417 research outputs found

    Small business innovation research. Abstracts of completed 1987 phase 1 projects

    Get PDF
    Non-proprietary summaries of Phase 1 Small Business Innovation Research (SBIR) projects supported by NASA in the 1987 program year are given. Work in the areas of aeronautical propulsion, aerodynamics, acoustics, aircraft systems, materials and structures, teleoperators and robotics, computer sciences, information systems, spacecraft systems, spacecraft power supplies, spacecraft propulsion, bioastronautics, satellite communication, and space processing are covered

    Small business innovation research. Abstracts of 1988 phase 1 awards

    Get PDF
    Non-proprietary proposal abstracts of Phase 1 Small Business Innovation Research (SBIR) projects supported by NASA are presented. Projects in the fields of aeronautical propulsion, aerodynamics, acoustics, aircraft systems, materials and structures, teleoperators and robots, computer sciences, information systems, data processing, spacecraft propulsion, bioastronautics, satellite communication, and space processing are covered

    Technology for the Future: In-Space Technology Experiments Program, part 2

    Get PDF
    The purpose of the Office of Aeronautics and Space Technology (OAST) In-Space Technology Experiments Program In-STEP 1988 Workshop was to identify and prioritize technologies that are critical for future national space programs and require validation in the space environment, and review current NASA (In-Reach) and industry/ university (Out-Reach) experiments. A prioritized list of the critical technology needs was developed for the following eight disciplines: structures; environmental effects; power systems and thermal management; fluid management and propulsion systems; automation and robotics; sensors and information systems; in-space systems; and humans in space. This is part two of two parts and contains the critical technology presentations for the eight theme elements and a summary listing of critical space technology needs for each theme

    Doctor of Philosophy

    Get PDF
    dissertationIn this dissertation, we present methods for intuitive telemanipulation of manipulators that use piezoelectric stick-slip actuators (PSSAs). Commercial micro/nano-manipulators, which utilize PSSAs to achieve high precision over a large workspace, are typically controlled by a human operator at the joint level, leading to unintuitive and time-consuming telemanipulation. Prior work has considered the use of computer-vision-feedback to close a control loop for improved performance, but computer-vision-feedback is not a viable option for many end users. We discuss how open-loop models of the micro/nano-manipulator can be used to achieve desired end-effector movements, and we explain the process of obtaining open-loop models. We propose a rate-control telemanipulation method that utilizes the obtained model, and we experimentally quantify the effectiveness of the method using a common commercial manipulator (the Kleindiek MM3A). The utility of open-loop control methods for PSSAs with a human in the loop depends directly on the accuracy of the open-loop models of the manipulator. Prior research has shown that modeling of piezoelectric actuators is not a trivial task as they are known to suffer from nonlinearities that degrade their performance. We study the effect of static (non-inertial) loads on a prismatic and a rotary PSSA, and obtain a model relating the step size of the actuator to the load. The actuator-specific parameters of the model are calibrated by taking measurements in specific configurations of the manipulator. Results comparing the obtained model to experimental data are presented. PSSAs have properties that make them desirable over traditional DC-motor actuators for use in retinal surgery. We present a telemanipulation system for retinal surgery that uses a full range of existing disposable instruments. The system uses a PSSA-based manipulator that is compact and light enough that it could reasonably be made head-mounted to passively compensate for head movements. Two mechanisms are presented that enable the system to use existing disposable actuated instruments, and an instrument adapter enables quick-change of instruments during surgery. A custom stylus for a haptic interface enables intuitive and ergonomic telemanipulation of actuated instruments. Experimental results with a force-sensitive phantom eye show that telemanipulated surgery results in reduced forces on the retina compared to manual surgery, and training with the system results in improved performance. Finally, we evaluate operator efficiency with different haptic-interface kinematics for telemanipulated retinal surgery. Surgical procedures of the retina require precise manipulation of instruments inserted through trocars in the sclera. Telemanipulated robotic systems have been developed to improve retinal surgery, but there is not a unique mapping of the motions of the surgeon's hand to the lower-dimensional motions of the instrument through the trocar. We study operator performance during a precision positioning task on a force-sensing phantom retina, reminiscent of telemanipulated retinal surgery, with three common haptic-interface kinematics implemented in software on a PHANTOM Premium 6DOF haptic interface. Results from a study with 12 human subjects show that overall performance is best with the kinematics that represent a compact and inexpensive option, and that subjects' subjective preference agrees with the objective performance results

    Closed Loop Force Control of In-Situ Machining Robots using Audible Sound Features

    Get PDF
    Detecting, measuring and controlling the forces between cutting tools and machined components is essential in circumstances where direct position control (e.g. depth of cut, feed speed, etc.) is inaccurate and/or impossible. This paper explores the use of airborne sound signals that result from the machining process to control the cutting force in closed loop for generating accurate machined features when performing in-situ robotic repair of complex installations. The sound signals during indentation at various cutting forces are analysed and used to calibrate a remotely mounted microphone sensor and signal processing control system. The power spectral density of the audible sound is used to estimate tool cutting force and the sound intensity used in turn to estimate the resulting process energy. The described controller uses intensity of sound to mitigate the e_ects of resonance with workpiece natural frequencies while controlling the spindle velocity of the tool based on the dominant audible frequency. The performance of the controller is validated using a representative test rig and demonstrated using a robotic arm to machine thin Ni-Cr-Co alloy cantilever beams with a miniature air-driven grinding tool. Results from the test rig show that such a sound-based control approach can achieve consistent cutting forces with an accuracy of 0.08 N. The robot arm is shown to be capable of grinding features of consistent depth (to within 0.05 mm) on beams with surface defects of unde_ned shape using only the sound of the process for closed loop force control

    Advances in Intelligent Robotics and Collaborative Automation

    Get PDF
    This book provides an overview of a series of advanced research lines in robotics as well as of design and development methodologies for intelligent robots and their intelligent components. It represents a selection of extended versions of the best papers presented at the Seventh IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications IDAACS 2013 that were related to these topics. Its contents integrate state of the art computational intelligence based techniques for automatic robot control to novel distributed sensing and data integration methodologies that can be applied to intelligent robotics and automation systems. The objective of the text was to provide an overview of some of the problems in the field of robotic systems and intelligent automation and the approaches and techniques that relevant research groups within this area are employing to try to solve them.The contributions of the different authors have been grouped into four main sections:• Robots• Control and Intelligence• Sensing• Collaborative automationThe chapters have been structured to provide an easy to follow introduction to the topics that are addressed, including the most relevant references, so that anyone interested in this field can get started in the area

    EVALUATION OF HAPTIC FEEDBACK METHODS FOR TELEOPERATED EXPLOSIVE ORDNANCE DISPOSAL ROBOTS

    Get PDF
    This thesis reports on the effects of sensory substitution methods for force feedback during teleoperation of robotic systems used for Explosive Ordnance Disposal (EOD). Existing EOD robotic systems do not feature any type of haptic feedback. It is currently unknown what benefits could by gained by supplying this information to the operator. In order to assess the benefits of additional feedback, a robotic gripper was procured and instrumented in order to display the forces applied by the end effector to an object. In a contact-based event detection task, users were asked to slowly grasp an object as lightly as possible and stop when a grasp was achieved. The users were supplied with video feedback of the gripper and either (1) no haptic feedback, (2) surrogate visual feedback, or (3) surrogate vibrotactile feedback. The force information came exclusively from the current being used to drive the gripper. Peak grasp forces were measured and compared across conditions. The improvements gained from vibrotactile over no haptic feedback feedback were statistically significant and reduced the threshold at which event detection took place from an average of 8.43 N to an average of 5.97 N. Qualitative information from the users showed a significant preference for this type of feedback. Vibrotactile feedback was shown to be very useful, while surrogate visual force feedback was not found to be helpful quantitatively nor was it preferred by the users. This feedback information would be inexpensive to implement and could be easily added to existing systems, thereby improving their capabilities to the EOD technician

    Robust state estimation for the control of flexible robotic manipulators

    Get PDF
    In this thesis, a novel robust estimation strategy for observing the system state variables of robotic manipulators with distributed flexibility is established. Motivation for the derived approach stems from the observation that lightweight, high speed, and large workspace robotic manipulators often suffer performance degradation because of inherent structural compliance. This flexibility often results in persistent residual vibration, which must be damped before useful work can resume. Inherent flexibility in robotic manipulators, then, increases cycle times and shortens the operational lives of the robots. Traditional compensation techniques, those which are commonly used for the control of rigid manipulators, can only approach a fraction of the open-loop system bandwidth without inducing significant excitation of the resonant dynamics. To improve the performance of these systems, the structural flexibility cannot simply be ignored, as it is when the links are significantly stiff and approximate rigid bodies. One thus needs a model to design a suitable compensator for the vibration, but any model developed to correct this problem will contain parametric error. And in the case of very lightly damped systems, like flexible robotic manipulators, this error can lead to instability of the control system for even small errors in system parameters. This work presents a systematic solution for the problem of robust state estimation for flexible manipulators in the presence of parametric modeling error. The solution includes: 1) a modeling strategy, 2) sensor selection and placement, and 3) a novel, multiple model estimator. Modeling of the FLASHMan flexible gantry manipulator is accomplished using a developed hybrid transfer matrix / assumed modes method (TMM/AMM) approach to determine an accurate low-order state space representation of the system dynamics. This model is utilized in a genetic algorithm optimization in determining the placement of MEMs accelerometers for robust estimation and observability of the system’s flexible state variables. The initial estimation method applied to the task of determining robust state estimates under conditions of parametric modeling error was of a sliding mode observer type. Evaluation of the method through analysis, simulations and experiments showed that the state estimates produced were inadequate. This led to the development of a novel, multiple model adaptive estimator. This estimator utilizes a bank of similarly designed sub-estimators and a selection algorithm to choose the true value from a given set of possible system parameter values as well as the correct state vector estimate. Simulation and experimental results are presented which demonstrate the applicability and effectiveness of the derived method for the task of state variable estimation for flexible robotic manipulators.Ph.D

    Cumulative index to NASA Tech Briefs, 1986-1990, volumes 10-14

    Get PDF
    Tech Briefs are short announcements of new technology derived from the R&D activities of the National Aeronautics and Space Administration. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This cumulative index of Tech Briefs contains abstracts and four indexes (subject, personal author, originating center, and Tech Brief number) and covers the period 1986 to 1990. The abstract section is organized by the following subject categories: electronic components and circuits, electronic systems, physical sciences, materials, computer programs, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences
    • …
    corecore