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Abstract

Transferring skills from a biological organism to a hyper-redundant system is a challenging task, especially when the
two agents have very different structure/embodiment and evolve in different environments. In this article, we
propose to address this problem by designing motion primitives in the form of probabilistic dynamical systems. We
take inspiration from invertebrate systems in nature to seek for versatile representations of motion/behavior primitives
in continuum robots. We take the perspective that the incredibly varied skills achieved by the octopus can guide
roboticists toward the design of robust motor skill encoding schemes and present our ongoing work that aims at
combining statistical machine learning, dynamical systems, and stochastic optimization to study the problem of
transferring movement patterns from an octopus arm to a flexible surgical robot (STIFF-FLOP) composed of two
modules with constant curvatures. The approach is tested in simulation by imitation and self-refinement of an
octopus reaching motion.
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Background
Time allowed biological organisms to refine and find
smart ways to behave and survive in their environment.
Hence, imitation of the models, systems, and elements of
nature for the purpose of solving complex human prob-
lems (biomimetics) has given rise to new technologies in
robotics, both at the level of hardware and software.
In minimally invasive surgery (MIS), widely used in the

abdominal operations in the last 30 years [1], tools go
through narrow openings and manipulate soft organs to
perform surgical tasks. However, due to the limited flex-
ibility and maneuverability of the available tools in MIS,
up to four or five trocar accesses are required during
operation. To cope with this issue, novel robotic surgical
instruments have been developed to give higher flexibil-
ity and dexterity to the surgeons [2]. Such systems are
actuated by motors moving rods [3], gears [4], or a com-
bination of cables and rods [5]. Yet, stiffness control of
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such rigid mechanical structures remains a largely unex-
plored area. The actuation techniques presented in [3-5]
are not able to have different level of stiffness in different
parts of the robot. In [3], the robot consists of two snake-
like robots, one covering the other. They use cable-driven
mechanism to stiff the inner robot while the outer longer
robot can be compliant at the tip. By using this technique,
it is not possible to have a robot compliant at the proxi-
mal part and stiff at the distal part. A motor-driven robot
has been designed in [4] with two arms and the motors
embedded on the arms. This robot provides only stiff con-
figuration at the tip suitable to perform surgical tasks in
single-port laparoscopy (SPL).
The STIFF-FLOP project aims at developing biologically

inspired manipulators and soft robotic arms to manipu-
late objects while controlling the stiffness of selected body
part [6]. They are inspired by biological systems such as an
octopus arm or elephant trunk. There are several exam-
ples of this kind of robots with high degrees of freedom
(DOF) such as the OCTARM continuum robot [7] or the
Clemson University elephant trunk [8]. In spite of being
inherently compliant when interacting with objects, their
rigid nature imposes limitations in their usability in the
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medical field. Hence, some other manipulators with no
rigid structures were developed, e.g., the Air-Octor [9],
which combines pneumatic tendon actuation or the arm
developed within the OCTOPUS project [10].
None of the mentioned systems answer to the MIS

requirements since flexibility and softness come gener-
ally with limited force; while high forces are difficult to
be achieved without any rigid supports [11]. A different
approach has been followed in the STIFF-FLOP project
[12] based on variable and controllable stiffness tech-
niques using composite granular jamming, membrane
coupling, and pneumatic actuation [13].
There is a wide range of bioimitation mechanisms,

ranging from the blind copy of actions (mimicry) to the
understanding of the intent underlying an observed action
(goal-level imitation), associated with self-training capa-
bility required to match the extracted intent. Several
approaches in machine learning exist to cover this span of
imitative behaviors.
The core idea of acquiring skills by imitation has been

labeled over the years with various names such as teach-
ing by showing [14], robot coaching [15], programming by
demonstration [16], or learning from demonstration (LfD)
[17]. A survey of LfD techniques addressing robotics con-
trol problems has been presented in [17]. In [16], Billard
et al. present an overview of different machine learning
approaches in robot programming by demonstration.
In programming by demonstration, providing good

demonstration plays a key role to speed up the learning
process. This is not always easy, specially when the con-
texts for the demonstration and the reproduction are not
sufficiently similar. This may happen, for example, when
the structure of the demonstrator agent and the robot
are very different. The generalization capability is also
often limited to a certain range of situations, which shows
the importance of designing representations of skills and
tasks that can be trained by various learning strategies.
In particular, one key challenge is to allow the imitation

system to continuously adapt the learnedmodel when new
demonstrations are available, by also exploiting in parallel
exploration, auto-calibration, and adaptation strategies.
In some situations, the design of efficient self-refinement
algorithms is crucial for the robot to learn how to perform
a task in new situations [16]. A robust and flexible rep-
resentation of skills and movements is one of the keys to
enable robots to jointly exploit several learning method-
ologies. In this article, we study this problem in the case
of biological or robotic systems characterized by a hyper-
redundant kinematic chain.
In [18,19], we introduced a high-level skill transfer

approach by learning context-dependent reward functions
in the same vein as in inverse reinforcement learning
(IRL) [20] problems. We first used a statistical approach
to extract the underlying intents of a demonstrated action
(by kinesthetic teaching with a 7-DOF Barrett WAM),
in the form of context-dependent objective functions,
and then transferred these high-level goals to the STIFF-
FLOP robot by using a stochastic reward-weighted self-
refinement strategy so that the robot could find a policy
matching the extracted objectives.
In this article, the skill transfer problem from an inver-

tebrate system in nature (octopus) to a STIFF-FLOP robot
with two modules is studied, see Figure 1. In particular,
we introduce a novel representation of dynamical systems
dedicated to continuum structures and study the problem
in the case of octopus reaching movements. The pro-
posed approach presents a new form of dynamic motion
primitives for continuous bodies that can cope with the
hyper-redundancy of the system and the perturbations in
the environment.
We use a representation of the octopus arm movement

which enables us to transfer motion skills to a STIFF-
FLOP robot with two modules. The representation, based
on Euler angles and offset values following the standard
Denavit-Hartenberg convention in robotics, is invariant to
rotation and translation in Cartesian coordinate system.

Figure 1 The STIFF-FLOP robot mimics the octopus reaching motion after skill transfer by using a probabilistic representation based on
dynamical systems.
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The use of rotation-translation invariant representations
is indeed highly preferable if we want to exploit biologi-
cal motion data in skill transfer applications. Otherwise,
the extracted features can hardly be generalized to other
situations.
Our approach then exploits the interaction between sta-

tistical models and continuous dynamical systems. In par-
ticular, the use of statistics allows the system to discover
relevant invariants and correlations among the control
variables in the form of joint probability distributions,
information that is later exploited in the reproduction
phase to reproduce appropriate movements when con-
fronted with perturbations.
In this article, we present a first set of experiments to

validate that the proposed approach can effectively enable
the STIFF-FLOP robot to mimic a motion recorded from
an octopus arm.

Octopus reachingmotion
Octopuses are considered to be among the most devel-
oped and intelligent animals in the invertebrate kingdom,
with impressive skills that can be attributed to the high
maneuverability of their arms and the capacity of the
peripheral nervous system to process sensory information
and control arm movements [21]. The octopus can use its
arms for various tasks such as locomotion, food gathering,
hunting, and sophisticated object manipulation.
Kinematic analyses of octopus reaching and fetching

movements have already revealed remarkable control
principles underlying movement generation [21-24].
Motion primitives can be regarded as a minimal set of

movements, which can be combined in different ways to
give rise to rich movement repertoires and facilitating the
acquisition of skills [25]. In [21], Zelman et al. demon-
strated that the kinematics of octopus arm movements
can be described by a reduced set of motion primitives,
which required the analysis of different types of arm
movements. They showed that a weighted combination of
2D Gaussian functions, in the form of a Gaussian mixture
model (GMM), could be used to span arm behavior in 3D
space.
The encoding approach that we propose takes inspira-

tion from this work but provides two important novelties.
It first extends the approach to a dynamical system to han-
dle perturbations in the environment. It then exploits the
GMM in a different way. In [21], each Gaussian is used as
a parametric function to fit the local shape of a surface (as
bell-shaped components), while it is used in our applica-
tion to fit the joint distribution of the data. Combined with
a regression approach, this allows us to exploit the statis-
tical properties of the model if multiple demonstrations
are available. Our work also differs in the sense that the
analysis and encoding are not the final targets. Namely, we
do not aim at classifying octopus movements or studying

movements from a physiological perspective. Instead, we
study the problem of designing technical approaches that
could be used to transfer movement skills from biological
systems to the STIFF-FLOP robot. This goal is reflected
by the proposed encoding approach that has closer links
to robotics systems, with a reversible representation with
three Euler angles and a scalar offset, depending on two
input variables (time and arm-index). The representation
facilitates retargeting to the robot by representing the
two agents as kinematic chains with Denavit-Hartenberg
parameters.
In [26], a motion capture system for 3D tracking of octo-

pus arm movements was developed to create a database
containing several types of arm movements from octo-
puses of different ages and sizes. The problem is very
challenging. Indeed, the soft property of the octopus arm
and its flexible ability to change shape does not allow the
use of conventional shape recognition algorithms. In con-
trast to human motion analysis, it is also not possible to
attach markers on the octopus arms as it immediately
rejects them [26].
In this paper, we exploited one of the most represen-

tative reaching movement from this database, gratefully
provided by Prof. Binyamin Hochner, Shlomi Hanassy,
and Alexander Botvinnik from the Department of Neu-
robiology, Hebrew University, Jerusalem, Israel, and Prof.
Tamar Flash from the Department of Computer Science
and AppliedMathematics,Weizmann Institute of Science,
Rehovot, Israel.
Recording and storing such data require discrete sam-

pling in both time and space. The raw data consists of
discrete Cartesian position data with (on average) 100
points along the octopus arm and (on average) 100 time
steps. To reduce the computational time, we re-sampled
the data in both arm-index and time with 50 instances
(surface of 2,500 points).

Methods
Spatiotemporal representation of octopus movements
In order to generate a mathematical model of the octo-
pus movements, the arm was approximated as a robot
with a high number of links. The continuous arm is
approximated by a kinematic chain with a high number of
revolute joints, describing the local curvature and torsion,
alternated with prismatic joints describing the local elon-
gation. The forward kinematics of such system can thus
be described by a set of three Euler angles and a scalar off-
set. The ZYX decomposition of the Euler angles resulted
in the most appropriate selection for the motion range in
our dataset. This representation is reversible; i.e., by hav-
ing the angles and offset, the points in Cartesian space can
be retrieved and vice-versa.
We will define as continuous arm-index s ∈ [0, 1] the

position of any point along an arm, with s = 0 and s = 1
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representing respectively the base and the tip. We will
rescale the duration of a movement so that it can be repre-
sented by a continuous time index t ∈ [0, 1]. We thus have
three Euler angles θx, θy, and θz and an offset �L for each t
and s that can be represented as a set of surfaces as shown
in Figure 2.
The original raw data (noisy Cartesian positions) are

first resampled and smoothed through a two-dimensional
polynomial fitting (surface fitting) with a 7-degree polyno-
mial. The degree for the polynomial is set experimentally
by testing different orders. The arm movement is trans-
lated to keep the base of the octopus at the origin. The
data is then globally rescaled to match the size of the
robot.

Dynamical systemwith evolution over time and arm-index
Dynamical movement primitives (DMP) is a popular tool
in robotics to learn and reproduce movements while
being robust to perturbations [27]. It consists of a spring-
damper system modulated by a non-linear force profile
encoded as a series of predefined basis functions asso-
ciated with local force behaviors (or alternatively, by the
path of a virtual spring-damper system producing a non-
linear force profile). We introduced in [28] a probabilistic
formulation of DMP by jointly learning the basis functions

and the local force behaviors. The trajectory of the
attractor point is then encoded by means of a statistical
model (as explained later), whence the trajectory can be
later extracted by regression.
The novelty in the current work is the use of surface

attractors instead of trajectory attractors (generalization
of the generic spring-damper system to a spatiotemporal
dynamical system). We use both arm-index s and time t
(rather than only time) as input variables, which enables
the approach to encode the movement of invertebrate arm
movements with a compact model (namely, by encoding
the movement of all points along the arm).
The motion is reconstructed from the dynamical sys-

tems with

ẍ = κP [
y − x

] − κV ẋ ⇒ y = 1
κP ẍ + κV

κP ẋ + x, (1)

where κP and κV are respectively the stiffness of the
spring and the damping ratio of the damper. ẋ and ẍ are
the velocity and acceleration calculated by differentiating
x for each s with respect to t. In other words, the obser-
vations x of the motion are converted into the trajectory
of virtual attractors y for each arm-index. Similarly as
x = [

θz, θy, θx,�L
]
in Figure 2, y can thus be represented

as a set of attractor surfaces.

Figure 2 Spatiotemporal representation. Left: The black lines represent slices in the Euler angle surfaces θ and offset surface �L, corresponding
to a static pose described by all the links (0 ≤ s ≤ 1) at t = 0.7. Right: For the same time frame, some of the corresponding Frenet frames along the
arm are depicted in a 3D Cartesian space.
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An illustration of a continuum arm is presented in
Figure 3 by using the proposed dynamical system with
evolution over time and arm-indexa.

A probabilistic model of continuous movements
An expectation-maximization (EM) algorithm [29] is used
to fit a Gaussian mixture model (GMM) to the augmented
attractor dataset ξ = [

t, s, y
]
, which is described as

P (ξ) =
K∑

k=1
πkN

(
ξ |μk ,�k

)
,

with N
(
ξ |μk ,�k

) = 1
(2π)

D
2 |�k | 12

× exp
(

−1
2

(
ξ − μk

)�
�−1

k
(
ξ − μk

))
,

whereD is the dimension of variables andK is the number
of Gaussian components.

The parameters of the GMM including the priors πk ,
centers μk , and covariance matrices �k are learned by
iteratively performing the following steps until conver-
gence

E-step: hi
(
ξ j

)
= πi N

(
ξ j| μi,�i

)
∑K

k=1 πk N
(
ξ j| μk ,�k

) ,

M-step: πi ←
∑N

j=1 hi
(
ξ j

)
∑K

k=1
∑N

j=1 hk
(
ξ j

) ,

μi ←
∑N

j=1 hi
(
ξ j

)
ξ j∑N

j=1 hi
(
ξ j

) ,

�i ←
∑N

j=1 hi
(
ξ j

) (
ξ j−μi

)(
ξ j−μi

)�

∑N
j=1 hi

(
ξ j

) ,

(2)

whereN is the number of datapoints. In the E-step, hi
(
ξ j

)

is the posterior probability P
(
k|ξ j

)
, computed by the

Figure 3 A dynamical systemwith surface attractor (evolution over time and arm-index). (a) The grey surface on the left represents the
attractor surface corresponding to the observed motion of the continuum arm, while the white surface is the reproduced motion of the arm. The
right figure shows the arm configurations in 2D Cartesian space at different time steps. (b) The left figure shows the evolution in time of a link with a
given arm-index s along the kinematic chain and the corresponding configurations (on the right). (c) The figures show the pose of the continuum
arm for a given time step t.
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Bayes theorem. This is the probability that the Gaus-
sian component k is responsible for ξ j. EM guarantees
the improvement of the likelihood at each iteration, con-
verging to a local optimum [30]. The EM algorithm is
initialized with k-means clusteringb [31] to start the iter-
ative procedure from a good initial estimate. Here, K is
determined empirically.
Gaussian mixture regression (GMR) is then used to esti-

mate the conditional probability P
(
y|s, t) with a Gaussian

distribution N
(
μ̂, �̂

)
, with a fast computation indepen-

dent from the number of datapoints used to train the
model [32]. In our case,

μ̂ =
K∑
i=1

hi
(
ξ I

) [
μO
i + �OI

i �I
i
−1 (

ξ I − μI
i

)]
,

and �̂ =
K∑
i=1

h2i
(
ξ I

) [
�O

i − �OI
i �I

i
−1

�IO
i

]
,

(3)

where hi
(
ξ I

)
= πiN

(
ξ I | μI

i ,�I
i
)

∑K
k=1 πkN

(
ξ I | μI

k ,�
I
k
) ,

μi =
[

μI
i

μO
i

]
, �i =

[
�I

i �IO
i

�OI
i �O

i

]
,

ξ =
[

ξ I

ξO

]
, ξ I =

[
s
t

]
, ξO = y,

where the superscripts I and O represent input and output
variables.
In contrast to other regression methods, GMR does not

model the regression function directly, but models the
joint probability of the data. It then derives the regression
function from the joint probability model. Density esti-
mation can thus be learned in an off-line phase (with the
GMM encoding approach presented above) and extracted

in real time at reproduction, since GMR has a low compu-
tation time independent from the number of datapoints
used to train the model.
Figure 4 illustrates the encoding and retrieval process.

For regression, any subset of multivariate input and out-
put dimensions can be selected, which can change in the
course of the reproduction. Expectations on the remaining
dimensions can be computed in real time, corresponding
to a convex sum of linear approximations (with weights
varying non-linearly). GMR can thus handle different
sources of missing information, since the system is able
to consider any combination of input/output mappings
during reproduction.
Given the attractor surfaces y, the whole motion can

then be directly reconstructed by a double integration
over t as

ẋ =
∫
t

(
κP [

y − x
] − κV ẋ

)
dt , x =

∫
t
ẋ dt . (4)

We will use the term DS-GMR to refer to this combi-
nation of dynamical system and Gaussian mixture regres-
sion.

Self-refinement with reward-weighted regression
The model parameters above can then be optimized
through a self-refinement algorithm with an objective or
reward function defined according to the different objec-
tives of the task. The self-refinement process consists of
searching for new solutions in the policy parameter space,
associate a reward to each trial, and then sample from the
exploration space by a weighted combination of the most
successful trials obtained so far.
Dayan and Hinton originally suggested that a self-

refinement problem can be tackled by EM to avoid gra-
dient computation [33]. They introduced the idea of

Figure 4 Illustration of the mapping representation as a mixture model and retrieval process. Left: Encoding of the input-output
observations in a GMM. Right: Probabilistic estimation of output data from given input data with GMR.
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treating immediate rewards as probabilities of a ficti-
tious event, in which case probabilistic inference tech-
niques can be used for optimization. They maximize
the reward by solving a sequence of probability match-
ing problems, where the task parameters are chosen at
each step to match a fictitious distribution determined by
the average rewards experienced on the previous steps.
Although there can be large changes in the task param-
eters from one step to the next, there is a guarantee
that the average reward is monotonically increasing. From
this simple idea, various reward-weighted policy learn-
ing approaches emerged [34-38]. Indeed, several research
fields converged to similar algorithmic solutions, with
approaches such as the cross-entropy method (CEM) [39]
or the covariance matrix adaptation evolution strategy
(CMA-ES) [40].
One option for implementing such self-refinement is

to use an EM-based stochastic optimization algorithm
to refine the GMM parameters encoding the movement,
similarly as in [18]. The procedure corresponds to an
EM algorithm in which the reward signal is treated as a
pseudo-likelihood, which can easily be extended to multi-
optima policy search [41].
Another line of research is to explore methodologies

that could move toward more structured techniques of
exploration. In [42], it was proposed to speed up the
search process by redefining it as an iterative reward-
weighted regression problem. This is particularly relevant
for the subclass of problems in which we have access to
the goal or to the highest value that a reward can take (e.g.,
reaching the center of a target, be as close as possible to a
reference trajectory, etc.).
In this case, the reward (or objective) is expressed in the

form of a vector, and the aim of the optimization is treated
as an iterative reward-weighted regression problem in the
augmented space formed by the policy parameters and the
achieved goals. At each iteration, a Gaussian distribution
showing the joint probability is fit to the augmented data
containing the best policies and the corresponding goals
obtained so far. The input of the regression problem is

represented by the desired goal ζ I∗. The output is a can-
didate optimal policy that is tested on the system and that
will be associated with the corresponding outcome.
An illustrative example of the reward-weighted regres-

sion algorithm with 1D policy and goal is shown in
Figure 5.
The augmented data is defined as ζ =

[
ζ I�, ζO�]�

. At

each iteration, the ordered set of datapoints
{
ζm

}M
m=1 with

r
(
ζ 1

)
� r

(
ζ 2

)
� . . . � r

(
ζM

)
is used as a form of impor-

tance sampling [37] to estimate a Gaussian distribution
with parameters

μ̃ ←
∑M

m=1 r
(
ζm

)
ζm∑M

m=1 r
(
ζm

) ,

�̃ ←
∑M

m=1 r
(
ζm

) (
ζm − μ̃

) (
ζm − μ̃

)�
∑M

m=1 r
(
ζm

) + �0.

(5)

where �0 is a predefined minimal exploration noise. With
the joint probability P (ζ ) ∼ N

(
μ̃, �̃

)
in Eq. (5), the

conditional probability P
(
ζO|ζ I∗) can then be computed

to obtain a subsequent policy (see Eq. (3)), by stochastic
sampling from the retrieved Gaussian distribution in the
policy parameter space.
Thus, at each iteration of the algorithm, a new policy ζO

is evaluated and associated with the achieved goal ζ I and
the corresponding scalar reward r (calculated through a
reward function of exponential form). This iterative pro-
cess continues until convergence or a maximum number
of iterations is attained.
Similarly to EM-based stochastic optimization, the pro-

cess can be extended to a GMM/GMR representation for
multi-policy search [41].
In the proposed experiment, the process starts from

a set of randomly generated policies, where the initial
number has been determined empirically. The objective
function is also explicitly defined.

Figure 5 An example of reward-weighted regression. (From left to right) Subset of iterations during the refinement algorithm. At each iteration, a
new Gaussian distribution, depicted by the green ellipse, is fit to the most promising augmented dataset (policy parameters and goal). A regression-
based exploration strategy is then used in the augmented-space ζ to iteratively find better policies to achieve the goal. For the regression, we assume
that we know the desired goal (blue vertical bar ζ I∗) but we do not know how to achieve it (namely, the input of the regression is the desired goal).
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STIFF-FLOP robot kinematics
The first prototype of the STIFF-FLOP robot, currently
under development, will be composed of two cylindrical
modules. Each section will consist of a soft cylinder with
three chambers disposed concentrically around the axis,
where air is inflated to bend the link in the desired ori-
entation. A central chamber filled with hard grain-shaped
particles is used to stiffen the link at a desired orientation
by air suction.
In this section, we briefly summarize the forward and

inverse kinematics of the STIFF-FLOP robot (see [18] for
more details). We will use a constant curvature model to
derive the forward kinematics along the whole kinematic
chain (see Figure 6). The inverse kinematics is developed
in a modular way, so that any number of links can be used
within the model. We use a two-link robot for the experi-
ment but the approach can be scaled to a higher number
of modules.
In the local frame of each module, the rest position (no

chamber is inflated) corresponds to the module aligned
along the vertical axis e3, with a rest length L0, see
Figure 6-left.
The positionQi of the tip of the i-th module can be writ-

ten as a function of the angle αi, the arc length βi, and the
curvature radius ρi (see Figure 6-center) as

Qi = [ρi (1 − cos (βi)) cos (αi) ,
ρi (1 − cos (βi)) sin (αi) , ρi sin (βi)] .

Both variables Qi or {ρi,αi,βi} can be used to describe
the kinematics of the module. The constant curvature

coordinates of the single module can be obtained from the
position Qi of the tip by using the inverse relations

ρi = Q2
i,1 + Q2

i,2 + Q2
i,3

2
√
Q2
i,1 + Q2

i,2

, αi = arctan
Qi,2
Qi,1

,

βi = arccos

⎛
⎜⎝1 −

√
Q2
i,1 + Q2

i,2

ρi

⎞
⎟⎠ .

The constant curvature coordinates allow us to obtain
the position of any point along the single module. Given
the position of the tip, the constant curvature coordi-
nates are obtained by the equation above. The Cartesian
coordinates of a point positioned at a fractional position
γ ∈ [0, 1] of the module are then given by

Fρi ,αi ,βi (γ ) = [ρi (1 − cos (βiγ )) cos (αi) ,
ρi (1 − cos (βiγ )) sin (αi) , ρi sin (βiγ )] .

(6)

Here, γ corresponds to all possible points from the base
of the module to the tip (γ = 0 corresponds to the base).
We will use the Cartesian position Qi of the tip in the

rest frame of the base as internal variables. They will
replace the role of joint angle commonly used as internal
variables in kinematic models of standard manipulators.
The constant curvature model also allows us to eval-

uate the orientation of the tip that only depends on the
position of the tip, evaluated by rotating the base frame
to make e3 tangent to the module at the tip, keeping the
other axes rigidly displaced along the manipulator. The tip
orientation of the i-th module in the (i − 1)-th tip frame
is defined by

Figure 6Model of the STIFF-FLOP robot. (Left) Single module of a constant curvature model at rest position with the rest length L0, (center) with
the pose of the tip described as a function of α, β , and L. (Right) STIFF-FLOP robot with two modules.
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The use of the constant curvature coordinates allows
us to evaluate the possible limits that the hardware pos-
sesses. The only limitation on the possible configurations
are placed in the fact that the inflation mechanism only
allows a limited range of elongation, depending on the
bending of the module and its orientation in space. The
length of the robot can be obtained as a function of the
constant curvature coordinates as Li = ρiβi.
Once the robot is bent in a given direction, a range of

possible elongations can be obtained by fixing the cur-
vature radius ρi and varying the arclength βi, which is
achieved by inflating the chambers. The geometry of the
system suggests that this elongation also depends on the
bending direction (i.e., which chamber is inflated to get
that curvature). As a result, we will have joint limitations
such as βmin (αi, ρi) < βi < βmax (αi, ρi), which will need
to be obtained experimentally (no workspace analysis and
joint limit measurements have been performed on the
prototype so far). As a starting hypothesis, we will con-
sider limitations corresponding to the nominal elongation
when all the chambers are inflated (80%), thus limiting the
possible lengths of the robot to L0 < Li < L0 + 0.8L0.
This setup allows an easy integration of multiple robot

links, since any additional module can be thought as a
constant curvature model applied on the previous. The
position and orientation of the tip of the robot can be
recursively evaluated, for any possible number of links K ,
by computing

y =
K∑
i=1

R0(i−1)Qi, R0K =
K∏
i=1

R(i−1)i,

with R00 = I. For two links, this results into y = Q1 +
R01Q2 and R03 = R01R12.

Results and discussion
The model is first tested to emulate two typical octopus
reaching motion primitives by manually setting the model
parameters. It is then tested if these parameters could
be autonomously learned from real octopus motions and
transferred to the STIFF-FLOP robot.

Emulation of octopus motion primitives
Themodel is first employed to emulate typical movements
used by octopus to reach for food. These movements
involve bend propagation and elongation of the proximal
part of the arm. Note here that the reaching motion differs
from the fetching of the grasped food to the mouth, where
the octopus arm is configured into a quasi-articulated

structure with three segments and three rotary joints
[22,24,43]. In contrast, reaching movements are usually
generated by a combination of two motor primitives: the
propagation of a bend along the arm and an elongation of
the arm [25,44]. These two motor primitives may be com-
bined with different weights to create a broader spectrum
of reaching movements.
The advantage of the DS-GMR representation to encode

such kind of patterns is that it provides not only infor-
mation about individual bending/elongation patterns but
also information about their local correlations throughout
the movement, in the form of a full covariance matrix.
The planar bend propagation movement from the base

to the tip can easily be simulated by setting non-zero
off-diagonal elements in a full covariance matrices (tilted
elongated ellipsoids) acting as attractors in a curvature-
elongation space. For example, for planar movements, one
of the Euler angles and offset (e.g. θx and �L) can rep-
resent the curvature-elongation space, see Figure 7a-c.
An elongation primitive can easily be obtained by trans-
lating one of the Gaussians in the elongation space, see
Figure 7d-f.

Imitation of octopus motion by the STIFF-FLOP robot
In this section, we test if the proposed encoding tech-
nique can be used to autonomously transfer skills from
real octopus movements to the STIFF-FLOP robot.
Figure 8 shows the recording of the representative

octopus reaching movement that was selected from
the database (see ‘Octopus reaching motion’ section for
details). We can observe that the angle θx has a wider
range than the others, suggesting that the octopus reach-
ing movement is mostly achieved in a plane.
The DS-GMR model is exploited to transfer the move-

ment to a two-link STIFF-FLOP robot. The constant cur-
vature constraint of each link results in a segmentation
of the continuous surfaces into a given number of sub-
surfaces, corresponding to the number of modules (here,
two).
In order to map the movement to the STIFF-FLOP

robot, we consider the Frenet frames at the base of the
robot (R1), in the middle point between the two mod-
ules

(
Rn/2

)
, and at the tip

(
Rn/2

)
, where n is the number

of segments used for the discretization of the continuous
kinematic chain.
These frames can be easily calculated from the Euler

angle representation at each time step t. The elongation of
eachmodule can be calculated by summing the elongation
of the n/2 segments composing each module. The frames
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Figure 7 Emulation of reaching movements. Emulation of reaching movement with bend propagation (a-c) and with bend elongation (d-f).

R1, Rn/2, and Rn are then used to approximate the cor-
responding STIFF-FLOP module variables

[
Lj,αj,βj

]2
j=1,

see Figure 6. This is achieved by considering the rotation
matrix R, corresponding to the frame at the tip of each
module, defined as

For the first module : R = R�
1 Rn/2 ,

For the second module : R = R�
n/2Rn ,

and calculating the constant curvature variables for each
module as

α = arctan (R23/R13) , β = arccos (R33) and L =
n/2∑
i=1

�Li ,

where, for example, R23 is the scalar in the second row
and third column of matrixR, and �L is the offset.
The result of this procedure is shown in Figure 9, where

Euler angles and offsets corresponding to the octopus
(light gray) and STIFF-FLOP (green and red for the first
and second modules, respectively) are presented.
This approach for the transfer of skills from a contin-

uous arm to an arm with piecewise constant curvatures
can provide a good initial estimate but does not guar-
antee the best fit. Indeed, even though the movement
is quite similar, the different structure of the STIFF-
FLOP robot can cause some dissimilarity in the learned
movement.
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Figure 8 An example of octopus reaching movement after pre-processing of the data. The black lines on the surfaces show configurations at
three different time steps (initial, mid, and final configurations), with corresponding octopus arm pose in a 3D Cartesian space depicted in the right
graph. The blue dots show the position of the tip during the movement.

The self-refinement approach is thus used to refine
this initial estimate, by using as policy parameters the
centers of the GMM, as well as the first eigencompo-
nents of ordered eigendecompositions of the covariances
(directions of the main axes of the ellipsoids).

Figure 10 shows a GMMmodel with three Gaussians fit-
ted to the attractor surfaces representing the movement.
By considering the centers and the first eigencompo-
nent of the covariance matrix for these three Gaussians,
the policy has 36 dimensions. The stiffness and damping

Figure 9Mapping from the octopus to the STIFF-FLOP robot. The Euler angles and offsets related to the octopus movement (light gray) and
the corresponding STIFF-FLOP robot with two modules (green and red surfaces).
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Figure 10Modeling of surface attractors. The complete set of variable x and the attractor y are plotted in light blue and gray colors, respectively.
The Gaussian components of the GMMmodel are the red ellipsoids fitting the attractor surfaces.

parameters are set empirically with a critical damping
constraint.
A reward function based on the Cartesian distance of

the STIFF-FLOP end effector (xr) and the octopus tip (xo)
is defined at time instances t = 0.2, t = 0.5, and t = 1 as

r = 1
3

∑
t=0.2,0.5,1

exp
(−δ||xr(t) − xo(t)||) ,

where δ is a bandwidth coefficient set experimentally.
With three 3D points at different time instances, the goal
has nine dimensions.
In order to keep the robot parameters within the real

hardware limits, we additionally considered hard con-
straints in the search process for each of the two modules
as

L0 ≤ L ≤ 1.8L0 and β ≤ 2π/3,

where L0, L, and β are the module minimum length,
length, and curvature, respectively (see Figure 6).
The results of this experiment are shown in Figures 11

and 12, averaged over 30 runs of the same experiment.
Figure 13 shows the convergence of the reward after 10-
20 self-refinement iterations, by starting from an initial
set of 20 randomly generated policies based on the initial
demonstration.

Conclusions
We presented an approach based on statistical dynamical
systems to encodemovements in biological or robotic sys-
tems with a continuous kinematic structure. We showed
that the approach could be employed to learn skills from
demonstration, and that it could be combined with a self-
refinement strategy based on iterative reward-weighted
regression.
The aim is to extract relevant motion primitives from

biological systems and map those to the STIFF-FLOP
robot, while creating a set of natural motion patterns as
building blocks. These building blocks could later be com-
bined and reorganized differently to build new types of
movements and skills.
The case study with octopus reaching movements, of

course, does not target as a final goal to replicate reaching
movements in surgery. But such typical motion repertoire
allows us to test the efficiency of the proposed encoding
approach and to exploit existing databases of biological
movements. Even if the same exact movements will not be
used in the surgical application, it provides us with a very
important starting point to the design of robust models
capable of encoding various skills in flexible continuum
robots. In other words, the presented work is primarily
aimed at exploiting typical behaviors observed in inver-
tebrate systems to test an encoding strategy and guide
us toward the design of new modeling techniques that
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Figure 11 Qualitative comparison of the octopus and STIFF-FLOP robot movements, before and after self-refinement. (a) Comparison of
the octopus and STIFF-FLOP robot movements based on the initial learning from demonstration approach (before self-refinement) at time
instances t = 0.2, t = 0.5 and t = 1. The red dots represent the tip trajectory. (b) Reproduction on the robot after self-refinement. The black dots
depict the refined trajectory of the tip. (c) The initial (light gray) and refined (green and blue surfaces) control variables.

Figure 12 Convergence of the GMR search process. (a-f) A sample search in the augmented goal-policy space ζ is plotted for six selected
self-refinement iterations. Here, only one dimension for ζO and ζ I is depicted, but we have ζO ∈ R

36 and ζ I ∈ R
9. The gray dots show the initial set

of iterations and the black dots are the new estimated policy. The blue line represents the known goal of the task with highest reward on which the
red cross shows the best achieved policy after convergence.
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Figure 13 Reward profile for 30 runs, plotted individually.

could be used to encode a broader range of skills and pat-
terns, including new skills that will be relevant to surgical
applications.
In future work, we aim at applying this learning

approach to the real STIFF-FLOP platform, by consid-
ering diverse motion/feedback skill primitives that could
be used to assist doctors in surgical operations. We plan
to exploit the context-dependent learning interface that
we proposed in [18] as a high-level imitation approach to
extract and exploit the most relevant cost functions that
could explain the observation of octopus movements. In
particular, we plan to study how the octopus exploits the
degrees of freedom of its flexible arm to perform vari-
ous tasks, in the form of objective functions that could
vary depending on the ongoing situation. The variability
information could then be exploited to regulate the stiff-
ness and damping of the robot, with appropriate synergies
among curvature, torsion, and elongation variables.

Endnotes
aNote that in this implementation, the evolution is only

semi bi-dimensional in the sense that the evolution over s
with t = 0 is first computed, followed by evolutions over
t for s ∈ [0, 1], providing a continuous surface.

b k-means is a method of clustering that aims to
partition observations into K clusters in which each
observation belongs to the cluster with the nearest mean.
The center of each cluster after applying k-means, has
the minimum sum of distances from all other points in
that cluster.
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