26 research outputs found

    The applicability of robot-guided laser osteotomy in a clinical environment and the interaction of laser light and bone tissue

    Get PDF
    Laser is an integral part of diagnostics and therapy in modern medicine. However, removing hard tissue with laser became successful only recently. The advantages of laser osteotomy are high precision and complete freedom in designing the cutting geometry. Nevertheless, these can be fully realized only when the laser system is guided by a robot. The most important challenges here are the miniaturization and the ergonomic design of the entire system. In this dissertation, I presented our first experience with a computer-assisted, integrated and miniaturized laser system, which is driven by a surgical robot. An Er:YAG laser source was integrated into a housing with an optical system and attached to the surgical robot arm. Pre-operatively generated planning data was imported and used to execute the osteotomies. Intraoperatively, a navigation system performed the positioning. In the actual operation room environment, the laser osteotome was used to produce different defect geometries in the mandibular bones of six minipigs. On the contralateral side of the mandible, surgeons used a PZE osteotome to create the same defects for comparison. The performance of the laser osteotome was analyzed in terms of the workflow, ergonomics, bone healing, user-friendliness, and safety. We were able to demonstrate that the laser osteotome could be ergonomically integrated into the operation room environment. It showed a high precision and the complex cutting geometries were transferred as planned. We expect that the computer-assisted and robot-guided laser osteotome will routinely used in the future, whenever special incision and high precision are required in osteotomies

    Solving inverse problems for medical applications

    Get PDF
    It is essential to have an accurate feedback system to improve the navigation of surgical tools. This thesis investigates how to solve inverse problems using the example of two medical prototypes. The first aims to detect the Sentinel Lymph Node (SLN) during the biopsy. This will allow the surgeon to remove the SLN with a small incision, reducing trauma to the patient. The second investigates how to extract depth and tissue characteristic information during bone ablation using the emitted acoustic wave. We solved inverse problems to find our desired solution. For this purpose, we investigated three approaches: In Chapter 3, we had a good simulation of the forward problem; namely, we used a fingerprinting algorithm. Therefore, we compared the measurement with the simulations of the forward problem, and the simulation that was most similar to the measurement was a good approximation. To do so, we used a dictionary of solutions, which has a high computational speed. However, depending on how fine the grid is, it takes a long time to simulate all the solutions of the forward problem. Therefore, a lot of memory is needed to access the dictionary. In Chapter 4, we examined the Adaptive Eigenspace method for solving the Helmholtz equation (Fourier transformed wave equation). Here we used a Conjugate quasi-Newton (CqN) algorithm. We solved the Helmholtz equation and reconstructed the source shape and the medium velocity by using the acoustic wave at the boundary of the area of interest. We accomplished this in a 2D model. We note, that the computation for the 3D model was very long and expensive. In addition, we simplified some conditions and could not confirm the results of our simulations in an ex-vivo experiment. In Chapter 5, we developed a different approach. We conducted multiple experiments and acquired many acoustic measurements during the ablation process. Then we trained a Neural Network (NN) to predict the ablation depth in an end-to-end model. The computational cost of predicting the depth is relatively low once the training is complete. An end-to-end network requires almost no pre-processing. However, there were some drawbacks, e.g., it is cumbersome to obtain the ground truth. This thesis has investigated several approaches to solving inverse problems in medical applications. From Chapter 3 we conclude that if the forward problem is well known, we can drastically improve the speed of the algorithm by using the fingerprinting algorithm. This is ideal for reconstructing a position or using it as a first guess for more complex reconstructions. The conclusion of Chapter 4 is that we can drastically reduce the number of unknown parameters using Adaptive Eigenspace method. In addition, we were able to reconstruct the medium velocity and the acoustic wave generator. However, the model is expensive for 3D simulations. Also, the number of transducers required for the setup was not applicable to our intended setup. In Chapter 5 we found a correlation between the depth of the laser cut and the acoustic wave using only a single air-coupled transducer. This encourages further investigation to characterize the tissue during the ablation process

    Advanced Applications of Rapid Prototyping Technology in Modern Engineering

    Get PDF
    Rapid prototyping (RP) technology has been widely known and appreciated due to its flexible and customized manufacturing capabilities. The widely studied RP techniques include stereolithography apparatus (SLA), selective laser sintering (SLS), three-dimensional printing (3DP), fused deposition modeling (FDM), 3D plotting, solid ground curing (SGC), multiphase jet solidification (MJS), laminated object manufacturing (LOM). Different techniques are associated with different materials and/or processing principles and thus are devoted to specific applications. RP technology has no longer been only for prototype building rather has been extended for real industrial manufacturing solutions. Today, the RP technology has contributed to almost all engineering areas that include mechanical, materials, industrial, aerospace, electrical and most recently biomedical engineering. This book aims to present the advanced development of RP technologies in various engineering areas as the solutions to the real world engineering problems

    Flexible robotic device for spinal surgery

    No full text
    Surgical robots have proliferated in recent years, with well-established benefits including: reduced patient trauma, shortened hospitalisation, and improved diagnostic accuracy and therapeutic outcome. Despite these benefits, many challenges in their development remain, including improved instrument control and ergonomics caused by rigid instrumentation and its associated fulcrum effect. Consequently, it is still extremely challenging to utilise such devices in cases that involve complex anatomical pathways such as the spinal column. The focus of this thesis is the development of a flexible robotic surgical cutting device capable of manoeuvring around the spinal column. The target application of the flexible surgical tool is the removal of cancerous tumours surrounding the spinal column, which cannot be excised completely using the straight surgical tools in use today; anterior and posterior sections of the spine must be accessible for complete tissue removal. A parallel robot platform with six degrees of freedom (6 DoFs) has been designed and fabricated to direct a flexible cutting tool to produce the necessary range of movements to reach anterior and posterior sections of the spinal column. A flexible water jet cutting system and a flexible mechanical drill, which may be assembled interchangeably with the flexible probe, have been developed and successfully tested experimentally. A model predicting the depth of cut by the water jet was developed and experimentally validated. A flexion probe that is able to guide the surgical cutting device around the spinal column has been fabricated and tested with human lumber model. Modelling and simulations show the capacity for the flexible surgical system to enable entering the posterior side of the human lumber model and bend around the vertebral body to reach the anterior side of the spinal column. A computer simulation with a full Graphical User Interface (GUI) was created and used to validate the system of inverse kinematic equations for the robot platform. The constraint controller and the inverse kinematics relations are both incorporated into the overall positional control structure of the robot, and have successfully established a haptic feedback controller for the 6 DoFs surgical probe, and effectively tested in vitro on spinal mock surgery. The flexible surgical system approached the surgery from the posterior side of the human lumber model and bend around the vertebral body to reach the anterior side of the spinal column. The flexible surgical robot removed 82% of mock cancerous tissue compared to 16% of tissue removed by the rigid tool.Open Acces

    Medical Robotics

    Get PDF
    The first generation of surgical robots are already being installed in a number of operating rooms around the world. Robotics is being introduced to medicine because it allows for unprecedented control and precision of surgical instruments in minimally invasive procedures. So far, robots have been used to position an endoscope, perform gallbladder surgery and correct gastroesophogeal reflux and heartburn. The ultimate goal of the robotic surgery field is to design a robot that can be used to perform closed-chest, beating-heart surgery. The use of robotics in surgery will expand over the next decades without any doubt. Minimally Invasive Surgery (MIS) is a revolutionary approach in surgery. In MIS, the operation is performed with instruments and viewing equipment inserted into the body through small incisions created by the surgeon, in contrast to open surgery with large incisions. This minimizes surgical trauma and damage to healthy tissue, resulting in shorter patient recovery time. The aim of this book is to provide an overview of the state-of-art, to present new ideas, original results and practical experiences in this expanding area. Nevertheless, many chapters in the book concern advanced research on this growing area. The book provides critical analysis of clinical trials, assessment of the benefits and risks of the application of these technologies. This book is certainly a small sample of the research activity on Medical Robotics going on around the globe as you read it, but it surely covers a good deal of what has been done in the field recently, and as such it works as a valuable source for researchers interested in the involved subjects, whether they are currently “medical roboticists” or not

    A Textbook of Advanced Oral and Maxillofacial Surgery

    Get PDF
    The scope of OMF surgery has expanded; encompassing treatment of diseases, disorders, defects and injuries of the head, face, jaws and oral cavity. This internationally-recognized specialty is evolving with advancements in technology and instrumentation. Specialists of this discipline treat patients with impacted teeth, facial pain, misaligned jaws, facial trauma, oral cancer, cysts and tumors; they also perform facial cosmetic surgery and place dental implants. The contents of this volume essentially complements the volume 1; with chapters that cover both basic and advanced concepts on complex topics in oral and maxillofacial surgery

    PRELIMINARY FINDINGS OF A POTENZIATED PIEZOSURGERGICAL DEVICE AT THE RABBIT SKULL

    Get PDF
    The number of available ultrasonic osteotomes has remarkably increased. In vitro and in vivo studies have revealed differences between conventional osteotomes, such as rotating or sawing devices, and ultrasound-supported osteotomes (Piezosurgery®) regarding the micromorphology and roughness values of osteotomized bone surfaces. Objective: the present study compares the micro-morphologies and roughness values of osteotomized bone surfaces after the application of rotating and sawing devices, Piezosurgery Medical® and Piezosurgery Medical New Generation Powerful Handpiece. Methods: Fresh, standard-sized bony samples were taken from a rabbit skull using the following osteotomes: rotating and sawing devices, Piezosurgery Medical® and a Piezosurgery Medical New Generation Powerful Handpiece. The required duration of time for each osteotomy was recorded. Micromorphologies and roughness values to characterize the bone surfaces following the different osteotomy methods were described. The prepared surfaces were examined via light microscopy, environmental surface electron microscopy (ESEM), transmission electron microscopy (TEM), confocal laser scanning microscopy (CLSM) and atomic force microscopy. The selective cutting of mineralized tissues while preserving adjacent soft tissue (dura mater and nervous tissue) was studied. Bone necrosis of the osteotomy sites and the vitality of the osteocytes near the sectional plane were investigated, as well as the proportion of apoptosis or cell degeneration. Results and Conclusions: The potential positive effects on bone healing and reossification associated with different devices were evaluated and the comparative analysis among the different devices used was performed, in order to determine the best osteotomes to be employed during cranio-facial surgery

    Efficient design of precision medical robotics

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student-submitted PDF version of thesis.Includes bibliographical references (p. 106-114).Medical robotics is increasingly demonstrating the potential to improve patient care through more precise interventions. However, taking inspiration from industrial robotics has often resulted in large, sometimes cumbersome designs, which represent high capital and per procedure expenditures, as well as increased procedure times. This thesis proposes and demonstrates an alternative model and method for developing economical, appropriately scaled medical robots that improve care and efficiency, while moderating costs. Key to this approach is a structured design process that actively reduces complexity. A selected medical procedure is decomposed into discrete tasks which are then separated into those that are conducted satisfactorily and those where the clinician encounters limitations, often where robots' strengths would be complimentary. Then by following deterministic principles and with continual user participation, prototyping and testing, a system can be designed that integrates into and assists with current procedures, rather than requiring a completely new protocol. This model is expected to lay the groundwork for increasing the use of hands-on technology in interventional medicine.by Nevan Clancy Hanumara.Ph.D

    Friction Force Microscopy of Deep Drawing Made Surfaces

    Get PDF
    Aim of this paper is to contribute to micro-tribology understanding and friction in micro-scale interpretation in case of metal beverage production, particularly the deep drawing process of cans. In order to bridging the gap between engineering and trial-and-error principles, an experimental AFM-based micro-tribological approach is adopted. For that purpose, the can’s surfaces are imaged with atomic force microscopy (AFM) and the frictional force signal is measured with frictional force microscopy (FFM). In both techniques, the sample surface is scanned with a stylus attached to a cantilever. Vertical motion of the cantilever is recorded in AFM and horizontal motion is recorded in FFM. The presented work evaluates friction over a micro-scale on various samples gathered from cylindrical, bottom and round parts of cans, made of same the material but with different deep drawing process parameters. The main idea is to link the experimental observation with the manufacturing process. Results presented here can advance the knowledge in order to comprehend the tribological phenomena at the contact scales, too small for conventional tribology
    corecore