439 research outputs found

    Toward cognitive digital twins using a BIM-GIS asset management system for a diffused university

    Get PDF
    The integrated use of building information modeling (BIM) and geographic information system (GIS) is promising for the development of asset management systems (AMSs) for operation and maintenance (O & M) in smart university campuses. The combination of BIM-GIS with cognitive digital twins (CDTs) can further facilitate the management of complex systems such as university building stock. CDTs enable buildings to behave as autonomous entities, dynamically reacting to environmental changes. Timely decisions based on the actual conditions of buildings and surroundings can be provided, both in emergency scenarios or when optimized and adaptive performances are required. The research aims to develop a BIM-GIS-based AMS for improving user experience and enabling the optimal use of resources in the O & M phase of an Italian university. Campuses are complex assets, mainly diffused with buildings spread across the territory, managed with still document-based and fragmented databases handled by several subjects. This results in incomplete and asymmetrical information, often leading to ineffective and untimely decisions. The paper presents a methodology for the development of a BIM-GIS web-based platform (i.e., AMS-app) providing the real-time visualization of the asset in an interactive 3D map connected to analytical dashboards for management support. Two buildings of the University of Turin are adopted as demonstrators, illustrating the development of an easily accessible, centralized database by integrating spatial and functional data, useful also to develop future CDTs. As a first attempt to show the AMS app potential, crowd simulations have been conducted to understand the buildings' actual level of safety in case of fire emergency and demonstrate how CDTs could improve it. The identification of data needed, also gathered through the future implementation of suitable sensors and Internet of Things networks, is the core issue together with the definition of effective asset visualization and monitoring methods. Future developments will explore the integration of artificial intelligence and immersive technologies to enable space use optimization and real-time wayfinding during evacuation, exploiting digital tools to alert and drive users or authorities for safety improvement. The ability to easily optimize the paths with respect to the actual occupancy and conditions of both the asset and surroundings will be enabled

    Does Scenic Make Cents?

    Get PDF
    The stretch of California Route One (Highway 1) from the City of San Luis Obispo reaching north to the Monterey County line is one of the most scenic drives in the United States. This stretch of highway is a destination in its own right; so much so, the San Luis Obispo North Coast Scenic Byway is federally designated as an All-American Road, the highest scenic designation of any road or highway in the nation. There has been a history for funding the preservation and enhancement of these roads; however, it was removed in 2012. Even with the lack of current funding opportunities, the San Luis Obispo Council of Governments (SLOCOG) continues to recognize the importance of the corridor in attracting valuable tourism revenue thus commissioning this update and economic analysis. Through the economic analysis it was found that visitor spending in the byway region increased by 23% from over 500millionin2006toalmost500 million in 2006 to almost 656 million in 2012. In 2012, visitor spending related associated with scenic recognition and enhancement projects along the corridor was about $217,000 in direct revenue. As a result of research, outreach, and data analysis, this project did find that being scenic does make “cents.

    Wayfinding in the built environment

    Get PDF

    Supplement to Lauri Lahti’s conference article "Educational framework for adoption of vocabulary based on Wikipedia linkage and spaced learning"

    Get PDF
    A supplement to Lauri Lahti’s conference article in 2012 "Educational framework for adoption of vocabulary based on Wikipedia linkage and spaced learning" so that this supplement was referenced to by the original publication.Not reviewe

    Developing an agent-based evacuation simulation model based on the study of human behaviour in fire investigation reports

    Get PDF
    Fire disasters happen every day all over the world. These hazardous events threaten people's lives and force an immediate movement of people wanting to escape from a dangerous area. Evacuation drills are held to encourage people to practise evacuation skills and to ensure they are familiar with the environment. However, these drills cannot accurately represent real emergency situations and, in some cases, people may be injured during practice. Therefore, modelling pedestrian motion and crowd dynamics in evacuation situations has important implications for human safety, building design, and evacuation processes. This thesis focuses on indoor pedestrian evacuation in fire disasters. To understand how humans behave in emergency situations, and to simulate more realistic human behaviour, this thesis studies human behaviour from fire investigation reports, which provide a variety details about the building, fire circumstance, and human behaviour from professional fire investigation teams. A generic agent-based evacuation model is developed based on common human behaviour that indentified in the fire investigation reports studied. A number of human evacuation behaviours are selected and then used to design different types of agents, assigning with various characteristics. In addition, the interactions between various agents and an evacuation timeline are modelled to simulate human behaviour and evacuation phenomena during evacuation. The application developed is validated using three specific real fire cases to evaluate how closely the simulation results reflected reality. The model provides information on the number of casualties, high-risk areas, egress selections, and evacuation time. In addition, changes to the building configuration, number of occupants, and location of fire origin are tested in order to predict potential risk areas, building capacity and evacuation time for different situations. Consequently, the application can be used to inform building designs, evacuation plans, and priority rescue processes

    Täydennysosa väitöskirjaan "Tietokoneavusteinen oppiminen perustuen karttuviin sanastoihin, käsiteverkostoihin ja Wikipedian linkitykseen"

    Get PDF
    A supplement to Lauri Lahti’s doctoral dissertation in 2015 "Computer-Assisted Learning Based on Cumulative Vocabularies, Conceptual Networks and Wikipedia Linkage" so that this supplement was referenced to by the original publication.Täydennysosa väitöskirjaan "Tietokoneavusteinen oppiminen perustuen karttuviin sanastoihin, käsiteverkostoihin ja Wikipedian linkitykseen"Not reviewe

    Biomechanical Locomotion Heterogeneity in Synthetic Crowds

    Get PDF
    Synthetic crowd simulation combines rule sets at different conceptual layers to represent the dynamic nature of crowds while adhering to basic principles of human steering, such as collision avoidance and goal completion. In this dissertation, I explore synthetic crowd simulation at the steering layer using a critical approach to define the central theme of the work, the impact of model representation and agent diversity in crowds. At the steering layer, simulated agents make regular decisions, or actions, related to steering which are often responsible for the emergent behaviours found in the macro-scale crowd. Because of this bottom-up impact of a steering model's defining rule-set, I postulate that biomechanics and diverse biomechanics may alter the outcomes of dynamic synthetic-crowds-based outcomes. This would mean that an assumption of normativity and/or homogeneity among simulated agents and their mobility would provide an inaccurate representation of a scenario. If these results are then used to make real world decisions, say via policy or design, then those populations not represented in the simulated scenario may experience a lack of representation in the actualization of those decisions. A focused literature review shows that applications of both biomechanics and diverse locomotion representation at this layer of modelling are very narrow and often not present. I respond to the narrowness of this representation by addressing both biomechanics and heterogeneity separately. To address the question of performance and importance of locomotion biomechanics in crowd simulation, I use a large scale comparative approach. The industry standard synthetic crowd models are tested under a battery of benchmarks derived from prior work in comparative analysis of synthetic crowds as well as new scenarios derived from built environments. To address the question of the importance of heterogeneity in locomotion biomechanics, I define tiers of impact in the multi-agent crowds model at the steering layer--from the action space, to the agent space, to the crowds space. To this end, additional models and layers are developed to address the modelling and application of heterogeneous locomotion biomechanics in synthetic crowds. The results of both studies form a research arc which shows that the biomechanics in steering models provides important fidelity in several applications and that heterogeneity in the model of locomotion biomechanics directly impacts both qualitative and quantitative synthetic crowds outcomes. As well, systems, approaches, and pitfalls regarding the analysis of steering model and human mobility diversity are described
    corecore