1,211 research outputs found

    Gaussian-Process-based Robot Learning from Demonstration

    Full text link
    Endowed with higher levels of autonomy, robots are required to perform increasingly complex manipulation tasks. Learning from demonstration is arising as a promising paradigm for transferring skills to robots. It allows to implicitly learn task constraints from observing the motion executed by a human teacher, which can enable adaptive behavior. We present a novel Gaussian-Process-based learning from demonstration approach. This probabilistic representation allows to generalize over multiple demonstrations, and encode variability along the different phases of the task. In this paper, we address how Gaussian Processes can be used to effectively learn a policy from trajectories in task space. We also present a method to efficiently adapt the policy to fulfill new requirements, and to modulate the robot behavior as a function of task variability. This approach is illustrated through a real-world application using the TIAGo robot.Comment: 8 pages, 10 figure

    A robot learning from demonstration framework to perform force-based manipulation tasks

    Get PDF
    This paper proposes an end-to-end learning from demonstration framework for teaching force-based manipulation tasks to robots. The strengths of this work are manyfold. First, we deal with the problem of learning through force perceptions exclusively. Second, we propose to exploit haptic feedback both as a means for improving teacher demonstrations and as a human–robot interaction tool, establishing a bidirectional communication channel between the teacher and the robot, in contrast to the works using kinesthetic teaching. Third, we address the well-known what to imitate? problem from a different point of view, based on the mutual information between perceptions and actions. Lastly, the teacher’s demonstrations are encoded using a Hidden Markov Model, and the robot execution phase is developed by implementing a modified version of Gaussian Mixture Regression that uses implicit temporal information from the probabilistic model, needed when tackling tasks with ambiguous perceptions. Experimental results show that the robot is able to learn and reproduce two different manipulation tasks, with a performance comparable to the teacher’s one.Peer ReviewedPostprint (author’s final draft post-refereeing

    Robot learning from demonstration of force-based tasks with multiple solution trajectories

    Get PDF
    A learning framework with a bidirectional communication channel is proposed, where a human performs several demonstrations of a task using a haptic device (providing him/her with force-torque feedback) while a robot captures these executions using only its force-based perceptive system. Our work departs from the usual approaches to learning by demonstration in that the robot has to execute the task blindly, relying only on force-torque perceptions, and, more essential, we address goal-driven manipulation tasks with multiple solution trajectories, whereas most works tackle tasks that can be learned by just finding a generalization at the trajectory level. To cope with these multiple-solution tasks, in our framework demonstrations are represented by means of a Hidden Markov Model (HMM) and the robot reproduction of the task is performed using a modified version of Gaussian Mixture Regression that incorporates temporal information (GMRa) through the forward variable of the HMM. Also, we exploit the haptic device as a teaching and communication tool in a human-robot interaction context, as an alternative to kinesthetic-based teaching systems. Results show that the robot is able to learn a container-emptying task relying only on force-based perceptions and to achieve the goal from several non-trained initial conditions.Postprint (author’s final draft

    Robot Learning from Demonstration Using Elastic Maps

    Full text link
    Learning from Demonstration (LfD) is a popular method of reproducing and generalizing robot skills from human-provided demonstrations. In this paper, we propose a novel optimization-based LfD method that encodes demonstrations as elastic maps. An elastic map is a graph of nodes connected through a mesh of springs. We build a skill model by fitting an elastic map to the set of demonstrations. The formulated optimization problem in our approach includes three objectives with natural and physical interpretations. The main term rewards the mean squared error in the Cartesian coordinate. The second term penalizes the non-equidistant distribution of points resulting in the optimum total length of the trajectory. The third term rewards smoothness while penalizing nonlinearity. These quadratic objectives form a convex problem that can be solved efficiently with local optimizers. We examine nine methods for constructing and weighting the elastic maps and study their performance in robotic tasks. We also evaluate the proposed method in several simulated and real-world experiments using a UR5e manipulator arm, and compare it to other LfD approaches to demonstrate its benefits and flexibility across a variety of metrics.Comment: 7 pages, 9 figures, 3 tables. Accepted to IROS 2022. Code available at: https://github.com/brenhertel/ElMapTrajectories Accompanying video at: https://youtu.be/rZgN9Pkw0t

    Task-Adaptive Robot Learning from Demonstration with Gaussian Process Models under Replication

    Get PDF
    Learning from Demonstration (LfD) is a paradigm that allows robots to learn complex manipulation tasks that can not be easily scripted, but can be demonstrated by a human teacher. One of the challenges of LfD is to enable robots to acquire skills that can be adapted to different scenarios. In this paper, we propose to achieve this by exploiting the variations in the demonstrations to retrieve an adaptive and robust policy, using Gaussian Process (GP) models. Adaptability is enhanced by incorporating task parameters into the model, which encode different specifications within the same task. With our formulation, these parameters can be either real, integer, or categorical. Furthermore, we propose a GP design that exploits the structure of replications, i.e., repeated demonstrations with identical conditions within data. Our method significantly reduces the computational cost of model fitting in complex tasks, where replications are essential to obtain a robust model. We illustrate our approach through several experiments on a handwritten letter demonstration dataset.Comment: 8 pages, 9 figure

    Robot learning from demonstration of force-based manipulation tasks

    Get PDF
    One of the main challenges in Robotics is to develop robots that can interact with humans in a natural way, sharing the same dynamic and unstructured environments. Such an interaction may be aimed at assisting, helping or collaborating with a human user. To achieve this, the robot must be endowed with a cognitive system that allows it not only to learn new skills from its human partner, but also to refine or improve those already learned. In this context, learning from demonstration appears as a natural and userfriendly way to transfer knowledge from humans to robots. This dissertation addresses such a topic and its application to an unexplored field, namely force-based manipulation tasks learning. In this kind of scenarios, force signals can convey data about the stiffness of a given object, the inertial components acting on a tool, a desired force profile to be reached, etc. Therefore, if the user wants the robot to learn a manipulation skill successfully, it is essential that its cognitive system is able to deal with force perceptions. The first issue this thesis tackles is to extract the input information that is relevant for learning the task at hand, which is also known as the what to imitate? problem. Here, the proposed solution takes into consideration that the robot actions are a function of sensory signals, in other words the importance of each perception is assessed through its correlation with the robot movements. A Mutual Information analysis is used for selecting the most relevant inputs according to their influence on the output space. In this way, the robot can gather all the information coming from its sensory system, and the perception selection module proposed here automatically chooses the data the robot needs to learn a given task. Having selected the relevant input information for the task, it is necessary to represent the human demonstrations in a compact way, encoding the relevant characteristics of the data, for instance, sequential information, uncertainty, constraints, etc. This issue is the next problem addressed in this thesis. Here, a probabilistic learning framework based on hidden Markov models and Gaussian mixture regression is proposed for learning force-based manipulation skills. The outstanding features of such a framework are: (i) it is able to deal with the noise and uncertainty of force signals because of its probabilistic formulation, (ii) it exploits the sequential information embedded in the model for managing perceptual aliasing and time discrepancies, and (iii) it takes advantage of task variables to encode those force-based skills where the robot actions are modulated by an external parameter. Therefore, the resulting learning structure is able to robustly encode and reproduce different manipulation tasks. After, this thesis goes a step forward by proposing a novel whole framework for learning impedance-based behaviors from demonstrations. The key aspects here are that this new structure merges vision and force information for encoding the data compactly, and it allows the robot to have different behaviors by shaping its compliance level over the course of the task. This is achieved by a parametric probabilistic model, whose Gaussian components are the basis of a statistical dynamical system that governs the robot motion. From the force perceptions, the stiffness of the springs composing such a system are estimated, allowing the robot to shape its compliance. This approach permits to extend the learning paradigm to other fields different from the common trajectory following. The proposed frameworks are tested in three scenarios, namely, (a) the ball-in-box task, (b) drink pouring, and (c) a collaborative assembly, where the experimental results evidence the importance of using force perceptions as well as the usefulness and strengths of the methods
    • …
    corecore