5,226 research outputs found

    Motion Control of Passive Robot Porter with Variable Motion Characteristics for Handling a Single Object

    Get PDF
    Proceedings of the 2007 IEEE International Conference on Robotics and Biomimetics, December 15 -18, 2007, Sanya, Chin

    Developing rehabilitation robots for the brain injured

    Get PDF

    Designing rehabilitation robots for the brain injured

    Get PDF

    Learning by imitation with the STIFF-FLOP surgical robot: a biomimetic approach inspired by octopus movements

    Get PDF
    Transferring skills from a biological organism to a hyper-redundant system is a challenging task, especially when the two agents have very different structure/embodiment and evolve in different environments. In this article, we propose to address this problem by designing motion primitives in the form of probabilistic dynamical systems. We take inspiration from invertebrate systems in nature to seek for versatile representations of motion/behavior primitives in continuum robots. We take the perspective that the incredibly varied skills achieved by the octopus can guide roboticists toward the design of robust motor skill encoding schemes and present our ongoing work that aims at combining statistical machine learning, dynamical systems, and stochastic optimization to study the problem of transferring movement patterns from an octopus arm to a flexible surgical robot (STIFF-FLOP) composed of two modules with constant curvatures. The approach is tested in simulation by imitation and self-refinement of an octopus reaching motion

    Magnetic microrobot and its application in a microfluidic system

    Get PDF
    AbstractThis paper researches the design and control method of a microrobot in a microfluidic system by electromagnetic field. The microrobot can move along the microchannel to a required position, and by changing the magnetic torque, the microrobot can also rotate in the microfluidic chip. As an application of the microrobot, it is used as a mobile micromixer to mix two solutions in the microfluidic chip, and the experimental results verify its effectiveness

    Towards Odor-Sensitive Mobile Robots

    Get PDF
    J. Monroy, J. Gonzalez-Jimenez, "Towards Odor-Sensitive Mobile Robots", Electronic Nose Technologies and Advances in Machine Olfaction, IGI Global, pp. 244--263, 2018, doi:10.4018/978-1-5225-3862-2.ch012 Versión preprint, con permiso del editorOut of all the components of a mobile robot, its sensorial system is undoubtedly among the most critical ones when operating in real environments. Until now, these sensorial systems mostly relied on range sensors (laser scanner, sonar, active triangulation) and cameras. While electronic noses have barely been employed, they can provide a complementary sensory information, vital for some applications, as with humans. This chapter analyzes the motivation of providing a robot with gas-sensing capabilities and also reviews some of the hurdles that are preventing smell from achieving the importance of other sensing modalities in robotics. The achievements made so far are reviewed to illustrate the current status on the three main fields within robotics olfaction: the classification of volatile substances, the spatial estimation of the gas dispersion from sparse measurements, and the localization of the gas source within a known environment
    corecore