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Preface

In which right is wrong and we refuse to accept it.
– Unravel Two

One of the greatest challenges of a mathematician is when math collides with the real world. A
theory can be compared to a flower. A seed is planted, and it grows over time. It might grow
into a lovely flower or even a tree. But like most things in life, it must end at one point. E.g.,
if a new theory makes more sense, the old one becomes obsolete. Solving a problem may work
theoretically, or at least the approach seems to be a great idea, but the application in the real
world may not work at all. There the fun begins: Rethink, Simplify, and Repeat. This is done
until, at one point, you are satisfied with the results; or give up.

https://xkcd.com/1411/

e82a8262ae6f09505e37f633e433acc95488aa22af3d288555ac21a13ea1f218

https://xkcd.com/1411/
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first applied mathematical problem. And it was fascinating to design the collimator, take the
measurement of Tc99m at the university hospital, analyze the data, and in the end, have an almost
real-time visualization of the Tc99m source with the AR glasses.

I was in the Planning and Navigation group (Dr. Uri Nahum, Dr. Antal Huck, Dr. Sara
Freund, Dr. Lorenzo Iafolla, Dr. Samaneh Manavi, Marek Zelechowski, Dr. Eva Schnider,
Balázs Faludi, Massimiliano Filipozzi, Madina Kojanazarova, and Hélène Corbaz). Thank you
very much for the excellent discussion and the coffee breaks. It made work much more pleasant,
and I appreciated it. And a thank you to the other CIAN and MIRACLE Group members, who
are too many to list all of you here.

Thank you, Corinne Eymann-Baier, Hannah Heissler, Dr. Gabriela Oser, Dr. Sara Freund,
Dr. Daniela Vavrecka-Sidler and Dr. Constanze Pfeiffer for helping me with all the organization
and bureaucracy the university had to offer. We would not be able to work if we did not have an
excellent IT infrastructure, for which I thank Dr. Beat Fasel and Norbet Zentai. I always enjoyed
our discussions; it is incredible that you still push for open-source solutions!

Another great experience, which gave us intergroup team building, was the kicker matches
we had. Thanks, Massimiliano, Cédrick, Lorin, Hélène, Mohammad, Simon, Stefan, Bekim,
Georg, Hans, and many more. And of course, I want to thank my friends and relatives, who sup-
ported me: Anna, Gianni, Jenny, Hans, Jacqueline, Petra, Ngoloke, Caterina, Dora, Sebastian,
Hanna, Eliza, Marco, Salome, Franco, Alessia, Joel, Mischa, Norman, Carla, Carole, Patrick,
Tobi, Dennis, Oliver, Ellie, Timo, the other Timo, and the third Timo.

vii



Summary

It is essential to have an accurate feedback system to improve the navigation of surgical tools.
This thesis investigates how to solve inverse problems using the example of two medical pro-
totypes. The first aims to detect the Sentinel Lymph Node (SLN) during the biopsy. This will
allow the surgeon to remove the SLN with a small incision, reducing trauma to the patient.
The second investigates how to extract depth and tissue characteristic information during bone
ablation using the emitted acoustic wave.

We solved inverse problems to find our desired solution. For this purpose, we investigated
three approaches: In Chapter 3, we had a good simulation of the forward problem; namely, we
used a fingerprinting algorithm. Therefore, we compared the measurement with the simulations
of the forward problem, and the simulation that was most similar to the measurement was a good
approximation. To do so, we used a dictionary of solutions, which has a high computational
speed. However, depending on how fine the grid is, it takes a long time to simulate all the
solutions of the forward problem. Therefore, a lot of memory is needed to access the dictionary.

In Chapter 4, we examined the Adaptive Eigenspace method for solving the Helmholtz equa-
tion (Fourier transformed wave equation). Here we used a Conjugate quasi-Newton (CqN) al-
gorithm. We solved the Helmholtz equation and reconstructed the source shape and the medium
velocity by using the acoustic wave at the boundary of the area of interest. We accomplished this
in a 2D model. We note, that the computation for the 3D model was very long and expensive. In
addition, we simplified some conditions and could not confirm the results of our simulations in
an ex-vivo experiment.

In Chapter 5, we developed a different approach. We conducted multiple experiments and
acquired many acoustic measurements during the ablation process. Then we trained a Neural
Network (NN) to predict the ablation depth in an end-to-end model. The computational cost
of predicting the depth is relatively low once the training is complete. An end-to-end network
requires almost no pre-processing. However, there were some drawbacks, e.g., it is cumbersome
to obtain the ground truth.

This thesis has investigated several approaches to solving inverse problems in medical ap-
plications. From Chapter 3 we conclude that if the forward problem is well known, we can
drastically improve the speed of the algorithm by using the fingerprinting algorithm. This is
ideal for reconstructing a position or using it as a first guess for more complex reconstructions.
The conclusion of Chapter 4 is that we can drastically reduce the number of unknown param-
eters using Adaptive Eigenspace method. In addition, we were able to reconstruct the medium
velocity and the acoustic wave generator. However, the model is expensive for 3D simulations.

viii
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Also, the number of transducers required for the setup was not applicable to our intended setup.
In Chapter 5 we found a correlation between the depth of the laser cut and the acoustic wave
using only a single air-coupled transducer. This encourages further investigation to characterize
the tissue during the ablation process.



Zusammenfassung

Um die Navigation von chirurgischen Instrumenten zu verbessern, ist ein genaues Feedbacksys-
tem unerlässlich. In dieser Arbeit wurde untersucht, wie ein inverses Problem bei zwei medizini-
schen Prototypen gelöst werden kann. Das erste zielt darauf ab, die Sentinel-Lymphknoten (SLN)
während der Biopsie zu erkennen, damit diese minimal invasiv entfernt werden, was das Trau-
ma des Patienten verringert. Das zweite Projekt befasst sich mit der Frage, wie wir während der
Knochenabtragung mithilfe der emittierten akustischen Welle Informationen gewinnen können.

Wir untersuchten drei Ansätze, wie wir die inversen Probleme lösen können: In Kapitel 3
hatten wir eine gute Simulation des Vorwärtsproblems. Wir verglichen die Messung mit den
Simulationen des Vorwärtsproblems. Die Simulation, die der Messung am ähnlichsten war, stellt
eine gute Lösung dar. Je nachdem, wie fein das Gitter ist, dauert es jedoch sehr lange, alle
Lösungen für das Vorwärtsproblem zu simulieren, bzw. es wird viel Arbeitsspeicher benötigt,
um auf alle Simulationen zuzugreifen.

In Kapitel 4 lösten wir die Helmholtz-Gleichung (Fourier-transformierte Wellengleichung).
Hier verwendeten wir einen Conjugate quasi-Newton (CqN)-Algorithmus um die Form der
Quelle und die Mediumgeschwindigkeit zu rekonstruiert. Wir haben dies in einem 2D-Modell
durchgeführt. Die Berechnung für das 3D-Modell war sehr lange und rechenintensiv. Wir weisen
darauf hin, dass wir einige Bedingungen vereinfachten und die Ergebnisse unserer Simulationen
nicht in einem Ex-vivo-Experiment bestätigen konnten.

Daher beschlossen wir in Kapitel 5 einen anderen Ansatz zu verwenden. Wir führten mehrere
Experimente durch und erfassten viele akustische Messungen während des Ablationsprozesses
des Knochens. Dann trainierten wir ein Neurales Netzwerk (NN), um die Tiefe des Schnittes
in einem End-to-End-Modell vorherzusagen. Es handelte sich um ein End-to-End-Netzwerk,
was bedeutet, dass fast keine Datenvorverarbeitung benötigt wird. Allerdings gab es auch ei-
nige Nachteile, z. B. war es mühsam, die akustische Messung mit der dazugehörigen Tiefe zu
kennzeichnen.

In dieser Arbeit wurden mehrere Ansätze zur Lösung inverser Probleme in medizinischen
Anwendungen untersucht. Aus Kapitel 3 lernten wir, dass wir, wenn das Vorwärtsproblem gut
bekannt ist, die Geschwindigkeit des Algorithmus erheblich verbessern konnten, indem wir den
fingerprinting-Algorithmus verwendeten. Dies ist ideal für die Rekonstruktion einer Position
oder als erster Ansatz für komplexere Rekonstruktionen. Die Schlussfolgerung aus Kapitel 4
ist, dass wir die Anzahl der unbekannten Parameter mit der adaptiven Eigenschaftsmethode er-
heblich reduzieren können. Ausserdem können wir die Mediumgeschwindigkeit und den akus-
tischen Wellengenerator rekonstruieren. Allerdings war das Modell für 3D-Simulationen sehr
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rechenintensiv. Die Anzahl der Mikrophone, die für das Experiment erforderlich waren, war für
unsere geplante Einrichtung nicht anwendbar. In Kapitel 5 haben wir eine Korrelation zwischen
der Tiefe des Laser-Schnitts und der akustischen Welle unter Verwendung nur eines luftgekop-
pelten Mikrophones gezeigt. Das ermutigt weitere Untersuchungen, um das Gewebe während
des Ablationsprozesses zu charakterisieren.



Chapter 1

Introduction

1.1 MIRACLE – Project

An important feature of modern medicine is not only treating and curing patients but also im-
proving their quality of life. One way of improving a patients quality of life is to decrease the
recovery time after medical procedures such as surgery. The reduction of the recovery time has
an additional advantage, namely, that the risk of accompanying illnesses is reduced. This re-
duction can be achieved by performing minimally invasive procedures [36, 56]. For example,
in an osteotomy (the surgical cutting of a bone), the recovery time is decreased by replacing
the mechanical tools used in open osteotomies with laser-based ablation [5, 7, 50, 55]. Another
development is using robots during surgery, to improve the quality of the cut [16, 46]. Using
such robots not only reduces the patient’s healing process but also improves the lifespan of an
implant if cement-less fixation is used [70].

The first robotic device in clinics with a free-space laser used for laser-osteotomy is called
CARLO® (short for “Cold Ablation Robot-guided Laser Osteotome”) [4, 6, 7, 19]. This robot
guides the Er:YAG laser along a preplanned cutting path with the help of an optoelectronic track-
ing system which is previously registered with the Computed Tomography (CT) data from the
patient. However, the surgeon’s incision on the patient has to expose the bone so that CARLO®

can proceed with the ablation of the bone.
To further improve the recovery time, the Flagship project MIRACLE1 (short for “Minimally

Invasive Robot-Assisted Computer-guided LaserosteotomE”) was founded at the Department of
the Biomedical Engineering of the University of Basel [73]. Their vision is to enable laser os-
teotomy in minimally invasive surgery, meaning that not the entire bone has to be exposed, but
solely a one-centimeter wide incision is needed. Four research groups tackle the MIRACLE
project: The group Planning and Navigation2 dedicate themselves to improving the planning
process using Virtual Reality (VR) and Augmented Reality (AR) glasses [27, 43, 57, 91–93]
and to have an automated labeling system of the CT images from bones [75–77]. In addition,
they develop novel approaches to navigate the endoscope, namely to reconstruct the position of
the endoscope accurately [37–39, 58, 59, 74]. Finally, we opt to control the depth of the cut

117.03.2023, dbe.unibas.ch/en/research/flagship-project-miracle
217.03.2023, dbe.unibas.ch/en/planning-navigation

1

dbe.unibas.ch/en/research/flagship-project-miracle
dbe.unibas.ch/en/planning-navigation


1.2. Contribution 2

during laser ablation and to analyze the surrounding using the acoustic wave emitted during the
ablation process [65, 67, 78]. The second group is called Biomedical Laser and Optics Group
(BLOG)3. They study the ablation process of different lasers [1, 13–15, 15] and develop a fiber-
based laser that can be integrated into the endoscope. In addition, they want to integrate Optical
Coherence Tomography (OCT) to get additional information of the tissue being ablated [8, 9]
and investigate tissue differentiation using acoustic waves [44, 68]. The third group is called
Bio-Inspired RObots for MEDicine-Laboratory (BIROMED-Lab)4, and their goal is to build the
robotic endoscope. They are facing the challenge of making the flexible endoscope and con-
trolling it safely [20, 24–26, 28]. The last group, called Smart Implants5, develops personalized
bio-implants with durable 3D printed bio-materials [80] and will further investigate developing
implants compatible with minimally invasive surgeries.

1.2 Contribution

The aim of this PhD thesis was to investigate inverse problems that occur in two potential medi-
cal devices. The first project investigates a new method to detect the Sentinel Lymph Node (SLN)
during the biopsy in real time [66, 79, 84–86]. We helped design a pinhole collimator [66] using
the optimal design algorithm [31]. In addition, we improved the computational speed to pinpoint
the Tc99m source using a fingerprinting algorithm [66]. One of the major achievements was that
we were able to reconstruct the Tc99m source using just a single measurement from the detector,
hence reconstructing a 3D subspace using a 2D projection from the detector. The design of
the collimator and the fingerprinting were then used for further research and as a base-line for
the reconstruction [86, 87] to have a real-time reconstruction of the sources visualized with the
AR glasses [85, 87]. Our vision is that our research will help the surgeon conduct a minimally
invasive SLN biopsy.

In the second part, we investigated multiple approaches to aid the MIRACLE robot in navi-
gating the endoscope and controlling the Er:YAG laser. An acoustic wave is emitted during tissue
ablation with the Er:YAG laser. My task was to extract from these acoustic waves properties of
the tissue being ablated. We solved the mathematical optimization problems to simultaneously
reconstruct an unknown source of an acoustic wave and its surrounding medium velocity. Using
the Adaptive Eigenspace method introduced in [63], we showed in [65] that this is, in fact, pos-
sible in the 2D subspace. We also managed to do so in a 3D subspace, but we noticed one major
drawback: the computational time is very high. For real-time implementation, we either had to
optimize the program and use high-performance computing or find another approach. When we
tried to reconstruct the mathematical approach in the real world, we found some additional chal-
lenges we had not yet included in our simulations, one of them being the impedance between the
bone and the air. A different challenge was that our simulation needs over 100 point transducers
(simulated measurement at a single point on the coordinate system, but in reality, it stretches
over multiple grid points) and did not include that the shape of the transducer that may influence
the acoustic wave.

317.03.2023, dbe.unibas.ch/en/research/laser-and-robotics/biomedical-laser-and-optics-group
417.03.2023, dbe.unibas.ch/en/research/laser-and-robotics/bio-inspired-robots-for-medicine-lab
517.03.2023, dbe.unibas.ch/en/research/laser-and-robotics/hightech-research-center-hfz/smart-implants

dbe.unibas.ch/en/research/laser-and-robotics/biomedical-laser-and-optics-group
dbe.unibas.ch/en/research/laser-and-robotics/bio-inspired-robots-for-medicine-lab
dbe.unibas.ch/en/research/laser-and-robotics/hightech-research-center-hfz/smart-implants


1.3. Outline of the Thesis 3

Therefore, we decided to change the methodology to analyze the acoustic wave. We bought
tissue samples from the local grocery store, ablated the bone with our Er:YAG laser, and mea-
sured the depth of the cut with the OCT. An acoustic wave is created during the ablation process,
which we measured with an air-coupled transducer. The data were then used to train the NNs.
In our publication [78], we concluded that depth information is embedded in the acoustic wave.
Although the experiments were performed in a dry environment, they encourage future scientists
to further investigate this problem for deep bone ablation using an irrigation system.

1.3 Outline of the Thesis

In this chapter, we give an overview of the MIRACLE project and explain our contribution to the
project. Chapter 2 will provide the reader with an understanding of the technical background.
It will help the reader to understand what Forward and Inverse Problems are. Then we will
explain what Linear and Non-linear Models are and give examples on how to solve them. We
further introduce some Optimization Algorithms: Conjugate Gradient (CG), Gradient Descent
(GD), Gauss Newton (GN), Conjugate quasi-Newton (CqN), and how to implement an adaptive
step size with the Armijo–Goldstein condition. Then the Partial Differential Equation (PDE)
is introduced, and how this can be solved with the help of Finite Difference (FD) and Finite
Elements (FE). In the final part, we give an overview of the Neural Network (NN) and describe
the concepts of a Fully Connected Layer, Convolutional Layer, Maxpool Layer, and the Rec-
tified Linear Unit (ReLU) activation function. Chapters 3-5 comprise the main contribution of
this thesis, namely the publications. Chapter 3 introduces a method to find a good design for
a pinhole collimator and how spatial distribution of a Technetium-99m (Tc99m) source can be
reconstructed efficiently. Chapter 4 investigates the propagation of the acoustic wave and how
to reconstruct the medium velocity and the source in an unknown environment. In Chapter 5,
we use a NN to approximate the depth of the cut using the acoustic wave emitted during the
bone ablation with an Erbium-doped Yttrium Aluminium Garnet (Er:YAG) laser. In Chapter 6
we discuss our results and what we learned from the project. Finally, Appendix in Chapter 7 has
proofs of theorems used to explain some of the technical backgrounds in Chapter 2.



Chapter 2

Technical Background

2.1 Forward Problem

According to the encyclopedia1, a forward problem is

“[. . . ] the problem of calculating what should be observed for a particular model”.

This means that a forward problem can fit or predict the results of an outcome for a particular
condition. In everyday life, we apply forward problems without even noticing. For example,
when we buy groceries, each grocery is mapped to a particular value, or when we play billiards,
we approximate how the ball rolls according to its surroundings and the angle at which we hit
the ball.

We now look at a more mathematical example. Assume, we have two sets of numbers.
A = {0, 1, 2, 3, 4, · · · } = N0 with all the natural numbers (including 0) and B = {0, 1, 2, 3, 4}.
Our function g maps each of the numbers in A to a number in B

g : A −→ B
a 7−→ b

with a ∈ A, b ∈ B . (2.1)

There exists a simple function g, namely the modulo 5 function, that maps A onto B: We can
write each number a ∈ A as a combination of n ∈ N, p = 5, and b ∈ B

a = np+ b ,

hence, the function g can be written as follows

g(a) = g(np+ b) = a (mod p) = b . (2.2)

In other words: a divided by p is n remainder b. In this example, an element a ∈ A represents
a condition and b ∈ B the corresponding outcome. The function g maps the element a to the
element b; hence, the function g is a forward problem. We show, in Table 2.1, some mapping
from elements of the subset A onto the elements of the subset B using the mapping function

4
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a 0 1 2 3 4 5 6 7 8 314 159 265 359 282 589 933 − 1
b 0 1 2 3 4 0 1 2 3 4 1

Table 2.1: Sample mapping of the modulo 5 function g(a) = b.

g(a) = b. Note, that we prove Theorem 7.1 in the appendix, that g
(
282 589 933 − 1

)
= 1

(282 589 933 − 1 is the biggest known prime-number, at the time of writing).
The following example is more applied. The goal is to detect a Tc99m source with a detector,

and describe the relationship between the position of the source and the resulting image of the
detector. Let the pinhole collimator be in front of a γ-ray detector, as visualized in Figure 2.1,
and a Tc99m source in front of the collimator. In this case, the forward problem is the projection
of the Tc99m source onto the detector. This can be done by simulating photons as a straight line
from the Tc99m source, through any of the pinholes, onto the detector.

Figure 2.1: The schematic visualizes the setup: γ-rays from the Tc99m source pass through the
pinholes of the collimator and are projected onto the detector. The right side depicts an image
from the detector, which is a measurement, and the front view of the collimator. The forward
problem (Section 2.1) can thus be formulated as: For a given Tc99m source simulate the projection
on the detector; and the inverse problem (Section 2.2) as: Reconstruct the position of the Tc99m

source with the measurement from the detector.

For the final example, we look at the frequency spectrum of a standing wave. An acoustic
114.10.22, encyclopedia.com/science/dictionaries-thesauruses-pictures-and-press-releases/forward-problem

encyclopedia.com/science/dictionaries-thesauruses-pictures-and-press-releases/forward-problem
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Forward Problem

Inverse Problem

Figure 2.2: On the left side, we visualize an area of interest. In its center is an acoustic wave
generator (black), and the area has two different medium velocities (yellow and blue). On the
right side, we visualize the acoustic propagation through the various medium velocities, respec-
tively the pressure variation at each point (variation of the colors means different amplitude of
the pressure variation). The red box represents the positions of the transducers measuring the
acoustic wave. The forward problem (Section 2.1) is then: We have the source information and
the medium velocity of the objects (left side) and simulate the propagation of the acoustic wave
(right side). The inverse problem (Section 2.2): Under which condition (for which source and
for what medium velocity) the measured wave is created (information from the right side to re-
construct the left image).

wave is created from a source or wave generator, e.g., a loudspeaker. The acoustic wave has
different propagation speeds within different mediums. For example, in air its medium velocity
of 343m s−1 and in water it is 1482m s−1. On the left side of Figure 2.2, we show an area
with two different medium velocities and in its center, an acoustic source or wave generator is
located. The forward problem simulates the propagation of the acoustic wave, respectively the
pressure variation at each point, as is shown on the right side of Figure 2.2.

2.2 Inverse Problem

Contrary to the forward problem, the inverse problem uses a given observation or measurement
to calculate under which conditions the measurement is observed.

Using previous examples, we will explain inverse problems and how to formulate them.
The first example is grocery shopping. An example of an inverse problem is if a person goes
grocery shopping and only knows how much they paid but does not know the price of each item.
Hence, they have an observation “how much they paid” and are searching for the initial condition
“how much each item costs”. It is obvious that without any additional boundary condition, or
if the person does not have multiple receipts to evaluate, the problem has no unique solution.
Gathering additional data will help the person estimate an initial validated condition: How much
they paid for each item. The second example is a billiard game. Here, we observe how the ball
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moves on the table and want to deduce the angle at which the ball was hit. Hence, our observation
is the movement of the ball, and the unknown initial value is at at what angle the ball was hit.
There are also some unknown factors, like the friction of the table. Another parameter for the
initial value is at what strength the ball was hit, for this, we need additional boundary conditions,
e.g., the weight of the ball and its speed.

The example of Equation 2.1 can be transformed into an inverse problem: We have an
observation b ∈ B, and we are searching for the initial condition a ∈ A. This can be written as
follows

for a given b ∈ B find a ∈ A s.t. g(a) = b .

Hence, the solution for the inverse problem can be written as

arg min
a
|g(a)− b| . (2.3)

Solving this equation can give one or multiple different results. For example, let us assume that
function g is the modulo function from Equation 2.2 with p = 5. Further, we now search for an
initial condition a ∈ A, which yields g(a) = 1. In Table 2.1 we see some possible solutions.
We can generalize the results for all a ∈ A where

a = np+ 1 , for n ∈ N0 and p = 5 ,

hence, infinitely many solutions exist. Although all of these results are correct, we may search
for a specific result, or better: A result that fulfills certain additional conditions. To this end, we
can add some regularization R(a) to Equation 2.3

arg min
a

(|g(a)− b|+ γR(a)) , (2.4)

where R(a) ≥ 0 is an arbitrary function R : A −→ R≥0 and γ is the regularization parameter
γ ∈ R≥0. A simple example is when R(a) = ||a||2 is the Euclidean norm and γ = 1. When
we solve Equation 2.4, then there exist exactly one solution for our example in Equation 2.2,
namely,

a = 1 .

Therefore, adding an appropriate regularization function can help find the desired minimum,
hence, getting the initial conditions we are looking for.

Another example, is the inverse problems solved in Chapter 3. As previously described and
visualized in Figure 2.1, the γ-rays emitted by the Tc99m source pass through the pinholes of the
collimator and are detected by the detector. Let us formulate the inverse problem: For a given
measurement, here, the image from the detector, we search for the condition under which the
measurement was observed, i.e., the position of the Tc99m source.

The final example we give, is the propagation of the acoustic wave, which is an important
part of Chapter 4. As described earlier, the Figure 2.2 visualizes the propagation of the wave in
the frequency spectrum through various types of media. Solving the inverse problem involves
reconstructing the different medium velocities in the area of interest from the measured acoustic
waves.
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2.3 Linear Models

This subsection describes how to solve an inverse problem using a linear model. We define

x ∈ RK ⇐⇒ x = [x1, · · · , xK ] with xi ∈ R for all i ∈ {1, · · · ,K} .

Let the multivariate function g be

g : RK −→ R
x 7−→ y

,

with the observation y ∈ R and the initial condition x ∈ RK . During an experiment, we
might only know some initial condition parameters. We divide x into two parts: t ∈ RK̃ the
experimental condition (known parameters of the initial condition) and θ ∈ Rk the unknown
parameters of the initial condition. Solving the inverse problem will find the initial condition θ
with the given experimental condition t and the corresponding observation y. We can thus write

g : RK −→ R
[t, θ] 7−→ y

with K = K̃ + k and x = [t, θ] .

During data collection, some random error ε distorts the model. Hence, we can write

yobs = g(tobs, θ) + ε , (2.5)

where ε can result from inaccuracies in the measuring device or a distorting of the model g.
The simplest relationship of a deterministic linear model [72] is when the parameters θ are

linearly dependent on the known experimental condition t. Then, there are functions fi(t) :

RK̂ −→ R, that approximate the function g as a linear combination of the unknown parameters
θ and the functions fi:

f(t) =

f1(t)...
fk(t)

 ∈ Rk×1 and θ =

θ1...
θk

 ∈ Rk×1 s.t. g(t, θ) ≈ f(t)T θ .

We note that f(t)T ∈ R1×k is the transpose of f(t) ∈ Rk×1. Hence, we can deduce from
Equation 2.5

yobs = g(tobs, θ) + ε = f(tobs)T θ + ε̂ , (2.6)

where ε̂ is an error. To solve the inverse problem, we find the unknown parameters θ. When
just a single unknown θ = θ1 exists, then we have just a single function f(t) = f1(t). A good
approximation θ1, can be found, when we use Equation 2.6 and get

yobs = g(tobs, θ1) + ε = f(tobs)T θ1 + ε̂ .

For a sufficiently small error ||ε̂||2 we can approximate

yobs ≈ f(tobs)T θ1 ,
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and a solution is found by minimizing the difference

arg min
θ

∣∣∣∣∣∣yobs − f(tobs)T θ1

∣∣∣∣∣∣
2
.

In fact, to find a solution for a single unknown it is sufficient to use one observation yobs

θ1 =
yobs

f1(tobs)
,

and therefore a good approximation for the unknown parameter θ, if ||ε̂||2 is small enough.
However, in most cases, we have multiple unknowns. We will now generalize the Equation 2.6
to a statistic linear model, with N observations and k unknown parameters θ. We assume that the
unknown parameters stay the same for all N known experimental conditions tobsi ∈ RK̃ . Hence,
the i-th observation yobsi = g(tobsi , θ) + εi, can be approximated with the linear Equation 2.6 as

yobsi = g
(
tobsi , θ

)
+ εi = f

(
tobsi

)T
θ + ε̂i ,

with some error ε̂i. Further, generalizing for N observations, we get a Y obs ∈ RN with

Y obs =

y
obs
1
...

yobsN

 =
[
f
(
tobs1

)
· · · f

(
tobsN

)]T θ1...
θk

+

ε̂1...
ε̂k



=

f1(t
obs
1 ) · · · f1(t

obs
N )

...
. . .

...
fk(t

obs
1 ) · · · fk(t

obs
N )


T θ1...

θk

+

ε̂1...
ε̂k


= F

(
tobs
)T

θ + E for tobs = [tobs1 , · · · , tobsN ] ,

(2.7)

where F
(
tobs
)
∈ Rk×N is the linear combination of the observations tobs ∈ RK̂×N , the un-

known parameter θ ∈ Rk, and the error E ∈ Rk. Again, we exploit that for a sufficiently small
||E|| we have

Y obs ≈ F
(
tobs
)T

θ . (2.8)

Therefore a good solution for θ can be found when solving Equation 2.8.
For simplification, we assume that all the linear equations are independent; hence, all columns

of F
(
tobs
)

are linearly independent. Then, we have three cases: The first case is when the num-
ber of k unknown parameters θ and number of N observations yobsi are equal (k = N ); then
there exists exactly one solution θ ∈ Rk. The second case is when we have more observations
N than unknowns k. This is more robust against outliers in the observations, especially when
N ≫ k. In [72], many classical methods are described to find a good approximation in such a
case. The third case is when the number of unknown parameters exceeds the number of observa-
tions. In fact, such a case is an ill-posed problem because more than one result exists. Therefore,
additional boundary information to the unknown parameters θ can be given to find the desired
solution. In [31], some numerical methods are proposed to solve an ill-posed statistical linear
equation.
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2.4 Non-linear Models

We can describe a non-linear model similarly to the beginning of Section 2.3 and Equation 2.6.
For a given experimental condition t ∈ RK̃ and an observation y ∈ R we search for the initial
condition θ ∈ Rk

g : RK −→ R
[t, θ] 7−→ y

with K = K̃ + k and x = [t, θ] .

As before, some random error ε can accrue that distorts the model. Hence, we write

yobs = g(tobs, θ) + ε . (2.9)

Some mathematical models, like the wave-equation, cannot be linearized. Therefore, we in-
troduce an approach to solve non-linear inverse problems. Unlike in Section 2.3, we do not
linearize the problem; we will not have a linear equation like Equation 2.8. Therefore, we will
use optimization algorithms to solve Equation 2.9. In Section 2.5, we give some examples of
algorithms to solve inverse problems, namely: GD, GN, and CqN. A further reading recommen-
dation is the thesis of Eriksson [22] which gives an excellent overview of some optimization
methods for non-linear models.

To solve the inverse problem, we need to rewrite Equation 2.9 into a minimization prob-
lem. If ||ε||2 is sufficiently small, then a good result for a given tobs and the corresponding
measurement yobs is

arg min
θ

∣∣∣∣∣∣g(tobs, θ)− yobs
∣∣∣∣∣∣2
2
.

However, this may not give the desired output for multiple unknowns (k > 1). Hence, either
some regularization needs to be added, or the number of observations has to be increased. When
we have N observations, we get an observation yobsi for each experimental condition tobsi , with
i = 1, · · · , N . We define the loss function L(θ) as a dot product, with

G
(
tobs, θ

)
=

g(t
obs
1 , θ)
...

g(tobsN , θ)

 and Y obs =

y
obs
1
...

yobsN


as follows

L(θ) =
1

2

N∑
i=1

(
g(tobsi , θ)− yobsi

)2
=

1

2

(
G(tobs, θ)− Y obs

)T (
G(tobs, θ)− Y obs

)
=

1

2

∣∣∣∣G(tobs, θ)− Y obs
∣∣∣∣2
2
,

(2.10)

and thus we have a good result for θ when solving the minimization problem

arg min
θ
L(θ) = arg min

θ

(
1

2

N∑
i=1

(
g(tobsi , θ)− yobsi

)2)
.
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We note that we use the Mean Squared Error Loss (MSELoss); however, a different loss
function can be used. The condition that a loss function should fulfil is that it has a minimum at
the desired result.

2.5 Optimization Algorithms

Optimization algorithms are an important part of numerical mathematics. In this section, we
show, how to solve a linear model of the form

Ax = y , (2.11)

with A ∈ RN×M and x, b ∈ RM using the CG method and how to find the minimum of a
function

arg min
θ
L(θ) ,

where L : A −→ B is a derivable multi-variable function with A ⊂ RN and B ⊂ R, using the
GD, GN, and CqN algorithms. These algorithms can also be used to solve non-linear models.

2.5.1 Conjugate Gradient (CG) algorithm

The CG Algorithm [34] is a popular numerical method to solve linear equations in the form of
Equation 2.11. It is advantageous for solving large linear systems since it only uses matrix-vector
multiplications. Hence, it is not as computationally heavy as matrix-matrix multiplications or
finding the inverse of a matrix. To solve a linear equation of the form

Hx = b

with the CG algorithm the matrix H has to be positive definite, meaning

H ∈ RM×M is positive definite⇐⇒ xTHx > 0 , ∀x ∈ RM\{0} , H is a symmetric real matrix .

We note that the matrix H can be written as

H = ATA ∈ RM×M

and is therefore symmetric, as shown in Theorem 7.2. In fact, we show in Theorem 7.3 that if
H is invertible, it is positive definite. Hence, to solve the linear Equation 2.11 we multiply AT

on the left side and we get

Hx = b , with b = AT y and H = ATA

so that it can be solved with the CG algorithm. In Algorithm 1, we give a detailed description of
the CG algorithm. We note that nowhere in the CG algorithm we compute

H = ATA .
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This is avoided by computing the matrix-vector multiplication

Hx = AT (Ax) .

To add additional regularization and to ensure that the matrix H is invertible and therefore posi-
tive definite, we can use

H = ATA+ λE

for a λ ∈ R>0, where E is the identity matrix (instead of H = ATA), as shown in Theorem 7.4.
We note, if H is positive semidefinit

H ∈ RM×M is positive semidefinite⇐⇒
{

xTHx ≥ 0 , ∀x ∈ RM \ {0}
H is a symmetric real matrix

,

and b is in the range space of H , then the CG method converges as well [33, 41].

Algorithm 1: The algorithm shows an implementation of the CG method, with three
possible implementations to update βn: (a.1) Polak-Ribière, (a.2) Fletcher-Reeves, and
(a.3) Hestenes-Stiefel

Data: solve Hx = b, for H real, symmetric, positive definite matrix, b vector, x
unknown

Result: find unknown x
x0 initial guess ;
r0 ← b−Hx;
p0 ← r0;
n← 0 ;
while ||rn|| is not small enough do

τn ←
rTn rn
pTnHpn

;

xn+1 ← xn + τnpn ;
rn+1 ← rn − τnHpn ;
calculate βn;

(a.1) βn ←
rTn+1rn+1

rTn rn
(Polak-Ribière);

(a.2) βn ←
rTn+1(rn+1 − rn)

rTn rn
(Fletcher-Reeves);

(a.3) βn ←
rTn+1(rn+1 − rn)

pTn (rn+1 − rn)
(Hestenes-Stiefel);

pn+1 ← rn+1 + βnpn ;
n← n+ 1 ;

end
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2.5.2 Gradient Descent (GD)

The gradient descent algorithm [17, 51] is one of the most commonly used and elementary algo-
rithms to find a local minimum of a function. In order to minimize a function, the function L(θ)
has to be L ∈ C1(A), meaning that L is at least one time differentiable inA. In Algorithm 2, we
visualize the gradient descent. First, the gradient of L is computed with the initial guess θ(0).
Then, the negative gradient of L is applied with a certain step size α. This is done until a certain
breaking condition is fulfilled. In this example, we take the relative error breaking condition∣∣∣∣∣L

(
θ(0)
)
− L

(
θ(n)

)
L
(
θ(0)
) ∣∣∣∣∣ > (1− ε) , (2.12)

where θ(0) is the initial guess of θ and θ(n) is its value after n updates, with 0 < ε < 1. The
algorithm is terminated when Equation 2.12 is fulfilled. We note that for a big step size α, the
algorithm may not converge, and that for a small step size α, it might take a long time to converge
(assuming there exists a minimum). We note that choosing a fixed step-size of α can either lead
to very slow convergence or to oscillation around a minimum, as can be seen in Figure 2.4 and
Figure 2.5. To avoid such behavior, we can implement the Armijo–Goldstein condition [3], as
described in the Subsection 2.5.3.

Algorithm 2: A visualization of the gradient descent algorithm. We note that α can
be updated after each iteration, with, e.g., the Armijo-Goldstein condition described in
Subsection 2.5.3 and Algorithm 3.

Data: α > 0 step size; ε breaking condition
Result: arg min

θ
L(θ)

θ(0) initial guess ;
n← 0 ;

while

∣∣∣∣∣L
(
θ(0)
)
− L

(
θ(n)

)
L
(
θ(0)
) ∣∣∣∣∣ < (1− ε) do

n← n+ 1 ;
p← −∇L

(
θ(n−1)

)
set gradient as search direction;

θ(n) ← θ(n−1) + αp apply search direction;
end

2.5.3 Armijo–Goldstein condition

A constant step size can lead to very slow optimization, or even to the optimization algorithm
oscillating around a minimum. Therefore, it is important to update the step size during the
optimization. One well-known method is the Armijo–Goldstein condition [3], which can be
applied if the function being minimized is L(θ) ∈ C1(A). We show this method in Algorithm 3.
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Algorithm 3: The Armijo-Goldstein condition to reduce the step size during the opti-
mization process. In our examples we use α = 1, σ = δ = 0.1.

Data: α step size, search control parameters 0 < σ < 1 and 0 < δ < 1, p search
direction

Result: α new step size
while L(θ + αp) > L(θ) + αδ∇L(θ)T p do

α← σα reduce step size;
end

2.5.4 Gauss–Newton (GN) and Conjugate quasi-Newton (CqN) algorithm

Algorithm 4: A visualization of the gradient GN and the CqN algorithm. Either use
(a.1) or (a.2): (a.1) is the standard approximation (a.2) can have the advantage of addi-
tional regularization and ensures that H is positive definite, which can be important for
the CG algorithm. Solving Hp = −∇L(θ(n)) with (b.1) is the GN method, (b.2) is the
CqN method, which solves it with maximal c iteration (e.g., c = 2). We note, that α
can be updated with e.g. the Armijo-Goldstein condition described in Subsection 2.5.3
and Algorithm 3.

Data: ε breaking condition
Result: arg min

θ
L(θ)

θ(0) initial guess ;
n← 0 ;

while

∣∣∣∣∣L(θ(0))− L(θ(n))L(θ(0))

∣∣∣∣∣ < (1− ε) do

n← n+ 1 ;
J ← ∇G(tobs, θ(n−1)) calculate Jacobian matrix ;
approximate the Hessian Matrix H;

(a.1) H ← JTJ ;
(a.2) H ← JTJ + λE ;

solve Hp = −∇L(θ(n)) ;
(b.1) standard (GN);
(b.2) maximal c iterations using CG (CqN) ;

adapt step size α with Armijo-Goldstein condition;
θ(n) ← θ(n−1) + αp ;

end

In contrast to the GD, the GN Algorithm [29, 30, 90] can be more robust and faster in
the optimization. The GN algorithm locally converges quadratically when we minimize the
MSELoss.
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We apply the GN algorithm on the MSELoss in Equation 2.10. For simplification, we write

L(θ) = 1

2

∣∣∣∣∣∣G(tobs, θ)− Y obs
∣∣∣∣∣∣2
2
=

1

2
||d(θ)||22 =

1

2

N∑
n=1

(dn(θ))
2 , (2.13)

with the residual vector

d(θ) =

d1(θ)...
dN (θ)

 =

g(t
obs
1 , θ)− yobs1

...
g(tobsN , θ)− yobsN

 .

The second order of the Taylor-Approximation of L(θ) is

L(θ) ≈ L(θ̂) +∇L(θ̂)T (θ − θ̂) + (θ − θ̂)T∇2L(θ̂)(θ − θ̂)

and is a polynomial approximation of the order two of the function L(θ) evaluated at θ̂ ∈ RM

that is close enough to θ. To find the minimum ofL(θ), we need to search for a θ s.t. ∇L(θ) = 0.
Hence, using

∇L(θ) ≈ ∇L(θ̂) +∇2L(θ̂) (θ − θ̂)︸ ︷︷ ︸
=p

we get that
−∇L(θ̂) ≈ ∇2L(θ̂)p . (2.14)

Solving Equation 2.14 and updating θ iteratively gives us the Newton-Method [90]. However,
the Hessian matrix∇2L(θ) can be very cumbersome to calculate and expensive to compute. The
GN method approximates the Hessian matrix∇2L(θ) with the Jacobian matrix of G(tobs, θ)

JG(θ) =

∇d1(θ)
T

...
∇dN (θ)T

 =


∂g(tobs1 , θ)

∂θ1
· · · ∂g(tobs1 , θ)

∂θM
...

. . .
...

∂g(tobsN , θ)

∂θ1
· · ·

∂g(tobsN , θ)

∂θM


as follows

∇2L(θ) ≈ JG(θ)
TJG(θ) . (2.15)

The Hessian matrix can be approximated in that way because the gradient of Equation 2.13 is

∇L(θ) =
N∑

n=1

dn(θ)∇dn(θ) = JG(θ)
Td(θ) = JG(θ)

T
(
G(tobs, θ)− Y obs

)
, (2.16)

and therefore, the Hessian matrix is

∇2L(θ) =
N∑

n=1
∇dn(θ)∇dn(θ)T +

N∑
n=1

dn(θ)∇2dn(θ)

= JG(θ)
TJG(θ) +

N∑
n=1

dn(θ)∇2dn(θ)

. (2.17)
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In most cases, the first term of Equation 2.17 dominates the second part (for θ close enough to
the minimum of L(θ)); hence, the convergence is similar to Newton’s method. The first term
is dominant if the |dn(θ)|

∣∣∣∣∇2dn(θ)
∣∣∣∣ terms are significantly smaller than the eigenvalues of

JG(θ)
TJG(θ). This happens either if the residuals dn(θ) are small, or if the residuals dn(θ) are

nearly affine, hence
∣∣∣∣∇2dn(θ)

∣∣∣∣ are small. This leads to a rapid local convergence of the GN
algorithm [90].

We note that according to Levenberg-Marquardt [90], the GN method finds a solution with

(JG(θ)
TJG(θ) + λE)p = −∇L(θn) (2.18)

for an appropriate λ and the unity matrix E.
In Algorithm 4, the GN algorithm is explained. First, an initial guess θ(0) is defined. Then,

while the breaking condition is not fulfilled: First, the Jacobian matrix is computed, second the
Hessian matrix H is approximated either with Equation 2.15 or Equation 2.18, and third, the
equation

Hp = −∇L(θ(n)) (2.19)

is solved. Solving Equation 2.19 with the CG method using a maximal number of c iterations
(e.g. c = 2), is called the CqN algorithm. For large-scale matrices, the advantage of solving
Equation 2.19 with CqN is that it speeds up the algorithm (reducing the computational cost when
solving the inverse problem) and still gives a good approximation.

2.5.5 Examples

This subsection will show examples of how to solve a linear and a non-linear model.

Linear Model

Here, we will give a simple example of how to solve a linear model and explain how to transform
the function

l(t, θ) = −t2 + θ1t+ θ2 , (2.20)

with the experimental condition t and the unknown condition θ, into a linear model. First, we
bring all the unknowns θ onto one side and all the parameters independent of θ onto the other
side

g(t, θ) = l(t, θ) + t2 = θ1t+ θ2 . (2.21)

We can deduce from the right side of Equation 2.21 and Equation 2.6, that

yobs ≈ f(tobs)T θ =

[
tobs

1

]T [
θ1
θ2

]
. (2.22)

We assume, that we have N measurements, and hence, with the help of Equation 2.7, Equa-
tion 2.8, and Equation 2.21 we get

F
(
tobs
)
=

[
tobs1 · · · tobsN

1 · · · 1

]
.
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We note that in [72] some methods are described to solve linear equations, but in this thesis, we
focus solely on the CG Algorithm [34], which is described in more detail in Section 2.5.1. In
our example, the equation can easily be solved analytically. The CG method is generally used
to solve large linear systems.

We assume, that we have N independent measurements, and l(t, θ) has an error distribution
of N (0, 1). Further, we assume that the ground truth is θ = [θ1, θ2]

T = [3, 10]T , as shown in
Table 2.2. We would like to find θ using yobs from Table 2.2 with N observations.

tobs −5 −3 −1 1 3 5

l(tobs, θ) −30 −8 6 12 10 0
l(tobs, θ) + ε −29.4623 −6.1661 3.7412 12.8622 10.3188 −1.3077

yobs = g(tobs, θ) + ε −4.4623 2.8339 4.7412 13.8622 19.3188 23.6923

Table 2.2: We assume that we have N measurements of l(tobs, θ) where ε is drawn from a
N (0, 1) distribution.

Case 1, N = 2

In the first case N = 2, with the known experimental condition tobs = [−5,−3], we have

Y obs =

[
−4.4623
2.8339

]
=

[
−5 −3
1 1

]T [
θ1
θ2

]
= F (tobs)T θ

a linear system with two equations and two unknowns can be solved analytically, and we thus
get [

θ1
θ2

]
=

[
3.6481
10.4009

]
as shown in Figure 2.3. We note that it has an error of ||θtrue − θ||2 = 0.7621.

Case 2, N > 2

Now we assume that we have more measurements than unknowns, e.g., N = 6. To be more
precise, we assume that we have measurements at tobs = [−5,−3,−1, 1, 3, 5], see Table 2.2.
Hence, we have

Y obs =



−4.4623
2.8339
4.7412
13.8622
19.3188
23.6923

 =



−5 1
−3 1
−1 1
1 1
3 1
5 1


[
θ1
θ2

]
= F (tobs)T θ .

As we can see, we have more equations than unknowns. We cannot get an analytical solution
assuming all the equations are linearly independent. However, there exists a simple trick to
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tobs −5 −3 −1 1 3 5

g(tobs, θ) −30 −8 6 12 10 0
g(tobs, θ) + ε −29.4623 −6.1661 3.7412 12.8622 10.3188 −1.3077

Table 2.3: We assume that we have N measurements of g(tobs, θ) where ε is drawn from a
N (0, 1) distribution.

get the same amount of equations and unknown parameters, namely multiplying both sides by
F (tobs),

F (tobs)Y obs =

[
199.3489
59.9860

]
=

[
70 0
0 6

] [
θ1
θ2

]
= F (tobs)F (tobs)T θ .

Now, we have only two linear equations with two unknowns, and they can be easily solved. We
get a very good approximation of [

θ1
θ2

]
=

[
2.8478
9.9977

]
,

as shown in Figure 2.3. It has an error of ||θtrue − θ||2 = 0.1522.
We note that for a large-scale linear problem (a lot of unknowns), the CG method described

in Subsection 2.5.1 is a good and inexpensive approximator since only matrix-vector multipli-
cations are needed.

Case 3, N < 2

Assuming now that we have fewer equations than unknowns, e.g., N = 1, with tobs = −1,
hence, we have

Y obs =
[
4.7412

]
=

[
−1
1

]T [
θ1
θ2

]
= F

(
tobs
)T

θ .

We have one equation with two unknowns; therefore, we have infinitely many solutions. Two of
them are [

θ1
θ2

]
=

[
−4.7412

0

]
and

[
θ1
θ2

]
=

[
−2.3706
2.3706

]
,

as shown in Figure 2.3. In such a case, additional boundary conditions can improve the results.

Non-linear Model

We give an easy example of a non-linear function f : R −→ R

g(t, θ) = (θ1 − t)(θ2 + t) with
[
θ1
θ2

]
=

[
5
2

]
.

In fact, it is the same function as l(t, θ) in Equation 2.20 as visualized in Figure 2.3. We will use
the same values as in Table 2.2, and display the values of the function g(tob, θ) in Table 2.3. We
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t

l(
t)

l(t) = −t2 + 3t+ 10, true
l(tobs) + ε all observed measurements, N = 6

l(t) = −t2 + 3.6481t+ 13.7782, case 1, N = 2

l(t) = −t2 + 2.8478 + 9.9977, case 2, N > 2

l(t) = −t2 − 4.7412t+ 0, case 3, N < 2

l(t) = −t2 − 2.3706t+ 2.3706, case 3, N < 2

Figure 2.3: A visualization of the function l(t, θ) of Equation 2.20, and the resulting recon-
struction of the model, assuming that θ is unknown, and only N measurements at the points of
Table 2.2 are known.

define the gradient∇L(θ) and the Hessian matrix∇2L(θ) as follows

∇L(θ) =


∂L(θ)
∂θ1

...
∂L(θ)
∂θk

 and ∇2L(θ) =


∂2L(θ)
∂θ1∂θ1

· · · ∂2L(θ)
∂θk∂θ1

...
. . .

...
∂2L(θ)
∂θ1∂θk

· · · ∂2L(θ)
∂θk∂θk

 .

We minimize the function L(θ) in Equation 2.10 using the GD, GN, and CqN (see Subsec-
tion 2.5.2 and Subsection 2.5.4). For these optimizations, we need to calculate the gradient
∇L(θ) and approximate the Hessian matrix ∇2L(θ). Because of Equation 2.16 and Equa-
tion 2.15, it is sufficient to calculate the Jacobian matrix JG(θ) of G(tobs, θ). Hence using
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Equation 2.16, we calculate

JG(θ) =

θ2 + tobs1 θ1 − tobs1
...

...
θ2 + tobsN θ1 − tobsN


and therefore get

∇L(θ) = JG(θ)
T
(
G(tobs, θ)− Y obs

)
. (2.23)

Then with Equation 2.15 the approximation for the Hessian matrix of L(θ) is

∇2L(θ) ≈ JG(θ)
TJG(θ) .

The resulting θ from all the algorithms are similar. In Figure 2.4 we show the value of the
MSELoss L(θ) after each iteration, and in Figure 2.5 we show the development of θ1 and θ2
after each iteration with the initial guess of θ = [0, 0]T . We note that it is essential that the GD
have a good step size. Otherwise, it may converge very slowly or not at all. Therefore, using
the Armijo-Goldstein condition can drastically improve the performance of the GD. In general,
finding the step size with the Armijo-Goldstein condition improves the number of iterations
needed to find a good approximation of θ.

0 2 4 6 8 10 12 14 16 18 20 22 24

101

102

103

Iteration

L
(θ
)

GD α = 0.005
GD α = 0.001

GD with Armijo
GN with Armijo
CqN with Armijo

CqN+E with Armijo

Figure 2.4: Comparing the L(θ) value of Equation 2.10 using GD with step size α = 0.005,
α = 0.001, and Armijo-Goldstein condition. In addition, we solve the minimization problem
with GN, CqN, and add the unity matrix to the Hessian approximation (CqN+E).
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Figure 2.5: The background of the figure shows the value (colorbar) of the loss function L(θ).
The lines visualize the minimization process of L(θ) of Equation 2.10 resulting θ1 and θ2 after
each iteration with GD using the step size α = 0.005, α = 0.001, and Armijo-Goldstein condi-
tion. In addition, the GN, CqN, and adding the unity matrix to the Hessian approximation using
CqN (CqN+E) are shown. On the left, we see the optimization process from the start to end, and
on the right just a limited area of the optimization process towards the end. The initial guess is
θ(0) = (1, 1) and the ground truth is θ = (5, 2).

2.6 Partial Differential Equation (PDE)

Sine, cosine, and ln are at a party. Sine approaches cosine and says, “Hey, what’s ln
doing over in the corner by themself?”. Cosine responds, “You see, ln doesn’t integrate
very well.”.
– unknown

A PDE is a relation between a multi-variable function with various partial derivatives [88]. These
are not only used in the pure mathematical field but also in fields like physics and engineering. In
this thesis, we use PDEs for a more fundamental understanding of the propagation of the acoustic
waves in the tissues. With the help of the PDE of the wave equation, we aim to reconstruct the
structure and the medium velocity of different tissues. This section uses [63] as a basis to
explain the transformation of the PDE from the wave equation to the Helmholtz equation and
the description of FD and FE. The PDE of the wave equation is

−∇ · (u(x)∇ȳ(x, t)) + ȳtt(x, t) = f̄(x, t) , (2.24)

where u(x) > 0 is the squared medium velocity, f̄(x, t) the source function and ȳ(x, t) the
pressure variation. We note, that x ∈ Rn is the n dimensional space domain and t ∈ R≥0 the
time domain. From this PDE, the Helmholtz equation can be derived. A time-harmonic wave
can express the source and the wave field; hence, we can use the Fourier transform of the time
variable and separate time and space dimensions to write f̄ and ȳ as:

ȳ(x, t) = y(x)e−iωt and f̄(x, t) = f(x)e−iωt , (2.25)
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where ω is the angular frequency, f(x) the source function and y(x) the pressure variation. By
substituting Equation 2.25 into the wave Equation 2.24, we get the frequency dependent form of
the wave equation; namely, the Helmholtz equation

−∇ · (u(x)∇y(x))− ω2y(x) = f(x) .

In our approach, we use the Sommerfeld boundary condition, which is an absorbing boundary
condition [10, 11, 21]

−∇ · (u(x)∇y(x)) − ω2y(x) = f(x), in Ωo = Ω \ ∂Ω
∂y(x)

∂n
− ik(x)y(x) = 0, on Γ = ∂Ω

, (2.26)

where k(x) =
ω√
u(x)

is the wave-number at time-frequency ω and

∂y(x)

∂n
:= n · ∇y(x)

is the normal derivative, where n denotes the normal on the boundary Γ = ∂Ω.
It is generally challenging to solve a PDE analytically, and sometimes an analytical solution

does not even exist. Therefore, we solve it numerically by discretizing the PDE using either FD
or FE [63].

2.6.1 Finite Difference (FD)

The FD grid is a uniformly staggered mesh, as visualized in Figure 2.6. The PDE is solved
numerically on the grid points. We will explain how to solve the Helmholtz Equation 2.26 using
FD in a 2D space. It can be generalized to higher dimensions as well. First, we separate the
functions y = y(x) and f = f(x) into the real (r) and imaginary (i) parts,

y = y(r) + iy(i) , f = f (r) + if (i) ,

therefore obtaining a double real-valued system instead of a singly complex-valued system.
Since the real part, y(r) and the imaginary part y(i) are only coupled on the boundary Γ; they
can be computed separately on Ωo. Hence, the discretized real part of the Equation 2.26 at the
grid point (i, j) can be written as

− ∂

∂x(1)

(
ui+ 1

2
,j

y
(r)
i+1,j − y

(r)
i,j

h

)
− ∂

∂x(2)

(
ui,j+ 1

2

y
(r)
i,j+1 − y

(r)
i,j

h

)
− ω2y

(r)
i,j = f

(r)
i,j , (2.27)

where the second order approximation of the first derivative is

∂

∂x(1)
y(r)
∣∣∣∣
x=x

i+1
2 ,j

=
y
(r)
i+1,j − y

(r)
i,j

h
and

∂

∂x(2)
y(r)
∣∣∣∣
x=x

i,j+1
2

=
y
(r)
i,j+1 − y

(r)
i,j

h
.
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We note that

∂

∂x(i)

(
u(x)

∂y(x)

∂x(i)

)
=

∂

∂x(i)
u(x)

∂

∂x(i)
y(x) + u(x)

∂2

∂2x(i)
y(x) .

Further, we assume that u(x) is a piecewise constant function in the area

x
(1)
i,j < x(1) < x

(1)
i+1,j

x
(2)
i,j < x(2) < x

(2)
i,j+1

for all i and j ,

hence,
∂

∂x(i)
u(x) = 0 for all

xi,j < x(1) < x
(1)
i+1,j

xi,j < x(2) < x
(2)
i,j+1

.

We discretize Equation 2.27 to

−
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]
y
(r)
i,j − ω2y

(r)
i,j = f

(r)
i,j .

The system for the imaginary part y(i) is similarly determined. In the final step, we look at the
Sommerfeld boundary condition using the second order of FD. The boundary condition is

∂y(x)

∂n
− ik(x)y(x) = 0 on Γ,

and is discretized on the upper boundary of Γ by

yN+1,j − yN,j

h
− i

ω√
uN+ 1

2
,j

yN,j = 0 on Γ .

Now, by separating the real and the imaginary part of y on the boundary, we get
y
(r)
N+1,j = y

(r)
N,j −

ωh√
uN+ 1

2
,j

y
(i)
N,j

y
(i)
N+1,j = y

(i)
N,j +

ωh√
uN+ 1

2
,j

y
(r)
N,j

on Γ

The other boundaries are similarly calculated.
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Figure 2.6: Visualization of a staggered grid used in the FD method.

Figure 2.7: Visualization of a 2D FE mesh using triangle.

2.6.2 Finite Elements (FE)

One of the main advantages of FE compared to the FD method is that the mesh is more flexible.
Hence, for complex geometries and mesh adaptation, FE is recommended [40]. To solve PDEs
with the help of the FE method, a subspace has to be divided into smaller subparts called finite
elements. The finite elements are triangular or quadrilateral in a 2D subspace, see Figure 2.7 as
an example. The PDE is solved with an equivalent variations formulation of the problem. This
allows a formulation of a piecewise polynomial function in each FE represented in a large linear
system. To do so, we use the weak form. As described in [83], the weak form is the observation
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that two finite-dimensional vectors u, v ∈ Rd are equal, if and only if their inner product with
any vector φ ∈ Rd are equal:

u = v ∈ Rd ⇐⇒ ∀φ ∈ Rd, u · φ = v · φ . (2.28)

To find the semi-discrete problem of the PDE in Equation 2.28, we multiply it by the complex
conjugate v̄ of a test function v ∈ H1(Ω). Then, we integrate it over Ω and get the following
variational formulation: We search for the unique solution y ∈ H1(Ω) [23, 61] where

a(y, v)− ω2(y, v)L2 − iωb(y, v) = (f, v)L2 , ∀ v ∈ H1(Ω)

where ( · , · )L2 is the L2(Ω) hermitian product, and the sesquilinear forms are given by

a(y, v) =

∫
Ω
u(x)∇y(x)∇v̄(x)dx

and
b(y, v) =

∫
Γ

√
u(x)y(x)v̄(x)dx .

We now look at a finite element of our mesh; in other words, we look at a finite dimension
subspace Vh ⊂ H1(Ω) of a piecewise polynomial function of degree p. This leads to the semi-
discrete Galerkin formulation, where we find yh ∈ Vh such that

a(yh, v)− ω(yh, v)L2 − iωb(yh, v) = (f, v)L2 , ∀v ∈ Vh . (2.29)

Let {φi}Ni=1 denote a nodal Lagrangian basis [89] of Vh. We can then write, for all vh ∈ Vh,

yh =
N∑
j=1

Yjφj , with (φi, φj)L2 =

{
0 , i ̸= j
1 , i = j

.

Hence, the semi-discrete formulation of Equation 2.29 is equivalent to

N∑
j=1

Yia(φj , φi)− ω2
∑
j=1

Yj(φj , φi)L2 − iω

N∑
j=1

Yjb(φj , φi) = (f, φi)
2
L

for all i = 1 , · · · , N . Finally, we can write it as a matrix-vector multiplication:
Y = [Y1, · · · , YN ]T ∈ RN×1 is the unknown discretized pressure variation, solved by the equa-
tion

KY − ω2MY − iωBY = R ,

where R ∈ RN×1 and M , N , B ∈ RN×N are given by

Ri = (f, φi)L2 , Mi,j = (φj , φi)L2 , Ki,j = a(φj , φi) , Bi,j = b(φj , φi) ,

for i, j = 1 , · · · , N . We note that the matrices M and K are sparse, symmetric, and positive
semi-definite and that the matrix B is sparse, symmetric, and has a low rank.
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2.7 Neural Networks (NN)

The world is a very strange place, and the dice are always rolling.
– Tom Robbins

NN [12] are well established in medical imaging [18, 49, 53, 75], speech and signal process-
ing [32, 42, 48, 62]. The fundamental principle of a NN is to interpret an input and compute
the desired output. In medical imaging, an input may be a CT data set, and the output will be
segmented bones. In speech recognition, an audio recording is used as an input and results in a
word classification, respectively word recognition as an output. Another example, discussed in
more detail in Chapter 5, predicts the depth of the cut during bone ablation. There the NN uses
an acoustic wave emitted during the bone ablation to predict the depth of the cut. In this case,
the NN solves the forward problem, which maps the acoustic waves (the subset A) to the depth
of the cut (the subset B).

The simplest explanation of a NN is that it is a combination of derivable functions fi that
map a set A onto another set B

f = fK ◦ · · · ◦ f0 : A −→ B .

The NN we use is called a feed-forward neural network [2]. This means that the function f maps
the set A directly on the set B without using any loops or recurrent connections. The functions
fi are usually fully connected layers, convolution layers, Maxpool layers, activation functions,
and some normalization. These functions have different weights, and depending on the structure
and the weights, the NN will perform better or worse. To get a well-performing network, we
need to optimize the weights. Therefore, we first need to solve the following inverse problem:
For a given acoustic wave (known initial condition), what are the unknown parameters θ (here,
what are the weights), so that we can get the desired depth (observation). Hence, when we solve
the inverse problem, we find the unknown parameters θ; thus, we find the weights, which we
will use to solve the forward problem.

Solving the inverse problem of a NN is referred to as training the network. To train the
network, we first need to separate our measured data (initial condition) and its corresponding
label (observation). In most cases, the data is divided into three disjoint subsets: Training,
validating, and testing data. The training data is used to find the unknown parameters by solving
the inverse problem, and the validating data is used to validate the performance of the forward
problem of the network. The best-performing parameters on the validation data are then used to
test the network’s performance on previously unseen data, namely, the testing data. This strategy
helps to find suitable parameters and avoids over-optimizing on the training data.

We use a Convolutional Neural Network (CNN), where, first, we have several convolutional
layers (see Subsection 2.7.2). A Maxpool layer follows each convolutional layer (see Subsec-
tion 2.7.3). After multiple convolutional layers, the output is flattened to a one-dimensional
vector. This is then used as input for the fully connected layers. A dropout may be applied
onto the fully connected layer (see Subsection 2.7.1). In the final step, the output of the fully
connected layer is the desired output. We note that after each layer, a batch normalization can
be applied. The loss function is minimized using the optimizer Adam [47]. We will not show
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Figure 2.8: Visualization of a fully connected layer. Each element (neuron) of the input layer
I is multiplied by the weight wj,i. Σj represents the sum of the weighted I . Then the bias b
is added, and in a final step, the activation function σ is applied to map the input layer I to the
output layer O.

how the gradient is calculated because this has been shown in great detail in the thesis of Ander-
matt [2].

2.7.1 Fully Connected Layers

A fully connected layer can be described as a matrix-vector multiplication. To better visualize
the multiplication, we take a look at Figure 2.8. In our example, we have an input vector I of
the size NI = 6 and an output vector O of the size MO = 3. Each element of I and O are called
neurons. As the word fully connected indicates, each neuron of I is connected with each neuron
of O. We describe the mapping of the input layer I to the neuron Oj as follows

σ ([wj,1I1] + · · ·+ [wj,NI
INI

] + bj) = σ

(
NI∑
i=1

[wj,iIi] + bj

)
= Oj .

In the mapping from I to Oj , each neuron Ii of the input is multiplied by the weight wj,i. Then
we take the sum over all i = 1, · · · , NI and add the bias bj . In the final step, an activation
function σ is applied, as described in Subsection 2.7.4. To generalize the mapping between the
neurons I and O we write it as a matrix-vector multiplication:

σ(W · I + b) = σ


 w1,1 · · · w1,NI

...
. . .

...
wMO,1 · · · wMO,NI

 ·
 I1

...
INI

+

 b1
...

bMO


 =

 O1
...

OMO

 = O ,
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with the weight matrix W ∈ RMO×NI , the input vector I ∈ RNI×1, the bias b ∈ RMO×1, and
the output vector O ∈ RMO×1. We note that the input and output sizes can be chosen arbitrarily.
If multiple fully connected layers follow each other, then the output size of the previous layer
has to be the same as the input size of the current layer. The final layer has the same output
size as the desired output of the network, or in our case, the dimension of B. We note that the
weights have a linear dependency; hence, the derivative function exists. Therefore, the gradient
can be found for each layer and used for the backpropagation. A dropout can be applied on the
fully connected layers during the training. A dropout randomly omits weights. This improves
the robustness and, therefore, avoids over-optimization of the network.

2.7.2 Convolutional Layers

Ĩ1

Ĩ2

Ĩ3

Ĩ4
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Figure 2.9: A convolution of an array Ĩ = [Ĩ1, · · · , Ĩ7] with a kernel K = [k1, k2, k3],
with padding size p = 2 (two zeros are added on each boundary which we will refer to
as I = [I1, · · · , I11]), and stride set to s = 2 (the kernel K moves two entries, e.g.,
O1 = I1 · k1 + I2 · k2 + I3 · k3 and O2 = I3 · k1 + I4 · k2 + I5 · k3), leads to an output vector
O = [O1, · · · , O5].

Another common layer used for NN are convolutional layers. For simplification, we show the
convolution in the 1D case. However, it will work similarly for multidimensional cases. First,
we will explain what a convolution is, then how the neural network uses the convolutional layers.

We explain how convolution works with the variables padding p, stride s, and kernel size k.
In our example, we set the input array Ĩ to ÑI = 7. The padding p = 2 indicates the number
of zeros added to the boundaries, as shown in Figure 2.9. In our case, it will add two zeros on
the top and bottom of the array. We define the resulting array of the size NI = 11 as I. A
convolution with the kernel K = [k1, k2, k3], with stride s = 2, on the array I = [I1, · · · , INL

]

I ∗K = O ,
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is calculated as follows: The first entry O1 of the output array O = [O1, · · · , OMO
] is

O1 = k1I1 + k2I2 + k3I3 ,

as visualized in Figure 2.9 with the blue triangle. The stride indicates how far the kernel shifts to
calculate the next output O2, as visualized with the orange triangle. In our case, we have stride
s = 2; hence, the kernel shifts two indices to calculate the next output. Therefore, we get

O2 = k1I3 + k2I4 + k3I5 .

We can generalize the equation to calculate the output Oj for an arbitrary kernel size k, and an
arbitrary stride size of s

Oj = k1Is(j−1)+1 + k2Is(j−1)+2 + · · ·+ kkIs(j−1)+k =
k∑

i=1

kiIs(j−1)+i .

The length M of the output array O depends on the length ÑI of the input array Ĩ, the kernel
size k, the stride s, and the padding p. It can be calculated with the formula

MO =

⌊
ÑI + 2p− k

s
+ 1

⌋
, (2.30)

which, in our case, is MO = 5.
The 1D convolutional layer used in PyTorch [71] has some additional properties. In the

previous example, the number of input and output channels is one. However, in PyTorch, the
number of channels can vary. In Figure 2.10, we give an example of NL = 4 input channels
and ML = 3 output channels. For simplification, we use stride s = 1 and padding p = 0. One
of the major differences between single and multiple input and output channels are the number
of weights of the kernel. In the previous example, the kernel K had k = 3 weights, and only
one kernel existed. In Figure 2.10, we see that the kernel K of the size k now has more than k
weights. The number of total weights of a kernel is the number of input channels NL times the
size of the kernel; here, it is NL · k = 4 · 3 = 12. In addition, instead of a single kernel, we now
have ML kernels, one for each output channel. Therefore, in our example the output Oi,2, with
i ∈ {1, · · · ,ML} can be formulated as follows

Oi,2 = I1,2k
i
1,1 + I1,3k

i
1,2 + I1,4k

i
1,3 + · · ·

· · ·+ INL,2k
i
NL,1

+ INL,3k
i
NL,2

+ INL,4k
i
NL,3

=
[
I1,2k

i
1,1 + I1,3k

i
1,2 + I1,4k

i
1,3

]
+ · · ·

· · ·+
[
INL,2k

i
NL,1

+ INL,3k
i
NL,2

+ INL,4k
i
NL,3

]
=

NL∑
n=1

[
In,2k

i
n,1 + In,3k

i
n,2 + In,4k

i
n,3

]
(2.31)
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We generalize the equation by assuming that the input has NL channels, and each channel has
the length ÑI . Therefore, the input can be represented as a matrix Ĩ ∈ RNL×ÑI . The padding
size increases each channel’s boundary, as visualized in Figure 2.9. Therefore, after padding, we
get a matrix of the size I ∈ RNL×NI , with NI = ÑI + 2p. Since the stride is s and the kernel
size is k, we can deduce the length of the output MO of each layer with the Equation 2.30

MO =

⌊
ÑI + 2p− k

s
+ 1

⌋
.

When we have ML output channels, we can represent the output as a matrixO ∈ RML×MO . We
note that each output channel Oi has its own kernel Ki. We generalize Equation 2.31 and write
for each entry Oi,j in the matrix O the following

Oi,j = I1,s(j−1)+1k
i
1,1 + · · ·+ I1,s(j−1)+kk

i
1,k + · · ·

· · ·+ INI ,s(j−1)+1k
i
NI ,1

+ · · ·+ INI ,s(j−1)+kk
i
NI ,k

=
[
I1,s(j−1)+1k

i
1,1 + · · ·+ I1,s(j−1)+kk

i
1,k

]
+ · · ·

· · ·+
[
INI ,s(j−1)+1k

i
NI ,1

+ · · ·+ INI ,s(j−1)+kk
i
NI ,k

]
=

NL∑
n=1

[
In,s(j−1)+1k

i
n,1 + · · ·+ In,s(j−1)+kk

i
n,k

]

=
NL∑
n=1

[
k∑

m=1
In,s(j−1)+mkin,m

]

=
NL∑
n=1

k∑
m=1

In,s(j−1)+mkin,m .

Finally, similarly to the previous Subsection 2.7.1, a bias bi,j is added, and a non-linear activation
function σ is applied. Hence, we get the final output of the convolutional layer for each entry in
Õ

Õi,j = σ (Oi,j + bi,j) = σ

(
N∑

n=1

k∑
m=1

In,s(j−1)+mkin,m + bi,j

)
,

or simpler
Õ = σ (O + b) ,

with the final output Õ ∈ RML×MO and the bias b ∈ RML×MO having the same dimensions
as O. Again, similarly to the previous Subsection 2.7.1, the parameters which are determined
during the training of the network, namely kin,m and bi,j are a linear combination, apart from the
non-linear activation function. Therefore, the gradient can be computed easily.



2.7. Neural Networks (NN) 31

K3

O3

K2

O2

K1 =


k1
1,1 k1

1,2 k1
1,3

k1
2,1 k1

2,2 k1
3,3

k1
3,1 k1

3,2 k1
3,3

k1
4,1 k1

4,2 k1
4,3


O1

I1,1

I1,2

I1,3

I1,4

I1,5

I1,6

I1,7

I1,8

I1,9
I1
I2
I3
I4

O1,1

O1,2

O1,3

O1,4

O1,5

O1,6
O1
O2
O3
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Figure 2.10: An example of a convolution in a NN using NL = 4 channels as input
I = [I1, · · · , INL

] and ML = 3 channels as output O = [O1, · · · ,OML
]. In this case, we

have no padding (p = 0), and the stride is set to one (s = 1). The kernel of the size k = 3 has
the dimensions of the input channel; hence, it is of the form Ki ∈ RNL×k and each output chan-
nel has its own kernel, implying, i = 1, · · · ,ML. The entry O1,2 of the output array is calculated
as follows O1,2 = I1,2k

1
1,1 + I1,3k

1
1,2 + I1,4k

1
1,3 + · · ·+ I4,2k

1
4,1 + I4,3k

1
4,2 + I4,4k

1
4,3. A bias b

is added, and an activation function is applied to get the output Õ of the convolutional layer.
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Ĩ1

Ĩ2
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Ĩ5

Ĩ6
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Figure 2.11: Maxpool layer on an input array Ĩ = [Ĩ1, · · · , Ĩ7] of the size NI = 7 with a kernel
of the size k = 3, with padding size p = 2, and stride set to s = 2 This leads to an output vector
O = [O1, · · · , O5] of the size MO = 5.

2.7.3 Maxpool Layer

As the name indicates, the Maxpool layer calculates the maximum values of the input in a certain
way. Similarly to the convolutional layer in the previous Section 2.7.2, a padding of size p adds
p zero values on the boundary of the array, as visualized in Figure 2.11. Hence, we get the array
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I = [0, · · · , 0, Ĩ, 0, · · · , 0] = [I1, · · · , IN ] of the size N = Ñ + 2 · p. The kernel of the size
k takes k consecutive entries of the array I and calculates its maximum for the output. That is,
the entry O1 of the output array O is

O1 = max{I1, · · · , Ik} ,

or concretely O1 = max{I1, I2, I3} in the example illustrated in Figure 2.11. As before, the
stride s skips the next s entries of the array to calculate the next maximum. Therefore, we can
generalize the equation to

Oj = max{Is(j−1)+1, · · · , Is(j−1)+k} ,

yielding, for instance, O3 = max{I5, I6, I7} in the above. The output size can be calculated
similarly to the convolutional layers given in Equation 2.30. We note that this layer is used to
downsample, resp. pool features and highlights the most present feature in the patch. It has no
weights and therefore does not change during the training of the network.

2.7.4 Activation Function: ReLU

An activation function is generally placed after a fully-connected or convolutional layer. Accord-
ing to [35, 52, 54], a feed-forward network can approximate any continuous function, which is
compact in Rn under a mild assumption of the activation function. It is further generalized
in [52], where the only condition of the activation function σ : R −→ R is that it shall not be a
polynomial. A common and well-performing activation function is the ReLU activation function

σ(x) = ReLU(x) = max{0, x} =
{

x , x > 0
0 , x < 0

which is continuously differentiable in R\{0} and results in the unit step function

σ′(x) =
∂

∂x
ReLU(x) =

{
1 , x > 0
0 , x < 0

,

as visualized in Figure 2.12.

σ(x)

(0, 0) x

y

n

n
σ′(x)

(0, 0) x

y

1

Figure 2.12: On the left side is the ReLU activation function σ(x) = max{0, x} which is
undefined at position 0 and on the right side its derivation σ′(x).



Chapter 3

Sentinel Lymph Node Fingerprinting

This publication is a continuation of the work of [79, 84]. To know if a cancer has spread, a
biopsy of the SLN is done [81, 82]. This is done by injecting the patient with Tc99m around
the tumor, whereupon the Tc99m accumulates in the SLN. Using a γ detector, these SLN can be
found and removed. We aim to accurately pinpoint these SLNs so that the surgeon can operate
minimally invasively.

In our previous work [79, 84], we used a multiple pinhole collimator, in which all pinholes
were separated with septum walls, to detect the Tc99m sources ex-vivo. One of the drawbacks
was that the computation time was long and not applicable in real-case scenarios. In addition,
the accuracy was limited. In this paper, we introduce the Sentinel Lymph Node Fingerprinting
(SLNF) algorithm, increases the reconstruction’s accuracy and speed. In addition, we use the
optimal design method proposed in [31] to give mathematical reasoning as to why the recon-
struction improves when removing the septum walls. With the optimal design method, we found
new positions of the pinholes, that provides us with a better reconstruction of the Tc99m sources.

In this paper, we are solving two inverse problems. The first one is finding the position of
the Tc99m sources or, in other words, for which position of the Tc99m sources (condition) we get
the image on the detector (measurement). The second one is what pinhole designs are a good
condition to find the position of the Tc99m sources.

Publication. This following paper [66] was published on the 5th of June 2019 in the Physics
in Medicine and Biology Journal. We note that Uri Nahum (Postdoc) and Carlo Seppi (Ph.D.
Student) are shared authors, and that the order of these authors is alphabetical.
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1. Background

Among the types of cancer in the head and neck area, oral and oropharyngeal squamous cell carcinoma are very 
typical. If initial staging cannot rule out an extensive spreading of the cancer, the standard of care includes the 
complete surgical removal of the lymph nodes in the vicinity. Post-resection analysis has shown, however, that 
this invasive intervention was only warranted in about 30% of the patients (Byers et al 1988, van den Brekel et al 
1996). A biopsy of the SLN, i.e. the first draining lymph node(s) after the tumor, has shown to be a good indicator 
whether the tumor already spread through the lymphatics (Shoaib et al 2001, Stoeckli et al 2001) and complete 
removal of the lymphnodes is warranted. To identify these SLN, radioactive tracer (Tc-99m) is injected around the 
tumor. After some hours, the highest concentration of the radio-active tracer is found in the SLN and hence can 
be located using a gamma detector. Surgeons either use a 1D gamma probe (Sullivan et al 2001, Hayashi et al 2003, 
Povoski et al 2009, Civantos et al 2010) or a 2D gamma camera (Gerbaudo et al 2002, Vermeeren et al 2010, Ozkan 
and Eroglu 2015, Hellingman et al 2015), to locate the SLN. These types of detectors have no depth perception 
in finding the SLN, or need preoperative imaging aid, an additional tracking device or multiple detectors to get a 
depth perception. An alternative is the freehand SPECT device, which is introduced in Mandapathil et al (2014) 
and Hellingman et al (2015). Although (Mandapathil et al 2014) is able to give a 3D approximation of the SLN, 
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Abstract
Background. When locating the sentinel lymph node (SLN), surgeons use state-of-the-art imaging 
devices, such as a 1D gamma probe or less widely spread a 2D gamma camera. These devices project the 
3D subspace onto a 1D respectively 2D space, hence loosing accuracy and the depth of the SLN which 
is very important, especially in the head and neck area with many critical structures in close vicinity. 
Recent methods which use a multi-pinhole collimator and a single gamma detector image try to gain a 
depth estimation of the SLN. The low intensity of the sources together with the computational cost of 
the optimization process make the reconstruction in real-time, however, very challenging. 

Results. In this paper, we use an optimal design approach to improve the classical pinhole design, 
resulting in a non-symmetric distribution of the pinholes of the collimator. This new design shows 
a great improvement of the accuracy when reconstructing the position and depth of the radioactive 
tracer. Then, we introduce our Sentinel lymph node fingerprinting (SLNF) algorithm, inspired by 
MR-fingerprinting, for fast and accurate reconstruction of the tracer distribution in 3D space using 
a single gamma detector image. As a further advantage, the method requires no pre-processing, i.e. 
filtering of the detector image. The method is very stable in its performance even for low exposure 
times. In our ex vivo experiments, we successfully located multiple Technetium 99m (Tc-99m) 
sources with an exposure time of only one second and still, with a very small L2-error. 

Conclusion. These promising results under short exposure time are very encouraging for SLN biopsy. 
Although, this device has not been tested on patients yet, we believe: that this approach will give the 
surgeon accurate 3D positions of the SLN and hence, can potentially reduce the trauma for the patient.
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an optical tracking device is needed with multiple images from the detector, while in Hellingman et al (2015) the 
pinhole collimator is only used to increase the resolution. In Jaszczak et al (1994), the authors proposed on using 
a SPECT camera with a pinhole collimator instead of a parallel hole collimator to measure the tracer distribution. 
Furthermore, by increasing the number of pinholes (resulting in a multi-pinhole collimator), the sensitivity is 
improved, hence allowing a reduction of the Tc-99m activity (dosage) injected.

Quantification of radioactive tracer distribution for SLN detection has proven itself as a useful approach 
(Alex and Krag 1993, Britten 1999, Warncke et al 2007). Nevertheless, the state-of-the-art approaches suffer from 
a host of challenges such as a long exposure time of the detector to the radioactive source(s), pre-processing of the 
gamma detector image, images from several angles are needed for the depth reconstruction, long computation-
time of an ill-posed optimization method, poor depth control, lack of sensitivity for two sources located behind 
each other and the results may suffer from a post-processing step or a reader bias in locating the position of the 
source(s).

In this publication, we propose a novel multi-pinhole based collimator together with a processing algorithm 
that overcomes the above mentioned drawbacks. In contrast to our previous work (von Niederhäusern et al 2016, 
Seppi et al 2017), we introduce here a fast and accurate processing approach, inspired by MR-fingerprinting. 
Fingerprinting for MR images became very popular in the last years. Using a unique fingerprint for the data, pat-
tern recognition algorithms are used to find the fingerprint in a predefined dictionary, see for example (Allen and 
Stott 2003, Zhang et al 2003). Instead of using an optimization method or huge dictionaries with complex optim-
ization methods, the proposed approach uses a reduced dictionary and inquires low memory and a short run-
time. The detection algorithm can be performed in a few seconds, even on a standard laptop, and gives results 
which are very close to the true position of the source(s). Our ex vivo experiments using multiple Tc-99m sources 
underpin the accuracy and precision of our approach.

This paper is organized as follows: first, we show how to improve our multi-pinhole collimator, inspired by 
the optimal design approach (Haber et al 2008), resulting in a non-symmetric distribution of the pinholes. Sec-
ond, we introduce the SLNF algorithm for the detection of the radioactive tracer positions. Then, we perform 
experiments with different exposure times and different dictionaries. At last, we demonstrate the superiority of 
our new collimator design (non-symmetric distribution of the pinholes) in a comparative study with the previ-
ous collimator design (regular distributed pinholes with septum walls).

2. Method

In our experiments, we use a PILATUS3 gamma detector produced by DECTRIS Ltd. (5405 Baden-Dättwil, 
Switzerland). The detector features 487 × 195 pixels, with each pixel having a size of 172 × 172 µm. The gamma 
detector’s CMOS readout ASICs uses cadmium telluride as the sensor-material. This technology allows direct 
detection of the gamma rays, where each signal generated by the pixel of the sensor is amplified, discriminated 
and counted. Our custom design collimator was manufactured by an external company. It is composed of 3D 
printed and machined tungsten parts, with a density of 19.25 g cm−3 and the dimension of 86.9×36×36 mm3. 
Further, the cylindrical shaped pinholes, with a diameter of 1 mm, are drilled through the 1 mm thick front plate.

In front of the detector/collimator, we place one or more sources in several known positions, see figure 2. In 
our experiments, we use Tc-99m samples as radioactive sources. The photons are propagating through the pin-
holes of the collimator and hit the detector in a randomly distributed way.

Let u be a three-dimensional subspace of R3 in front of the collimator which contains radioactive tracers. The 
relationship between u and the detector image d can be described by the linear system

Au = d. (1)

The projection matrix A ∈ RNd×Nu, which is dependent on the design of the collimator and its pinholes, is built 
to translate the sources to their detector image. The numbers Nu and Nd represent the number of discretization 
points of u and the number of pixels on the detector, respectively.

2.1. Optimal design of the pinhole distribution
In previous experiments (von Niederhäusern et al 2016, Seppi et al 2017) the collimator in figure 3 was used. 
Although, Seppi et al (2017) achieved a good localization in the xy-plane, its depth accuracy (z-axis) was limited. 
Here, we aim to find a good pattern for the pinholes on the collimator front plate such that 3D estimations are 
improved, hence the approximation of the depth (z-axis) improved.

To improve the depth estimation, the sources must be seen on the detector from multiple angles. This can be 
done by removing the septum walls in the collimator, see figures 1 and 6.

In Haber et al (2008), an optimal design for large-scale linear ill-posed inverse problems was introduced. 
Adapting this approach for our experiments, we find an optimal collimator design, i.e. an optimal distribution 
of the collimator’s pinholes for improved 3D localization of the sources. Here, we examine Np   =  200 possible 
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pinholes for some given subspace u containing radioactive tracer(s). In figure 4, we illustrate the 200 possible 
pinholes marked with white dots.

For each pinhole pm, m = 1, . . . , Np, we build a projection matrix Am. The matrix Am projects the comp-
onent of u through the single pinhole pm onto the detector image dm. The photons hit the detector in a stochastic 
process, which numerical simulation cannot precisely imitate. Therefore, we write

dm = Amu + εm. (2)

Here, εm represents the noise (e.g. intrinsic spatial resolution of the detector, scattered photons, photons 
penetrating the collimator walls) in the experiment, which has different probabilities for each detector pixel. 
Hence, the variable εm must be in the same dimension as the image of the detector dm and we write for each 

εm = [εm,i]
Nd
i=1. We assume that each εm,i is independent and identically distributed (i.i.d) random variable with a 

mean value of 0 and variance of σ2 (here, σ depends on the number of photon reaching the detector).
For each pinhole p m, we define a weight wm, m = 1, . . . , Np, where the weights wm are the solution of

arg min
w

Np∑
m=1

wm‖dm − Amu‖2
L2 , s.t. wm � 0 (3)

where w = [w1, w2, . . . , wNp ]
T . Note, that the L2-norm is defined as

‖v‖L2 =

(
Nv∑
i

v2
i

)1/2

for v = [v1, · · · , vNv ] ∈ RNv .

We write (3) in matrix form:

arg min
w

(d − Au)TW(d − Au), (4)

where

A =




A1

A2

...
ANp




, d =




d1

d2

...
dNp




and W =




W1

. . .
WNp


 ,

with Wm = diag(wm, wm, . . . , wm) ∈ RNd×Nd , wm � 0, for m = 1, . . . , Np. Note that, A is not a square matrix, 
hence, A is not invertible. Following (Haber et al 2008), we find a solution of (4) by minimizing the equivalent 
equation

arg min
w

J (w) = arg min
w


σ2V(w) + β

Np∑
m=1

wm


 , s.t. wm � 0, m = 1, . . . , Np, (5)

with

V(w) = trace(WAC(w)−2ATW) and C(w) = ATWA (6)

and β has typically a small value (here, we choose β = 10−2). To reduce computation cost we approximate the 
trace (Golub and Von Matt 0000, Hutchinson 1990) in (6) as

trace(H) ≈ vTHv,

a)

 
 

b)

c)

d)

e)

f)
a)

 
 

b)

d)

g)

Figure 1. Side view of the collimator: left collimator with compartment, right collimator without septum walls (a) Front plate of 
the collimator (1 mm thick), (b) Cylindrical shaped pinhole (diameter of 1 mm), (c) Pinhole compartment of symmetric collimator 
(10.9 × 9.5 mm), (d) Detector (83.76 × 33.54 mm), (e) Septum walls of the compartments from the symmetric collimator (0.6 mm 
thick), (f) symmetric collimator: angle depends on the walls of the compartment (16.6–22.7◦), (g) collimator with no septum walls, 
hence the angle is i.e. 90◦.
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where v is a random vector of i.i.d. entries of values ±1 with the probability of 1/2. Hence, we approximate V(w) 
through V̂(w)

V̂(w) = vTWAC(w)−2ATWv = wTV(w)TV(w)w, with V(w) = C(w)−1ATdiag(v).

We replace V(w) in (5) with V̂(w) and get

arg min
w

Ĵ (w) = arg min
w


σ2V̂(w) + β

Np∑
m=1

wm


 , s.t. wm � 0, m = 1, . . . , Np. (7)

To optimize (7), we compute the gradient and the Gauss–Newton (G–N) approximation of the Hessian of V̂(w) 
with respect to w. First, we compute the gradient

∇V̂(w) = ∇[wTV(w)TV(w)w] = 2Jv(w)
TV(w)w

where

Jv(w) =
∂[V(w)w]

∂w
= V(w)− C(w)−1ATdiag(Arv) with rv = V(w)wfixed (8)

and wfixed is a fixed w.

Remark 1. We omit the long description of technical details. The steps (4)–(8) serve as referencing point to 
understand the detailed explanation in Haber et al (2008).

Next, we compute the G–N approximation of the Hessian

∆Ĵ ≈ σ2JT
v Jv.

To find a search direction for the optimization, we solve in each G–N iteration the system

∆Ĵ p = −∇Ĵ . (9)

For an efficient solution of (9) we opt for the inexact Newton method, where we solve the inner iteration using the 
conjugate gradient (CG) method (Haber et al 2000, Grote et al 2017). We iterate in both G–N and CG iterations 
until a relative residuum of 0.1 is reached. Starting with equal weights for all wm  =  1 for m = 1, . . . , Np, we 
optimize (7) and find the weights wm with the highest values. The pinholes p m corresponding to those highest 
weights are the most essential pinholes for the reconstruction.

Remark 2. To compare different collimator designs we fix the number and the position of the pinholes and 
solve (6). Further, the collimator with the smallest V(1) value, with 1 = [1, . . . , 1], is the collimator of choice.

2.2. Optimal design for known sources
To conclude how the holes are distributed on the collimator, we solve (7) for four different sub-spaces u: with 
one, two, three and four sources with a diameter of 5 mm (approximated size of the lymph node). We start with 
200 possible pinholes (all of them have a diameter of 1 mm), shown in figure 4. In figure 5, the 24 white dots 
correspond to the resulting 24 pinholes with the highest weight (the number 24 is taken from Seppi et al (2017), 
to compare the results with the symmetric collimator discussed in this paper) and the big red dots corresponding 
to the (x, y) position of the source(s) (they were located at a distance of 100–150 mm from the collimator front 
plate respectively).

Although the process gives a clear suggestion for each experiment, in reality the positions of the sources are 
not known and the optimization selects each time a different pinhole combination with respect to the position of 
the source(s). In all of the experiments performed, there were, however, two common properties:

 (i)  The pinholes are spread over the entire collimator front plate.
 (ii)  The pinholes are spread non-symmetrically.

Actually, if we initiate the optimal design process with symmetrically distributed pinholes (see right side of 
figure 6), the optimal design optimization breaks the symmetry. A major drawback of the examples given above, 
is that they show only one possible design for a single subspace u and neglect all other sub-spaces. We built a 
collimator with the properties mentioned above and introduce it on the left of figure 6. To ensure, the superiority 
of the new collimator we compare it to the symmetric collimator (with and without septum walls). We solve V(1) 
in equation (6) (with 1 = [1, · · · , 1]) for 100 randomly chosen subspaces with one, two, three and four sources. 
The mean value of (6) from the collimators without septum walls (figure 6) are at least three times smaller than 
for the symmetric collimator with septum walls (figure 3). Additionally, all the mean values of the symmetric 
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breaking collimator are lower than the one with symmetric pinholes. Hence, the new non-symmetric collimator 
proves itself as a good choice in our optimal design process (see table 1). Clearly, this design is not a perfect 
optimal design for all combination of sources, and yet, we show in our ex vivo experiments the superiority of the 

new symmetry breaking design, in comparison to the symmetric designs.

2.3. Dictionary
Let u be a subspace containing a single source at the position (20, 50, 140) mm. We use (1) to compute the 
corresponding detector image d1 as shown on the top left of figure 7. Next, we consider a slightly different 
position of the source: (21, 50, 140) mm (i.e. we change the position of the x coordinate by 1 mm). The computed 
corresponding detector image d2 for this source is shown on the top right of figure 7. Even though we changed 
the position of the source by just 1 mm in the horizontal direction x, the changes on the resulting detector image 
are evident, as can be seen on the bottom of figure 7, where we show the difference d1 − d2 between the detector 
images. Similar results can be seen when changing the position slightly in the y  and z directions. In the following, 
we take advantage of this sensitivity of the detector image to small changes in the source position to get a very fast 
and robust reconstruction of the position of the sources.

Here, we build a dictionary of computed detector images, which holds all the projections of all source posi-
tions in our 3D subspace onto the detector. When performing an experiment, a detector image d true is produced. 
Then, we use a coherency functional

C : RNd → R,

to find the image in the dictionary with the highest coherency to d true. The detected source is the one 
corresponding to the image where C  gets its global maximum (for the choice of C  we refer to section 2.4). In an 
optimal situation, we would like to have a dictionary containing all detector images for all numbers of sources 
and their combinations. This is, unfortunately, impossible. Even if we restrict the reconstruction to a maximum 
number of three sources, in a subspace of 30 × 80 × 100 mm3, with a coarse grid of 3 mm between the sources. 
The following number of matrices with the size of 487 × 195 would have to be stored:

(
8580

1

)
+

(
8580

2

)
+

(
8580

3

)
= 105, 271, 459, 150.

Since this is impossible on a standard computer, we reduce the dictionary only to images corresponding to a 
single source. In the example described above, we reduce the number of entries of the dictionary to 8580. In the 
following (section 2.4), we show how it is still possible to find multiple sources using this reduced dictionary. This 
is done in an iterative process. Since the images for a single source in the dictionary are sparse (see figure 7, for 
example) we can store them easily without any special memory requirements.

Note, that we locate the center of the Tc-99m source (diameter 5–7 mm). Hence, even a small error can still be 
within the diameter of the source.

2.4. SLNF algorithm
Here, we want to define the requirements of the functional C. Let u1 respectively u2 be two 3D subspaces 
containing a single radioactive tracer s1 respectively s2, and let s be one of the sources in the true subspace u. The 
radioactive sources s1 and s2 assumed to be within Euclidean space distances, dist(s1, s) and dist(s2, s), which are 
not too large. Let d1 respectively d2 be the detector images in the dictionary representing the projection of the 
source s1 respectively s2 (using (1)). We seek for a functional C, s.t.

C(d1) > C(d2), if dist(s1, s) < dist(s2, s). (10)

Having such a functional C, we apply it on each detector image in the dictionary D and find the index in the 
dictionary where the coherency functional finds its maximum. Several functionals can be applied here and fulfill 
the above mentioned requirement. To get fast and reliable results, we follow (Ma et al 2013) and choose

C(d) = ‖d ◦ d true‖F =

√∑
i,j

(
dij · d true

ij

)2
. (11)

Table 1. Comparison between the symmetric collimator (with and without septum walls) and the non-symmetric collimator for optimal 
design: mean value of V(1) in equation (6) (with 1 = [1, · · · , 1]) for 100 randomly chosen subspace with one, two, three and four sources.

Number of sources 1 2 3 4

V(1) value of symmetric-collimator (with septum walls) 5.44 10.70 15.95 22.37

V(1) value of symmetric-collimator (no septum walls) 1.41 2.14 3.41 4.82

V(1) value of non symmetric-collimator 0.98 2.01 3.32 4.00
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Here, the operator ° denotes the Hadamard product and F denotes the Frobenius norm. In other words: the 
higher the value of C(d), the more similar are d true and d.

In figure 8, we visualize the principle of the coherency functional C(d) on a simplified example. In figure 8(a), 
we have the measured image d true with noise (e.g. photons penetrating the collimator walls) and in the center 
the measured projection of the source (yellow). In the left column of figures 8(b)–(d) we have three simulated 
detector images d1, d2 and d3. These correspond to three different source positions P1 , P2 and P3. Each value of 

the pixel of d true is represented as d true
ij  and each pixel of the images d� is represented as d�

ij for � = 1, 2, 3, respec-

tively. For this simplified example, we only choose the three aforementioned images d1, d2, d3 for the dictionary 
D, hence we have D = {d1, d2, d3}. In the right column of figures 8(b)–(d) we show the Hadamard multiplica-

tion, i.e. a pixel-wise multiplication, of d� and d true (for all pixel entries we compute d�
ij · d true

ij ). The coherency 

functional C(d�) in (11) is the quadratic sum of all the pixel from the resulting image. We observe, that d1 covers 
the whole projection of the source, d2 does not intersect with the projection and only the noise is observed. In 
the case of d3 the projection is partially covered. As mentioned, the coherency functional C(d) in equation (11), 
compares the simulated detector images d from the dictionary D to the true detector image d true. The more 
similar the images are, the higher is the value of C(d). We have the highest value from d1 with C(d1) = 216 (where 
the whole projection is observed), the lowest value from d2 with C(d2) = 125 (where only noise is observed) and 
the value for d3 with C(d3) = 167. In conclusion, the the dictionary entry d1, corresponding to the source P1, is 
the most similar to the measured image d true, since it’s coherency value is the highest. Hence, we assume that the 
true source position corresponds to P1.

The dictionary D contains images corresponding only to a single source. However, u may contain more than 
one source and hence we find all sources in an iterative process:

Algorithm 1. SLNF: Finding the position of the radioactive sources using a predefined dictionary.

Input: a detector image d true, dictionary of corresponding detector images D for all possible locations of 
sources p .

Output: position of sources L.

 1.  Evaluate C(di), ∀di ∈ D and set m as the median of all C(di)

 2.  repeat until max(C(di)) < δ · log(m)

 2.1.  set i� as the index i of the global maximum of C
 2.2.  add to L ← pi�  

% the i�’s index of p  is the approximation of the source
   % with the highest intensity.
 2.3.  Set d true to zero where di� > 0  

% delete the values in the true detector image
   % corresponding to i� to reveal another
   % possible source.
 2.4.  update C  with the modified d true

 3.  return L

In the first step of the algorithm, we evaluate C  on all the detector images in the dictionary and compute 
the median m for the stop criteria of the algorithm. If the maximum of C  is significantly higher than m, 
there is another source to be found (step 2). After saving the information of the source (step 2.1), we delete 
its corre sponding information from the true detector image d true (step 2.3). In the last step of the loop we 
update C  with the modified d true (step 2.4). If the maximal value of C  is still significantly higher than m, there 
is another source to be found and the process is repeated. The loop finally breaks when the maximal value of 
C  is close to m, i.e. there is no significant activity on the detector, that correlates to a source. Hence, all sources 
are found.

Remark 3. 

 •  The images di in the dictionary D are highly sparse. On average, more than 97% of the entries in di are 
zero. Hence, the computation can be run very fast without any special memory requirements.

 •  The sequence in which we find the sources is a non-increasing sequence of intensities, i.e. the algorithm 
finds the sources from the strongest to the weakest intensity.

 •  With the non-symmetric collimator the parameter δ was experimentally chosen for every exposure time.
 •  Another possibility for automatic detection of the number of sources is using deep neural network. First 

results on simulated detectors images has shown very good results, and in the future, we plan on refining 
this approach using real patient data.
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Figure 2. Experimental setup: left, an illustration of an experiment in a 3D subspace u of R3, the multi-pinhole collimator then 
projects the photons onto the detector resulting in an image d. Right, an ex vivo experiment using Tc-99m samples in the lab.

Table 2. Seven different experiments with Tc-99m in the lab and reconstruction of the source positions using a detector which was 
exposed for one resp. 16 s to the sources using the new non-symmetric collimator.

#
True position(s) 

in mm

Reconstruction 

with 1 s in mm

L2-error 

in mm

Mean in 

mm

Reconstruction 

with 16 s in mm

L2-error 

in mm

Mean in 

mm

1 (21, 41, 130) (20, 42, 128) 2.4 2.4 (20, 42, 130) 1.4 1.4

2 (21, 41, 130) (20, 42, 130) 1.4 5.3 (20, 42, 130) 1.4 2.2

(26, 21, 110) (26, 22, 101) 9.1 (26, 21, 107) 3

3 (21, 41, 130) (20, 41, 131) 1.4 9.6 (20, 41, 127) 3.2 3.2

(16, 21, 130) (14, 22, 130) 2.2 (15, 22, 127) 3.3

(26, 61, 150) (24, 63, 175) 25.2 (24, 63, 149) 3

4 (21, 41, 130) (20, 42, 130) 1.4 1.8 (20, 42, 130) 1.4 2.4

(16, 21, 130) (15, 21, 132) 2.2 (15, 22, 127) 3.3

5 (16, 21, 130) (15, 22, 127) 3.3 4 (15, 22, 127) 3.3 4

(26, 61, 130) (25, 63, 134) 4.6 (25, 63, 134) 4.6

6 (21, 41, 110) (21, 41, 108) 2 4 (21, 41, 111) 1 2.2

(21, 41, 150) (18, 42, 145) 5.9 (18, 42, 149) 3.3

7 (16, 21, 130) (16, 22, 126) 4.1 — (15, 21, 129) 1.4 5.3

(21, 41, 150) (20, 43, 153) 3.7 (19, 42, 144) 6.4

(26, 21, 110) — — (26, 22, 102) 8.1

Figure 3. Symmetric collimator: a pinhole collimator with 24 compartments and 24 pinholes matching the centers of the 
compartment. Front view (left) and rear view (right).
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3. Results

In this section, we reconstruct the 3D position of the radioactive sources using a single 2D image of the 
detector. The image is received from the detector after placing up to three sources in different positions in 
front of the collimator and the detector (see figure 2). All veils are filled with a fluid of 19 ml with different 
strength of Tc-99m.

For the illustration of algorithm 1, we use a dictionary, that includes all detector images corresponding to all 
single sources in a subspace u of 30×80×180 mm3 with a grid spacing of 1 mm in each direction. Moreover, we 
use detector images, produced by exposing the detector for 16 s to the sources. After illustrating the algorithm 
and its functionality, we compare the results with images received after an exposure time of one second to the 
sources, see section 3.4.

Remark 4. Four rectangular areas can be seen on the corners of the detector image, see for example on the 
right of figure 10. The big empty rectangle on the bottom right is due to a faulty sensor area of the detec-
tor. The other three rectangles are used to geometrically align the collimator to the detector. Despite these 
non-sensitive areas, the positional estimations of the detector are very accurate proving the robustness of the 
developed design and processing.

Figure 4. Optimal collimator design: 200 possible pinholes marked in white.

Figure 5. Optimal design: white circles represent the pinholes with the highest weights, given by solving (7) and red circles 
represents the (x, y) position of the source(s).

Figure 6. New collimator without septum walls: 24 pinhole collimator with non-symmetric pinholes (left) and the collimator with 
symmetric pinholes (right).
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Figure 7. Two computed detector images and their difference: top, the detector image d1 corresponding to a source located at 
(20, 50, 140) mm (left), the detector image d2 corresponding to a source located at (21, 50, 140) mm (right). Bottom: the difference 
between the images d1 − d2.

Figure 8. Simplified example to visualize the functional C(d): (a) noisy measured image d true and the projection of the source in 
the center (yellow). Left column: simulated detector image d� in dictionary corresponding to position P� for � = 1, 2, 3 (from top to 
bottom). Right column: pixel-wise multiplication of d� and d truefor � = 1, 2, 3. The coherency functional C(d) has the maximum at 
C(d1), hence the measured image d true corresponds to the position P1.
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3.1. One source experiment
First, we consider a single Tc-99m source with an intensity of 60 MBq , located at the position (21, 41, 130) mm, 
as illustrated in figure 9(a) (the lines in the figure visualize the axes in the 3D subspace).

On the right of figure 10(a), we plot the functional C  evaluated on all detector images in the dictionary D. 
We remind the reader that the more similar the true detector image is to the detector image of the dictionary, 
the higher is the value of the functional C. We find its maximum on the 172 159th entry of the dictionary. This 
entry corresponds to the point (20, 42, 130) mm. This yields a very small L2-error of 1.4 mm. Next, we delete the 
information corresponding to the source found from d true, as described in step 2.3 of algorithm 1 and shown on 
the left of figure 10(b). Then, we update the functional C  with the modified detector image as in step 2.3 of algo-
rithm 1 and plotted on the right of figure 10(b). Now, there is no significant activity left, i.e. the maximum of the 
functional C  is not significantly larger than its median m. Hence, all sources have been found and the algorithm 
terminates (see, algorithm 1, step 2).

Figure 9. Illustration of the center of the source positions in four different experiments: one to three Tc-99m sources in a three-
dimensional subspace u. (a) 60 MBq  source at (21, 41, 130) (b) 60 MBq  source at (21, 41, 130) mm (red) and 30 MBq  source at 
(26, 21, 110) mm (green) (c) 60 MBq  source at (21, 41, 130) mm (red), 30 MBq  source at (16, 21, 130) mm (gray) and 15 MBq  
source at (26, 61, 150) mm (green) (d) 60 MBq  source at (21, 41, 110) mm (red) and 30 MBq  source at (21, 41, 150) mm (green).
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Remark 5. Note that the other clear local maxima of C , shown on the right of figure 10(a), correspond to 
sources in the close neighborhood of the located point.

3.2. Two sources experiment
Now, we consider a subspace u with two sources at (21, 41, 130) mm and (26, 21, 110) mm with intensities of 
60 MBq  and 30 MBq , respectively. In figure 9(b), we plot the sources, where the red color represents a source with 
higher intensity and the green color a weaker one.

On the right of figure 11(a), we plot the functional C  applied on the dictionary. The functional C  finds its global 
maximum at the 172 159th entry of the dictionary, which corresponds to a source located at (20, 42, 130) mm. 
We follow algorithm 1 and delete the corresponding information of the source found from d true (see step 2.3 
of algorithm 1 and figure 11(b), left). On the left of figure 11(b), we see that there is still significant activity 
left after deleting the corresponding information of the last source found. We update the functional C, with the 
modified detector image (step 2.4) and evaluate it for all images of the dictionary (see figure 11(b), right). Indeed, 
the remaining activity is translated to a new clear global maximum of C. The maximum is on the 220 606th 
entry of the dictionary, which corresponds to the source located at (26, 21, 107) mm. Following algorithm 1, we 
repeat the process until no significant activity remains (see figure 11(c)). The algorithm finds two sources with a 
remarkable mean L2-error of 2.2 mm.

3.3. Three sources experiment
Next, we consider a subspace u with three sources at the positions (21, 41, 130) mm, (26, 61, 150) mm and 
(16, 21, 130) mm with intensities of 60 MBq , 30 MBq  and 15 MBq , respectively. In figure 9(c), we plot the 
sources and mark different intensities with different colors: from strongest to weakest: red, green and gray.

In figure 12, we plot the four different detector images, during the algorithm (we omit the graphs of C, since 
they are similar to the ones showed in the previous examples). In the first three images a significant activity exists, 
which corresponds to an additional source. On the fourth detector image (bottom right of figure 12) there is no 
such activity left. Hence, the loop breaks in step 2 of algorithm 1. The algorithm finds three sources at the follow-
ing positions: (20, 41, 127) mm, (15, 22, 127) mm and (24, 63, 149) mm. Again, the mean L2-error is very small 
and equal to 3.2 mm.

Figure 10. Single source: illustrating the steps of algorithm 1 for the single source experiment. (a) Left: initial image d true. Right: 
graph of the functional C  on all detector images in the dictionary with a global maximum corresponds to (20, 43, 133) mm (step 
2.2). (b) Deleting the corresponding information of the first source in algorithm 1 from the initial image d true. Left: the detector 
image, which is received at the step 2.3 with no significant activity left. Right: updated functional C  with no significant global 
maximum.
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3.4. One second exposure of the detector to the sources
In this experiment we repeat the tests described above, but this time we expose the detector only for one second. 
60 MBq  is a higher dosage then generally measured in the SLN. Hence, it is utmost important to be able to 
reconstruct the images with a low exposure time. This enables us to use slightly longer exposure times to detect 
weaker radiant sources.

The number of photons detected when exposing the detector to the sources for one second decreases and 
the signal to noise ratio is drastically increased. In figure 13, we plot such images for the source combination 
described in sections 3.1 (left) and 3.2 (right). Although it seems that these images contain very limited data, the 
SLNF is able to extract all source positions with a small L2-error.

In table 2, we show seven different source combinations, with an exposure time of one second resp. 16 s. In 
experiments 1–3 in table 2, we use the same source positions and source intensities described in sections 3.1–3.3. 

In experiments 4 and 5, we present another two source combinations and their successful position detection.
The SLN in the body might be located in such way, that one SLN with a weak intensity is hidden behind 

another one with a higher intensity. We consider this case as a very challenging one. In experiment 6, we consider 
this case in the lab when we locate a weaker source exactly behind a stronger one. In this experiment, the subspace 
u contains two sources at the positions (21, 41, 110) mm and (21, 41, 150) mm with intensities of 60 MBq  and 
30 MBq , respectively. In figure 9(d), we illustrate the position of these sources. Again, the red color represents a 
source with higher intensity and the green color a weaker one. The robustness of the SLNF is again demonstrated 
in this experiment, when the results hold a small L2-error of less than 4 mm. In the case of twin SLN (two SLN 
very close to each other), the SLNF algorithm might detect them as a single source. This should not be a major 
problem, since the medical doctor will take them both out. Finally, we investigate in experiment 7a different  

Figure 11. Illustrating the steps of algorithm 1 for two sources experiment. (a) Left: initial image d true. Right: the functional 
C  evaluated on all detector images in D with a global maximum corresponding to (20, 42, 130) mm (step 2.2). (b) Deleting the 
corresponding information of the first source from the initial image d true. Left: detector image received in step 2.3 with significant 
activity left. Right: updated functional C  in step 2.4, with a global maximum corresponds to (26, 21, 107) mm. (c) Deleting the 
corresponding information of the second source. Left: detector image received in step 2.3 with no significant activity left. Right: 
updated functional C  in step 2.4, with no significant global maximum.
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combinations of three sources. Although it does not find all the sources with one second exposure time, it still 
manages to find all the sources with an exposure time of 16 s with a mean L2-error of 5.3 mm.

Remark 6. If we reduce the dictionary from 30×80×180 mm3 to 30×80×170 mm3 we get a remarkable 
reduction of the error in experiment 3 for 1 s exposure time: the third source is now at (24, 63, 154), which 
reduces the mean error from 9.6 mm to 2.8 mm.

3.5. Error estimation
At last, we compare our choice of the non-symmetrical collimator, shown on the right of figure 6, with 
a symmetric distributed pinhole pattern, shown in figure 3. In figure 14, we compare the L2-error of the two 
collimators for up to three sources (the source combinations are those shown in sections 3.1–3.3). This time 
we expose the sources for different times: 1, 2, 4, 8 and 16 s. The advantage of the non-symmetrical distributed 
pinhole collimator is clear: the accuracy is very high, even for multiple sources with exposure time as low as one 
second. When using the symmetric collimator this is, unfortunately, not the case. In some experiments, especially 
in multiple sources, exposing the detector to the sources through the symmetric collimator for 16 s yields a higher 
L2-error with compare to the non-symmetric collimator for a single second. The comparison was repeated for 
some other source positions and similar results were shown.

Figure 12. Experiment using three sources: the detector images used to find the sources during algorithm 1.

Figure 13. Detector images after exposing the detector for one second to the sources: experiment with one source (left), experiment 
with two sources (right).
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Remark 7. The symmetric collimator without septum walls, shown on the right of figure 6, provides often 
similar results to the non-symmetric collimator. However, In the case when two sources are located behind 
each other, which is very relevant in the detection of sentinel lymph-nodes, only the non-symmetric col-
limator is able to locate both of them. Actually, we discover in the experiment setup shown in figure 9(d) 
(with an exposure time of 16 s), that the symmetric collimator has a high mean L2-error of 18.3 mm and the 
non-symmetric collimator provides a remarkable low error of 2.2 mm. This experiment supports as well the 
superiority of the non-symmetrical collimator.

4. Discussion

We introduce a new approach using a single gamma detector image. The method improves accuracy 
and reduces the run time dramatically with respect to former methods using, for example, non-linear 
optimization. Using a single gamma detector image, can be a drawback, especially when two sources are 
located very close and exactly behind each other. In our experiments, the method had difficulties when two 
sources are under 20 mm away from each other in depth, but share the same horizontal and vertical values. 
In this situation, the methods show a single source, which is positioned exactly between the sources. The 
medical doctor will remove all lymph nodes around the detected position, and hence, will remove both 
sentinel lymph nodes in this case.

In head and neck melanoma, we may find an intensity which can be at least twenty times smaller than the one we 
used in this paper. Since we used a very short exposure time, we can increase it to more than 20 s to get similar results. 
In addition, we aim to improve our ex vivo experiment into a more realistic model, by adding a hot background.

We use a non-symmetric collimator without septum walls. Although this collimator is not a fully optimal 
design (an other random distribution of pinholes might be marginally more optimal) it proofs itself as a good 
choice. Not only in our optimal design process, but also in our ex vivo experiments it exceeds the symmetric 
designs and gives good results even under low exposure time.

Our device is still limited with regards to the field of view to solely the front of the collimator. However, due 
to the pinholes, we can measure activity of sources on the side of the collimator, but still in the field-of-view of 
the pinholes. This can be improved, by taking in account the whole field of view of all the pinholes and not solely 
the area directly in front of the collimator. Furthermore, a bigger, stationary device, e.g. built-in under the patient 
bed, can increase it further. Alternatively, a surgeon could use it as a portable device to receive live updates of the 
area of interest.

5. Conclusions

We introduce a new approach, the SLNF, for sentinel lymph node detection using a single gamma detector 
image. Furthermore, we show that our new non-symmetric collimator not only improves the accuracy of the 
reconstruction in comparison to the previous one (symmetric), but also enables very short exposure times. In 

Figure 14. Comparison between the mean L2-error for experiments with one, two and three sources: for the non-symmetric 
pinhole collimator, used in this paper and shown on the left of figure 6 and for the symmetric pinhole collimator (with walls), shown 
in figure 3.
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ex vivo experiments the method is able to find the 3D position of multiple Tc-99m sources. SLNF needs only a 
few seconds of computational time to locate the position of the sources and without any pre-processing of the 
gamma detector image.

The results of the algorithm are robust for multiple sources and its reliability is demonstrated. The robustness 
of our approach (also in depth) is a very critical aspect for SLN detection in the head and neck area, where impor-
tant blood vessels and nerves are located.

In the future, we will test our approach on patients, where the radioactive intensity in the sentinel lymph 
nodes might be lower. Further, we will increase the the measurable subspace to the field of view of the pinholes 
instead of solely in front of the collimator. This can ensure that the dictionary will cover all the possible positions 
of the measurement from the detector. Our promising results for one second exposure time and the remarkable 
robustness of our algorithm for different source positions and exposure times are, however, very encouraging.
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Chapter 4

Joint Inverse Medium and Optimal
Control Problem

The main goal of the MIRACLE project is to cut bones with laser light. To improve navigation
and avoid cutting sensitive tissue, it is essential to have an accurate feedback system. The first
approach was made in the work [67], where they were able to reconstruct the bone’s structure
and the ablation’s position in a 2D simulation using only two transducers. They assumed that the
source is precisely known, presupposing, the source’s form and frequency composition. How-
ever, this cannot be assumed. For example, when ablating with an Er:YAG laser, the acoustic
wave may change depending on the kind of tissue and its water content. Hence, we cannot
assume that the form and the generated frequencies are known during the ablation process.

This paper investigates the challenge when the source form and the medium surrounding
the source are unknown. We can reconstruct the medium velocity and the source by solving
the Helmholtz equation with the Adaptive Eigenspace introduced in [63]. Here, we solve the
following inverse problem in a 2D simulation: What are the form of the source and the medium
velocity for the measured acoustic wave?

There is one major limitation. The computation time was too long for the 2D simulation to
be suitable for a real-time application. Furthermore, the number of transducers required is not
feasible, and generalizing everything in 3D space is not realistic.

Publication This following paper [65] was published on the 12th of June 2019 in the PASC ’19:
Proceedings of the Platform for Advanced Scientific Computing Conference. We note that Uri
Nahum (Postdoc) and Carlo Seppi (Ph.D. Student) are shared authors, that the order of these
authors is alphabetical.
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ABSTRACT
Background: Ever since endoscopes were invented, surgeons

try to widen their field of usage by developing novel surgical ap-
proaches. An obvious advantage of the endoscope is the minimal
invasiveness, but this comes at a price of reduced dexterity, loss
of tactile feedback and difficulty in orientation. One of the chal-
lenges is to acquire the data of the neighborhood to find the relative
position of the endoscope to the surrounding tissues.

Methods & Results: In this paper, we present a mathematical
approach to reconstruct unknown source(s) position(s) (e.g. en-
doscope, which produces a signal in different frequencies) and a
medium (e.g. tissue surrounding the endoscope). We solve the joint
Inverse Medium and Optimal Control on the Helmholtz equation,
where both source(s) and medium velocity are unknown. The use
of the Adaptive Eigenspace Inversion (AEI) in combination with fre-
quency stepping, proofs itself to be a good solution. We underline
our claim, with two-dimensional numerical experiments.

Conclusion: The application of this method together with its
promising results can potentially aid to navigate an endoscope
through the body while collecting information on the surrounding
tissue. These results may also find their application in geophysics.

CCS CONCEPTS
•Mathematics of computing→Partial differential equations;
Discrete optimization;Discrete mathematics;Nonlinear equations;
Solvers; Numerical differentiation; • Computing methodologies
→ Optimization algorithms.

KEYWORDS
Inverse medium problem, unknown source term, optimal control,
Helmholtz equation, full waveform inversion, PDE constrained opti-
mization, frequency stepping, multi-parameter problems, Adaptive
Eigenspace Inversion.
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1 INTRODUCTION
Minimally invasive surgery reduces the trauma of patients [20, 25].
Themethod of choice is to insert the endoscopes through small ports
into the body. Multiple methods have been introduced to track the
position of the endoscope [1, 7, 22–24, 35], but it is also important to
know the surrounding tissues, to collect information or to perform
a surgery [29]. Here, we have multiple unknown parameters (the
surrounding tissue and the position of the endoscope) and hence,
we have a joint inverse medium and optimal control problem.

To solve the joint inverse medium and optimal control problem,
a multi-parameter inverse problem must be solved, which has been
a challenging area of research since more than three decades [38].
In recent years, this problem has been addressed extensively in geo-
physics [10, 13, 31, 34, 39], e.g. for exploring gas and oil occurrence
two distinct parameters are crucial: density and bulk-modulus. This
paper deals with a different multi-parameter problem: the two pa-
rameters are the unknown medium (e.g. position and wave velocity
of the tissue) and the position of the source (e.g. wave sources in
the endoscope).

Multi-parameter inverse problems pose various challenges [27]:
(1) Cross-talk – one of the consequences of optimizing sev-

eral parameters simultaneously within the same equation
manifests itself as unwanted artifacts, resulting from the
parameters influencing each other [31]. For instance, when
the gradients are coupled regularization problems can oc-
cur [33].

(2) Ill-posedness – in addition, the multi-parameter inverse prob-
lem is ill-posed [34], i.e. there is no admissible solution, the
solution is not unique or the solution does not depend con-
tinuously on the input data.

Different methods have been introduced to address the multi-para-
meter inverse medium problem. In [34] the full-Newtonmethod and
the data-driven strategy are presented. Here, the expected decrease
is defined in the misfit functional and combined with a separate
Tikhonov (TV) regularization term for each parameter to reduce the
Cross-talk between them. Moreover, for the penalty formulation,
a sparse version of the Gauss-Newton Hessian is used with prior
information of the parameters with respect to the similarity of the
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structures [10, 33]. In addition [39] proposed the use of random
successive sources (hence, multiple right hand sides) to solve the
multi-parameter inversion.

Acoustic waves travel through different tissues with different
velocities. Knowledge of these velocity profiles can assist the clas-
sification of tissue and structure while the medium velocity is re-
constructed. In some cases, the position of the endoscope within
the body is unknown. To improve the navigation through the body,
not only the velocity profile is important but also the position of
the sources. The optimal control problem is then affected by the
medium, and hence the resulting combined optimal and inverse
medium problem must be solved. The Adaptive Eigenspace (AE)
representation of the time-dependent scattering problems, was
proposed by [5, 6] and has been extended to a fix frequency for
electromagnetic inverse medium problems [5]. It was also used
for image processing [28] and strongly relates to nonlinear spec-
tral representation [11]. In [15, 16, 27] the AEI for a single and
multi-parameter inverse medium problems was investigated and
the eigenspace of the TV regularization gradient was used. The
problem was well regularized by slowly increasing the number of
eigenfunctions with the time-frequency.

Several approaches have been introduced, where both medium
and source are unknown, see for example [12, 29, 32, 36]. In a similar
approach to the solution of the multi-parameter inverse problem,
which has been introduced in [16], we solve the inverse medium
and optimal control problems – where we not only reconstruct
the medium velocity (helpful for tissue classification), but also the
form and position of the source(s) using the Adaptive Eigenspace
Inversion (AEI).

2 THE MEDIUM-CONTROL INVERSE
HELMHOLTZ PROBLEM

We begin by introducing the time dependent propagation of a wave
through a medium. This can be described with the acoustic wave
equation

ȳt t (x , t ) − ∇ · (u(x )∇ȳ(x , t )) = f̄ (x , t ) . (1)
Herein, u > 0 represents the squared medium velocity, f̄ resp. f is
the source function, ȳ resp. y the pressure variation – i.e. the wave
field – and ω the time-frequency. Using the Fourier transform of
the time variable, we write

ȳ(x , t ) = y(x )e−iωt and f̄ (x , t ) = f (x )e−iωt . (2)

In our simulation, we use unbounded domains. Hence, we need
artificial boundaries to mimic the unbounded exterior. One possible
approach are perfectly matched layers [4, 17, 37]. Another one is
the use of absorbing boundary conditions [2, 3, 9], e.g. Sommerfeld
boundary condition. In our case, we use the Sommerfeld boundary
condition for the Helmholtz equation:

−ω2y − ∇ · (u∇y) = f , in Ωo = Ω \ ∂Ω,
∂y

∂n
− iky = 0, on Γ = ∂Ω,

(3)

where k(x ) =
ω√
u(x )

is the wave-number at time-frequency ω and

∂y(x )
∂n

B n · ∇y(x )

is the normal derivative, where n denotes the normal on the bound-
ary Γ = ∂Ω.

In the following, we introduce the reduced-space approach [14,
18, 21]. This takes advantage of the adjoint and state variables on
the control variable u and f , by reducing the search space. The
state variable y = [y1 , · · · , yNs ] can be expressed as a function of
the squared medium velocity u and the source(s) f = [f1 , · · · , fNs ]
(where Ns are the number of sources):

yℓ (u, f ) = A(u)−1 fℓ , for ℓ = 1 , · · · , Ns . (4)

Here, A(u) denotes the forward Helmholtz problem operator in
equation (3). By eliminating yℓ the optimization problem for the
reduced-space approach reads

arg min
u,f

F (u, f ) , where F (u, f ) =
1
2

Ns∑
ℓ=1
∥ŷℓ (u, f )∥22 (5)

with
ŷℓ (u, f ) = yℓ (u, f ) − yobsℓ

= PA(u)−1 fℓ − y
obs
ℓ .

The observed pressure variation by the microphones is denoted by
yobs = [yobs1 , · · · , yobsNs

] and P projects the computed pressure vari-
ation yℓ (u, f ) = A(u)−1 fℓ onto the microphones. The regularization
functionals R1(u) and R2(f ) can be added to the misfit functional.

Through the choice of R1(u) and R2(f ), each parameter can
be regularized separately according to a priory information on
each parameter. Sometimes an additional constraint is added to the
optimization [10] to penalize the difference between the structures
of two parameters and thus avoid Cross-talk.

We will apply the Adaptive Eigenspace Inversion (AEI), where
we can omit the regularization functionals R1(u) and R2(f ), by us-
ing the Eigenspace Expansion of u and f (see Sec. 2.1). This will not
only improve the reconstruction but also the stability of the recon-
struction significantly. For the optimization of the medium u and
f , we use the inexact quasi-Newton (Gauss-Newton) method with
the Eisenstat-Walker stopping criteria [18, 26, 27] for the internal
conjugate gradient (CG) iteration.

2.1 Adaptive Eigenspace (AE) Expansion
We apply the AEI from [15, 16, 27] for the Helmholtz inversion to
the joint inverse medium and optimal control problem: in addition
to the unknown squared medium velocity u, the sources f are
unknown as well. Hence, we use the AE of the squared medium
velocity u and of all the sources fℓ for ℓ = 1 , · · · , Ns .

As in [16], instead of using a standard nodal basis, such as Finite
Difference (FD) or Finite Elements (FE) grid-based discretization,
we shall use bases of global eigenfunctions {ϕm }m≥1 and {φℓl }l ≥1
for each parameter, to represent the squared medium velocity u(x )
and the source fℓ (x ) as

u(x ) ≈ uAE (x , β) = u0(x ) +
K1∑
m=1

βm ϕm (x ) ,

fℓ (x ) ≈ f AEℓ (x ,γ ) = f ℓ0 (x ) +
K2∑
l=1

γ ℓl φ
ℓ
l (x ) .

(6)

In [15], the values of K1 and K2 are linearly depend on the time-
frequency ω. This reduces the number of unknowns drastically in
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comparison to the standard nodal basis approach. Further, we use
the eigenspace of the TV regularization gradient

µ(x ) =
1√

|∇u(x )|2+ε2
(7)

for the AEI (ε > 0 is a small value, e.g. ε = 10−6). Hence, the
eigenfunctions ϕm are given by the following eigenspace problem{

−∇ · (µ(x )∇ϕm (x )) = λmϕm (x ), ∀x ∈ Ωo ,

ϕm (x ) = 0, ∀x ∈ Γ .
(8)

Following [15], we set the “background” u0(x) ∈ H1(Ω) as the
eigenfunction of the zero eigenvalue with the boundary condition
u∞ on the exterior of u, namely{

−∇ · (µ(x )∇u0(x )) = 0, ∀x ∈ Ωo ,

u0(x ) = u∞(x ), ∀x ∈ Γ .
(9)

Similarly, we find the eigenfunctions φℓl and the "background" f
ℓ

0 of
the source fℓ , by replacing in equation (7), (8), and (9): ∇u, ∇ϕm (x ),
ϕm (x), ∇u0, u0, and u∞ with ∇fℓ , ∇φℓl (x), φℓl (x), ∇f ℓ0 , f

ℓ
0 , and f ℓ∞,

respectively.

2.2 Adaptive Eigenspace Inversion (AEI)
Algorithm

We transform our optimization problem (5) to account for the AEI
basis. Instead of using the standard nodal basis, we expand u and
f using the AE (see Sec. 2.1). To simplify the algorithm, we only
use a single source f = f1 (hence, f AE = f AE1 , f0 = f 1

0 , φl = φ1
l ,

γl = γ 1
l , and y

obs = yobs1 ). However, it can easily be expanded to
multiple sources. Our new reduced-space objective reads

arg min
β,γ

F

(
uAE (β), f AE (γ )

)
, (10)

where

F

(
uAE (β), f AE (γ )

)
=

1
2

ŷ (
uAE (β), f AE (γ )

)2

2
, (11)

with

ŷ
(
uAE (β), f AE (γ )

)
= y

(
uAE (β), f AE (γ )

)
− yobs

= P
[
A

(
uAE (β)

)]−1
f AE (γ ) − yobs ,

We set the gradient of F
(
uAE (β), f AE (γ )

)
as

∇F =
[
∇βF

∇γ F

]
, (12)

where

∇βF =
[
∇βu

AE (β)
]⊤
∇uAEF

∇γ F =
[
∇γ f

AE (γ )
]⊤
∇f AEF ,

(13)

with

∇uAEF =
©«
∂y

(
uAE , f AE

)
∂uAE

ª®®¬
⊤

P⊤ŷ
(
uAE , f AE

)

∇f AEF =
©«
∂y

(
uAE , f AE

)
∂ f AE

ª®®¬
⊤

P⊤ŷ
(
uAE , f AE

)
=

[
A

(
uAE

)]−⊤
P⊤ŷ

(
uAE , f AE

)
.

(14)

To minimize the objective function (10), we use conjugate quasi-
Newton method, with the Gauss-Newton approximation of the
Hessian [18, 26]. We use the Eisenstat-Walker criteria [8] and the
safeguards of Nash [30] to terminate the inner CG method.

For this, we need the Jacobi-Matrix J , hence equation (12) reads

∇F = J⊤ŷ
(
uAE , f AE

)
(15)

where
J = [Jβ , Jγ ] . (16)

From (13) and (14) we deduce

Jβ = P


∂y

(
uAE , f AE

)
∂uAE

 ∇βu
AE (β)

Jγ = P
[
A

(
uAE

)]−1
∇γ f

AE (γ ) .

Finally, we adapt the inexact Newton algorithm of [16] in Algo-
rithm 1 so that we can apply AEI for the joint problem. We note
that we do not store the the full Jacobi-Matrix, rather all the opera-
tions can be reduced to Matrix-Vector multiplication [18]. This is
essential for the success of the inversion. Further, we use frequency
stepping: starting at ω1 and slowly increase the frequency up to
ωN .

3 CROSS-TALK
Cross-talk between the squaredmedium velocityu and the source(s)
f can cause undesired artifacts. In this section, we visualize the chal-
lenges of Cross-talk, with the help of two numerical examples. To
simplify these examples, we assume that we have Gaussian sources
f̃ (x , x̃ ) = ( f̃1 , · · · , f̃Ns ) with the centers at x̃ = (x̃1 , · · · , x̃Ns )⊤.
Since the form of the sources are known, we can write the reduced-
space approach as follow:

arg min
u, x̃

F (u, f̃ ) , where F (u, f̃ ) =
1
2

Ns∑
ℓ=1

ŷℓ (u, f̃ )
2

2
(17)

with
ŷℓ (u, f̃ ) = yℓ (u, f̃ ) − yobsℓ

= PA(u)−1 f̃ℓ − y
obs
ℓ .

3.1 The Gradients of the Multi-Parameter
Inverse Problem

In the following, we are investigating the reduced-space gradient of
two examples and we do not optimize or reconstruct either example.
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input :
• initial guess for squared medium velocity u
• initial guess for source f

• observed pressure variation yobs

output :
• computed squared medium velocity u and source f

1 for ω ← ω1 , · · · , ωN do
2 // Adaptive Eigenspace Expansion of u and f , see (6);
3 Choose number of eigenfunctions K1 and K2;

4 uAE ← u0 +
K1∑
m=1

βm ϕm ;

5 f AE ← f0 +
K2∑
l=1

γl φl ;

6 // Optimize;
7 while | |∇F ||2< tolerance do
8 Update A

(
uAE

)
;

9 Update Jacobi-Matrix J ;
10 Update ∇F ;

11 // Solve conjugate quasi-Newton (GN);
12 solve J⊤Jp = −∇F for p;
13 // p is divided for updating β and γ ;

14

[
pβ
pγ

]
← p

15 find step-size α using Armijo backtracking;
16 // update β and γ ;
17 β ← β + αpβ ;
18 γ ← γ + αpγ ;

19 // update uAE and f AE with the new β and γ ;

20 uAE ← u0 +
K1∑
m=1

βm ϕm ;

21 f AE ← f0 +
K2∑
l=1

γl φl ;

22 end
23 Update u and f ;
24 u ← uAE ;
25 f ← f AE ;
26 end
27 return u and f ;
Algorithm 1: Adaptive Eigenspace Inversion (AEI) using
Adaptive Eigenspace (AE) Expansion and inexact quasi-
Newton using the Gauss-Newton (GN) approximation of
the Hessian and frequency stepping to solve equation (10).

Similar to (14) the multi-parameter gradients are coupled and are
given in the directions of u and x̃ as

∇uF (u, f̃ ) =
Ns∑
ℓ=1

(
∂yℓ (u, f̃ )
∂u

)⊤
P⊤ŷℓ (u) (18)

and

(19)

∇x̃ ℓF (u, f̃ ) =
(
∇x̃ ℓ f̃ℓ

)⊤
∇f̃ℓ
F (u, f̃ )

=
(
∇x̃ ℓ f̃ℓ

)⊤ (
∂yℓ (u, f̃ )
∂ f̃ℓ

)⊤
P⊤ŷℓ

(
u, f̃

)
=

(
∇x̃ ℓ f̃ℓ

)⊤
[A (u)]−⊤ P⊤ŷℓ

(
u, f̃

)
.

If u and x̃ are set to the true value, the gradients will read

∇uF (u, f̃ ) |u=u true, x̃=x̃ true = 0

∇x̃ ℓF (u, f̃ ) |u=u true, x̃=x̃ true = 0 .

for ℓ = 1 , · · · , Ns . However, the parameters appear in both gra-
dients, hence, a small change in one parameter can influence the
gradient of the other [33]. In our case, it causes a non-zero gradient
for both, even if one of the parameters already equals the true value.

We chose two slightly different examples to illustrate the issue
of coupled gradients for the joint medium-control inverse problem.
Both examples are chosen, such that one parameter is set to the
true value while the other parameter is very close to the true value.
In the first example, we modify the variable u slightly and assume,
that we have a single source f̃ = f̃1 at the true position x̃ = x̃1. In
the second example, we make a small modification to the position x̃
of the source f̃ and fix the parameter u at the true solution. Unlike
when the gradients are independent – zero gradient in the direction
of this parameter and non-zero gradient in the other – our gradient
will be nonzero in both directions. Thus, we show that the squared
medium velocity u and the source f̃ perturb each others gradient.

3.2 Numerical Examples for Cross-talk
Similar to [27], we visualize the Cross-talk between the squared
medium velocity u and the source f̃ . For this, we consider the
following setup for the reduced-space gradient, we use

• a two-dimensional bounded region Ω = [0, 1] × [0, 1],
• a Gaussian source f̃ (x , x̃) = exp

(
−

(x1−x̃1)2+(x2−x̃2)2
2R2

)
cen-

tered at x̃ = (x̃1, x̃2), where x = (x1,x2) ∈ Ω are the horizon-
tal and vertical directions, respectively. Further, we use f̃
instead of f for the Helmholtz equation (3).
• the time-frequency ω = 8,
• and a second order staggered FD method to discretize u and

f̃ onto a 200 × 200 Cartesian grid.

In Fig. 1 we present a two-parameter profile in Ω. The squared
medium velocity u is chosen as a piece-wise constant inside a circle
O centered at x = (0.5, 0.5) with a radius of 0.1 and we set the
true values of the parameter u and the true position of the source
x̃ = (x̃1, x̃2) as follows:

u(x ) =

{
1.2 x ∈ O

1 x ∈ Ω\O
, x̃ = (0.5, 0.8) . (20)

The profile u and the wave initiated by f̃ at x̃ with the time-
frequency ω = 8 are illustrated in Fig. 1.
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Figure 1: The true value of the squared medium velocity u
(left) and the real part of the wave initiated at x̃ = (0.5, 0.8)
propagating through the medium (right).

3.2.1 Example 1: For the initial guess, we slightly perturb the true
value of u inside O by 0.01 but keep the position of f̃ at the true
value:

u(x ) =

{
1.19 x ∈ O

1 x ∈ Ω\O
, x̃ = (0.5, 0.8) (21)

On the left side of Fig. 2 we show the gradients for u and x̃ . We
note that both gradients are non-zero, although the source position
x̃ (and the source f̃ ) are equal to the true value.

3.2.2 Example 2: For the second example, we slightly change the
true position of x̃ :

u(x ) =

{
1.2 x ∈ O

1 x ∈ Ω\O
, x̃ = (0.49, 0.8) , (22)

in particular, we shift the x̃1 position of the source for 0.01 and
keep the vertical position x̃2 and the parameter u unchanged.

On the right side of Fig. 2 we show the gradients for u and x̃ .
Again, both gradients are non-zero although the squared medium
velocity u is set to the true value.

3.2.3 The Reduced Gradient: In both examples, we get a non-zero
gradient for all the parameters, even if we set one parameter to
the optimal value and only perturb the other parameters slightly.
However, a zero gradient at the optimal value of any parameter is
essential for successful optimization.

In both examples shown in Fig. 2, a small modification in one
parameter causes perturbations in the other parameter’s gradient.
This illustrates the Cross-talk between the parameters and the ill-
posedness of the problem. We may have regularization problems
and the gradients with an initial guess close to the true profile may
point in a direction of a false solution.

4 NUMERICAL EXAMPLES
In the following, we show the challenges of the Cross-talk in the
joint inverse medium and optimal control problem. Further, we
propose the AE shown in Sec. 2.1 as a possible solution. We give
three examples: in two examples the form of the source(s) are
unknown, and one when the form of the sources are known.

∇x̃F (u, f̃ ) =
(
−0.197
0.0002

)
∇x̃F (u, f̃ ) =

(
−0.0001
0.7811

)
Figure 2: Reduced gradient F (u, f̃ ) for the profile (20): the
two images visualize ∇uF (u, f̃ ) and beneath them we show
the computed ∇x̃F (u, f̃ ). Left: first example with the initial
guess (21). Right: second example with the initial guess (22).

Figure 3: Top: source f . Bottom: squared medium veloc-
ity u. From left to right: True parameters u and f ; illus-
trating Cross-talk using inexact Newton method; Adaptive
Eigenspace Inversion (AEI) reduces Cross-talk.

4.1 Unknown Form of the Source
On the left side of Fig. 3, we show the target profiles of the source
f (top) and for the squared medium velocity u (bottom). The pa-
rameters u and f are given by

u(x ) =

{
1.5 x ∈ D

1 x ∈ Ω\D
f (x ) =

{
0.4 x ∈ Q

0 x ∈ Ω\Q
, (23)

whereD is a kite shaped object and Q is a square with a side length
of 0.4 centered at (0.45, 0.4). To reconstruct the squared medium
velocity u and the form of the source f , we consider the Helmholtz
equation (3) in the unit square Ω = [0, 1] × [0, 1]. The wave field
y and the control variables u and f are discretized using second
order FD.

We first illustrate the challenges of Cross-talk in the joint in-
verse medium and optimal control problem and apply the AEI to
overcome them.
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4.1.1 Nodal-Basis. To illustrate the challenges of Cross-talk, we
use the nodal basis approach to reconstruct the squared medium
velocity u and the source f . We apply the inexact Newton (quasi-
Newton) method using the Gauss-Newton approximation of the
Hessian and frequency stepping at ω = 8, 10 , · · · , 78, 80.

The reconstructed u and f for the nodal basis approach are
shown in the middle column of Fig. 3. Both shapes of D and Q are
reconstructed, but the values inside the shapes are poorly deduced.
On the bottom – at the reconstructed squared medium velocity u
– we see a trace of the source shaped structure, i.e. an undesired
Cross-talk between the source f and the squared medium velocity
u. The relative L2-error of u, defined by

∥u true − u∥2
∥u true∥2

,

is 6.93%. The from of the source f holds a relative error, defined by
∥ f true − f ∥2
∥ f true∥2

,

of 56.91%.

4.1.2 Adaptive Eigenspace Inversion (AEI). We apply the AEI ap-
proach for multi-parameter inverse problems [16] to tackle the
Cross-talk. This time we use the AE for u and f (see Sec. 2.1) to
solve the previous example. We solve equation (10) and use Al-
gorithm 1 for the same observations as for the nodal basis at the
same time-frequencies. On the right side of Fig. 3 we see, that the
AE reduces Cross-talk and improves reconstruction of the squared
medium velocity u. The results of the AE approach reduces the
relative L2-error of u to 3.03% and f is reduced to 40.17%. Still, the
problem is severely ill-posed and the reconstruction here is not
perfect, but the improvement with respect to the nodal basis is
clear.

4.2 Unknown positions of the Sources
Now, we assume that we have multiple Gaussian sources with un-
known positions. The true squared medium velocity u is composed
of three layers and a kite-shaped obstacle D on the middle layer.
For x = (x1,x2) ∈ Ω we have

u(x ) =



3 x ∈ D

2.5 0.1 < x2 ≤ 0.3
2 0.3 < x2 ≤ 0.5 & x ̸∈ D

1.5 0.5 < x2 ≤ 0.9
1 else

and for the Gaussian sources f̃ = [ f̃1, f̃2, f̃3]. We consider three
sources at the time-frequencies ω = 8, 10 , · · · , 118, 120 initiated in

x̃ true = ©«
0.2, 0.8
0.5, 0.8
0.7, 0.8

ª®¬ ,
see left of Fig. 4. The wave field y and the variables u and f̃ are
discretized with second order FD (200 × 200 equidistant grid for f̃
and y and yobs on a finer non-coupled grid). The initial guess for
u is u = 1 everywhere in Ωo . Further, we assume that u is known
on the boundary Γ (u∞(x ) is known in equation (9)) and since only
the positions but not the form of the sources are unknown, we

just need to provide an initial value for x̃ . For all three sources we
choose the center of the domain:

x̃ = ©«
0.5, 0.5
0.5, 0.5
0.5, 0.5

ª®¬ . (24)

4.2.1 Nodal basis approach. We apply the nodal basis approach
using the inexact Newton (quasi-Newton) method, to solve (17). The
position of one of the sources was converging to a wrong position.
Since this problem is severely ill-posed, a change in the initial guess
can assist in finding the solution. Accordingly, we change the initial
guess of the first source to (0.5, 0.6), instead of (0.5, 0.5):

x̃ = ©«
0.5, 0.6
0.5, 0.5
0.5, 0.5

ª®¬ .
Now, all three sources are found with a small relative L2-error,
defined by

∥x̃ true − x̃ ∥2
∥x̃ true∥2

,

of 0.1%. The squared medium velocity u was reconstructed with a
relative L2-error close to 20%. Artifacts of the sources can be seen in
the reconstruction of the medium velocity. Additionally, the bottom
layer is poorly reconstructed.

4.2.2 Adaptive Eigenspace Inversion (AEI). Similar to (10) and (17)
the reduced-space objective reads

arg min
β, x̃

F

(
uAE (β), f̃ (x̃ )

)
(25)

with

F

(
uAE (β), f̃ (x̃ )

)
=

1
2

Ns∑
ℓ=1

ŷℓ (
uAE (β), f̃ (x̃ )

)2

2
,

for ℓ = 1 , · · · , Ns and Ns = 3 the number of sources. The method
is very similar to the one described in Sec. 2.2, however, we only
apply the AE on u(x ). We define

∇F =
[
∇βF

∇x̃F

]
, (26)

x̃ =

( 0.2, 0.8
0.5, 0.8
0.7, 0.8

)
x̃ =

( 0.2011, 0.7993
0.4991, 0.7997
0.6997, 0.7998

)
x̃ =

( 0.2014, 0.8026
0.5000, 0.8033
0.6991, 0.8031

)

Figure 4: Left to right: the true value of the squaredmedium
velocity u (top) and source positions x̃ of f̃ (bottom); Recon-
structed parameters u (top) and x̃ (bottom) by solving equa-
tion (17); Adaptive Eigenspace Inversion (AEI) to solve equa-
tion (25), thus avoiding Cross-talk.
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where similar to (19) we have

∇x̃ ℓF

(
uAE , f̃

)
=

(
∇x̃ ℓ f̃ℓ

)⊤ [
A

(
uAE

)]−⊤
P⊤ŷℓ

(
uAE , f̃

)
, (27)

and we use

x̃ =
©«
x̃1

...
x̃Ns

ª®®¬ and ∇x̃F =
©«
∇x̃ 1F

(
uAE , f̃1

)
...

∇x̃Ns F
(
uAE , f̃Ns

)
ª®®®®¬
. (28)

With a small modification of Algorithm 1 (increasing the number of
sources and solving (25) instead of (10)), we are able to reconstruct
the parameters u and x̃ using the initial guess (24).

The reconstructed u and x̃ are shown on the right of Fig. 4. We
see, that the position of the sources are reconstructed with the
small relative L2-error of 0.34%. Further, all three layers combined
with the kite-shaped obstacle D are fully reconstructed. The rela-
tive L2-error for u is 6.28%, which is about three times smaller in
comparison with the nodal approach.

4.3 Unknown Form of Multiple Sources
In this example, we have two unknown forms of the sources. Here,
we apply the FE method (the success of the AE is not dependent
in the underlying discretization [15]). First, we reconstruct the
medium and the sources using a linearly increasing number of
eigenfunctions (K1 and K2) dependent in the time-frequency ω.
We tested different number of eigenfunction and show an example
where we have an improvement of the reconstruction using differ-
ent strategy. This shows that further research in the automation of
choosing the number of eigenfunction must be done.

We extend the reduce space approach of (10) to multiple sources:

F

(
uAE (β), f AE (γ )

)
=

1
2

Ns∑
ℓ=1

ŷℓ (
uAE (β), f AE (γ )

)2

2
, (29)

with

ŷℓ

(
uAE (β), f AE (γ )

)
= yℓ

(
uAE (β), f AE (γ )

)
− yobsℓ

= P
[
A

(
uAE (β)

)]−1
f AEℓ (γ ) − yobsℓ .

We have a bounded region on Ω = [0, 1] × [0, 1] and apply the
AE of the squared medium velocity u and the sources f . Here, we
use the FE approach on P1 elements (piece-wise linear continuous
elements). Algorithm 1 is then computed with Freefem [19] as well
as the FE approach of the Helmholtz equation. In this Example, the
values on the boundary Γ = ∂Ω are known and the microphones are
placed on it. Hence, u = u∞ and yobs = (yobs1 , · · · , yobsNs

) is defined
on Γ = ∂Ω.

On the top of Fig. 5 we have the true parameters of u and
f = (f1, f2). The true squared medium velocity u has a layer L
and on it an ellipse E. The two squares sources (S1 and S2) are
centered at (0.75, 0.75) and (0.35, 0.75) with a side length of 0.2.
Hence, the parameters u and f are given by

u(x ) =


3
2 x ∈ L

2 x ∈ E

1 else
, f1(x ) =

{
1
2 x ∈ S1
0 else

, f2(x ) =

{
1 x ∈ S2
0 else

.

Figure 5: Left to right: squared medium velocity u, source
f1 and source f2. From top to bottom: True parameters of u
and f = (f1, f2); reconstruction using AEI with K1 = K2 = ω;
reconstruction with K1 = ω and K2 = 10.

4.3.1 Adaptive Eigenspace Inversion (AEI). With a small modifica-
tion of Algorithm 1, we solve (10) for multiple sources using (29).
We computed the algorithm on an Intel(R) Xeon(R) CPU E5-2680
v4 @ 2.40GHz CPU with the initial guess u = 1 and f = 0 with
frequency stepping atω = 8, 10 , · · · , 48, 50 on a grid with 101×101
points.

First, we solve the AEI with linear dependency of the eigenfunc-
tions

K1 = ω and K2 = ω ,

similar to [15, 16]. We get a good reconstruction for the squared
medium velocity u, with a relative L2-error of 7.92% (Fig. 6), but the
amplitude of the sources are poorly deduce (see middle of Fig.5). The
relative error of the sources f1 and f2 are 64% and 70%, respectively
(see Fig. 6).

We can improve the reconstruction of the sources f by choosing
a constant number of eigenfunction for the sources (see last row of
Fig. 5):

K1 = ω and K2 = 10 .
The relative L2-error of the squared medium velocity increased
slightly, with 8.82%. However, the relative L2-error of the sources
improved drastically: f1 and f2 have an error of 31% and 34%, respec-
tively. In addition, we save computational cost for the AE approach,
as we compute less eigenfunctions at each time-frequency (see
Fig. 6).

Here we see, that the choice of the number of eigenfunctions
is critical for the success of the reconstruction. Further, we note
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Figure 6: Comparison of different numbers of eigen-
functions (K1 for u, K2 for f1 and f2) in the Adaptive
Eigenspace (AE) expansion. From top to bottom: relative L2-
error ofu, f1 and f2. Computation time for theAEExpansion
of the squared medium velocity u and the sources f = (f1, f2)
for each time-frequency ω.

that finding an optimal number of eigenfunctions will improve the
results. This may save computational time by computing a smaller
number of eigenfunctions and by reducing dramatically the search
space of the optimization.

5 CONCLUSION & DISCUSSION
We show in this paper the challenges that Cross-talk and ill-posedness
bring in to the Helmholtz inversion when the source(s) f and the
squared medium velocity u are unknown. Further, we apply the
Adaptive Eigenspace Inversion (AEI) method for the joint inverse
medium and optimal control problem and show in numerical exper-
iments that this method can reduce these challenges. Although

we have an improvement of the Cross-talk with the Adaptive
Eigenspace (AE) in comparison to the nodal presentation, the joint
inverse medium and optimal control problem is severely ill-posed
and a small change in the parameters might change the solution.
Hence, an extended investigation for the optimal number of basis
functions in the AE and further parameters has to be done.

We believe that this AEI approach will not only be a valuable
contribution in medical applications, but also in geophysics. In the
future, we plan to parallelize the Helmholtz inversion and inves-
tigate the challenges of Cross-talk on large scale modules and in
three space dimensions. Further, we would like to attach several
acoustic sources to an endoscope, and use this approach to collect
information of its surrounding tissues and finding its exact position
in the body.
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Chapter 5

Bone Ablation Depth Estimation from
Er:YAG Laser-generated Acoustic
Waves

The previous approach to reconstructing the bone with the acoustic wave using the FE method
was too slow and not applicable for a real-time simulation. In addition, there are many unknown
factors, and therefore we could not confirm our results (resp. the correctness of our forward
problem simulation) in an ex-vivo experiment. Therefore, we simplify the problem and reduce
the unknown factors as much as possible. In previous work, they could differentiate the different
tissue being ablated [45]. We investigate the viability of predicting the depth of a cut in a bone
resulting from the ablation process. In [14], they found that the ablation process is non-linear, so
counting the number of ablations to predict the depth is insufficient. We analyze the prediction
of the depth of the laser cut using the acoustic wave created during the ablation process with the
help of a NN. We conclude that depth information is indeed embedded in the acoustic wave.

Publication The following paper [78] was published on the 30th of November 2022 in the
IEEE Access Journal.
GitHub code: https://gitlab.com/cian.unibas.ch/ablaiton-depth-estimation
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ABSTRACT Using a laser for cutting bones instead of the traditional saws improves a patient’s healing
process. Additionally, the laser has the potential to reduce the collateral damage to the surrounding tissue
if appropriately applied. This can be achieved by building additional sensing elements besides the laser
itself into an endoscope. To this end, we use a microsecond pulsed Erbium-doped Yttrium Aluminium
Garnet (Er:YAG) laser to cut bones. During ablation, each pulse emits an acoustic shockwave that is captured
by an air-coupled transducer. In our research, we use the data from these acoustic waves to predict the depth
of the cut during the ablation process. We use a Neural Network (NN) to estimate the depth, where we use
one or multiple consecutive measurements of acoustic waves. The NN outperforms the base-line method
that assumes a constant ablation rate with each pulse to predict the depth. The results are evaluated and
compared against the ground-truth depth measurements fromOptical Coherence Tomography (OCT) images
that measure the depth in real-time during the ablation process.

INDEX TERMS Acoustic feedback, depth control, laser ablation, neural network.

I. INTRODUCTION
Reducing the trauma of a patient during surgical procedures is
paramount in improving the post-surgical standard of living.
Consequently, minimally invasive alternatives to common
interventions are a highly researched topic [1], [2]. One
line of inquiry is the replacement of mechanical tools with
laser-based ablation [3], [4], [5], [6], [7].

When the tissue is exposed to microsecond pulsed Er:YAG
laser light, the water in the tissue heats up, vaporizes, and the
expansion causes micro-explosions that ablate a small part
of the tissue [8]. This process emits an acoustic wave that is
captured by a transducer [9].

The associate editor coordinating the review of this manuscript and

approving it for publication was Ahsan Khandoker .

In contrast to classical mechanical cutting tools, laser abla-
tion does not provide direct haptic feedback on the progress
of the cut to the surgeon. Furthermore, the laser system
occludes the cutting location and impedes visual inspection.
With the development of new tools that assist the surgeon in
monitoring the depth of the cut, damaging sensitive tissue can
be avoided.

A classical method to measure the cutting depth would
be using an OCT [10], [11], [12], [13]. However, it can
be challenging to integrate an OCT in combination with an
Er:YAG laser for minimally invasive surgery. To this end,
we propose an acoustic depth measurement technique that
uses the acoustic wave created during the ablation process
to determine the depth of the cut.

When the location of the ablation source is known, the
depth of the cut can be estimated via various approaches. One
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approach is to triangulate the source [14], [15], [16]. How-
ever, this approach requires multiple transducers to determine
the source location. A different approach uses acoustic waves
in a 2D simulation to detect the source position using just two
transducers [17]. The main limitation of this approach is that
the exact acoustic wave generator (form and the frequency
composition of the source) has to be known. In another 2D
simulation, the source position and its form were recon-
structed in an unknown surrounding [18]. However, many
transducers are required for the reconstruction, making this
approach unsuitable for minimally invasive surgery.

There are several ways to determine the distance between
an acoustic source and the transducer. One option is to
estimate the time-of-flight (ToF). For example, in [19], the
authors used auto-correlation between the transmitted and
echoed signal. In [20], they exploited the phase shift between
transmitting and measured signals. However, in our applica-
tion, the source signal shape is unknown, and the signal may
even change for different depths. In [21] and [22], the authors
showed that the ToF correlates with the signal’s distance and
decay when ablating tissue with an Er:YAG laser and in [23],
they used ToF to estimate the depth of the ablation with a
Neodymium-doped Yttrium Aluminium Garnet (Nd:YAG)
laser. However, the ToF option has a significant drawback.
It requires the distance between the transducer and the bone
surface to be constant, and the medium velocity of the ablated
tissue must be known. As this can not be guaranteed in
our envisioned application of robotic-guided laser osteotomy,
we focus on different approaches to estimate the depth of the
laser cut.

Since the use of Neural Networks [24] is well established
in medical imaging [25], [26], [27], [28], speech, and signal
processing [29], [30], [31], [32], we aim to estimate the
ablation depth by interpreting the signal from one single
air-coupled transducer with a neural network. We compare
two approaches: The CA is used as a base-line approach,
where we assume that the ablation rate per pulse is constant,
and therefore, the depth is proportional to the number of
ablation shots. The second approach uses one or multiple
consecutive measurements of the acoustic waves during the
ablation process. These acoustic waves are then used as input
for an NN to predict the depth of the laser cut.

The goal of this work is to analyze the acoustic wave and
to prove that there is depth information in the acoustic wave
produced during the ablation process of the bone using the
Er:YAG laser. In addition, we can show that one transducer
is sufficient to measure the depth of the laser cut, simplifying
the complexity of the setup in future work.

II. MATERIAL AND SETUP
An Er:YAG laser (Syneron Candela, litetouch LI-FG0001A)
with an energy of 153mJ, a wavelength of 2940 nm,
with a repetition rate of 10Hz, is used for ablating
the bone. The ablation process emits an acoustic wave.
A CaF2 mirror diverts a small percentage of the laser
beam to a PbSe photodiode (PbSe Fixed Gain Detector,

PDA20H, 1500− 4800 nm), to trigger the acoustic measure-
ment. The wideband transducer,1 with a frequency range
of 100− 1000 kHz and a resonant frequency at 650 kHz,
measures acoustic signals with a sample rate of 7.8125MHz.
It is placed at a distance of approximately 5 cm to the bone
surface. The setup is displayed on the left of Fig. 1. We note
that due to the limited acquisition rate of our setup, and the
high repetition rate of the laser, we can only measure the
acoustic wave of every second laser pulse.

A custom-made dichroic filter reflects the wavelength of
the Er:YAG laser and transmits the OCT’s wavelength, there-
fore, integrating the Er:YAG laser into the OCT system in
a co-axial configuration. Consequently, we can monitor the
ablation depth with a long-range Bessel-like beam OCT sys-
tem [33] in real-time. The OCT has an imaging half-range
of 22.21mm in air and a field-of-view of 4.2mm. The OCT
system uses a swept-source laser (Insight Photonic Solution,
Inc., Lafayette, Co, USA), with a scan rate of 104.17 kHz,
a central wavelength of 1288.82 nm, and spectral bandwidth
of 61.5 nm.

We used 13 cow femur bones as ablation material, bought
in a local grocery store. The height of the bone varied between
2.4 cm to 2.9 cm.Muscle, fat, bonemarrow, and tendons were
carefully removed from the hard bone. To avoid dehydration
of the bone, we submerged the samples in water between
experiments.

We conducted our experiment by ablating a maximum of
nine holes in each bone, each reaching a depth of up to
3.5mm. The ablation process was stopped when we noticed
that the cutting depth stagnated, i.e. if the bone started car-
bonizing. Bone carbonizes when insufficient water is in the
tissue; hence, no micro-explosions remove the tissue, and the
laser energy accumulates heating up the tissue. An exemplary
bone is shown on the right of Fig. 1.

Since the frame rate of the OCT is 173.6167Hz and the
repetition rate of the laser is 10Hz, we have a fixed number of
OCT frames between the laser pulses. Therefore, we can align
the OCT frames to the corresponding acoustic waves emitted
during bone ablation. To generate a ground truth depth for
each measured ablation wave, we locate the first pulse of
the ablation in the OCT image stream. Then we labeled the
2443 OCT images by marking the bone’s edge and the cut’s
end (see Fig. 2). We deduced the depth of the cut using the
pixel resolution of the OCT of 10.86µm.

III. METHOD
To assess the performance of our approaches, we divided
our data into three mutually disjoint subgroups: training data,
validation data, and testing data. Each bone was only part of
one of these groups. Five-fold cross-validationwas conducted
to demonstrate the performance of the approach.

We investigated two approaches: (1) the first approach CA
assumes that the ablation rate of the laser is constant, and

1PHYSICAL ACOUSTICS WSα SNAK28
6.9.2022, physicalacoustics.com/content/literature/sensors/Model_WSa.pdf
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FIGURE 1. (Left) the setup of our experiment. Laser light ablates the bone while the air-coupled transducer measures the acoustic wave.
The laser beam gets split at mirror 1, and a small percentage of the laser beam is redirected to the photodiode. The photodiode triggers the
acquisition of the acoustic wave with the transducer (distance to the bone: 5 cm at a 45◦ angle to the ablation). Further, the laser light is
diverted with mirror 2 (a custom-made dichroic filter that reflects the wavelength of the Er:YAG laser and transmits the OCT’s wavelength)
onto the bone for the ablation. At the same time, the OCT measures the depth of the ablation. (Right) an exemplary bone with nine holes
after the ablation process.

FIGURE 2. Exemplary OCT images, where we manually labeled the image after 10, 35, and 60 ablations. These corresponds to the depth of
0.5mm, 1.9mm, and 3.1mm.

therefore when counting the number of shots, it can predict
the depth of the laser cut. The ablation rate is estimated by the
median value of the ablation rate of the training and validation
data, and its performance is evaluated on the testing data.
(2) In the second approach, we use a NN to predict the depth
using the acoustic ablation waves.

A. NEURAL NETWORK (NN)
As the distance between the surface of the bone and the
transducer can vary, all approaches using the ToF to estimate
the cutting depth are of limited use. Furthermore, we wish
to investigate if the depth information of a cut is embedded
in other parts of the acoustic signal (excluding the ToF);

hence, we removed this information by cropping the signal as
follows: First, we identified the maximum absolute value of
the first 500 sample points (the time window of 64µs). Then
we used 1.5 times this value as a noise threshold to remove
the first part of the signal that only contained noise and no
signal from the ablation (see Fig. 3, top left): We removed all
sample points before the absolute value of the acoustic wave
that first exceeded this threshold (see Fig. 3, top right, red dot)
and solely used the window after that point (see Fig. 3, bottom
left). In the final step, we normalized the area of interest of
the acoustic wave w with:

w =
w∗ − w̄
σw

(1)
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where w̄ is the mean value and σw is the standard deviation of
the preprocessed acoustic wave w∗ (see Fig. 3, bottom right).

To reduce over-optimization during training, we applied
non-linear scaling of the wave amplitudes as data augmen-
tation: Each sample point of the acoustic wave w was scaled
by the formula

ŵ = w · (1+ λ · exp[|w|]) (2)

with λ a uniformly distributed random scaling factor.
As an input for the NN, we tried three different variants;

namely, one, five, or ten consecutively measured acoustic
signals as the input to the NN1, NN5, and NN10, respectively.
The Output of the NNs was a single value corresponding to
the depth of the laser cut in [mm] from the latest measurement
from the input.We trained the network using theMean Square
Error Loss (MSELoss):

LMSE (x, y) =
1
NB

NB∑
i=1

(xi − yi)2 (3)

where x = (x1, . . . , xNB ) is the output of the NN and
y = (y1, . . . , yNB ) is the label, that we labeled manually using
the OCT images (see Section II and Fig. 2), and NB is the
batch size.

B. HYPERPARAMETER SEARCH
We use a hyperparameter search [34], [35] approach with five
consecutive acoustic waves to find an initial network with
the following search constraints, as visualized in Table 1.
The input size, which correspond to the number of sample
points, varies between 2000, 3000, . . . , 7000. The numbers
of convolutional and fully connected layers vary between
1 and 9. The parameters of the convolution layers can get the
following values: Each output channel can allocate a value
of 2n, where n varies between n = 1, . . . , 8,, the kernel size
varies between 2 and 5, and the stride is 1 or 2. In addition, the
maxpool kernel is 2 or 3 with a stride of 1 or 2. Batch normal-
ization is applied randomly before any layer, and dropout is
randomly applied to the fully connected layers with a dropout
rate between 0 and 1. The number of neurons of the fully
connected layer is min(2n, outCNN), where n varies between
n = 3, . . . , 11 and outCNN is the number of neurons after the
flattened output of the last convolutional layer. We use the
Adam optimizer with a learning rate of 10−n, where n varies
between n = 2, . . . , 5. The maximum value λ of (2), varies
between 0, 0.1, . . . , 1.

C. IMPLEMENTATION DETAILS
We implemented the network using the PyTorch2 [36] frame-
work and trained the networks on an NVIDIA Tesla V100
DGXS 16 GB. As a result of the hyperparameter search,
a well-performing architecture is shown in Fig. 4, which uses
2000 sample points as the input size, namely a time window
of 256µs, for the NN. It has 5 convolutional layers followed

2May 2022, pytorch.org

TABLE 1. Overview of the parameter used in the hyperparameter search.
Batch normalization is randomly applied before the convolutional and
fully connected layers, and the dropout layers are randomly applied on
the fully connected layers. outCNN is the number of neurons after the
flattened output of the last convolutional layer.

by 8 fully connected layers with 1024 neurons. The Adam
optimizer had a learning rate of 10−3, a batch size ofNB = 32,
and the data augmentation parameter λ in (2) was a random
value between−0.5 and 0.5. In addition, batch normalization
uses a momentum of 0.1 and eps=1e-05, while the maxpool
layer had a padding of 0 with dilation of 1. The Dropout layer
had the parameter inplace=False, and the Linear layers bias
was set to true. The code is published on our GitLab page.3

IV. RESULTS
We evaluated the accuracy of our models through five-fold
cross-validation, which included splitting the data into five
mutually disjoint subsets and omitting one subset during
training for unseen forward passes during testing.

We assumed a constant ablation rate in the first approach
CA. The median error over all the five-fold cross-validation
sets was 0.13mm and the distance B between the 25th per-
centile and the 75th percentile was 0.163mm, as shown in
Table 2. In Fig. 5, we visualize a box plot that shows the
distribution of the deviating distance between the ground
truth value and the output. As shown in Table 2, we see
that the average box length was 0.271mm with an aver-
age median value of −0.024mm. At the interval between
I = [3.25, 3.5]mm the median value was−0.076mm with a
box length of 0.396mm.We note that the number of shots was
counted from the start of the ablation process to determine the
depth of the cut.

In the second approach, we used one, five, or ten consec-
utively measured acoustic waves as the input for the NN.
We trained the network on the training data and used the
best-performing network on the validation data to test the
performance of the testing data. In Table 2, we give a detailed
description of the results. The median error was 0.174mm,
0.130mm, and 0.092mm for NN1, NN5, and NN10, respec-
tively. In the box plots of Fig. 5, we visualize the difference

3https://gitlab.com/cian.unibas.ch/ablaiton-depth-estimation
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FIGURE 3. (Top left) measured acoustic wave with a sample rate of 7.8125MHz. (Top right) multiply the maximum absolute value of
the 500 first sample points (time window of 64µs) by 1.5 (green). Remove all the data before the intersection between the green
line and the acoustic signal from the ablation (redpoint). The 2000 sample points (time window of 256µs) after the red dot are used
for the further processing step (magenta). (Bottom left) the acoustic wave is visualized, where the time-of-flight is removed.
(Bottom right) Normalized acoustic wave in the area of interest, which we use as input for the NN.

FIGURE 4. Detailed description of the neural network (left) and graphical visualization (right). It has 5 convolutional
layers, followed by 8 fully connected layers. We chose a batch size of NB = 32 and used the Adam optimizer. We note,
that k_size represents the kernel size, s is the stride, out_c are the channel out, and out_f are the number output
feature.

between the ground truth value and the label’s output. Here,
the mean length of the boxes B were 0.336mm, 0.253mm,
and 0.200mm for NN1, NN5, and NN10, with a mean median

value of −0.010mm, −0.036mm, and −0.027mm, respec-
tively. The largest errors were located at the interval I (in
the last box plot of each subfigure) with a median value of
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FIGURE 5. The box plots visualize the difference between the output and ground truth depth. CA is the method where we assume a constant
ablation rate. NN1, NN5, and NN10 are the NN approaches with one, five, or ten consecutive acoustic measurements, respectively. NN5s and
NN5h use five consecutive acoustic measurements as input. NN5s data do not exceed the depth of 2.8mm, and NN5h uses some label
augmentation. Each value on the x-axis corresponds to an interval, e.g., 0.25mm represents the interval between 0 and 0.25mm.

−0.407mm, −0.332mm, and −0.222mm. The box length
B was 0.349mm, 0.275mm, and 0.218mm for NN1, NN5,
and NN10, respectively.

V. DISCUSSION
We compared two approaches: CA, which assumes a linear
estimation of the depth and a NN with either one (NN1),
five (NN5), or ten (NN10) consecutively measured acoustic
waves as an input. In the box plots in Fig. 5, we observed
that CA has fewer outliers than the NNs. The median value
is close to 0 for all intervals, and even within the interval I
(DistanceI ), the median value was close to 0. The NNs had
more outliers, and the median value between the distance of
the output and the ground truth depth shifts into the negative
with increasing depth. Hence, it underestimated the depth of
the cut, especially in the interval I, as can be seen in Table 2
and Fig. 5. However, the box length B was smaller for the NN
than the CA for the interval I. We further observed that CA
outperforms the NN1 and had a similar performance to NN5.
The best performing network was NN10.

To further investigate the underestimation of the depth,
we retrained the Network NN5 with data that reaches a max-
imum depth of 2.8mm (NN5s ). We observe in Fig. 5 that
both NN5 and NN5s had a significantly larger error in the
reported interval I and [2.75, 3]mm, respectively. This is also
reflected in Table 2, where the median value at DistanceI
were −0.332mm and −0.278mm, with a box length of
0.275mm and 0.117mm, respectively. Therefore, we assume
that underestimating the depth at the end is due to the lack of
training data.

TABLE 2. In the top row, the error, in the centre row, the mean distance
over all intervals between the estimation and the label from the box-plots
in Fig. 5, and in the bottom row, the distance of the last interval from the
box-plots DistanceI are described. We show the median, 25th percentile
(PCTL), 75th PCTL value, and the distance B, which is the difference
between the 25th and 75th PCTL, of all the testing data from the
cross-validation. CA is the method where we assume a constant ablation
rate. NN1, NN5, and NN10 are the approach with the NN that uses one,
five, or ten consecutive acoustic measurements. NN5s and NN5h use
5 consecutive acoustic signals as input. NN5s data do not exceed 2.8mm
depth, and therefore DistanceI represents the interval 2.75mm− 3mm,
while all the others represent the interval of I = [3.25, 3.5]mm. NN5h
was trained with some label augmentation.

To this end, we retrained the network with label augmen-
tation. Specifically, we added a random value r to the depth
during the training of the network for all depths exceeding
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3mm. The value r is the absolute random number from the
normal distribution N (0, 0.5), with the mean value of 0mm
and the standard deviation of 0.5mm. We augmented the
label as described above, leading to overestimating the depth
during the network training. In Fig. 5 we can see that this
strategy counteracts the general underestimation of the depth
of the network at the last intervals. This is also reflected in
Table 2, where the median value of DistanceI was reduced
from −0.332mm to −0.127mm. However, the box length B
was increased to the value 0.275mm to 0.415mm. Therefore,
augmenting the data improves the median accuracy but pro-
duces a higher output fluctuation.

VI. CONCLUSION
The experiments show that assuming a constant ablation rate
already leads to good depth estimations of the cut by only
counting the number of shots. This assumption, however,
is limited to shallow cuts and does not hold for deep bone
ablations that need a cooling system [37]. These cuts can
reach a depth of up to 3 cm. Moreover, the number of shots
must be maintained for a valid estimation. This is not state-
less, meaning it needs all the information since the beginning
of the ablation to estimate the depth. Therefore, it is not
fail-safe since it may cause loss of depth information in case
the number of the previous ablation gets lost.

It is essential for medical devices to continue working,
even when a power failure occurs and all prior information
is lost. Hence, we opt for a stateless method to ensure a
fail-safe device. In this regard, the proposed approach with
the NN is stateless (almost no prior information of previous
ablations is needed) and, therefore, advantageous as it uses
one or multiple consecutive acoustic waves as an input to
predict the depth of the cut and does not need all information
from the beginning of the ablation. Therefore, it is fail-safe
and can predict the depth after only a few laser pulses. The
NN approach has comparable accuracy but slightly more
outliers due to its statelessness and sensitivity. The perfor-
mance improved with an increasing number of consecutive
acoustic waves used as input. Too many consecutive acoustic
waves are disadvantageous because multiple acoustic waves
are needed to estimate the depth accurately, increasing the
risk of cutting the hole too deep and damaging sensitive tissue
behind the bone.

In this work, we demonstrate the possibility of predicting
the depth of a laser-ablated hole by analyzing the acoustic
shock waves captured by a single transducer. The results
encourage further investigations into the depth estimation
during the laser ablation of tissue using acoustic waves. Our
experiments were performed in a dry environment, and for
future work, we plan depth estimation during a similar setup
in wet conditions. Irrigation during laser ablation allows
deeper cuts yet presents further challenges in combination
with OCT systems. One of the challenges facing the irriga-
tion system is that water accumulates in the hole, distorting
depth measurement. In addition, the debris and water droplets
pollute the OCT’s protective window, reducing the image’s

contrast. An important factor may be the heterogeneity and
the age of the bone influence the ablation process and the
prediction of the depth using acoustic waves, which needs to
be investigated.
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Chapter 6

Discussion and Conclusion

”Life is like riding a bicycle. To keep your balance, you must keep moving.”
– Albert Einstein

The objectives of this PhD thesis can be divided into two parts. In the first part, we reconstructed
Tc99m sources using measurements of γ-rays, and in the second part, we used acoustic waves to
extract information of the surroundings.

6.1 Reconstruction of Tc99m Sources

The first objective was to reconstruct Tc99m sources from a single 2D measurement. One or mul-
tiple Tc99m sources were placed in front of a detector. A multi-pinhole collimator was mounted
between the detector and the sources. The γ-rays were emitted by the Tc99m source and detected
by the detector. From the resulting detector image, the source position was reconstructed.

6.1.1 Contribution

The main contribution of our work [66], was the improvement of the setup and the optimization
of the algorithm from our previous work [79]. In [79] we used a Weighted Projected Gradi-
ent for ℓ1-norm Minimization (WSPGL1) [60] to reconstruct the Tc99m sources. To get a good
reconstruction, a careful segmentation of the detector image and some post-processing of the
reconstruction were needed. This is due to the fact that the forward problem does not take into
account photons penetrating the collimator walls. One of our contributions to this thesis was that
we developed a new algorithm. Our fingerprinting algorithm extracts the most dominant infor-
mation on the detector and assigns it a position in the 3D subspace. Multiple sources are found
when this method is applied recursively, without any pre-processing of the measurement and
post-processing of the reconstruction. In addition, this method has a much lower computational
time and is suitable for real-time implementation.

The second contribution of this work was the design of the collimator. In previous work,
the authors of [69, 79] used a pinhole collimator where each pinhole was in the center of a
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compartment. The main idea was that we could get depth information from a single measure-
ment, as opposed to the parallel collimator, which requires multiple measurements at different
angles to reconstruct the position of the Tc99m source. The advantage of the septum walls is that
they reduce the complexity of the forward problem. Depending on which compartment activ-
ity was measured, it is possible to limit the area of interest where the Tc99m source is located.
This reduces the complexity of the reconstruction. However, such a collimator design has some
drawbacks. One of them is that information is lost due to the septum walls. In a regular pinhole
pattern, there is no additional information from multiple holes due to the effect of symmetries,
or even worse, it can lead to a reconstruction of positions that do not exist. In [66], discussed in
Chapter 3, we addressed these challenges. The first step was to remove the septum walls, hence,
increasing the complexity of the forward and inverse problem. This increased the computational
time of the WSPGL1 algorithm. However, with our new fingerprinting algorithm, it was still
feasible in an efficient way. To further improve the reconstruction, we created a new collima-
tor design. We applied the algorithm described in [31] to find new pinhole distributions on the
collimator and concluded that a random-looking distribution seems to be a good approach. We
confirmed these assumptions in our research, by comparing the regular pinhole collimator with
and without septum walls, and a collimator with a random distribution of pinholes.

6.1.2 Conclusion and Future Work

The results of this thesis are very promising. We were able to speed up the algorithm drastically
and showed in an experimental and theoretical part that a random-like distribution improves the
reconstructions of the Tc99m sources. However, we still face some challenges. We managed to
reconstruct multiple sources, but when two sources were located behind each other, it was still
challenging. If the sources were located very closed behind each other, the fingerprinting algo-
rithm failed to distinguish them. We believe that by measuring the Tc99m sources from two differ-
ent angles, the reconstruction can be improved drastically. Another possibility is that using other
reconstruction methods, e.g. the CG algorithm in a recursive way, can detect if there are two
sources behind each other. With additional constraints and regularization, it might be possible to
reconstruct the shape of the Tc99m source instead of just locating it. Another way to improve the
results is with a better collimator design. To this end, we propose a different approach to finding
the distribution of pinholes on the collimator. Instead of solving the tedious inverse problem to
find the pinhole distributions, we can measure the performance of different collimators just by
solving the forward problem of the algorithm described in [31]. To this end, we propose to use
different distributions and numbers of pinholes and compare their performance. In addition, a
realistic ex-vivo experiment should be designed that resembles the distribution of Tc99m in the
SLN of a patient.

6.2 Reconstruction using Acoustic Waves

The second objective was to extract information from an acoustic wave. To do so, we first used
a purely mathematical approach, where we solved the Helmholtz equation to extract the shape,
medium velocity, and position of the acoustic source of an area of interest. In the second method,
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we used an experimental approach. Here, we ablated hard bone with an Er:YAG laser, and used
the resulting acoustic waves to predict the depth of the cut using a NN.

6.2.1 Contribution

Previous work [63], showed that the Adaptive Eigenspace method works for reconstructing the
medium velocity of objects using the Helmholtz equation. With the work of [64], the authors
introduced a method, for given basis functions, to reconstruct the bone and the depth of the cut.
This was done in a 2D simulation, and one of the challenges they faced was that the acoustic
wave generator (the ablation point) was not well known. Our contribution of the work in [65],
described in Chapter 4, was to reconstruct the medium velocity and the shape of the acoustic
wave generator (source). We used the Adaptive Eigenspace method, which reduced the number
of unknown parameters during the optimization process. However, the eigenfunction had to be
computed after each iteration, and the number of transducers needed for a good reconstruction
was not applicable in our setup. Another challenge was that the method used in a 3D simulation
dramatically increased the computational cost and time, making it inapplicable for a real-time
feedback system.

Therefore, we took a different approach in [78], described in Chapter 5, where we decided
to focus only on the depth of the laser-cut. During the ablation process of the bone with the
Er:YAG laser, we recorded the acoustic waves, and with the OCT image, the depth of the cut.
We trained our NN using the acoustic measurement as an input to predict the depth of the cut.
Our contribution was that we were able to find a correlation between the depth of the cut and
the acoustic wave using only a single transducer during the ablation of the bone. A trained NN
solves the forward problem (where the input is the acoustic wave and the output is the predicted
depth of the cut) very quickly. Therefore, this approach can be implemented in a real-time matter
during tissue ablation.

6.2.2 Conclusion and Future Work

I believe that real-time reconstruction of the shape of the bone and surrounding tissue dur-
ing bone ablation with an Er:YAG laser by solving the Helmholtz equation with the Adaptive
Eigenspace is not applicable. The required computational resources are too high. In addition,
too many transducers are needed. However, I believe that the method can find another use in
medical applications. One of them is to improve ultrasound imaging. In ultrasound, the wave
generator is well known. Apart from that, the ultrasound image can be a good initial guess for
the reconstruction with the Adaptive Eigenspace method. One of the challenges of this method
is the computational cost. However, these reconstructed images can be used as a post-analysis,
therefore the computational cost is not a limiting factor. Nevertheless, one of the major issues
that still needs to be investigated is whether the forward problem of the Helmholtz equation
holds up in the real world. Therefore, the 3D simulation should first be confirmed in an ex-vivo
experiment before analyzing in which field it can be applied.

Using the NN to predict the depth of cut with the acoustic wave seems very promising and
encourages further research. One of the main advantages is that a trained NN is very efficient
in solving the forward problem. However, a disadvantage is that a lot of training data is needed
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to have a good predictive NN. It needs to be investigated how realistic the ex-vivo experiments
are compared to the in-vivo experiments. However, first the ablation should be performed in a
wet condition to ensure that the acoustic wave correlates with the depth and not with the amount
of water in the tissue. Another advantage of wet ablation is that the bone is not carbonized,
and deep bone ablation is possible. One of the challenges will be to ensure exactly where the
acoustic wave is generated. For example, if the hole is filled with water, then the ablation will
not be at the bottom of the hole. Another approach that needs to be investigated is the position
of the transducer and whether a contact transducer improves accuracy.

6.3 Final Thoughts

In this thesis, we investigated different approaches to solving inverse problems. One of the main
challenges we faced was to find a mathematical model that would hold up in the real world.
For this purpose, the NNs have a great advantage. These models require experimental data to
work efficiently, so it is not necessary to understand the physics and mathematics behind the
experiment to make an accurate prediction. However, this can also be a challenge and even a
disadvantage. If the settings of the experiment change, a NN may suffer from inaccuracy due to
previously unseen data. Therefore, we believe it is important to bring together the understanding
of mathematical reconstruction, physical understanding, and the speed and efficiency of the NN.
A closed collaboration between these topics can improve the reconstruction and make it more
robust to unseen circumstances.



Chapter 7

Appendix

”True Beauty shines in many ways, and order is one of them.”
– Friedrich Pukelsheim

Theorem 7.1. The highest known prime number found in 2018 1 is

p = 282 589 933 − 1

(a Mersenne prime number) has the following property

p (mod 5) ≡ 1 .

Proof. Let n = 82 589 933. Hence, we have

p (mod 5) ≡ 2n − 1 ≡ 2n + 4 ≡ 4(2n−2 + 1) ≡ −1(2n−2 + 1)
≡ −1(2n−2 − 4) ≡ −4(2n−4 − 1) ≡ 1(2n−4 − 1)

≡ 2n−4 − 1 ≡ · · · ≡ 2n−4i − 1 ≡ 2n (mod 4) − 1
≡ 21 − 1 ≡ 1 (mod 5)

.

Theorem 7.2. Let A ∈ RN×M be a matrix.

H = ATA =⇒ H is a symmetric matrix .

Proof. Let

A =

a1,1 · · · a1,M
...

. . .
...

aN,1 · · · aN,M

 = [ai,j ]1≤i≤N,1≤j≤M
∈ RN×M .

1June 2022, https://primes.utm.edu/largest.html
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Hence, we have

ATA =


a1,1 · · · · · · · · · aN,1

...
. . . . . . . . .

...
a1,i · · · aj,i · · · aN,i

...
. . . . . . . . .

...
a1,M · · · · · · · · · aN,M





a1,1 · · · a1,j · · · a1,M
...

. . .
...

. . .
...

...
. . . ai,j

. . .
...

...
. . .

...
. . .

...
aN,1 · · · aN,j · · · aN,M


= [âi,j ]1≤i,j≤M

.

Therefore, we can write for a given i, j in 1 ≤ i, j ≤M

[âi,j ] = a1,ia1,j + · · ·+ aj,iai,j + · · ·+ · · ·+ aN,iaN,j

=
N∑

n=1
an,ian,j =

N∑
n=1

an,jan,i

= a1,ja1,i + · · ·+ ai,jaj,i + · · ·+ · · ·+ aN,jaN,i

= [âj,i]

,

hence, it is clear that(
ATA

)T
= [âi,j ]

T
1≤i,j≤M

= [âi,j ]1≤i,j≤M
= [âj,i]1≤i,j≤M

= ATA ,

and therefore H = ATA is a symmetric matrix of the size RM×M .

Lemma 1. Let H = ATA with A ∈ RN×M ,

if H is invertible =⇒ rank(A) = M ≤ N

Proof. It is clear, that H ∈ RM×M and therefore, if H is invertible, we know that

rank(H) = M .

Hence, we get

M = rank(H) = rank(ATA) ≤ min(rank(AT ), rank(A)) ≤ min(N,M) .

This equation is only true, if M ≤ N , and therefore we have

rank(A) = rank(AT ) = M .

Theorem 7.3. Let H = ATA with A ∈ RN×M ,

if H is invertible ⇒ H is positive-definite
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Proof. We remind the reader that H is positive-definite if and only if

xTHx > 0 ∀x ∈ RM \ {0} .

Since H = ATA we can write

xTHx = xTATAx = (Ax)TAx = ||Ax||22 ≥ 0 .

Case 1, N = M : Hence, we have A ∈ RM×M and with Lemma 1 it follows that

rank(A) = M ,

and therefore, A is invertible. Since A is invertible, we know there exists exactly one
solution for

Ax = 0 ,

hence, x = 0. Therefore we get

xTHx = ||Ax||22 > 0 ∀x ∈ RM \ {0} .

Case 2, N > M : Hence, we have A ∈ RN×M and with Lemma 1 it follows that

rank(A) = M .

Since N > M , we can deduce that the linear system

Ax = y

with M unknowns (x ∈ RM ) has more linear equations, namely N , than unknowns.
Because rank(A) = M , we know that there exists at most one solution x for a given y.
Hence, we can deduce that x = 0 is the only solution for

Ax = 0 .

Therefore we get
xTHx = ||Ax||22 > 0 ∀x ∈ RM \ {0} .

Hence, we proved the theorem with Case 1 and Case 2.

Theorem 7.4. If E is the identity matrix and λ > 0, then

H = ATA+ λE

is positive-definite for all A ∈ RN×M .

Proof. For all x ∈ R \ {0} we have ||x||22 > 0 and therefore we can write

xTHx = xT (ATA+ λE)x = xTATAx+ xTλEx

= (Ax)T (Ax) + λxTx = ||Ax||22 + λ||x||22 ≥ λ||x||22 > 0
,

and hence, H is positive-definite.
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