) ||N̄µd||∞, (3.36)
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then the integral of L(t) can be upperbounded in the following manner

∫ t

t0

L(τ)dτ ≤ ε , ε1||N̄µd||∞ + kd |e2 (t0)| . (3.37)

Proof. The proof of Lemma 4 is given in Appendix A.

The stability analysis is carried out in two steps. First, the error signals e1, e2, and r are proven

to be ultimately bounded. Then, Lemmas 3 and 4 are utilized to prove the semi-global asymptotic

stability of the error signals. We begin by defining a nonnegative Lyapunov candidate function V2

as follows

V2 =
1

2
e2

1 +
1

2
e2

2 +
1

2

1

|b2|
r2 (3.38)

Since the Lyapunov function is continuously differentiable, V2 can be bounded as

min

{
1

2
,

1

2|b2|

}
‖e‖2 ≤ V2 (e) ≤ max

{
1

2
,

1

2|b2|

}
‖e‖2 (3.39)

The time derivative of (3.38) along (3.32) can be obtained as follows

V̇2 = e1e2 − e2
1 − e2

2 − (ks + 1)r2 + r
[
Nµd + Ñµ +Nη − kdsgn(e2 (t))

]
.
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By utilizing the bounds of (3.33) and (3.34) in the above expression, one can obtain the following

upperbound for V̇2

V̇2 ≤ −1

2

(
e2

1 + e2
2

)
− (ks + 1)r2 + |r| (ρ3 (‖e‖) ‖e‖+ ρ2 (‖e‖) ‖e‖+ C2)

+r [Nµd − kdsgn(e2 (t))]

≤ −1

2

(
e2

1 + e2
2

)
− (ks + 1)r2 + |r| ρ (‖e‖) ‖e‖+ C4 |r|

where ρ (‖e‖) ∆
= ρ3 (‖e‖) + ρ2 (‖e‖) while C4

∆
= ‖Nµd + C2sgn (r)− kdsgn(e2 (t))‖∞. After

completing squares to obtain the inequality −ksr2 + |r| ρ (‖e‖) ‖e‖ ≤ 1
4ks
ρ2 (‖e‖) ‖e‖2 , one can

further upperbound V̇2 as follows

V̇2 ≤ −
1

2

(
e2

1 + e2
2

)
− r2 +

1

4ks
ρ2 (‖e‖) ‖e‖2 + C4 |r| .

where V̇2 can be further bounded as

V̇2 ≤ −
1

2
‖e‖2 −

(
1

2
− 1

4σ1

)
r2 +

1

4ks
ρ2 (‖e‖) ‖e‖2 + σ1C

2
4

by utilizing the identity C4 |r| ≤
1

4σ1

|r|2 + σ1C
2
4 where σ1 is an arbitrary positive constant. By

choosing σ1 such that
1

2
− 1

4σ1

≥ 0, V̇2 can be bounded as

V̇2 ≤ −
(

1

2
− 1

4ks
ρ2 (‖e‖)

)
‖e‖2 + σ1C

2
4 .

Finally, one can utilize (3.39) to obtain the following upperbound renders the following inequality

V̇2 ≤ −C5V2 + σ1C
2
4 (3.40)
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∀ ‖e‖ ≤ ρ−1
(√

2ks
)
, where C5 is a positive constant. It is now easy to conclude that V2 is semi-

global uniformly ultimately bounded which implies that e1, e2, r ∈ L∞. Therefore, we can apply

Lemma 3 and subsequently Lemma 4 to define a nonnegative function P (t) as follows

P
∆
= ε−

∫ t

t0

L(τ)dτ ≥ 0. (3.41)

To show asymptotic stability, we begin by considering the following Lyapunov function candidate

V3 = V2 + P. (3.42)

By utilizing the definition of (3.41), the time derivative of V3 (t) along (3.32) can be obtained as

follows

V̇3 = e1e2 − e2
1 − e2

2 − (ks + 1)r2 + r
[
Nµd +Nη + Ñµ − kdsgn(e2 (t))

]
− L (t)

Following similar procedures as utilized to bound V̇2, we can find an upperbound for V̇3 as follows

V̇3 ≤ −
1

2
‖e‖2 − ksr2 + rρ (‖e‖) ‖e‖+ {r [Nµd + C2sgn (r)− kdsgn(e2 (t))]− L (t)} .

The term in braces nets out to zero by virtue of (3.35) so that the upperbound above can be simpli-

fied as follows

V̇3 ≤ −
(

1

2
− 1

4ks
ρ2 (‖e‖)

)
‖e‖2 (3.43)

Then one can state from (3.43) that V̇3 (t) is negative semi-definite on the region

S =
{

e ∈R3
∣∣ ||e|| <ρ−1

(√
2ks

)}
. (3.44)
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We note here that the region of attraction S can be made arbitrarily large to include any initial value

of e1 (t) , e2 (t) , r (t) by increasing the control gain ks. From (3.42) and (3.43), one can infer that

e1 (t) , e2 (t) , r (t) ∈ L∞ ∩ L2 which implies that ė1 (t) , ė2 (t) ∈ L∞ from (3.9) and (3.10). From

the boundedness and smoothness of αd (t) and the the previous boundedness assertions, once can

infer that α (t) , α̇ (t) , α̈ (t) ∈ L∞ from the definitions of (3.8), (3.9), and (3.10). From (3.15)and

(3.23), it is easy to see that x (t) , ẋ (t) ∈L∞ which implies from (3.30) that ṙ (t)∈L∞. Thus

the right hand side of the inequality of (3.43) is uniformly continuous which allows us to utilize

Barbalat’s Lemma to show the asymptotic stability of e1 (t) , e2 (t) , r(t) to the origin. This result

is valid under any bounded C0 external disturbance ωG(τ). It is also clear to see by virtue of (3.6)

that the control input u (t) remains bounded for all time as well. Thus, all system states and the

control input remain bounded for all time during closed loop operation. While the nominal internal

dynamics are asymptotically stable, the internal states can not be expected to converge to the origin

under application of finite external disturbances; however, it can be guaranteed boundedness of all

system states under bounded disturbance.

Numerical Simulation Results

In this section, various simulations were run to test the nominal system response as well as that

under the external disturbances given in Eqs.(3.45-3.47). The nonlinear polynomial representing

pitching spring stiffness is chosen as kα(α) = Kα(1− 22.1α+ 1315.5α2 + 8580α3 − 17289.7α4)

[N·m/rad]. The parameters settings are chosen as shown in Table 3.1 leading to a flutter speed of

Vf = 83.56 [m.s−1].The desired trajectory variable αd and its derivatives are simply selected to be

zero.

The initial conditions for pitch angle α(t) and plunge displacement h(t) are set to be α(0) = 5.729

[deg] and h(0) = 0.1 [m] while all other state variables are initially selected to be zero.
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Table 3.1: Model parameters

Parameter Value Parameter Value
b 0.305 [m] Kh 500m
a −0.5 Kα 1200Iα
c 0.5 Kβ 15000Iβ
m 90 [kg/m] ρ 1.225 [kg/m3]
Iβ 0.552 [kg·m2/m] Iα 22.08 [kg·m2/m]
Sβ 0.441 [kg] Sα 7.062 [kg]

In this paper, the following three external disturbances are considered according to [16]. The first

type of external disturbance is modeled as a triangular gust, whose velocity distribution function is

given as

wG(τ) = 2w0
τ

τG

(
H (τ)−H

(
τ − τG

2

))
− 2w0

(
τ

τG
− 1

)(
H (τ − τG)−H

(
τ − τG

2

))
,

(3.45)

whereH(·) denotes a unit step function and τG = Vf tG/b given tG = 0.25 [s]. This triangular gust

lasts for 0.5 [s] from t = 0 to 0.5 [s]. The second disturbance is modeled as a sustained disturbance

beyond the transient response time of the closed-loop aeroelastic system. It is given in the from of

a graded gust with its velocity distribution shown as

wG(τ) = H(τ)w0

(
1− e−0.75τ

)
. (3.46)

The third type of external disturbance is modeled as a sinusoidal gust with the following velocity

distribution function wG(τ)

wG(τ) = H (τ)w0 sinωτ (3.47)

where ω = 0.5 [rad/s]. For all 3 disturbances, we setw0 to be 0.5 [m/s] for both pre- and post-flutter
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speed simulations. These external disturbances cover three main kinds of disturbance: ephemeral

disturbance, steady sustained disturbance, and time-varying sustained disturbance. The contribu-

tion of these disturbances to the system response will be presented in the form of gust loading as

shown in (3.2). Both the disturbance velocity distribution and the corresponding gust load will

be presented along with the system response. For all simulations, we implement the controller of

(3.28) with gains selected as ks = 50 and kd = 40.

Fig. 3.1 shows the open-loop and closed-loop response of wing section model at pre-flutter speed

V = 0.9Vf without disturbance. The controller in the closed-loop simulation was turned on at

t = 1.5 [s]. It can be seen from Fig. 3.1 that the pitching displacement converged in 2 [s]. The

plunging displacement converged according to the internal dynamics of the system - it is driven to

zero in 2 [s] as shown in (3.1).
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Figure 3.1: Open-loop and closed-loop response without gust disturbance at pre-flutter speed V =
0.9Vf

56



Fig. 3.2 shows the open-loop and closed-loop responses of the model section at post-flutter speed

V = 1.1Vf without disturbance. As shown in Fig. 3.2, the controller is turned on at t = 1.5

[s]. The limit cycle oscillations (LCO) of the pitching and plunging displacements are suppressed

within 2 [s].

The triangular gust disturbance is the first type of the external disturbance considered in the simu-

lation. Since an external gust disturbance impacts the aerodynamic in terms of gust loading Lg(t),

it would be intuitive to analyze the response of the wing section model with the corresponding plot

of gust load. Since from (3.2) and (3.3), we can see that IMG and IfG is the linear function of

ILG, we only show the plot of ILG. As shown in Fig. 3.3, the gust starts at 1 [s] and lasts for 0.5

[s].However, after filtering by Kussner’s function (3.4), the loading produced by the gust is seen to

be smoother and longer lasting than the gust itself.
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Figure 3.2: Open-loop and closed-loop response without gust disturbance at post-flutter speed
V = 1.1Vf
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Figure 3.3: Triangular gust disturbance and corresponding gust loading

Fig. 3.4 presents the open- and closed-loop response of the wing section model under triangular

gust at pre-flutter speed with V = 0.9Vf . As shown in Fig. 3.4, the triangular gust has an obvious

impact on the plunge and pitch displacement between t = 1 [s] and t = 4 [s]. Fig. 3.5 shows

the open- and closed-loop response of the wing section model under triangular gust at post-flutter

speed with V = 1.1Vf .

In Figs. 3.4 and 3.5, the controller is turned on at t = 2 [s] and in both of these two simulations,

plunge and pitch displacement are driven to zero in 2 [s]. While the pitching and plunging distur-

bances converge to the origin relatively quickly, the flap torque converges to zero only at the rate

of convergence of the external disturbance.
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Figure 3.4: Open-loop and closed-loop under triangular gust at pre-flutter speed V = 0.9Vf
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Figure 3.5: Open-loop and closed-loop under triangular gust at post-flutter speed V = 1.1Vf
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The third set of simulations was run under the graded external gust disturbance; as shown in Fig.

3.6, the graded gust load starts at t = 1[s] and exponentially goes to a constant loading value as

time goes on. At both pre- and post-flutter speeds as shown in Figs. 3.7 and 3.8, the proposed

controller is turned on at t = 2 [s] and is seen to successfully drive the output to zero. As expected,

the persistent disturbance causes the control signal to not converge to zero along with the output.

However, it is clear to see that the control signal is able to compensate for the unknown graded

disturbance injected into the wing section model.

Sinusoid gust disturbance was considered in the fourth set of simulations. The disturbance and its

gust load is presented in Fig. 3.9. The open- and closed-loop responses of the wing section model

under sinusoid gust disturbance at pre- and post-flutter speed are displayed in Figs. 3.10 and 3.11,

respectively. The disturbance starts at t = 0 and the controller is turned on at t = 2 [s] at both pre-

and post- flutter speed.
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Figure 3.6: Graded gust disturbance and corresponding gust loading
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Figure 3.7: Open-loop and closed-loop response under graded gust at pre-flutter speed V = 0.9Vf
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Figure 3.8: Open-loop and closed-loop response under graded gust at post-flutter speed V = 1.1Vf

61



0 2 4 6 8 10
−0.5

0

0.5

D
is

tu
rb

an
ce

 w
G

 [m
/s

]

0 2 4 6 8 10
−5

0

5

10

G
us

t l
oa

d 
L G

 [N
/m

]

Time [s]

Figure 3.9: Sinusoid gust disturbance and corresponding gust loading
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Figure 3.10: Open- and closed-loop response under sinusoidal gust at pre-flutter speed V = 0.9Vf
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As shown in Figs. 3.10 and 3.11, after the pitching degree (which is the directly controlled DOF)

converges, there are still small residual oscillations in the responses of h and β. Although the

system (3.5) is minimum-phase and the output α converges under the proposed control, due to the

sustained bounded external disturbance, the zero dynamics just stay bounded but are not able to

converge as predicted by the bound shown in (3.23).
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Figure 3.11: Open- and closed-loop response under sinusoidal gust at post-flutter speed V = 1.1Vf

Conclusion

The active aeroelastic control of 2-D wing-flap systems is modeled which is operating in an in-

compressible flowfield and exposed to three different kinds of external gust loads. By utilizing the

property of Input-to-State Stability (ISS), the system internal states are proved to be bounded as

a function of the output tracking error and its derivatives. Then, a continuous robust controller is

proposed to suppress the aeroelastic vibration subject to external disturbance on a nonlinear plung-
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ing and pitching wing section subject to unsteady aerodynamics. The control strategy requires

minimal system and disturbance knowledge and is implemented by a trailing-edge flap torque.

Lyapunov-based stability analysis is provided to obtain a semi-global asymptotic stability result

on the pitching DOF tracking error. The robustness and efficacy of the controller is validated by

simulation results under different operating conditions and disturbances. The investigated gust dis-

turbances in this chapter are the most typical ones encountered. While it is impossible to present

the system response under all possible kinds of disturbances, one can expect satisfactory simulation

results under other disturbances based on the rigorous stability analysis presented in this chapter.
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CHAPTER 4: ROBUST OUTPUT FEEDBACK CONTROL FOR 2-DOF

MIMO NONLINEAR SYSTEM

Introduction

The goal of this chapter is to design a robust controller to suppress the vibrations for the aeroelastic

system only using position feedback for the aeroelastic system by taking LE and TE flap as the

actuator. The wing section model used in this chapter is the same as MIMO aeroelastic system

shown in Chapter 2 except we have introduced external disturbance into the system. Inspired

by [17], we design a filter error signal based on output errors to avoid using velocity sensor to

measure the rates of the output variables and the actuator deflection. The robustness of the system

to external disturbance is theoretically guaranteed by Lyapunov function based stability proof.

The proposed controller requires only minimal knowledge of the system model, namely, the signs

of the leading principal minors of control gain matrix. A SDU [2] decomposition is applied to

the control gain matrix to decouple the control inputs. The internal dynamics induced by the

unsteady aerodynamics appear as a disturbance term in the dynamics of the pitching and plunging

displacement. Similar to the continuous robust control design in Chapter 3 for a SISO system

(albeit the controller relied on partial state feedback), we address these internal dynamics in a two-

step fashion by utilizing Input-to-State Stability (ISS) concepts. First, we prove that the system

internal dynamics can be bounded as the summation of a nondecreasing function of the tracking

error of the chosen output variable (specifically, the pitching and plunging DOF) and the bounds

of the external disturbance. Then, given this boundedness of the internal states of the system

as a function of the output error, a Lyapunov-based analysis is applied to show that semi-global

asymptotic stability can be obtained for the pitching and plunging tracking errors under application

of the proposed sliding mode controller. While the control torque input is discontinuous for this
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design, the flap deflections are smooth and low amplitude such that the modeling construct remains

valid and the potential for flow separation is mitigated.

System Modeling and Open Loop Error System Development

The wing section model with 4-DOFs in plunging displacement h (t), pitching angle α (t), TE flap

deflection β (t) , and LE flap deflection γ (t) shown in section MIMO system Extension of Chapter

2 and illustrated in Fig. 2.12 will be taken as the prototypical system for control design. With

considering the gust disturbance term Lg, the aeroelastic governing equations shown in (2.42) can

be developed as

Msẍ = −Ksx−K (h, α) x +
1

msb2
(L− Lg) + Tu (4.1)

where Lg(t) represent the unsteady aerodynamic load and gust loads. The gust load given in (4.1)

is defined as follows

Lg(τ) =

[
LG(τ) MyG(τ) 02×1

]T
(4.2)

where the definitions of LG(τ) and MyG(τ) is given in (3.2) and (3.3). Then one can compactly

write the system state space dynamics as

Ẋ=AX + f(y)+Hu+∆ (t)

y =

[
α h

]T (4.3)

which is similar to state space equation (2.49) we derived in chapter 2. The bounded unknown

external disturbance ∆ (t) ∈ R10 are explicitly defined in Appendix B. As we have already shown,

with specified choice of the output, the nominal system of (4.3) are globally exponentially stable.

Since the system is of relative degree 2, a linear diffeomorphism z : R10 → R10 (as similarly done

in chapter 3 for the SISO aeroelastic system) is applied to the original system states X (t) such that
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 µ

ζ

 ∆
= zX

where z ∈ R10×10 is an invertible matrix which has been designed s.t.

zH =

[
02×2 GT 02×6

]T
(4.4)

and µ (t),

[
α (t) h (t) α̇ (t) ḣ (t)

]T
=

[
yT (t) ẏT (t)

]T
which implies that the dy-

namics of ζ (t)
∆
=zsubX (t) ∈ R6×1 are independent of the control variable u (t) as follows

ζ̇ =zsubAX+zsubf(y) (4.5)

where zsub ∈ R6×10 is a submatrix of z.Then, one can obtain the normal form of (4.3) as follows

µ̇ =

 ẏ

Φ (µ, ζ) + ∆1 (t) +Gu


ζ̇ = Ψ (µ, ζ) + ∆2 (t)

. (4.6)

Explicit definitions for Φ (·) ,Ψ (·) ,∆1 (t), ∆2 (t), and G have been provided in Appendix B.

The objective of this chapter is to design a sliding mode controller to suppress the vibrations in the

pitching (i.e., α (t)) and plunging (i.e., h (t)) degrees of freedom using only measurements of these

output variables. The output tracking error e (t) ∈ R2×1 is defined as

e (t) = yd − y (4.7)

where yd (t)
∆
=

[
αd (t) hd (t)

]T
is the desired bounded output variable that is designed to be
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C2 smooth. In order to compensate for lack of measurements of ẏ (t), a measurable filter tracking

error ef (t) ∈ R2 is defined as

ef = −Ke + p (4.8)

where K̄ , −K ∈ R2×2 is a Hurwitz lower triangular gain matrix, while p (t) ∈ R2 is generated

via the following differential expression

ṗ = − (K + 2I2) p + (K +K2) e p (0) = Ke (4.9)

where In denotes an n × n identity matrix. An unimplementable but analytically convenient ex-

pression for the dynamics of ef (t) can be written as follows

ėf = −2ef −Kr. (4.10)

where r (t) ∈ R2 is an immeasurable filtered tracking error defined as

r = e + ef + ė (4.11)

based on the definitions of (4.7), (4.8), and (4.9). We define a composite error vector z (t) ∈ R6 as

follows

z =

[
eT eTf rT

]T
. (4.12)

Finally, based on the definitions of error signals in (4.8)-(4.11), we define a measurable auxiliary

error signal E (t) ∈ R2 as follows

E (t) = (K + I)−1 (e− ef ) (4.13)
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such that

r (t) = Ė (t) + E (t) . (4.14)

After taking the time derivative of r (t) along the trajectory of (4.6) and performing some algebraic

manipulation, the open-loop filtered tracking error dynamics can be compactly written as follows

M ṙ = N (µ, ζ, t) + Π−Du−MKr− e− r (4.15)

where the auxiliary function N (µ, ζ,t) ∈ R2 is defined as

N (µ, ζ,t) = M ÿd −MΦ1(µ)−MΦ2 (ζ)−M∆1 (t) +M (r − e− ef )− 2Mef + e + r (4.16)

where we have utilized the fact that Φ (µ, ζ) = Φ1(µ)+Φ2 (ζ) and we have applied an SDU

decomposition [18, 19] to the control gain matrix G as follows

G = SDU

where S ∈ R2×2 is a symmetric positive-definite matrix, M ∆
= S−1, D ∈ R2×2 is a diagonal matrix

with +1 or −1 as its diagonal entries, and U is a unity upper-triangular matrix. Π is defined as

Π = (D −DU)u

=

[
−U12u2 0

]T (4.17)

where Uij denotes the (i, j)th entry of the U matrix. From the structure of (4.16), one can rewrite

N (µ, ζ, t) as

N (µ, ζ,t) = Nµ (t) + Nζ (t) (4.18)
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where Nµ (t) and Nζ (t) are defined as

Nµ (t) = N (µ, 0, t) = M ÿd −MΦ1(µ)−M∆1 (t)

+M (r − e− ef )− 2Mef + e + r
(4.19)

Nζ (t) = N (0, ζ, 0) = −MΦ2 (ζ) (4.20)

Nµ (t) can be further split into two parts with different boundednesses Definitions of N(t) func-

tions are shown as

Nµ (t) = Nd (t) + Ñ (t) (4.21)

where Nd (t) and Ñ (t) are defined as

Nd = N (µd, 0, t) = M ÿd −MΦ1(µd)−M∆1 (t)

Ñ = Nµ −Nd

(4.22)

By applying Mean Value theorem to Ñ in (4.22), one can bound Ñ as

∣∣∣Ñi

∣∣∣ ≤ ρ1,i (‖z‖) ‖z‖ , i = 1, 2 (4.23)

where ρ1 (·) is nondecreasing positive invertible function. Provided the fact that µd,∆1 (t)∈L∞,

one can know that

Nd∈L∞.

Since the nonlinearities of the system only depends on the output states µ, from (4.20) one can

know Nζ (t) is a linear function of ζ and it can be bounded as

|Nζ,i (t)| ≤ Kζ,i ‖ζ‖ , i = 1, 2 (4.24)
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where Kζ,i is a positive constant. Substituting (4.18)(4.21)(4.22) into (4.15), one can rewritten the

open loop dynamic as

M ṙ = Nd (t) + Ñ (t) + Nζ (t) + Π−Du−MKr− e− r (4.25)

The following Lemma is presented to get the bounds of Nζ (t) .

Lemma 5 Consider the system (4.6) with bounded initial states µ0, ζ0, for all t > t0 there exists

two positive constant C0 and C1 such that for ‖ζ0‖ < C1 the internal dynamics ζ satisfy

‖ζ‖ ≤ ρ0 (‖z‖) ‖z‖+ C0, (4.26)

where ρ0 (·) is a positive invertible nondecreasing function.

The proof of Lemma 5 is similar to Lemma 2. Reader can refer to [20]. By using (4.24) and (4.26),

Nζ (t) can be further bounded as

|Nζ,i (t)| ≤ ρ2,i (‖z‖) ‖z‖+ Cζ,i, i = 1, 2 (4.27)

where ρ2,i (‖z‖) ‖z‖
∆
= Kζ,iρ0 (‖z‖) ‖z‖ and Cζ,i

∆
= Kζ,iC0.

Control Design and Stability Analysis

In this section, it is assumed that both pitching displacement and plunging displacement are mea-

surable. Furthermore, M and U are assumed to be unknown, while the diagonal matrix D com-

prising the signs of the leading principal minors of G is assumed to be known. Given the previous
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assumption, the following output feedback control law is proposed as

u = D
[
−KTef +Kdsgn (E (t))

]
(4.28)

where E (t) is defined as

E (t) = (K + I)−1 (e− ef ) (4.29)

and gain matrices K,Kd ∈ R2×2 are defined as

K =

 k1

k2 k3

 , Kd =

 kd,1

kd,2

 . (4.30)

where the method for selecting K is given in Appendix. By substituting (4.28) into (4.25), one can

obtain the following closed-loop dynamics as

M ṙ = Nd + Ñ +Nζ + Π +KT ef −Kdsgn (E (t))−MKr− e− r (4.31)

Substituting (4.28) into (4.17), Π can be rewritten as

Π =

[
D2U2k3ef,2 −D2U2kd,2sgn (E2 (t)) 0

]T
,

while it can be splited into two parts as

Π = Φ + Ψ (4.32)

where

Φ =

[
D2U2k3ef,2 0

]T
Ψ =

[
−D2U2kd,2sgn (E2 (t)) 0

] (4.33)
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To facilitate the stability analysis of (4.31) with respect to the control design (4.28), the following

Lemmas is proposed.

Lemma 6 For any differentiable function f : R+ → R with f (t) , ḟ (t) ∈ L∞, there exist positive

constants ε1 and ε2 such that

∫ t

0

∣∣∣ḟ (t)
∣∣∣ dτ ≤ ε1 + ε2

∫ t

0

|f (t)| dτ + |f (t)| (4.34)

for any t>0. [35]

Lemma 7 A auxiliary function L(t) ∈ R is defined as follows:

L(t) = rT
(
N̄d −Kdsgn (E (t))

)
. (4.35)

where

N̄d
∆
=

 Nd,1 + Cζ,1sgn(r1)−D2U2kd,2sgn (E2 (t))

Nd,2 + Cζ,2sgn (r2)

 ∈ L∞ (4.36)

If the control gain kd is chosen as

kd,i ≥ cN̄d,i +
1

2
cN̄d,iε1,i, i = 1, 2

where kd,i is the diagonal elements of kd and cN̄d,i
∆
=
∣∣N̄d,i

∣∣
L∞

then one have

∫ t

0

L(t)dτ ≤ Cd (4.37)
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where the positive constant Cd is defined as

Cd =
1

2

2∑
i=1

(
cN̄d,iε1 + kd,i |Ei (t0)|

)
.

While the proof of Lemma (7) is given in the appendix A. Then the stability analysis is composed

of two steps. First, we prove the boundedness of the error signals of the closed loop dynamics

(4.31). Then by using this result and Lemma 6, one can prove Lemma 7 and construct a non-

negative terms for another Lyapunov function that can be utilized to prove the asymptotic stability

of the closed-loop system.

Now, we consider the following Lyapunov function

V2 =
1

2
rTMr +

1

2
eT e+

1

2
eTf ef . (4.38)

By taking derivative of V2 along (4.31) and ultilizing (4.10)(4.11), we have

V̇2 = rT
(
N (µ, ζ, t) + Π +KT ef −Kdsgn (E (t))−MKr

)
− rT r − rT e

+eT (r − ef − e) + eTf (−2ef −Kr)

Then V̇2 can be further bounded as

V̇2 ≤ rT (Nd + Ψ−Kdsgn (E (t)))− 1

2
‖z‖2 + rT

(
Ñ + Nζ

)
+ rTΦ−rTMKr

where (4.32),(4.18) and (4.21) are used. From (4.23),(4.27) and (4.33), one can upper bound V̇2 as
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V̇2 ≤ rT (Nd + Cζsgn (r) + Ψ−Kdsgn (E (t)))− 1

2
‖z‖2

+
2∑
i=1

|ri| ρi (‖z‖) ‖z‖+ k3 |U2| r1 ‖z‖−rTMKr

where ρi (‖z‖) ‖z‖ =
2∑
j=1

ρj,i (‖z‖) ‖z‖ , i = 1, 2 and

Cζsgn (r) =

[
Cζ,1sgn (r1) Cζ,2sgn (r2)

]T

As we known that the matrices K̄ ∆
= −K is Hurwitz and can be picked arbitrarily in the form of

a low triangular matrix. By utilizing the fact M is a positive definite (P.D.) matrix, there exists a a

diagonal P.D. matrix Q ensuring the following equation

MK̄ + K̄TM = −Q (4.39)

where Q is defined as

Q =

 2q1

2q2

 (4.40)

and q1 > 0, q2 > 0. Substituting the matrix definitions (4.30)(4.40) into (4.39), we can get

k3 =
q2

2m3

. (4.41)

where m3 is a positive diagonal component of M . Readers can refer to Appendix for more details.
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By utilizing (4.39) and (4.41) V̇2 can be further bounded as

V̇2 ≤ rT (Nd + Cζsgn (r) + Ψ−Kdsgn (E (t)))− 1
2
‖z‖2

+
2∑
i=1

|ri| ρi (‖z‖) ‖z‖+ r1

∣∣∣ q2U2

2m3

∣∣∣ ‖z‖−q1r
2
1 − q2r

2
2

(4.42)

Choosing

q1 = q2 + q3, q3 > 0 (4.43)

yields

V̇2 ≤ L (t)−

(
1

2
−

2∑
i=1

ρ2
i (‖z‖)
4q2

− q2
2U

2
2

16m2
3q3

)
‖z‖2 (4.44)

To render the second terms in the right side of the inequality (4.44) to be negative, the q2, q3 can be

chosen as

q3 >
q2

2U
2
2

4m2
3

, q2 > 2 max
{
ρ2

1 (‖z‖) , ρ2
1 (‖z‖)

}
. (4.45)

Thus on the set of

S =

{
z ∈R3

∣∣ ‖z‖ ≤ min

(
ρ−1

1

(√
q2

2

)
, ρ−1

2

(√
q2

2

))}
(4.46)

V̇ can be further bounded as

V̇2 ≤ −C2 ‖z‖2 + C1 ‖z‖ (4.47)

where |L (t)| ≤ C1 ‖z‖ is utilized and

C1 =
∣∣rT (Nd + Cζsgn (r) + Φ−Kdsgn (E (t)))

∣∣
L∞

One can find from (4.46) that the bounds of ‖z‖ depends on the auxiliary control gain q2. By

choosing q1, q2, q3 as shown in (4.43)(4.45), one can bound V̇2 as shown in (4.47) From (4.38) and

(4.47), one can conclude that V2 are uniformly ultimately bounded. Thus, we have e1, e2, r ∈ L∞.
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Therefore we can applied Lemma 6 to the next step to prove the system to be asymptotically stable.

Thus there exists two diagonal constants matrix ε1 and ε2 such that (4.34) hold, make the inequality

(4.37) hold. Then one can pick a nonnegative function P (t)
∆
= Cd−

∫ t
0
L(t)dτ according to Lemma

7 and build the following Lyapunov function candidate

V3 = V2 + P (4.48)

Taking the derivative of V0 with respect to t and following same procedure of bounding V̇2, one

can have the bounds of V̇3 as following

V̇3 ≤
[
rT (Nd + Cζsgn (r) + Φ−Kdsgn (E (t)))− Ṗ (t)

]
−

(
1

2
−

2∑
i=1

ρ2
i (‖z‖)
4q2

− q2
2U

2
2

16m2
3q3

)
‖z‖2

With canceling out the bracketed terms, V̇3 is further bounded as

V̇3 ≤ −C2 ‖z‖2 (4.49)

The inequality of (4.49) implies that V̇ is negative semi-definite on the set of S given in (4.46).

Thus V̇3 could be upper bounded as

V̇3 ≤ −W1(q), (4.50)

where q =

[
zT

√
P

]T
the upper bounded function is given as

W1(q) = cy ‖z‖ , (4.51)

and cy is some positive constant. By properly choosing K,Q, one can ensure W1(e) is a positive

definite function. Note here that the control gains K,Q are chosen to satisfy (4.39) and (4.45).
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Then V̇ is guaranteed to be negative definite in the region of S. Noticed that attraction region S

could be made arbitrarily large by increasing the control gain K. From (4.48) and (4.50), we know

V3 (q,t) are bounded; hence e, ef , r (t) ∈ L∞, which also results in the boundedness of control

input u for all time. By taking advantage of aforementioned boundedness statements, we can state

Ẇ1(q) ∈ L∞ from (4.12)(4.31)(4.51). Then one can have W1(y) is uniformly continuous.Thus,

Barbalat’s Lemma can be used to show that r(t) → 0 as t → 0. From Eq. (4.11), it is clear that

e (t) , ef (t) → 0 as t → 0. Furthermore, from the asymptotic stability of the zero dynamics, all

system states are guaranteed to asymptotically converge to the origin.

Simulation Results and Discussions

Since the nominal wing section model used in this chapter is the same as the one in the section

MIMO system extension of chapter 2, The model parameters setting is the same as that shown

in Table 2.2. The wing section model is built based on structural and aerodynamic equations of

(2.42) and (2.43). The initial states and desired trajectory variables are set as the same as those in

section MIMO system extension of chapter 2. The output feedback controller is implemented vis

filter errors defined in (4.8)(4.9). To avoid chattering problem caused by signum function, we use

tangent hyperbolic function to approximate it, while a gain constant Ktanh = 1000 was add to the

tangent hyperbolic function and the control law becomes (4.52)

u = D
[
−KTef +Kd tanh (KtanhE (t))

]
. (4.52)

The parameters for the controller are listed in Table 4.1.
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Table 4.1: Controller parameters

No disturbance Triangular
V∞ 0.9Vf 1.1Vf 0.9Vf 1.1Vf

Q

[
1

0.8

] [
1

0.8

] [
1

0.8

] [
2

1.6

]
Kd

[
1

0.5

] [
2

1

] [
1

0.5

] [
2

1.5

]
K

[
148.45 0
−22.90 0.34

] [
148.45 0
−22.90 0.34

] [
148.45 0
−22.90 0.34

] [
296.89 0
−45.80 0.69

]
Graded Sinusoidal

V∞ 0.9Vf 1.1Vf 0.9Vf 1.1Vf

Q

[
1

0.8

] [
2

1.6

] [
1

0.8

] [
1

0.8

]
Kd

[
2

1.5

] [
2

1.5

] [
2

1.6

] [
3

2.5

]
K

[
148.45 0
−22.90 0.34

] [
296.89 0
−45.80 0.69

] [
148.45 0
−22.90 0.34

] [
148.45 0
−22.90 0.34

]

Three types of external disturbance are considered as demonstration. They are triangular gust,

graded gust and sinusoidal gust. The velocity distribution function wG(τ) can be found in Eqs.

(3.45-3.47). Various simulations is run to test the nominal system response as well as that the

external disturbances. Figure (4.1) shows the open- and closed-loop system response at pre-flutter

speed V = 0.9Vf without disturbance. The controller was turned on at t = 0.5[s]. Even at pre-

flutter speed the plunging and pitching displacement can converge in finite time at open-loop sys-

tem without disturbance, however, in the closed-loop, the control has decrease the converge time

obviously as shown in Figure (4.1). Figure (4.3) shows open- and closed-loop system response

without gust disturbance at post-flutter speed V = 1.1Vf . As we can see, the controller has sta-

bilized plunging and pitching displacement in 1 second. Figure (4.2) shows the control input of

closed-loop system without gust disturbance at post-flutter speed V = 0.9Vf .
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Figure 4.1: Open- and closed-loop system respone without gust disturbance at pre-flutter speed
V = 0.9Vf
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Figure 4.2: Control input of closed-loop system without gust disturbance at post-flutter speed
V = 0.9Vf
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Figure 4.3: Open- and closed-loop system respone without gust disturbance at post-flutter speed
V = 1.1Vf

Since different kinds of gust disturbance can have remarkable impact on the aerodynamics

in terms of gust loading Lg (t) as shown in 4.2, it will be intuitive to present the response of the

wing section model with the corresponding plot of gust load. Due to the fact that IMG is a linear

functions of ILG as shown in (3.2) and (3.3), we only present the plot of ILG..Figure (4.4) shows

the triangular gust starts at 1.5[s] and last for 0.5[s]. As we can seen after filtering by Kussner’s

function (3.4), the loading produced by the gust becomes smoother and longer-lasting than the

gust itself. Figures 4.6 and 4.8 are system responses under triangular disturbance at pre- and post

flutter speed. In these two sets of simulations, the disturbance is turned on at t = 1[s] while the

controller is turned on at t = 1.5[s] .The controller plots are shown in figures (4.5) and (4.7). At

pre-flutter speed, the system converging time decreased from 4[s] to 2[s] and steady-state errors

caused by the remnant of the disturbance was eliminated. In figure (4.8), one can see the controller

has effectively suppressed the oscillation of pitching and plunging displacement in about 2.5[s].
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Figure 4.4: Triangular gust disturbance and corresponding gust loading
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Figure 4.5: Control input of closed-loop system under triangular disturbance at pre-flutter speed
V = 0.9Vf
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Figure 4.6: Open- and closed-loop system response under triangular gust at pre-flutter speed V =
0.9Vf
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Figure 4.7: Control input of closed-loop system under triangular disturbance at post-flutter speed
V = 1.1Vf
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Figure 4.8: Open- and closed-loop system response under triangular gust at post-flutter speed
V = 1.1Vf

The system responses under graded disturbance are shown in Figures (4.11) and (4.13). The dis-

turbance starts from t = 1[s] and controller is turned on at t = 1.5[s]. As seen in figure (4.11),

due to the persistence of graded disturbance, the open-loop system can not converged at pre-flutter

speed. The closed-loop system response at pre- and post-flutter speed as observed from figures

(4.11) and (4.13) have the capability of the controller to suppress the persistent disturbance and

stabilize the outputs. The controller plots is shown in figures (4.10) and (4.12). As expected, the

persistent disturbance causes the control signal not to converge to zero along with output.
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Figure 4.9: Graded gust disturbance and corresponding gust loading
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Figure 4.10: Control input of closed-loop system under graded disturbance at pre-flutter speed
V = 0.9Vf
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Figure 4.11: Open- and closed-loop system response under graded gust at pre-flutter speed V =
0.9Vf
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Figure 4.12: Control input of closed-loop system under graded disturbance at post-flutter speed
V = 1.1Vf
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Figure 4.13: Open- and closed-loop system response under graded gust at post-flutter speed V =
1.1Vf

The last simulation set is for system response under sinusoidal disturbance. Figures 4.16 and

4.18 show the open- and closed-loop system response at both pre- and post-flutter speed under

sinusoidal disturbance. The disturbance starts from t = 1[s] shown in 4.14 and the controller is

turned on at t = 1.5[s].From (4.16), one can see system keeps oscillating even at pre-flutter speed

because of sinusoidal disturbance the open-loop. After the turning on of controller the outputs h

and α are stabilized in 1[s].While at post-flutter speed as shown in (4.18), the open-loop system

response are obviously coupled with the sinusoidal disturbance. However, the controller still can

effectively stabilize the system in 1[s]. As shown in (4.16) and (4.18), due to the persistence of

sinusoidal disturbance, there are still small small residual oscillations in the response of β and γ.
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Figure 4.14: Sinusoidal gust disturbance and corresponding gust loading
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Figure 4.15: Control input of closed-loop system under sinusoidal disturbance at pre-flutter speed
V = 0.9Vf
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Figure 4.16: Open- and closed-loop system response under sinusoidal gust at pre-flutter speed
V = 0.9Vf
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Figure 4.17: Control input of closed-loop system under sinusoidal disturbance at post-flutter speed
V = 1.1Vf
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Figure 4.18: Open- and closed-loop system respone under sinusoidal gust at post-flutter speed
V = 0.9Vf

Conclusion

A two-dimensional aeroelastic model operating in an incompressible flowfield is modeled which

is exposed to three different kinds of external gust loads. The leading edge (LE) and trailing edge

(TE) control surfaces was taken as the control input. An robust output feedback controller was

proposed by utilizing the measurements of the pitching and plunging displacement to suppress the

aeroelastic vibration subject to external disturbance on a nonlinear plunging and pitching wing

section subject to unsteady aerodynamics. The control strategy was implemented with a filter

mechanism to build a special siding surface without the measurements of velocity of the output. A

semi-global asymptotic stability result on the pitching and plunging displacement was provided by

Lyapunov stability analysis.
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The robustness and efficacy of the controller is validated by simulation results under different

operating conditions and disturbances. Several most common disturbance were covered in this

paper. Since it is impossible to present the system response under all possible kinds of disturbance,

but satisfactory simulation results can be expected based on the the the rigorous stability analysis

presented in this chapter.
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CHAPTER 5: MODEL FREE NONLINEAR CONTROL FOR

AEROELASTIC SYSTEM

Introduction

Motivated by our previous work in [21], [22], [23],[24] and [15], a novel neural network (NN)

based robust controller is designed to asymptotically stabilize a supersonic aeroelastic system with

unstructured nonlinear uncertainties. In contrast to existing NN-based controllers that only achieve

practical stability, the novel continuous control design in this paper is able to achieve asymptotic

stability of the origin. A three-layer neural network is implemented to approximate the unknown

nonlinearity of the system. While adaptive control relies on linear parameterization of the system

nonlinearity and the determination of a regression matrix, the universal approximation property of

the NN controller enables approximation of the unstructured nonlinear system in a more suitable

way. To compensate for the inevitable NN functional approximation error, an integral of a sliding

mode term is introduced. Through a Lyapunov analysis, global asymptotic stability can be obtained

for the tracking error in the pitching degree of freedom. Then, based on the fact that the system

is minimum phase, the asymptotic stability of the plunging degree of freedom is also guaranteed

for the numerical system. Simulation results show that this NN-based robust continuous control

design can rapidly suppress the flutter and limit cycle oscillations of the aeroelastic system.

Dynamic Model Development

The model of A non-linear 2-D wing-flap system operating in supersonic flight speed regimes

is developed in this part. The aeroelastic governing equations of a supersonic wing section with

plunging and twisting degrees-of-freedom (graphically represented in Fig. 5.1), accounting for
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flap deflections, and constrained by a linear translational spring and a non-linear torsional spring,

are given as follows

 1 κα
κα
r2α

1


 ξ̈
α̈

+

2ζh(
ω̄
V

) 0

0 2ζα
V


 ξ̇
α̇

+

( ω̄
V

)2 0

0 1
V 2 + Bα2

V 2


ξ
α

 =

 la

−ma

 . (5.1)

Figure 5.1: Supersonic wing section with flap

The dimensionless plunging distance (positive downward) is expressed as ξ(≡ h/b), while α is

the pitch angle (positive nose up), α̇ and ξ̇ are derivatives with respect to dimensionless time

τ = Ut/b, and V = U/bωα is the dimensionless flight speed. The parameter B represents the

non-linear restoring moment, and is defined as the ratio between the linear and non-linear stiffness

coefficients, thus it measures of the degree of non-linearity of the system; B > 0 corresponds to

hard structural nonlinearities, B = 0 corresponds to a linear model, while B < 0 correspond to

soft structural nonlinearities. In addition, lα and mα represent the dimensionless aerodynamic lift
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and moment with respect to the elastic axis.

In order to account for flap deflections, some modifications need to be made to the non-linear

Piston Theory Aerodynamics (PTA) which is used here to produce the aerodynamic loads on the

lifting surface. To keep the paper self-contained, a short description of the PTA modified to account

for the flap deflection is presented next. Within the PTA, the unsteady pressure can be defined as

follows

p(y, t) = p∞(1 +
γ − 1

2

vz
a∞

)2γ/(γ−1) (5.2)

where vz(t) and a∞ represent the downwash velocity normal to the airfoil surface and the undis-

turbed speed of sound respectively, and are defined as follows

vz = ∓(wt + U∞wx); a2
∞ = γp∞/ρ∞ (5.3)

In the definition of vz(t), ∓ denotes the upper and lower surfaces, respectively, while U∞ denotes

the air speed of the undisturbed flow. In the expression for a∞, p∞ and ρ∞ denote the pressure and

air density of the undisturbed flow, respectively, while γ is the isentropic gas coefficient ( γ = 1.4

for dry-air). The transverse deflection w(t) in (5.3) can be expressed as [25]

w(t) =

 h(t) + (x− bx0)α(t) for x < bx1,

h(t) + (x− bx0)α(t) + (x+ bx1)β(t) for x ≥ bx1

(5.4)

where x0 and x1 denote the dimensionless location of the elastic axis and of the torsional spring

of the flap from the leading edge respectively, while β(t) represents the flap displacement. In the

binomial expansion of (5.2), the pressure formula for PTA in the third-order approximation can be

obtained by retaining the terms up to and including (vz/a∞)3 as follows [26],

p

p∞
= 1 + γ

vz
a∞

λ+
γ(γ + 1)

4
(
vz
a∞

λ)2 +
γ(γ + 1)

12
(
vz
a∞

λ)3 (5.5)
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The aerodynamic correction factor, λ = M/
√
M2 − 1, is used to correct the PTA to better ap-

proximate the pressure at low supersonic flight speed regime. It is important to note that (5.2) and

(5.5) are only applicable as long as the transformation through contraction and expansion can be

consider isentropic, i.e., as long as the induced show losses are negligible (low-intensity waves).

For more details, see [27, 28, 29].

PTA provides results in excellent accordance with those based on the Euler solution and the CFL3D

code [30]. Considering that flow takes place on both the upper and lower surfaces of the airfoil,

U+
∞ = U−∞ = U ; from (5.3)-(5.5), the aerodynamic pressure δp , p − p∞difference can be

expressed as

δp = −4q∞
M

λ

[
1

U∞
wt + wx +

1 + γ

12
λ2M2

(
1

U∞
wt + wx

)3
]

(5.6)

Notice that δp also account for the deflection of the flap β. Here, M = U∞/α∞ is the undisturbed

flight Mach number, while q∞ = ρ∞U
2
∞/2 is the undisturbed dynamic pressure as presented in

[27] and [31]. The model can be simplified to account only for the nonlinearities associated with

α and discarding those associated with β. Even though this is an approximation, the magnitude of

the nonlinearities associated with β is much smaller than those associated with α and will thus be

omitted in this paper. In addition, it is assumed in the following development that the nonlinear

aerodynamic damping in (5.6), i.e., the terms w3
t , w

2
twx, and wtw2

x will be discarded and conse-

quently, the cubic nonlinear aerodynamic term reduces to w3
x only. Although nonlinear damping

can be included in the model, this paper only considers linear damping, and thus conservative

estimates of the flutter speed are expected.

Finally, the nonlinear aerodynamic lift and moment can be obtained from the integration of the
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difference of pressure on the upper and lower surfaces of the airfoil

La(t) =

∫ bx1

0

δp|x<bx1dx+

∫ 2b

bx1

δp|x≥bx1dx (5.7)

Ma(t) =

∫ bx1

0

δp|x<bx1(x− bx0)dx−
∫ 2b

bx1

δp|x≥bx1x−bx0dx (5.8)

where δp|x<bx1and δp|x�bx1are the aerodynamic pressure difference on the clean airfoil and on the

flap. In the governing EOM presented in (5.1), la and ma denote the counterpart of (5.7) and (5.8),

and are defined as

la = − λ

12Mµ
{12α(t) +M2(1 + γ)λ2α(t)3 − 3[2(2− x1)β(t) + 4(−1 + x0)α̇(t) (5.9)

−(−2 + x1)2β̇(t)− 4ξ̇(t)]}

ma = − λ

12Mµr2
∞
{12(1− x0)α(t) +M2(1 + γ)λ2(1− x0)α(t)3 (5.10)

−3(−2− x1)(2− 2x0 + x1)β(t) + (−2 + x1)2(4− 3x0 + x1)

+4[(4− 6x0 + 3x2
0)α̇(t)− 3(−1 + x0)ξ̇(t)]}

Here, µ represent a the dimensionless mass ratio defined as m/4ρb2. Given the definitions above,

the governing EOM can be transformed into the following form

ẋ = Ax + Φ (y) + Gβ + Gdβ̇ (5.11)

where x =

[
α α̇ ξ ξ̇

]T
∈ <4 is a vector of systems states, β(t) is a flap deflection control
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input, while A,G(z),Gd(z), and Φ (y) are defined as follows

A =



0 1 0 0

c1 c2 c3 c4

0 0 0 1

k1 k2 k3 k4


, Φ (y) =



0

p2Φ (y)

0

p4Φ (y)


, (5.12)

G =



0

g1

0

g2


, Gd =



0

g3

0

g4


,

y = x1, x =



α

α̇

ξ

ξ̇


.

where the explicit definitions for the constants ci, ki, ∀i = 1, ..., 4 as well as p2 and p4 are reported

in the Appendix B.

Open-Loop Error System Development

The explicit control objective of this paper is to design a model-free aeroelastic vibration suppres-

sion strategy to guarantee the asymptotic convergence of the pitch angle α using the flap deflection

β as a control input. The secondary objective is to ensure that all system states remain bounded at

all times during closed-loop operation. One prove the zero dynamics of (5.11) are stable by check-

ing the poles of the system (5.11) when setting outputs to zero. Given the definitions of (5.11) and
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(5.12), α̈ can be expressed as follows

α̈ = c1α + c2α̇ + p2Φ (α) + c3ξ + c4ξ̇ + g1β + g3β̇. (5.13)

The tracking error e1 , αd − α is defined where αd ∈ R denotes the desired output vector which

needs to be smooth in deference to the requirements of the subsequent control design. For the

control objective, one can simply choose αd to be zero all the time or use another desirable smooth

time-varying trajectory αd (t) along which the actual pitching variable α can be driven towards the

origin. In order to facilitate the ensuing control design and stability analysis, we also define the

tracking error e2(t) ∈ < and the filtered tracking error signal r(t) ∈ < as follows

e2 = ė1 + λ1e1 (5.14)

r = e2 + λ2e1 (5.15)

where λ1,λ2 are positive constants. By utilizing the definitions above, one can obtain

ṙ = α̈d − α̈ + λ1ė1 + λ2ė1.

By substituting (5.13) for α̈ in the above expression, the open-loop dynamics for r can be obtained

as follows

ṙ = α̈d − c1α− c2α̇− p2Φ (α)− c3z − c4ż − g1β − g3β̇ + λ1ė1 + λ2ė1 (5.16)

After a convenient rearrangement of terms, the open-loop dynamics can be rewritten as follows

ṙ

|g3|
=

1

|g3|
(α̈d − c1α− c2α̇− p2Φ (α) + λ1ė1 + λ2e2 − c3z − c4ż)− g1

|g3|
β−sgn (g3) β̇. (5.17)
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In order to design a model-free controller, we define an auxiliary nonlinear signal N (·) as follows

N (αd, α̇d, α̈d, x1, x2, x3, x4) ,
1

|g3|
(ẍ1d − c1α− c2α̇− p2Φ (α) + λ1ė1 + λ2e2 − c3z − c4ż)

(5.18)

By utilizing the definition of (5.18) above, the open-loop dynamics of the system can be compactly

rewritten as follows

ṙ

|g3|
= N (x1d, ẋ1d, ẍ1d, x1, x2, x3, x4)− g1

|g3|
β − sgn (g3) β̇. (5.19)

Control Design and Closed-Loop Error System

Since the structure of the model is assumed to be unknown in the control design, standard adaptive

control cannot be applied. In its lieu, a neural network feedforward compensator N̂ along with

a robustifying term is proposed to compensate for the function N as defined above in (5.18). By

the universal function approximation property [32], the nonlinear function of the system N can be

approximated as a three-layer network target function as follows

N (x1d, ẋ1d, ẍ1d, x1, x2, x3, x4) = WTσ
(
VT x̄

)
+ ε (5.20)

as long as N is a general smooth function from <7 to <1, and the set of inputs to the function is

restricted to a compact set S of <7. In (5.20), x̄ = [1 αd α̇d α̈d x1 x2 x3 x4]T ∈ <8×1 denotes the

augmented input vector, vector VT ∈ <10×8 is the ideal first layer interconnection weight matrix

between input layer and hidden layer, σ(·) ∈ <11×1 denotes the sigmoidal activation function,

while WT ∈ <1×11 denotes the ideal second layer interconnection weight matrix. In this work,

the weight matrices W and V are assumed to be constant and bounded as ‖W‖F ≤ WB and

‖V‖F ≤ VB, where WB and VB are positive constants. The approximation error is assumed
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to be bounded in compact set ‖ε‖ < εN where εN is an unknown positive constant related to the

number of nodes in the hidden layer.

After substituting the approximation from (5.20) into (5.19) , one can rewrite the open-loop dy-

namics as follows
ṙ

|g3|
= WTσ

(
VT x̄

)
+ ε− gβ − sgn (g3) β̇ (5.21)

where g ,
g1

|g3|
. Motivated by the open-loop dynamics and the ensuing stability analysis, the

control law is designed as follows

β̇ = −sgn (g3) ĝβ + sgn (g3)
[
N̂ +Kvr − v +Kdsgn (r)

]
. (5.22)

where Kv, Kd > 0 are constant control gains, N̂ is a typical three-level neural network compen-

sator for target function N(x̄), defined as follows

N̂(x̄) = ŴTσ
(
V̂T x̄

)
, (5.23)

v is a robustifying term which will be defined later while ĝ is an adaptive estimate for g. The

dynamic update law for ĝ is designed as follows

.

ĝ = proj {−Γβr} (5.24)

where the parameter projection operator proj{·} is designed to bound ĝ in a known compact set

Ω such that sgn(g3)ĝ (t) ≥ ε > 0 for all time. The projection operator defined here is meaningful

because the minimum-phase nature of the system ensures that sgn(g3)g (t) = g−1
3 g1 is always

positive. In (5.23), Ŵ and V̂ are estimates for the neural network interconnection weight matrices
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that are dynamically generated as follows

.

Ŵ =
(
Fσ̂ − Fσ̂′V̂T x̄

)
rT − κF ‖r‖Ŵ

.

V̂ = Gx̄
(
σ̂′TŴr

)T
− κG ‖r‖ V̂

(5.25)

where σ̂ , σ(V̂
T
x̄), σ̂′ , dσ(V̂T x̄)/d(V̂T x̄), F ∈ R11×11 and G ∈ R8×8 are positive definite

diagonal gain matrices, while κ > 0 is a scalar design parameter. By substituting the expression

for the control law in (5.22) into the open-loop dynamics of (5.21) and conveniently rearranging

the terms, one can obtain the closed-loop system dynamics as follows

ṙ

|g3|
= −Kvr +N − N̂ + v −Kdsgn (r) + g̃β

where g̃ , ĝ − g is a parameter estimation error. Also note that we can write

WTσ
(
VT x̄

)
+ ε− ŴTσ

(
V̂T x̄

)
= W̃T

[
σ̂ − σ̂′V̂T x̄

]
+ ŴT σ̂′ṼT x̄ + w

where the weight estimation errors are defined as W̃ ,W − Ŵ, Ṽ , V − V̂ while w is defined

as follows

w = W̃T σ̂′VT x̄ + W̃TO
(
ṼT x̄

)2

+ ε (x̄) .

To facilitate the subsequent analysis, one can also obtain a compact form representation for ‖w‖

as follows

‖w‖ = C0 + C1

∥∥∥Z̃∥∥∥
F

+ C2

∥∥∥Z̃∥∥∥
F
‖r‖ (5.26)

where C0, C1, and C2 are all positive constants while the ideal composite weight matrix Z, es-

timated composite weight matrix Ẑ, and the composite weight mismatch matrix Z̃ , Z− Ẑ are

101



given as follows

Z =

 W 0

0 V

 , Ẑ ≡

Ŵ 0

0 V̂

 , Z̃ ≡

W̃ 0

0 Ṽ

 . (5.27)

Per the boundedness property for ‖W‖F and ‖V‖F as described above, there exists a constant ZB

such that ZB > ‖Z‖F . Based on the definition of ZB, the robustifying term v can be designed as

follows

v = −Kz

(∥∥∥Ẑ∥∥∥
F

+ ZB

)
r (5.28)

where Kz is a positive constant. Finally, it is noted that the functional reconstruction error ε (x̄) is

assumed to be bounded. Thus, the closed-loop dynamics can be finally written as follows

ṙ

|g3|
= −Kvr + W̃T

[
σ̂ − σ̂′V̂T x̄

]
+ ŴT σ̂′ṼT x̄ + w + v −Kdsgn (r) + g̃β. (5.29)

Stability Analysis

In this part, we provide the stability analysis for the proposed model-free controller. We begin by

defining a non-negative Lyapunov function candidate V2 as follows

V2 =
1

2 |g3|
r2 +

1

2
tr
{
W̃ TF−1W̃

}
+

1

2
tr
{
Ṽ TG−1Ṽ

}
+

1

2
Γ−1g̃2. (5.30)

After differentiating V2 along the dynamics of (5.24) and (5.29), one can obtain the following

expression for V̇2

V̇2 = r
[
−Kvr + W̃T

[
σ̂ − σ̂′V̂T x̄

]
+ ŴT σ̂′ṼT x̄ + w + v −Kdsgn (r)

]
+tr

{
W̃TF−1 ˙̃W

}
+ tr

{
ṼTG−1 ˙̃V

} (5.31)
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After applying the neural network weight update laws designed in (5.25), canceling out the matched

terms, and utilizing the definitions of (5.27), (5.31) can be upperbounded as follows

V̇2 ≤ −Kvr
2 + κ ‖r‖ tr

{
Z̃T
(
Z− Z̃

)}
+ ‖r‖ ‖w‖+ rv − rκsgn (r) . (5.32)

By substituting (5.26) and (5.28) into (5.32), it is possible to further upperbound V̇2 as follows

V̇2 ≤ −‖r‖
[
Kv ‖r‖ − κ

∥∥∥Z̃∥∥∥
F

(
ZB −

∥∥∥Z̃∥∥∥
F

)
− C0 − C1

∥∥∥Z̃∥∥∥
F

−C2

∥∥∥Z̃∥∥∥
F
‖r‖+Kz

(∥∥∥Ẑ∥∥∥
F

+ ZB

)
‖r‖ −Kdsgn (r)

] (5.33)

where the following relation has been used to derive (5.33)

tr
{

Z̃T
(
Z− Z̃

)}
=
〈
Z̃, Z

〉
−
∥∥∥Z̃∥∥∥2

F
≤
∥∥∥Z̃∥∥∥

F
‖Z‖F −

∥∥∥Z̃∥∥∥2

F

≤
∥∥∥Z̃∥∥∥

F
ZB −

∥∥∥Z̃∥∥∥2

F
.

(5.34)

Based on the fact that
∥∥∥Ẑ∥∥∥

F
+ ZB >

∥∥∥Z̃∥∥∥
F

, one can choose Kz > C2 such that (5.33) can be

rewritten as

V̇2 ≤ −‖r‖
[
Kv ‖r‖ − κ

∥∥∥Z̃∥∥∥
F

(
ZB −

∥∥∥Z̃∥∥∥
F

)
− C0 − C1

∥∥∥Z̃∥∥∥
F

]
− rKdsgn (r) . (5.35)

By defining C3 = ZB + C1/κ and conveniently rearranging the terms, (5.35) can be rewritten as

follows

V̇2 ≤ −‖r‖
[
Kv ‖r‖+ κ

(∥∥∥Z̃∥∥∥
F
− C3/2

)2
]

+ ‖r‖
[
C0 − κC2

3/4
]
− rKdsgn (r) .

By choosing Kd > [C0 − κC2
3/4], one can obtain the following upperbound on V̇2

V̇2 ≤ −‖r‖
[
Kv ‖r‖+ κ

(∥∥∥Z̃∥∥∥
F
− C3/2

)2
]

(5.36)
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From (5.30) and (5.36), it is easy to see that r∈L2 ∩ L∞ while ĝ,W̃, Ṽ ∈L∞. The bounded-

ness of r implies that α, α̇ are bounded by virtue of the definitions of (5.14) and (5.15). Since the

system is minimum phase and relative degree one, the boundedness of the output guarantees that

any first order stable filtering of the input will remain bounded. This implies that all system states

remain bounded in closed-loop operation which further implies thatN (x1d, ẋ1d, ẍ1d, x1, x2, x3, x4)

stays bounded. Since (5.22) defines a stable filter acting on a bounded input, it is easy to see that β

and β̇ stay bounded; furthermore, the flap deflection control input β is continuous at all times. The

boundedness of β implies in turn that ṙ∈L∞ by virtue of (5.29). Thus, using previous assertions,

one can utilize Barbalat’s Lemma [4] to conclude that r → 0 as t→∞ which further implies that

e1, ė1 → 0 as t→∞. From the asymptotic stability of the zero dynamics, we can further guaran-

tee that x3, x4 → 0 as t → ∞. Thus, both the pitching and plunging variables show asymptotic

convergence to the origin.

Simulation Results

In this section, simulation results are presented for a aeroelastic system controlled by the proposed

continuous robust controller. The nonlinear aerodynamic model is simulated using the dynamics

of (5.1) , (5.7) and (5.10). The flap deflection is constrained to lie between ±15[deg].The nominal

model parameters are listed as follows and the controller parameters are listed in Table 5.2.

Table 5.1: Model parameters

χα = 0.25, ζh = 0.01, x0 = 0.5,
rα = 0.5, ζα = 0.01, x1 = 0.75,
b = 1.5 [m], γ = 1.4, ω = 1,
λ = 1, M = 2, V = 7.556,
µ = 50, B = 5, ωh = ωα = 60 [Hz],
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Table 5.2: Controller parameters

Parameter Value Parameter Value
Kz 0.1 Zb 0.1
κ 2 Kv 100
Kd 1e− 4 Γ 1e− 5
F 0.1 G 2

The desired trajectory variables αd, α̇d,and α̈d are simply selected as zero. The initial conditions

for pitching displacement α(t) and plunging displacement ξ(t) are chosen as α(0) = 5.729 deg

(about 0.1 radians) and ξ(0) = 0 m, while all other state variables are initialized to zero. The

initial parameter estimate ĝ(0) is set to be−1.20, which is a 10% shift from its nominal value. The

flap deflection β (t) is constrained to vary between ±15 deg.

The effect of structural nonlinearities on LCO amplitude was analyzed before applying any control.

As shown in [33], increase in structural stiffness factor denoted by B led to decrease in LCO

amplitude provided the flutter speed remains constant. Furthermore, we also explored the effect

of the location of the elastic axis from the leading edge. It was shown in [33] that a decrease in

x0 leads to decrease in LCO amplitude while the flutter speed increases. It was also shown that

increasing the damping ratios, ζh and ζα resulted in decrease of the amplitude of the LCO.

Fig (5.2) shows the dynamics of open-loop pitching displacement α and plunging displacement ξ

at pre-flutter speed. The simulation is carried out in subcritical flight speed regime, M = 2, below

the flutter speed of Mflutter = 2.15.
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Figure 5.2: Open-loop dynamics of the aeroelastic system at pre-flutter speedM = 2 < Mflutter =
2.15
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Figure 5.3: Closed-loop plunging, pitching, control deflection and parameter estimation at pre-
flutter speed, M = 2 < Mflutter = 2.15
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Without the controller, it is obvious that the oscillation of pitching degree-of-freedom α will con-

verge within 3[s] while the plunging displacement are lightly damped and it takes over 3[s] to

converge. In Fig (5.3), it is shown that the proposed robust controller suppresses the oscillation

of α in less than 1.5[s] while the plunging displacement ξ is suppressed in 2.5[s] . The parameter

estimate ĝ is seen to converge to a constant value within less than 0.5[s].
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Figure 5.4: Open-loop dynamics of the aeroelastic system at post-flutter speed M = 3 >
Mflutter = 2.15

As shown in Fig (5.4), in post-flutter regime, the system dynamics show sustained limit cycle

oscillations in open-loop operation. From Fig(5.5), it is shown that the control is very effective

when it is turned on at t=0[s] and the oscillation of α is suppressed within 1.5[s]. The dynamic

oscillatory behavior of the plunging displacement ξ is suppressed within 2.5[s].
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Figure 5.5: Closed loop plunging,pitching,control deflections and parameter estimation at post-
flutter speed, M = 3 > Mflutter = 2.15
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Figure 5.6: Closed-loop plunging, pitching, control deflection and parameter estimation at post-
flutter speed, M = 3 > Mflutter = 2.15; control applied at t = 4 s.
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In Fig (5.6), control was turned on at t = 4[s] after the system had gone into an LCO. It is seen that

the oscillations of the pitching degree α and plunging displacement ξ are suppressed respectively

in 1.5[s] and 3[s]. The parameter estimate ĝ also converges to a constant in less than 0.5[s].

These simulation results show that the proposed novel robust controller can effectively suppress

the oscillation of both pitching and plunging degrees-of-freedom of the airfoil at both pre-flutter

and post-flutter flight speed regimes.

Conclusions

A modular model-free continuous robust controller was proposed to suppress the aeroelastic vi-

bration characteristics (including flutter and limit cycle oscillations in pre- and post-flutter condi-

tion) of a supersonic 2-DOF lifting surface with flap. Differently from traditional adaptive control

strategies, which strictly require the linear parameterization of the system, no prior knowledge of

the system model is required for the method presented in this paper. A Lyapunov method based

analysis was provided to obtain the global asymptotic stability result. Finally, the simulation re-

sults showed that this control strategy can rapidly suppress any aeroelastic vibration in pre- and

post-flutter flight speed regimes.
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CHAPTER 6: CONCLUSION AND FUTURE WORK

In this dissertation, we have investigated several Lyapunov-based control schemes for aeroelas-

tic systems operating under different conditions. Specifically, the following subjects have been

discussed in the dissertation.

1. Lyapunov-based Adaptive Control Design. This topic is discussed in Chapter 2. Here, the

structure of the system is assumed to be known which is utilized to parameterize the system for

adaptive control design. This design is unique because it has designed a convolution-based filter to

estimate the immeasurable internal states.

2. Robust Control Design. There are two chapters is about this topic: Chapter 3 and Chapter 4.

The first is an extension of robust integral of the sign of error (RISE) to system with zero dynamics.

An Input-to-State Stability like Lemma is provided to get the boundedness of internal dynamics in

terms of output for minimum-phase system. The second part is a robust output feedback control

design for a MIMO system. A specific filter error based on output errors is built to avoid using

velocity sensor to measure the rates of output variables and actuator deflection. Lyapunov function

based stability proofs are provided to guarantee robustness of the system to external disturbance.

3. Model Free Control Design. In Chapter 5, a novel neural network (NN) based robust controller

is designed to asymptotically stabilize a supersonic aeroelastic system with unstructured nonlinear

uncertainties. The merit of this design is there is no need for the system structure information and

parameters are tuned online.

Future research directions can be expected to focus on developing robust controls with only output

feedback for MIMO system with arbitrarily DOF and order under external disturbances and system

uncertainties. Applications to other real systems, such as robotic systems, can also be considered
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in future work.
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APPENDIX A: PROOF OF LEMMA
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C.2 Proof of Lemma 1

From Chapter 2, w (0, ζ) is locally exponentially stable. Let the stability region lie in a compact

set defined by ||ζ(0)|| < γ where γ is an appropriately chosen positive constant. Let us now prove

that w (µ, ζ) is locally Lipschitz. The internal dynamics of the nominal system can be denoted as

ζ̇ = w (z) . (A.1)

where z ,
(
µT , ζT

)T
=zx. After taking the derivative of (A.1) with respect to z and applying the

chain rule, one obtains

∂w (z)

∂z
= zsubAz−1+

[
zsub

∂

∂x
f(x4, x5)

]
z−1 (A.2)

where the first equation of (2.9) are utilized while zsub is a submatrix of z that is defined as

ζ ,zsubx. From (2.36) and (2.37), the output h
b

= x4 stays bounded for all time, while x5 stays

bounded on a compact set D2 =
{
ζ ∈ R6

∣∣ ‖ζ‖ ≤ γ
}

, one can upperbound
∂

∂x
f(x4, x5) as fol-

lows ∥∥∥∥ ∂∂x
f(x4, x5)

∥∥∥∥ ≤ Lf (A.3)

where the fact that the nonlinear function f(x4, x5) is a vector function composed of polynomials

of x4, x5 (see the definitions in Appendix A) is used here.. Now, (A.3) is substituted into (A.2) to

obtain the following upperbound

∥∥∥∥∂w (z)

∂z

∥∥∥∥ ≤ ∥∥zsubAz−1
∥∥+ ‖zsub‖

∥∥∥∥[ ∂∂x
f(x4, x5)

]∥∥∥∥ ∥∥z−1
∥∥

≤
∥∥zsubAz−1

∥∥+ Lf ‖zsub‖
∥∥z−1

∥∥ = L0 <∞
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Since
∂w (z)

∂z
is bounded, it can be concluded that w (z) is locally Lipschitz in ζ and globally

Lipschitz in µ (see Lemma 3.2 in [4]) which implies that

‖w (z1)−w (z2)‖ ≤ L0 ‖z1 − z2‖ . (A.4)

From the local exponential stability of w (0, ζ) and the fact that w (z) is Lipschitz in ζ, a converse

theorem of Lyapunov (see [11]) implies ∃V (ζ) : D2 → R such that

α1 (‖ζ‖) ≤ V (ζ) ≤ α2 (‖ζ‖)
∂V

∂ζ
w (0, ζ) ≤ −α3 (‖ζ‖)∥∥∥∥∂V∂ζ

∥∥∥∥ ≤ α4 (‖ζ‖)

(A.5)

where αi, i = 1, 2, 3, 4 are class K functions defined on [0, γ]. After taking the time derivative of

V (ζ), one can obtain

V̇ (ζ) =
∂V

∂ζ
w (µ, ζ)

≤ −α3 ‖ζ‖2 +
∂V

∂ζ
(w (µ, ζ)−w (0, ζ))

(A.6)

where (A.5) was used. After applying the boundedness of µ from (2.39) and the Lipschitz condi-

tion of (A.4), V̇ (t) of (A.6) can be further upperbounded as follows

V̇ (ζ) ≤ −α3 ‖ζ‖
(
‖ζ‖ − α4

α3

K (|r0| ,Γ−1)L0

)
.

Thus, it can be seen from above that

V̇ (ζ) ≤ 0 for ‖ζ‖ ≥ α4

α3

K
(
|r0| ,Γ−1

)
L0 (A.7)
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By properly choosing the adaptive gain Γ and the the size of the initial condition as encoded by

|r0|, one can ensure that the compact setD3 =
{

ζ| ‖ζ‖ ≤ α4

α3
KL0

}
is a subset of the compact set

D2. This implies that the set D2 is positively invariant under a proper choice of initial conditions

for the plunging displacement and its time derivative. Therefore, one can conclude that the internal

dynamics ζ of the system stay bounded for all time provided that the state vector initial condition

lies inside a compact set as defined above.�

C.3 Proof of Lemma 4

Using the definition of filtered error r (t) in (3.10) and function of L(t) in (3.35), we can write the

integral (3.37) as

∫ t

t0

L(τ)dτ =

∫ t

t0

(ė2(τ) + e2(τ)) (N̄µd − kdsgn(e2(τ)))dτ

=

∫ t

t0

ė2(τ)N̄µddτ −
∫ t

t0

ė2(τ)kdsgn(e2(τ))dτ

+

∫ t

t0

e2(τ)(N̄µd − kdsgn(e2(τ)))dτ

≤ cN̄µd

∫ t

t0

|ė2(τ)| dτ − kd |e2 (t)|+ kd |e2 (t0)|+
∫ t

t0

|e2(τ)| (cN̄µd − kd))dτ

where cN̄µd , |N̄µd||∞ and have utilized the fact that ė2 (τ) sgn (e2 (τ)) =
d |e2 (τ)|
dτ

. By using

Lemma 3, the integral of L(t) can be further bounded as

∫ t

t0

L(τ)dτ ≤
(
cN̄µd + cN̄µdε2 − kd

)∫ t

0

|e2| dτ (A.8)

+
(
cN̄µd − kd

)
|e2 (t)|+ cN̄µdε1 + kd |e2 (t0)| (A.9)
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If the control gain kd is chosen in the manner of (3.36) and applied to (A.8), then it is easy to obtain

the upperbound of (3.37). The proof is complete.

C.4 Proof of Lemma 7

Using the definition of filtered error r (t) in (4.14) and function of L(t) in (4.35), we can write the

integral (A.10) as

∫ t
t0

L(τ)dτ =
∫ t

0

(
E (τ) + Ė (τ)

)T (
N̄d −Kdsgn (E (t))

)
dτ

=
∫ t

0
E (τ)T

(
N̄d −Kdsgn (E (τ))

)
dτ + 1

2

∫ t
0

Ė (τ)T N̄ddτ

−1
2

∫ t
0

Ė (τ)T Kdsgn (E (τ)) dτ .

(A.10)

The first term of (A.10) can be evaluated as follows

∫ t

t0

E (τ)T
(
N̄d −Kdsgn (E (τ))

)
dτ =

∫ t

t0

2∑
i=1

|Ei (τ)|
(
N̄d,isgn (Ei (τ))− kd,i

)
dτ

≤
2∑
i=1

(
cN̄d,i − kd,i

)∫ t

t0

|Ei (τ)| dτ

By applying Lemma 1, the second term can be written as

∫ t

0

Ė (τ)T N̄ddτ =
2∑
i=1

∫ t

0

Ėi (τ) N̄d,idτ

≤
2∑
i=1

∫ t

0

∣∣∣Ėi (τ)
∣∣∣ ∣∣N̄d,i

∣∣ dτ
≤

2∑
i=1

cN̄d,i

(
ε1 + ε2

∫ t

0

|Ei| dτ + |Ei (t)|
)
.
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The last term in (A.10) can be written as

−1

2

∫ t

0

Ė (τ)T kdsgn (E (τ)) dτ = −1

2

2∑
i=1

kd,i

∫ t

0

Ėi (τ)T sgn (Ei (τ)) dτ

= −1

2

2∑
i=1

kd,i |Ei (τ)|tt0

= −1

2

2∑
i=1

(kd,i |Ei (t)| − kd,i |Ei (t0)|)

Combining all terms, we obtain the following inequality

∫ t

t0

L(τ)dτ ≤
2∑
i=1

(
cN̄d,i − kd,i

)∫ t

t0

|Ei (τ)| dτ +
2∑
i=1

cN̄d,i

(
ε1 + ε2

∫ t

0

|Ei| dτ + |Ei (t)|
)

−
2∑
i=1

(kd,i |Ei (t)| − kd,i |Ei (t0)|)

≤
2∑
i=1

(
cN̄d,i +

1

2
cN̄d,iε1 − kd,i

)∫ t

t0

|Ei (τ)| dτ +
2∑
i=1

(
cN̄d,i − kd,i

)
|Ei (t)|

+
2∑
i=1

(
cN̄d,iε1 + kd,i |Ei (t0)|

)

By selecting kd,i ≥ cN̄d,i + 1
2
cN̄d,iε1, one can bound the integral as

∫ t

t0

L(τ)dτ ≤ Cd

where Cd = 1
2

2∑
i=1

(
cN̄d,iε1 + kd,i |Ei (t0)|

)
. Then the proof is complete.
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APPENDIX B: EXPRESSIONS OF EQUATIONS
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C. 2 Expressions part 1

The matrices related to structural mass, stiffness, and non-circulatory load in (2.42) are given as

follows

Φ1(φ) = π − φ+ sinφ, Φ2(φ) = (π − φ) (1 + 2 cosφ) + sinφ (2 + cosφ) ,

Φ3(φ) = π − φ+ sinφ cosφ, Φ4(φ) = 2 (π − φ) cosφ+ sinφ2
3

(2 + cos2 φ)

Φ5(φ) = sinφ(1− cosφ) Φ6(φ) = 2 (π − φ) + sinφ2
3

(2− cosφ) (1 + 2 cosφ)

Φ7(φ) = (π − φ)
(

1
2

+ 2 cosφ
)

+ sinφ1
6

(8 + 5 cosφ+ 4 cos2 φ− 2 cos3 φ)

Φ8(φ) = (π − φ) (−1 + 2 cosφ) + sinφ (2 + 3 cosφ+ 4 cos2 φ)

Φ10(φ) = Φ13(φ) · Φ5(φ) Φ11(φ) = Φ2(φ) · Φ3(φ)

Φ12(φ) = (π − φ)2 (1
2

+ 4 cos2 φ
)

+ (π − φ) sinφ cosφ (7 + 2 cos2 φ) + sin2 φ
(
2 + 5

2
cos2 φ

)
Φ13(φ) = π − φ− sinφ.

8×8

A =


A11 A12 A13

A21 A22 A23

A31 A32 A33


8×1

B =

[
BT

1 BT
2 BT

3

]T
C =

[
0 0 0 1 0 0 0 0

]

119



3×3

M̄ = −[M + πρb2Z1]−1
3×3

A 11 = M̄πρb2Z2

3×3

A 12 = M̄ (πρb2Z3 +K1)
3×2

A 13 = M̄πρb2Z4

3×2

A 21 = I,
3×2
A 22 = 0

3×3

A 23 = 0

3×2

A 31 =

 r1A11 + r2

r1A11+r2

 2×3

A 32 =

 r1A12

r1A12


2×3

A 33 =

 −w1 0

0 −w2

+

 r1A13

r1A13


3×1

B 1 = [M + πρb2Z1]−1

[
02×1 1

]T 3×1

B 2 = 03×1

2×1

B 3 =

[
r1B1 r1B1

]T
C=

[
01×3 1 01×4

]T

K1 =


Kh

Kα

Kβ

 K2 =


knh(h)

knα (α)

0



f(
h

b
, α) =

[ (
M̄K2Y

)T
01×3 rT1

(
M̄K2Y

)T ]T
knh(h) = bKh0.09h2

knα(α) = Kα

(
−22.1α + 1315.5α2 + 8580α3 − 17289.7α4

)
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Z1 =


b −ab b

2π
Φ4

−ab2 b2
(

1
8

+ a2
)

b2

4π
Φ7

b2

2π
Φ4

b2

4π
Φ7

b2

4π
Φ12



Z2 =


2V 2V (1− a) V

π
(Φ3 + Φ2)

−2bV
(

1
2

+ a
)

−2V ba(1
2
− a) V b

π

{
1
2
Φ6 −

(
1
2

+ a
)

Φ2

}
V b
π

Φ8
V b
π

(Φ9

2
+
(

1
2
− a
)

Φ8) V b
2π2 (Φ11 + Φ2Φ8)



Z3 =


0 2V 2

b
2V 2

πb
Φ1

0 −2V 2
(

1
2

+ a
)

V 2

π

{
Φ5 − 2

(
1
2

+ a
)

Φ1

}
0 V 2

π
Φ8

V 2

π2 (Φ10 + Φ1Φ8)



Z4 =


−2V A1

b
−2V A2

b

2V
(

1
2

+ a
)
A1 2V

(
1
2

+ a
)
A2

−V Φ8A1

π
−V Φ8A2

π


r1 =

[
b b

(
1
2
− a
)

b
2π

Φ2

]
r2 =

[
0 V V

π
Φ1

]

Z
′
2 =


0 V V

π
Φ3

0
(

1
2
− a
)
V V

2π

0 bV
2π

Φ9
bv

2π2 Φ11

 Z
′
3 =


0 0 0

0 0 V 2

πb
Φ5

0 0 V 2

πb
Φ10


Z

′
4 =

[
2V
b
−2
(

1
2

+ a
)
V V Φ8

π

]T 3×3

A
′

11 = M̄πρb2Z
′
2

3×3

A
′

12 = M̄
(
πρb2Z

′
3 +K1

) 3×2

A
′

13 = πρb2M̄Z
′
4 =

[
g1 g2 g3

]T
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z =



0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0

b2 −b1 0 0 0 0 0 0

0 b3 −b2 0 0 0 0 0

0 0 0 b2 −b1 0 0 0

0 0 0 0 b3 −b2 0 0

b7 0 0 0 0 0 0 −b2

0 0 0 0 0 0 1 −1



The definitions of parameters and expressions in (2.13) are given as following. c2, c4, c6 is defined

as the elements of the first row ofA′
11 and c1, c3, c5 is defined as the elements of the first row ofA′

12.

b1 is the first element of the control gain vectorB1. fn1(h
b
, α) is the first element of aforementioned

f(h
b
, α). The regression vector and linearized parameters of (2.13) is shown as following

WF =

[
h
b

ḣ
b

α α̇ β β̇ W∆ (t) h2 α α2 α3 α4 ė1

]
θF =

[
−c1 −c2 −c3 −c4 −c5 −c6

−g1θ∆ −bKh 22.1Kα −1315.5Kα −8580Kα 17289.7Kα

]T
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C. 2 Expressions part 2

The matrices related to structural mass, stiffness, and non-circulatory load are given as follows

Ms =



1 xα xβ xγ

xα r2
α

[
r2
β + xβ (c− a)

] [
xγ (d− a)− r2

γ

]
xβ

[
r2
β + xβ (c− a)

]
r2
β 0

xγ
[
xγ(d− a)− r2

γ

]
0 r2

γ


,

Ks =



ω2
h 0 0 0

0 r2
αω

2
α 0 0

0 0 r2
βω

2
β 0

0 0 0 r2
γω

2
γ


,

Mnc = P TM̄ncP, Bnc = P T B̄ncP, Knc = P T K̄ncP

M̄nc =



−π πa T1 T1 (d)

πa −π
(

1
8

+ a2
)
−2T13 −2T13 (d)

T1 −2T13
1
π
T3

1
π
Y6

T1(d) −2T13 (d) 1
π
Y6

1
π
T3 (d)


,

B̄nc =



0 −π −T4 T4 (d)

0 π
(
a− 1

c

)
−T16 −T16 (d)

0 −T17 − 1
π
T19 − 1

π
Y18

0 −T17 (d) − 1
π
Y10 − 1

π
T19 (d)


,
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K̄nc =



0 0 0 0

0 0 −T15 −T15 (d)

0 0 − 1
π
T18 − 1

π
Y17

0 0 − 1
π
Y9 − 1

π
T18 (d)


, P =



1 0 0 b (d− a)

0 1 0 −1

0 0 1 0

0 0 0 1


,

R =

[
−2π 2π

(
a+ 1

2

)
−T12 −T12 (d)

]T
.

Explicit definitions for the constants Ti, Ti (d), and Yi can be found in Theodorsen and Garrick’s

report [34]. All the other variables used above are standard in aeroelastic literature; the reader is

referred to [6] for definitions. The matrix definitions for the state-space description of (2.49) are

given as

A =


A1 A2 A4

I 0 0

AB1 AB2 AB4

 , M̄ =
(
Ms − ρ

ms
Z1

)
,

A1 = M̄−1 ρ
ms
Z2, A2 = M̄−1

(
ρ
ms
Z3 −Ks

)
,

A4 = −M̄−1 ρ
ms
ZB, A3 (y) = −M̄−1K (h, α) ,

AB1 =

 US1P + bS2PA1

US1P + bS2PA1

 , AB2 =

 bS2PA2

bS2PA2

 ,

AB3 (y) =

 bS2PA3 (y)

bS2PA3 (y)

 , AB4 =

 bS2PA4 +

[
−w1 0

]
bS2PA4 +

[
0 −w2

]
 ,

Z1 = UP TRS2P + b2Mnc, Z2 = UP TRS1P + bUBnc,

Z3 = U2Knc, ZB =

[
UP TRa1 UP TRa2

]
,
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H =

[
M̄−1T 0

[
bS2PT bS2PT

] ]T
, S1 =

[
0 1 1

π
T10

1
π
T10 (d)

]
,

S2 =

[
1 1

2
− a 1

2π
T11

1
2π
T11 (d)

]
, f (y) =

[
xTAT3 (y) 01×4 xTATB3 (y)

]T
.

Ψ (x, ẋ) in (2.50) is defined as

Ψ (x, ẋ) =

[
Ā11 Ā12

]
ẋ+

[
Ā21 Ā22

]
x

where Ā11, Ā12, Ā21, Ā22 ∈ <2×2 can be obtained from the following

 Ā11 Ā12

Ā13 Ā14

 =
1

ms

ρbUBnc

(
Ms −

1

ms

ρb2Mnc

)−1

,

 Ā21 Ā22

Ā23 Ā24

 =

(
Ms −

1

ms

ρb2Mnc

)−1(
1

ms

ρU2Knc −Ks −K (h, α)

)
.

In (2.50), the vector F ∈ <2×1 is obtained as the first two rows of F0 ∈ <4×1 which is defined as

follows

F0 =
1

ms

ρUV TR

(
Ms −

1

ms

ρb2Mnc

)−1

.

C. 4 Expressions

∆ (t) =

[ (
M̄−1Lg

)T
0 0

]T
=

[
d1 (t) d2 (t) d3 (t) d4 (t) 01×6

]T
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Definitions of expressions in equations (4.6)

Φ (µ, ζ) =

 0 1

1 0

{[ A1 A2 A4

]
X+A3 (y) x

}

∆1 (t) =

[
d2 (t) d1 (t)

]T
G =

[
02 Ī2

]
M̄−1T

Ψ (µ, ζ) = Fsub

[
06×4 I6

]
AX+Fsubf (y)

∆2 (t) = Fsub∆ (t)

where Ī2 =

 0 1

1 0

 .

C. 5 Expressions

The auxiliary constants ki, ci, gi∀i = 1, ..., 4,as well as p2, and p4 that were introduced in the model

description of (5.12) are explicitly defined as follows

d = 1− χ2
α

r2
α

k1 =
−λ
Mµd

+
χα
V 2d

+
χαλ(1− x0)

Mµr2
αd

k2 =
−λ(1− x0)

Mµd
+

2χαζα
V d

+
χαλ(4− 6x0 + 3x2

0)

3Mµr2
αd
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k3 =
−ω̄2

V 2d

k4 =
−λ
Mµd

− 2ζhω̄

V d
+
χαλ(1− x0)

Mµr2
αd

c1 =
χαλ

Mµr2
αd
− 1

V 2d
− λ(1− x0)

Mµr2
αd

c2 =
χαλ(1− x0)

Mr2
αd

− 2ζα
V d

+
λb(4− 6x0 + 3x0)2

Mµr2
αd

c3 =
χαω̄

2

r2
αV

2d

c4 =
χαλ

Mµr2
αd

+
2χαζhω̄

r2
αV

2d
− λ(1− x0)

Mµr2
αd

g1 =
χαλ(1− x1/2)

Mµr2
αd

− λ(1− x1/2)(1− x0 + x1/2)

Mµr2
αd

g2 =
−λ(1− x1/2)

Mµd
+
χαλ(1− x1/2)(1− x0 + x1/2)

Mµr2
αd

g3 =
χαλ(−1 + x1/2)2

Mµr2
αd

− λ(−1 + x1/2)2(4− 3x0 + x1)

3Mµr2
αd
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g4 =
−λ(−1 + x1/2)2

Mµd
+
χαλ(−1 + x1/2)2(4− 3x0 + x1)

3Mµr2
αd

p2 =
χαλ

2M(1 + γ)

12µr2
αd

− λ2M(1 + γ)(1− x0)

12µr2
αd

+
B

V 2d

p4 = −λ
2M(1 + γ)

12µd
+
χαλ

2M(1 + γ)(1− x0)

12µr2
αd

+
χαB

V 2d
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