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외할머니께
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고맙습니다, 한국의 가족과 친구들 그리고 애두와 서희에게.



Summary

Laser is an integral part of diagnostics and therapy in modern medicine.

However, removing hard tissue with laser became successful only re-

cently. The advantages of laser osteotomy are high precision and

complete freedom in designing the cutting geometry. Nevertheless,

these can be fully realized only when the laser system is guided by

a robot. The most important challenges here are the miniaturization

and the ergonomic design of the entire system.

In this dissertation, I presented our first experience with a computer-

assisted, integrated and miniaturized laser system, which is driven by

a surgical robot. An Er:YAG laser source was integrated into a hous-

ing with an optical system and attached to the surgical robot arm.

Pre-operatively generated planning data was imported and used to

execute the osteotomies. Intraoperatively, a navigation system per-

formed the positioning. In the actual operation room environment,

the laser osteotome was used to produce different defect geometries

in the mandibular bones of six minipigs. On the contralateral side

of the mandible, surgeons used a PZE osteotome to create the same

defects for comparison. The performance of the laser osteotome was

analyzed in terms of the workflow, ergonomics, bone healing, user-

friendliness, and safety. We were able to demonstrate that the laser

osteotome could be ergonomically integrated into the operation room

environment. It showed a high precision and the complex cutting ge-

ometries were transferred as planned. We expect that the computer-

assisted and robot-guided laser osteotome will routinely used in the

future, whenever special incision and high precision are required in

osteotomies.



Zusammenfassung

Der Laser ist aus der Diagnostik und der Therapie in der modernen

Medizin nicht mehr wegzudenken. Das Abtragen von Hartgeweben

konnte allerdings erst vor einigen Jahren erfolgreich realisiert wer-

den. Die Vorteile der Laserosteotomie sind die sehr hohe Präzision

und erhöhte Freiheit bei der Gestaltung der Schnittgeometrien. Damit

man diese Eigenschaften auch vollständig ausschöpfen kann, braucht

man ein geeignetes Trägermedium für das Laserosteotom, wie etwa

ein Roboter. Die grösste Herausforderung stellt dabei die ergonomi-

sche Gestaltung des Gesamtsystems dar.

In dieser Dissertation präsentiere ich erste Erfahrungen mit einem

computerassistierten Lasersystem, das von einem chirurgischen Robo-

ter geführt wird. Eine Er:YAG Laserquelle mit der dazugehörigen Op-

tik wurden in ein Gehäuse gebaut, das am Kopf eines Roboters mon-

tiert wurde. Zur Durchführung der Osteotomien wurden präoperative

Planungsdaten importiert. Intraoperativ erfolgte eine Positionskon-

trolle über ein Navigationssystem. Im OP Umfeld wurde das Laseros-

teotom dann genutzt, um unterschiedliche Schnittgeometrien in den

Unterkieferknochen von sechs Minischweinen zu erzeugen. Die Leis-

tungsfähigkeit des Laserosteotoms wurde hinsichtlich Workflow, Er-

gonomie, Knochenheilung, Benutzerfreundlichkeit und Sicherheit ana-

lysiert. Wir konnten zeigen, dass das Laserosteotom ergonomisch sinn-

voll in das OP Umfeld integriert werden kann. Es zeigte eine hohe Ge-

nauigkeit und komplizierten Schnittgeometrien liessen sich nach Plan

übertragen. Wir erwarten, dass das computerassistierte und roboter-

geführte Laserosteotom in der Zukunft immer dann sinnvoll eingesetzt

werden kann, wenn Osteotomien einer besonderen Schnittführung und

hoher Präzision bedürfen.



Contents

Acknowledgements ii

Summary iii

Zusammenfassung iv

Nomenclature vii

1 Introduction 1

1.1 Laser Bone Cutting . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Analyses of Bone Healing . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 3

2.1 Laser in Medicine . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Er:YAG Laser in Bone Surgery and Dentistry . . . . . . . . . . . 5

2.3 Robot-guided Laser Osteotomy

State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Motivation and Questions 12

4 System Integration of the Computer-assisted and Robot-guided

Laser Osteotome 13

4.1 Clinical Applicability of Robot-guided Contact-free Laser Osteotomy

in Cranio-maxillo-facial Surgery: in-vitro Simulation and in-vivo

Surgery in Minipig Mandibles . . . . . . . . . . . . . . . . . . . . 13

4.2 System Development . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 System Integration . . . . . . . . . . . . . . . . . . . . . . . . . . 21

v



CONTENTS

5 Interaction of Laser Light and Bone Tissue 24

5.1 A Comparative Investigation of Bone Surface after Cutting with

Mechanical Tools and Er:YAG Laser . . . . . . . . . . . . . . . . 24

5.2 Intraoperative Findings of Laser Osteotomy . . . . . . . . . . . . 33

5.3 Postoperative Surface Analysis of Bone Cut . . . . . . . . . . . . 34

5.4 Surface Treatment of Conventional Bone Cut—at UniBasel and

NYU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Biologic Response to Er:YAG Laser—Bone Healing after Laser

Osteotomy 42

6.1 Comparing the Bone Healing after Computer-assisted and Robot-

guided Er:YAG Laser Osteotomy and Piezoelectric Osteotomy—a

Pilot Study in Minipig Mandible . . . . . . . . . . . . . . . . . . . 42

6.2 Analysis of Bone Healing—post-op 4 weeks . . . . . . . . . . . . . 53

6.3 Analysis of Bone Healing—post-op 8 weeks . . . . . . . . . . . . . 58

7 Conclusion and Outlook 63

7.1 Contribution of this Thesis . . . . . . . . . . . . . . . . . . . . . . 64

7.2 Understanding Bone Metabolism—SNF Doc. Mobility Fellowship 65

7.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

A Bone Blocks and Cutting Planes 67

References 70

Curriculum Vitae 75

vi



Nomenclature

Abbreviations

CMF surgery cranio-maxillo-facial surgery

CO2 laser carbon dioxide laser

CT computed tomography

cw continuous-wave

Er,Cr:YSGG laser erbium, chromium-doped yttrium scandium gal-

lium garnet laser

Er:YAG laser erbium-doped yttrium aluminium garnet laser

Holmium:YSGG laser holmium-doped yttrium scandium gallium gar-

net laser

Nd:YAG laser neodymium-doped yttrium aluminium garnet

laser

OR operation room

post-op postoperative

pre-op preoperative

PZE osteotome piezoelectric osteotome

SEM scanning electron microscope

vii



Chapter 1

Introduction

Medicine was one of the first fields where laser was applied, since its first realiza-

tion in 1960. Medical laser is now an integral part of routine in various clinical

practices, including dentistry. But in this thesis we have applied laser to a rather

new field, laser bone cutting. The biggest differentiation of laser from conven-

tional osteotomy tools lies in its contact-free ablation. This results in several

advantages which come from the absence of a cutting tip. Neither the material

characteristic of the bone nor the mechanical property of the tip affects the cut,

hence we have absolute freedom over the cutting geometry. With the thin cutting

width of 200 µm (up to 500 µm in vivo), laser enables us to achieve the highest

precision in bone surgery. Cut bone is free from the friction, heat, and the debris

from the tip (and from the bone itself). Therefore, better healing of the bone is

expected.

However, there are many challenges as well to realize laser osteotomy in a

clinical environment. This thesis includes those challenges and shares possible

solutions from our experience. Through this experience, we did not only make

new findings but also learn old school lessons again—which became major con-

tributions of this thesis.

Laser Bone Cutting

We built a computer-assisted and robot-guided laser system dedicated to bone

cutting in Cranio-maxillo-facial (CMF) surgery. Er:YAG (Erbium-doped Yttrium

Aluminium Garnet) laser was the photoablation source. Clinical application was
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clearly aimed from the early stage. Soon we were confronted with the question

how we could consistently reflect this aim to the rapidly evolving system design.

Our first publication tried to answer this question, with the in vitro simulations

and the in vivo preclinical study. It explained how we realized laser bone cutting,

from building up the prototype to applying the computer-laser-robot system to

the mandibles of adult Göttingen minipigs in an actual CMF Operation Room

(OR) setting.

Analyses of Bone Healing

The preclinical study was designed as a comparative surgery on the mandibles of

the Göttingen minipigs, with a piezoelectric (PZE) osteotome and our computer-

laser-robot system. From the second surgical phase of the preclinical study, bone

blocks were taken out of the mandible defects. These blocks were assessed with

Scanning Electron Microscope (SEM) to analyze the cut surface. SEM images

revealed smooth surface characteristics from the bone cut by the PZE osteotome.

On the contrary, the cut surface from laser osteotomy showed different surface

characteristics, which were similar to those of natural bone. Where did this

difference come from, and how would it affect the bone healing? Answers to

these questions were included in our second and third publications. After 4 and

8 weeks, the minipigs were sacrificed and the bone healing was compared with

histology. We could confirm unproblematic healing from both osteotomies, but

there was a tendency to better healing on the laser osteotomy side. Trying to

explain this tendency, laser scanning microscope analysis was added for further

assessments. Combining intraoperative, immediate postoperative (post-op), and

post-op histologic findings, the third publication became convergent analyses of

bone healing after laser osteotomy.

2



Chapter 2

Background

“Let there be light,” and there was light (Genesis 1:3).

Light is said to be the start of world creation, and has been the start of fun-

damental questions of theology, philosophy, art, and science.

It was also the starting point of our research.

Laser in Medicine

Laser is the acronym of Light Amplification by Stimulated Emission of Radiation,

which was first suggested by Albert Einstein in 1917 [1]. Today laser is widely

used in science, engineering, industry (from IT to weapon), and our everyday life

(from the barcode scanner to the speedometer). Also in medicine, laser became

indispensable for diagnosis and treatment in various practices. The first realiza-

tion of laser was done by Maiman in 1960 [2]. The following year, the first laser

application in medicine was published by Zaret et al. in Opthalmology [3]. Two

years later Goldman, Blaney, Kindel, Richfield, & Franke published the effect

of the laser beam on the skin [4]. Opthalmology and Dermatology are still the

leading fields of medical laser use, along with Otolaryngology and Gastroenterol-

ogy (often combined with endoscopes in these practices). But apparently laser

applications have been extended to other medical and research fields as well.

In dentistry, Goldman et al. first published the impact of the laser on dental

caries in 1964. But it was Taylor, Shklar, & Roeber’s publication in 1965 which

applied laser to diverse important tissues dealt in dentistry in vivo [5]. Using
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Figure 2.1: A clinical picture from the experiment of Taylor et al. Tissues of
a hamster 3 days following 35 J radiation of ruby laser to the left mandibular
incisor and the left lateral border of the tongue. (Reprinted with permission
from Reference [5] R. Taylor et al., Copyright 1965 Elsevier Inc.)

Syrian hamsters, they applied a solid state ruby laser to the mandibular incisor,

surrounding gingiva, and the lateral border of the tongue. With a 35 joule and 55

joule radiation from ruby laser, teeth, pulp, tongue, and gingival tissue showed

inflammation and degeneration after 3 and 7 days of healing time (Figure 2.1).

They concluded that the possible use of laser energy presented many problems

and severe degenerative changes. Indeed it took several decades from the study

of Taylor et al. until the laser became a part of dental practice [6]. Even when

the laser was finally brought into the dental clinics, its use had been limited to

soft tissue for a long time [7]. The problem was that the low water content of

hard tissue made it difficult to photoablate. Often the laser beam overheated

and denaturated the surfaces of bones and teeth. As a result, carbonized layer

covered the cut surface, caused inflammation, and inhibited proper healing.

From late 1970s, Horch published several attempts to ablate the bone with

continuous-wave (cw) carbon dioxide (CO2) lasers and concluded that laser os-

teotomy was not feasible [8] [9]. Even with the cooling, ablated bones showed

severe carbonization and serious complications (Figure 2.2). Until the laser tech-

nology was advanced and effective cooling system got established, laser bone

cutting had been considered to be impossible.
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Figure 2.2: A clinical picture from the experiment of Horch HH. Carbonized
bone surface by cw CO2 laser ablation with wavelength λ= 10.6 µm and power
34 W. (Reprinted with permission from Prof. Hans-Florian Zeilhofer)

Er:YAG Laser in Bone Surgery and Dentistry

From the late 1980s several research groups applied laser to hard tissue cutting.

They found pulsed lasers could solve the problem of carbonization that occurred

with continuous-wave lasers. In 1988, Nuss, Fabian, Sarkar, & Puliafito tested

various lasers—cw Neodymium-doped Yttrium Aluminium Garnet (Nd:YAG,

λ = 1.064 µm), cw CO2 (λ = 10.6 µm), Q-switched Nd:YAG (λ = 1.064 µm),

pulsed Holmium-doped Yttrium Scandium Gallium Garnet (Holmium:YSGG, λ

= 2.10 µm), and pulsed Er:YAG (λ = 2.94 µm) laser—to the skull calvaria from

the guinea pig in vitro and concluded that Er:YAG laser was the most appropriate

system for bone cutting [10]. Their conclusion was based on high cutting efficacy

and minimal thermal tissue damage measured with histology. (Here we should

note that they purposely dried the bone sample for Er:YAG lasing, to remove

unbound water and study the ablation effect without it. Nowadays the study

condition is not modified like this.) In 1989, Keller & Hibst applied Er:YAG

laser on 30 extracted human teeth and compared its effect to that of CO2 laser

[11]. Detailed ablation mechanism of Er:YAG laser was still unexplored. How-

ever, reporting minimal heating of the adjacent tissues—“no-melt, no-fused zones

and no cracks”—and only little damage of the dental pulp, they suspected the mi-
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Figure 2.3: Results from the study of Keller & Hibst. SEM view of
the enamel surface after (A) CO2 laser treatment of one pulse with 2 W,
500 ms and (B) Er:YAG laser treatment of ten pulses with 200 mJ each pulse.
(Reprinted with permission from [11] U. Keller et al., Copyright 1989 Alan
R. Liss, Inc.)

croexplosion theory could explain their favorable result of Er:YAG laser ablation

(Figure 2.3).

Many studies followed, using Er:YAG laser in dental handpiece setting. It was

easy to use for the clinicians and convenient to compare with conventional tools.

Following studies were focused on the evaluation of how tissue reacted to laser.

Sasaki, Aoki, Ichinose, & Ishikawa analyzed the ultrastructure of the rat parietal

bone irradiated by Er:YAG laser and CO2 laser, and cut by bur drilling [12]. Us-

ing light microscope, transmission electron microscopy, and electron diffraction

analysis & energy dispersive X-ray spectroscopy, they showed the laser-altered

layer from Er:YAG irradiation was approximately five times thinner than that

from CO2 laser. Compared to the even cut surface from bur drilling, the surface

of the Er:YAG laser cut showed irregular borders. From the minimal change of

the irradiated surface and the lack of the smear layer, they anticipated favorable

start of the healing process with Er:YAG laser cutting. In 1999, Friesen, Cobb,

Rapley, Forgas-Brockman, & Spencer raised questions with Nd:YAG laser and

CO2 laser used in periodontal treatment. Those two lasers had long been used

for gingivitis and periodontitis, but when the disease involved more bone tissue,

they left a charred layer on the bone surface and delayed the healing [13]. That
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Figure 2.4: Results of the Kang et al.’s investigation. Cross-sectional OCT,
top view onto ablated spots by Er,Cr:YSGG laser, and top view onto ablated
line with sequence of 5 pulses of Er,Cr:YSGG laser; under (a) dry, (b) water
layer, (c) perfluorocarbon layer, and (d) water spray ablation. (Reprinted
with permission from Reference [15] H. Kang et al., Copyright 2008 Institute
of Physics and Engineering in Medicine. Reprinted with permission of IOP
Publishing.)

was how Er:YAG laser (in dental handpiece setting) was introduced as a peri-

odontal treatment tool. In 2003, Schwarz et al. published their 2-year clinical

follow-up data, which concluded Er:YAG laser might represent an alternative to

conventional scaling and root planing treatment [14].

Another direction of research was focused on the ablation environment and

the systematic setup to enhance the efficacy of laser bone cutting. In 2008,

Kang, Oh, & Welch investigated the liquid environment of the laser hard tissue

ablation [15]. The idea was to compare energy loss, ablation performance, and

thermal side effects with the attenuation of the laser beam by liquid layer. Using

a conventional Erbium, Chromium-doped Yttrium Scandium Gallium Garnet

(Er,Cr:YSGG) laser system (λ = 2.79 µm) on the fresh bovine tibia in dry and
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different wet environments, they concluded that liquid-assisted ablation could

provide significant beneficial effects—such as augmented material removal, liquid

cooling, and abrasive cleaning effects during laser bone treatments (Figure 2.4).

Er,Cr:YSGG laser is one of the most commonly used lasers in dentistry together

with Er:YAG laser. Similar in their basic design and characteristics, those two

lasers are often misunderstood and confused in the dental laser market. Diaci &

Gaspirc clarified their subtle differences and suggested optimal applications for

each laser [16]. In 2012, Zhang, Zhan, Liu, & Xie moved forward from Kang et

al. and studied the critical water layer thickness to prevent carbonization and

smear layer formation with pulsed CO2 laser [17]. They concluded that there was

a critical thickness of water layer for a given radiant exposure, which was 0.4 mm

with pulsed CO2 laser at 50 J/cm2. They also confirmed that the water layer

actually mediated the interaction of laser with tissue and took an important role

in micro-structure changes.

Wolff et al. applied a navigation control and an automatic power control

to a hand-held Er:YAG laser in an experimental setting [18]. With the target

phantom fixed on the table, the relative position and the orientation of the laser

handpiece was calculated. The laser was set to be automatically switched off

if the end of the laser beam didn’t hit the preoperative planned area. Their

work aimed to improve the accuracy of the hand-held laser system, but at the

same time, it clearly illustrated the problem of this combination—lack of tactile

feedback cancels the advantage of the hand-held instrument and manual guidance

kills laser’s high precision. They could not reach the required accuracy, even with

several fabrications for the experimental setting. However, soon came the time of

the real-time navigation achieving corresponding accuracy to the laser, especially

with the robot-guidance system.

Robot-guided Laser Osteotomy

State of the Art

Until now most of the medical lasers for hard tissue cutting (e.g. dental lasers

from growing market or experimental laser osteotomes from increasing publica-

8



tions) have similar appearances to conventional tools in terms of their usage: be

it handpiece or endoscope, the cutting tip/working end of a conventional tool is

replaced with the laser head and driven by the surgeon’s manipulation. However,

in order to maximize the advantages of laser osteotomy, the laser should be guided

by a robot through a real-time navigation system. Otherwise the benefits of laser

cutting are canceled out, for (one and not the only) example, as the surgeon’s

hand easily decompensates 200 µm of precision.

Robotic laser systems are commonly used in industry but still rare in medicine,

except in Opthalmology. One problem of the robot guided laser system is that,

due to the bulky size of the robot and the laser, it can easily end up with an

unergonomic setup. We could see the situation clearly from the experimental

setup in preceding papers [19] [20] [21]. A good illustration from Burgner, Müller,

Figure 2.5: Diagram from the experiment of Burgner et al. Setup for robot
assisted laser bone ablation. (Reprinted with permission from Reference [20]
J. Burgner et al., Copyright 2010 John Wiley & Sons, Ltd.)

Raczkowsky, & Wörn’s “Ex vivo accuracy evaluation for robot assisted laser bone

ablation” shows a system setup with a prototype pulsed CO2 laser (Figure 2.5)

[20]. They analyzed the bone cutting and the workflow of their system, and

proved high accuracy of the robot assisted laser bone surgery. Henn et al. an-

alyzed plasma spectra from the ablation by robot-guided pulsed CO2 laser to

identify the ablated tissue (Figure 2.6) [21]. They proved an instant spectral

9



Figure 2.6: Diagram from the experiment of Henn et al. Experimental
setup to monitor the cut processing during a robot-assisted laser osteotomy
surgery. (Reprinted with permission from Reference [21] K. Henn et al.,
Copyright 2012 Springer-Verlag London Ltd.)

change when cutting progressed into a different tissue. By combining automatic

control, they hoped their finding could enhance the safety of laser bone ablation.

Apart from the achievement with the robot-guided laser bone cutting, in those

papers we could see that the considerable space around the operation table is

occupied by the laser and its control system. Especially in CMF surgery, the sur-

gical approach is limited and complicated, accordingly often the operation field

is already crowded with surgeons and assistants. Miniaturization of the whole

system is critical. Otherwise even irreplaceable equipment like the surgical micro-

scope would be only very selectively (and reluctantly) used, since it would require

a whole rearrangement around the operation table during the surgery. Including

preparation and cleaning up, it would take up the operation time and the patient

anesthesia time.

In addition, we should remark that many of preceding studies with robot-

guided laser were ex vivo applications. Moreover, the target object was fully

exposed and often fixed to the operation table. A good example would be the

study of Sotsuka et al. where they combined cw ytterbium-doped fiber laser (λ

= 1.07 µm) with a computer-aided design (CAD)/computer-aided manufacturing

(CAM) robotic system [22]. Their in vivo osteotomy of the rabbit radial bone

showed acceptable healing after 3 weeks compared to saw osteotomy, and ex vivo

osteotomy on the cow femur achieved good precision (Figure 2.7). However, we

10



Figure 2.7: Diagram from the experiment of Sotsuka et al. Gross photo-
graph of (A) acute in vivo laser osteotomy on the rabbit radial bone and
(B) fresh ex vivo laser osteotomy on the cow femur. (Reprinted with permis-
sion from Reference [22] Y. Sotsuka et al., Copyright 2013 Springer-Verlag
London.)

can see their experimental setup is still distant from the actual clinical environ-

ment. As they titled, “the dawn of computer-assisted robotic osteotomy with

laser” might have broken, but still more time was needed till the day of robotic

laser systems actually came to the clinic.

11



Chapter 3

Motivation and Questions

We developed a miniaturized computer-assisted and robot-guided laser osteotome.

Our biggest motivation was to deliver our system into clinical environment—

starting from, but not confined to, CMF surgery. Our system consists of;

• integrated miniaturized Er:YAG laser system

• surgical light-weight robotic arm

• computer-assisted pre-operative planning

• intra-operative real-time navigation system

To achieve the goals mentioned above, we had to answer several questions:

1. What are the optimal laser parameters and cooling conditions for bone

cutting?

2. How do we deliver the pre-op planning to the intraoperative environment

and guide the laser to the operation field in a compact way?

3. How shall we integrate the whole system so that it allows simultaneous work

of the surgeon and the laser?

4. How will the bone tissue react to laser?

5. Will laser osteotomy lead to acceptable bone healing?

12



Chapter 4

System Integration of the Computer-assisted and

Robot-guided Laser Osteotome

We built up our laser osteotome in the clinical environment. Serial in vitro studies

drove the computer-laser-robot system from bench to operation-bedside. Our first

publication summarized the system development and integration.

Clinical Applicability of Robot-guided Contact-

free Laser Osteotomy in Cranio-maxillo-facial

Surgery: in-vitro Simulation and in-vivo Surgery

in Minipig Mandibles

In the process of serial studies, intermediate results were presented in several

conferences. Graphical test was presented in a poster at the 9th Bernd-Spiessl

Symposium (BSS), June 2013 in Basel. The experience of the preclinical study

was presented at the 21st International Conference on Oral and Maxillofacial

Surgery (ICOMS), October 2013 in Barcelona. Immediate post-op analysis was

presented at the 28th Annual Reunion of Swiss Society of Oral and Maxillo-Facial

Surgery (SGMKG), November 2013 in Basel.

This paper was published in the British Journal of Oral and Maxillofacial Surgery,

in December 20151.

1The article is available online at http://www.sciencedirect.com/science/article/

pii/S0266435615002788 (last accessed on November 19, 2017).
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Abstract

Laser was being used in medicine soon after its invention. However, it has been possible to excise hard tissue with lasers only recently,
and the Er:YAG laser is now established in the treatment of damaged teeth. Recently experimental studies have investigated its use in bone
surgery, where its major advantages are freedom of cutting geometry and precision. However, these advantages become apparent only when
the system is used with robotic guidance. The main challenge is ergonomic integration of the laser and the robot, otherwise the surgeon’s
space in the operating theatre is obstructed during the procedure. Here we present our first experiences with an integrated, miniaturised laser
system guided by a surgical robot. An Er:YAG laser source and the corresponding optical system were integrated into a composite casing
that was mounted on a surgical robotic arm. The robot-guided laser system was connected to a computer-assisted preoperative planning and
intraoperative navigation system, and the laser osteotome was used in an operating theatre to create defects of different shapes in the mandibles
of 6 minipigs. Similar defects were created on the opposite side with a piezoelectric (PZE) osteotome and a conventional drill guided by a
surgeon. The performance was analysed from the points of view of the workflow, ergonomics, ease of use, and safety features. The integrated
robot-guided laser osteotome can be ergonomically used in the operating theatre. The computer-assisted and robot-guided laser osteotome is
likely to be suitable for clinical use for ostectomies that require considerable accuracy and individual shape.
© 2015 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
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Introduction

Laser-photoablation has been used in medicine since the
development of laser in 1960, and its first medical use was
reported in 1961 in ophthalmology.1 Three years later, the
effects of laser radiation on teeth, pulp, and oral mucosa

1 Both authors equally contributed to this paper.

http://dx.doi.org/10.1016/j.bjoms.2015.07.019
0266-4356/© 2015 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

14



K.-W. Baek et al. / British Journal of Oral and Maxillofacial Surgery 53 (2015) 976–981 977

were reported,2 but because of the low water content of
bone and teeth, it was difficult to photoablate them. How-
ever, the use of lasers in dentistry is now common, and
Er:YAG lasers have been used to treat dental problems.
The first lasers used to cut bone tissue were carbon dioxide
(CO2) gas lasers, which cut well but initially bone healing
was impaired by carbonisation.3–5 This problem was solved
with improvements in laser technology together with more
effective cooling systems. The development of Q-switched
CO2 lasers that could deliver sub-microsecond pulses finally
achieved char-free cutting of bone.6 However, it was with the
advent of solid-state Er:YAG lasers that photoablation of bone
improved considerably. Er:YAG lasers had a more efficient
photoablation rate than conventional lasers, and left almost
no charred layer under experimental conditions.7–9 Despite
all these advances, the use of lasers in osteotomy is still in
the developmental stage. We know of only a few reports of
experimental animal studies, and the clinical application is
limited to oral surgery.10–12

Cutting, drilling, and healing of bone are fundamental
issues in oral and craniomaxillofacial surgery, and many
treatments are based on disuniting, repositioning, and refix-
ing of bony structures in the facial skeleton. Because of the
complex 3-dimensional anatomy and close proximity of vul-
nerable structures, the interventions demand precision and
accuracy. The approach is challenging, as the oral cavity
is one of the most common access routes in the specialty.
To make laser osteotomy clinically applicable, consider-
able downsizing of the whole laser-robot system will be
required.

Miniaturised, computer-assisted, and robot-guided laser
osteotomy would be ideal in craniomaxillofacial surgery. The
fact that laser osteotomy is contact-free minimises mechani-
cal and thermal damage to the bone and preserves vulnerable
tissues nearby. The most challenging aspect is to provide an
appropriate operative system and to find a way to implement
such an integrated system into the operating theatre. Various
technologies have been introduced in medicine, but not all
are used clinically. Even when the surgeon needs them, they
often hinder his routine by obstructing both space and view,
as is the case with the 3-dimensional navigation systems or
laser osteotomy systems that are currently available.13

Here we have analysed our first experience with a new
computer-assisted, robot-guided laser osteotome and illus-
trated its advantages for cutting bone, compared with a
manually operated piezoelectric (PZE) osteotome and con-
ventional drills.

An Er:YAG laser was erected in a miniaturised setting and
mounted on a surgical lightweight robotic arm. Preoperative
imaging enabled accurate surgical planning. Intraoperative
navigation and robotic guidance ensured its correct execu-
tion. The system was initially erected in a dummy operating
theatre to simulate a series of craniomaxillofacial operations.
It was then used in an actual operating theatre for an in vivo
study to create different shapes of defects in one side of the
mandibles of 6 minipigs. Similar defects were created on

the opposite side with a PZE osteotome and conventional
drills, and performance was analysed in terms of workflow,
ergonomics, and safety.

Material and Methods

Laser head

We used the prototype laser head. The laser source is an
Er:YAG laser (wavelength 2940 nm) that is integrated with
an optical system in a compact casing and mounted on a
surgical robot. The Er:YAG laser provides a cutting width
of 500 �m. The tissue being photoablated is permanently
cooled and hydrated by a nozzle system to create a fine sterile
aqueous vapour of sterile sodium chloride.

Surgical robot

A KUKA light-weight-robot (LWR4+, KUKA Robotics,
Augsberg, Germany) was used to position the laser head. This
robot features 7 degrees of freedom and provides a range of
movement up to 170◦ or 120◦. The robot is extremely sensi-
tive because of its integrated sensors, which make it ideal for
force-controlled tasks, and provide increased safety.

System control

The entire robot-guided laser system is integrated with a
computer-assisted preoperative planning and intraoperative
navigation system. A software package developed in house
uses preoperative imaging to define sites and designs of
osteotomies. The navigation system is a key safety feature:
it monitors the position of the laser’s casing with respect to
the target, and converts the preoperative digital data into a
real osteotomy by driving the robot. Referencing was done
through fixed markers and anatomical landmarks with a pas-
sive marker system (Fig. 1).

In vitro dummy operating theatre

To test the ergonomics of the laser system before using it in
vivo, we created a dummy operating theatre. The computer-
assisted, robot-guided laser system was placed at the 3
o’clock position, at the level of the patient’s shoulder. The
instrument table was in its typical place, over the patient’s
chest. A tripod, which carried the infrared camera for the nav-
igation system, was placed at different positions depending
on the surgical site to ensure an unimpeded optical corridor.
All procedures were recorded with photographs and video
for subsequent analyses (Fig. 2).

In vivo operation

We used 6 fully grown female Göttingen minipigs (mean
(SD) age 26 (5) months, mean (SD) weight 49 (3) kg).
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Fig. 1. Diagram of the robot-guided laser osteotome in the minipig experiment: 1=surgeon 1, 2=surgeon 2, 3=robot-guided laser osteotome, 4=laser head,
5=infrared camera, 6= instrument table, 7=main monitor, 8=technician 1, and 9=technician 2.

The operation was done in the Magneten animal facility of
the Biomedical centre in Malmö-Lund University, Sweden,
in accordance with the Swedish Animal Protection Law
and under the ethics approval number M-204-11.3 (Malmö-
Lunds djurförsöks etiska nämnd).

Fig. 2. Intraoral approach to the anterior maxilla in the dummy operating
theatre.

To create an edentulous ridge, the lower 3 premolars and
the first molar (P2, P3, P4, and M1) of each side mandible
were removed under general anaesthesia with ketamine
hydrochloride 500 mg (Ketalar® 50 mg/ml; Pfizer, New York,
NY, USA) and midazolam 15 mg (Dormicum® 5 mg/ml;
Roche, Basel, Switzerland) given intramuscularly. At this
time 2 screws were placed in each side of the mandible to
act as landmarks for intraoperative navigation.

The experimental operations were done 12 weeks later.
Under general anesthesia, 3-dimensional C-arm (Siemens
ARCADIS Orbic 3D, Siemens AG, Germany) data were
acquired for preoperative planning. The minipigs were then
moved to the operating table and the manual osteotomy was
done (control side). The surgeons created different osteotomy
patterns: a saddle defect, 3 straight lines 10 mm long and with
differing widths (minimal, 0.5 mm, and 1 mm), an S-shaped
line, and a cylindrical defect (4.2 mm diameter)—with
a PZE osteotome (PIEZOSURGERY® 3, Mectron s.p.a.,
Carasco, Italy) and standard dental implant motor and
drills (INTRAsurg® 300 plus, KaVo, USA and Straumann®

implant drills, Institute Straumann AG, Switzerland) on the
right of the mandible (Fig. 3). The time taken to create
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Fig. 3. Clinical photograph of piezoelectric osteotomy.
A cylindrical defect, one S-shaped line, 3 straight lines, and a saddle defect
are marked with white arrows (from the posterior to the anterior mandible
of minipig on the right). There is minimal bleeding from the bone.

each defect was recorded. Before the wounds were closed
with absorbable sutures, a bone-chamber-implant (4.2 mm
in diameter and 6 mm long, SLActive® surface, Institute
Straumann AG, Switzerland) was inserted into the cylindrical
defect. While the surgeons were manually operating on the
right side of the mandible, the computer scientists executed
the virtual planning for the laser osteotomy on the left side
of the mandible.

To make the laser osteotomy, the head of the minipig was
immobilised with a custom built device (experimental side).
The minipig was then aseptically draped and the surgical
access created. Based on the 3-dimensional reconstruction of
the mandible, the surgeon did the referencing for the naviga-
tion. The time taken for the 3-dimensional registration and
the mean back-projection error were measured. Using the
navigation system, the surgical robotic arm guided the laser
osteotome to create the osteotomy patterns on the left side of
the mandible (Fig. 4). The time taken to create each defect was
recorded. After insertion of the bone-chamber-implant into
the cylindrical defect, the wound was closed. Postoperative
images were taken before the animals woke up.

Fig. 4. Clinical photograph of laser osteotomy.
A saddle defect, 3 straight lines, one S-shaped line, and the bone chamber
implant in a cylindrical defect are marked with white arrows (from the ante-
rior to the posterior mandible of minipig on the left). There is fresh bleeding
from the bone.

Results

Ergonomic tests under in vitro conditions

We tested the ease with which the anterior and posterior max-
illa and mandible could be approached by the robot-guided
laser osteotome through an intraoral approach in the dummy
operating theatre. The surgeons’ natural position could be
guaranteed and enough space was provided (Fig. 2). Extrao-
ral approaches to the mastoid area and the skull base were also
successfully simulated. Several other functions of the robot
were simulated and tested: manual guidance to a target point,
saving of a starting position and automatic repositioning, and
3-dimensional registration of a target position by navigation.
The actual workflow for the in vivo experiment was based on
these experiences.

Workflow, ergonomics, and safety in vivo

The experiment followed the order: anaesthesia, preoperative
3-dimensional imaging, manual osteotomy, navigated laser
osteotomy, postoperative 3-dimensional imaging, and wak-
ing. There was a steep learning curve for the whole procedure,
as the accuracy of referencing increased and the overall dura-
tion of anaesthesia decreased during the 6 interventions. The
improvement in the 3-dimensional registration accuracy can
be confirmed by the reduction in back-projection error of
the referencing points from 1.5 mm root mean square error
(RMSE) for the first animal to 0.6 mm RMSE for the sixth
animal.

There was no significant difference between the time for
laser osteotomy (mean (SD) 766 (60) seconds) and for man-
ual osteotomy (mean (SD) 734 (295) seconds), but the time
taken for the laser osteotomy tended to decrease faster than
that for the manual osteotomy. Considering that we created
2 cylindrical defects in the fifth animal and 3 in the sixth
animal with laser, the actual decrease of the laser osteotomy
time was more than it appears (Fig. 5).

With the second minipig, we could not make the laser
osteotomy because the robot kept colliding with the body
of the animal during its approach to the oral cavity. Once
the robot detected the collision, it went back to its home
position without enabling the laser system. The second oper-
ation was aborted and the laser head was modified to increase
the distance to the target. This improved the optical path-
way and the overall ergonomic plan, which resulted in a
further reduction in operating time from the third animal
on.

The ergonomic aspects and safety features of robot
guidance were assessed and confirmed under optimal condi-
tions. The computer-assisted, robot-guided laser osteotome
was compact enough to allow 2 surgeons to operate com-
fortably. The previously suggested position of the laser
system opposite the senior surgeon was confirmed as optimal
(Fig. 6).
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Fig. 5. Operating time in the comparative studies of the 6 minipigs.

Discussion

Any new technology becomes accepted only when the
surgeon can use it comfortably. Lasers have been proved to

Fig. 6. Robot-guided laser osteotome functioning. Intraoral approach to
the posterior mandible in the actual operating theatre during the minipig
experiment.

be useful in medicine for a long time but their use in bone
surgery have been investigated only recently. Robot-guided
laser applications are common in industry, but medical lasers
have usually been guided manually not only for preparation
of teeth but also for cutting bone.14–17 Even in studies in
which robot guidance was used, the target of the laser pho-
toablation was fixed and no dynamic adjustment of the beam
position or focusing was made.18,19 The most important
questions that had to be answered before robot-guided laser
systems could be brought into routine clinical use, therefore,
are “How can a laser system be miniaturised to be integrated
interactively into the operating theatre?” and “Where is the
surgeon in this operation?”.

Our computer-assisted, robot-guided laser osteotome tries
to overcome these hurdles and intends to maximise the ben-
efits of laser without hindering the surgeons. In this study
we could see that there was seamless interaction between
the surgeon and the laser system, which improved over
time and experience. Our experiment also showed that the
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robot-guided laser osteotome can be used under various
circumstances in craniomaxillofacial surgery for the conve-
nience of the surgeon. Should the surgeon need to take the
laser osteotome out of the operative field during the proce-
dure, the robot can memorise its current position, put away
the laser, and guide it back to the same position, at any time.
This ensures the actual cooperation of the surgeon and the
robot-guided laser osteotome in the limited space around the
operating table, unlike the previous robot-guided laser device
described by Burgner et al.13

Safety is one of the most important issues, and the KUKA
LWR4+ has several integrated safety features. One of them is
the protection of the patient and the surgeon against a patient’s
unexpected movement. When the robot touches any object in
the surgical field, it automatically stops moving, as it did dur-
ing our second operation. As a consequence of the failure of
the second laser operation, we modified our prototype sys-
tem, which made the subsequent interventions shorter. The
performance improved simultaneously, as we saw from the
reduction in the mean back-projection error.

Future research should be focused on the improvement of
real-time interaction between the laser system and the tar-
get tissue. This has been studied for manually-guided laser
handpieces, and includes coupling the infrared camera to
measure temperature, or using navigated control for auto-
matically power-controlled laser handpiece.16,17 Coupling of
a visible laser such as a helium–neon laser, is also common
for measurement of distance and visual targeting.18,19 More
investigations are also needed to measure the dynamic data of
ablated bone tissue, and for real-time monitoring and control
of the depth of the laser cut. This real-time interaction will
add another important safety feature.
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System Development

Inside a sealed housing, the Er:YAG laser beam was profiled by optical com-

ponents for optimal cutting parameters. In addition to the robot, the profiled

beam was directed by a steering mirror stepwise along the pre-programmed cut-

ting shape for an enhanced precision and a faster beam positioning. The target

tissue was permanently cooled and hydrated by a pulsed two twin-fluid nozzle

array with external liquid mixture. Tables 4.1 and 4.2 show the laser and nozzle

specifications, respectively.

Specification Values
Wavelength 2.94 µm
Pulse Energy up to 150− 500 mJ
Pulse Rate up to 5− 35 Hz

Table 4.1: System specifications of the flash lamp pumped Er:YAG laser

Specification Values
Spray Angle (in respect to laser beam) 18°
Free Jet Spray Angle 20− 25°
Water Volume Flow 0.5− 15 ml/min
Gas Volume Flow 25 l/min @ 2 bar

Table 4.2: Specifications for twin-fluid nozzle array

By incidence during the preclinical study, we verified the safety feature of

the KUKA LWR4+. Detailed properties of the LWR4+ robot are provided in

Table 4.3. Accurate navigation system was a key safety feature of our system.

It monitored the position of the laser housing with respect to the target and

converted the pre-op digital data into a real osteotomy line, by guiding the robot

and the steering mirror to the target. The navigation system is entirely developed

in house and the main hardware components are listed in Table 4.4. More detailed

explanation can be found in the publication of Schneider, Pezold, Baek, Marinov,

& Cattin [23].
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Mechanical Parameter Values
Degrees of freedom 7 rotating joints
Weight Approx. 16 kg
Payload 7 kg
Reach 1178 mm (stretched) to 790 mm (90° bent)
Joint ranges ± 170◦ or ± 120◦ (Joint dependent)
Repeatability ± 0.05 mm

Table 4.3: Mechanical properties of the KUKA LWR4+

Specification Main hardware components
Tracker Axios CamBarB2 SN: B2-015
Pointer Tool NDI
Laser head Marker NDI
Target Marker CAScination

Table 4.4: Summary of the navigation system

System Integration

The computer-robot-laser system was adapted to the ergonomic configuration.

Figure 4.1 shows the graphical tests we ran for the intraoral approach to dif-

ferent jaw areas—for corresponding representative operations in CMF surgery.

Test results were realized and amended in a dummy OR setting, until finalized

as in Figure 1 of our first publication in the Section 4.1 (page 16). The final

configuration was confirmed with the fresh pig cadaver head. CT images were

acquired to plan the site, approach, and design of the osteotomy (Figure 4.2).

Based on the pre-operative planning, the actual osteotomy was executed on the

mandible of the cadaver head in a dummy OR environment (Figure 4.3). Testing

the navigation system was the essential step before the preclinical study. Using

anatomical landmarks as referencing points, the registration was performed by

fitting two 3D point sets [24]. Through these preliminary studies, all aspects of

the system were re-analyzed and prepared for the first in vivo study.

With the in vivo study we could confirm the successful system integration.

By the operation time and anesthesia time, we proved that our laser osteotomy

system was competitive and compatible with the conventional osteotomy. Figure
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Figure 4.1: Graphic simulation of the robot-guided laser osteotome for the
intraoral approach to different jaw bone regions.

Figure 4.2: Frontal CT image of
the pig cadaver head showing the
planned intraoral approach to the
posterior mandible.

Figure 4.3: Intraoral approach to
the posterior mandible of the pig
cadaver head.

5 of the publication (page 18) summarized our result, except that the actual

decrease of the laser osteotomy time is bigger than shown in the graph. Figures 5.1

and 5.2 show the laser osteotomy side of the 5th and 6th animal, where we created
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Figure 4.4: Surgeons performing
3-dimensional registration for the
intra-operative navigation. Figure 4.5: Robot-guided laser

osteotome in function in CMF OR
setup.

more cylindrical defects.

Figures 4.4 and 4.5 display the actual OR setup as a result of aforementioned

preliminary studies. As shown in Figure 6 of the publication (page 18), the laser

system worked together with the main surgeon and the assistant surgeon in the

operation field. There was enough room around the operation table, whether

the laser was at the home position (Figure 4.4) or in function (Figure 6 of the

publication [page 18]). During the laser was operating, the surgeons could confirm

the operation either by direct observation (Figure 6 of the publication [page 18])

or via the main monitor (Figures 4.5). The navigated robot system successfully

finished its first preclinical study and now it was our turn to analyze the result.
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Chapter 5

Interaction of Laser Light and Bone Tissue

We chose the minipig as an animal model. Their bone anatomy, metabolism,

healing, and remodeling after reaching adulthood are known to be similar to

those of humans. Pigs have been one of the major animals used in translational

research and surgical models [25]. Especially in CMF surgery, strong similarity

of the mandibular blood supply between Göttingen minipigs and humans was

proven in 2002 by Saka, Wree, Anders, & Gundlach [26]. Our second publication

reported the bone tissue reaction to Er:YAG laser light in the minipig mandible,

which could be readily, if cautiously, applied to the human jaw bone.

A Comparative Investigation of Bone Surface af-

ter Cutting with Mechanical Tools and Er:YAG

Laser

Key topics of this paper were post-op cut surface analysis and the smear layer on

the bone surface. Our hypothesis was that the different surface characteristics,

from laser osteotomy and mechanical osteotomy, yielded to different bleeding

patterns and would subsequently result in different bone healing patterns. As a

conclusion of comparative analyses of SEM images, we anticipated favorable bone

healing after laser osteotomy and opened the question to upcoming paper with

histologic analysis.

With the SEM results as the main findings, intermediate results of histology
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was presented at the 10th Bernd-Spiessl Symposium (BSS), June 2014 in Basel,

and awarded as the best presentation. The computer-robot-laser system was pre-

sented from the surgeon’s point of view at the 28th International Congress and

Exhibition for Computer Assisted Radiology and Surgery (CARS), June 2014 in

Fukuoka. The development and integration of the whole system was introduced

to Korean CMF surgeons at the 53rd Congress of Korean Association of Maxillo-

facial Plastic and Reconstructive Surgery (KAMPRS), October 2014 in Seoul.

The paper was published in Lasers in Surgery and Medicine, in May 20151.

1The article is available online at http://onlinelibrary.wiley.com/doi/10.1002/lsm.

22352/full (last accessed on November 19, 2017).
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Background and Objectives: Despite of the long
history of medical application, laser ablation of
bone tissue became successful only recently. Laser
bone cutting is proven to have higher accuracy and to
increase bone healing compared to conventional me-
chanical bone cutting. But the reason of subsequent
better healing is not biologically explained yet. In this
study we present our experience with an integrated
miniaturized laser system mounted on a surgical
lightweight robotic arm.
Study Design/Materials and Methods: An Erbium-
doped Yttrium Aluminium Garnet (Er:YAG) laser and a
piezoelectric (PZE) osteotome were used for comparison. In
six grown up female G€ottingen minipigs, comparative
surgical interventions were done on the edentulous man-
dibular ridge. Our laser systemwas used to create different
shapesofbonedefects onthe left sideof themandible.Onthe
contralateral side, similar bonedefectswere created byPZE
osteotome. Small bone samples were harvested to compare
the immediate post-operative cut surface.
Results: The analysis of the cut surface of the laser
osteotomy and conventional mechanical osteotomy re-
vealed an essential difference. The scanning electron
microscopy (SEM) analysis showed biologically open cut
surfaces from the laser osteotomy. The samples from PZE
osteotomy showed a flattened tissue structure over the cut
surface, resembling the “smear layer” from tooth
preparation.
Conclusions: We concluded that our new finding
with the mechanical osteotomy suggests a biological
explanation to the expected difference in subsequent
bone healing. Our hypothesis is that the difference of
surface characteristic yields to different bleeding
pattern and subsequently results in different bone
healing. The analyses of bone healing will support our
hypothesis. Lasers Surg. Med. 47:426–432, 2015.
� 2015 Wiley Periodicals, Inc.

Key words: Bone surface analysis; Er:YAG laser; laser
osteotomy; mechanical osteotomy; SEM

INTRODUCTION

Bone cutting is one of the oldest medical procedures
performed to human. Owing to the high mineral contents
of bone, we have archaeological evidence of skull trepana-
tion, which dates back to 6,500 BC [1]. The oldest
remaining instruments for bone surgery date back to the
Roman era [2]. In the 18th century surgery became its own
discipline inmedicine, and surgical instruments developed
rapidly with the advancement of technology and the
invention of new materials. But the fundamental mecha-
nism of bone cutting has not much changed from the
instruments of the Roman age. Surgeons put mechanical
stress onto the bone surface using various instruments—
electric or pneumatic saw, drill, chisel and hammer—until
it exceeds the surface hardness of bone so that the
instrument breaks into the bone. The latest technology
enables selective hard tissue cuttingwith new bone cutting
instrument such as the piezoelectric (PZE) osteotome. Its
biggest strength lies in the safety, as the adjacent soft
tissue damage is reduced [3]. This is why the PZE
osteotome has been extensively applied in the oral and
cranio-maxillofacial (CMF) area, where important neuro-
vascular structures are closely located to the facial
bones [4,5]. But the PZE osteotome is another mechanical
cutting tool with its cutting tip in direct contact with the
bone. This means the PZE osteotome shares the same
limitations of the aforementioned instruments: stuck
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cutting tip into bone during the osteotomy, broken cutting
tip, and limited cutting geometry. Recently, laser has
been applied to osteotomy as it is expected to solve the
aforementioned problems fundamentally by its non-contact
feature. Erbium-doped Yttrium Aluminium Garnet (Er:
YAG) laser has shown to be effective in bone cutting, and
their application with robot guidance is actively studied in
CMF surgery to maximize its advantages [6].
Bone healing has been a topic of great importance in

medicine, especially in surgery. The oldest record of
fracture and bone healing dates back to 2,500–3,000
BC [7]. Ever since then, the repositioning and fixating of
the bone has been the base of many treatment concepts in
bone surgery. CMF surgery specifically demands precise
osteotomy and predictable bone healing, because of the
complex three-dimensional anatomy and the close proxim-
ity of important neurovascular structures in the viscer-
ocranium. Adequate bone healing without side effect is the
goal of treatment and the barometer of prognosis. New
treatment concepts and new devices are often evaluated
based on the resultant bone healing of critical defects on
the skull bone [5,8] or of long bones [9–11] in different
animals. But few studies evaluate fresh bone cut surface
after osteotomy, while the surface characteristic of enamel
and dentine after teeth preparation has been a key topic in
dentistry [12–15]. In this study we present the immediate
post-operative result of our first experience with a new
laser osteotome and analyze it in comparison to a PZE
osteotome.
We performed osteotomies on the mandibles of mature

female minipigs, with a new computer assisted and robot-
guided laser osteotome and a PZE osteotome. An Er:YAG
laser head was mounted on a medical lightweight robotic
arm. The osteotomy was planned according to the pre-
operative medical imaging and executed by the robotic
guidance using the intra-operative navigation system. The
computer assisted and robot-guided laser osteotome was
used in an operation room (OR) environment to create
different shapes of defects on themandibles of sixminipigs.
Similar defects were created on the contralateral sides by a
manually guided PZE osteotome and a conventional drill.
The intra-operative findings were recorded and cut out
bone pieces were evaluated post-operatively. With scan-
ning electron microscope (SEM) we could observe charac-
teristic surface changes of the bone after mechanical
osteotomy. This article introduces new findings in in-vivo
osteotomies. Through this we hope to better understand
the bone healing process after laser osteotomy and possibly
learn from dentistry how to accelerate it.

MATERIALS AND METHODS

Animals

Six grown up female G€ottingen minipigs (mean age 25.5
months, mean weight 48.7 kg) were used in this study. The
animals were housed in cots in groups of three, under
controlled environmental conditions. Throughout the
duration of the experiment, they were fed soft diet and
water. The surgical procedure of this study was performed

in theMagneten animal facility of the Biomedical centre in
Malm€o-Lund University, Sweden. All procedures were in
accordance with the Swedish Animal Protection Law and
under the ethical approval number M-204-11.3 (Malm€o-
Lunds djurf€ors€oks etiska n€amnd).

Study Design

The study was carried out in two surgical phases. In the
first phase, the premolars and first molar on both sides of
the mandible were extracted to create edentulous ridges.
After 12 weeks of healing, planned osteotomy patterns
were created on the edentulous mandibular ridges, one
side with PZE osteotome and the other side with laser
osteotome.

Surgical Procedure

All surgeries were performed under full narcosis
starting with Ketamine hydrochloride 500 mg (Ketalar1

50mg/ml; Pfizer, New York, NY, USA) mixed with
Midazolam 15mg (Dormicum1 5mg/ml; Roche, Basel,
Switzerland). After intramuscular injection of 10ml
Ketalar1 and 3ml Dormicum1, each surgical site received
local anesthesia (Xylocain1 Dental 20mg/ml mixed with
adrenalin 12.5mg/ml, Dentsply Pharmaceutical, York, PA,
USA) up to maximum 4 injections per animal. During the
surgery, 10ml of Ketalar1 was injected additionally when
needed, usually every 30 to 40 minutes. For all surgical
procedures, no inhalation anesthesia was used.

In the first phase, the lower three premolars and the first
molar (P2, P3, P4, and M1) on both sides of the mandible
were removed under intramuscular full narcosis. Periap-
ical radiographs taken from each site confirmed the
absence of root tip remnants. Full closure of the wound
area was achieved and sites were allowed to heal for
12 weeks.

After 12 weeks, comparative operations were performed
in all six animals. Under the same procedure of intramus-
cular full narcosis, the minipig was put on the operation

Fig. 1. Clinical photo of manual osteotomy. A cylindrical defect,
one S-shaped line, three straight lines and a saddle defect are
marked with white arrows (from the posterior to the anterior
mandible of minipig, right side). Minimal bone bleeding can be
observed.
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table right side up and aseptic draping was done exposing
only the mouth area. After local anesthesia, the surgeon
incised into the mucosa, elevated the periosteal flap to
expose the edentulous ridge of the mandible. Different
osteotomy patterns—from anterior to posterior, one saddle
defect, three straight lines with 10mm lengths and
different widths (minimal, 0.5mm, 1mm), one S-shaped
curved line and one cylindrical defect (4.1mm diameter)—
were created manually by surgeon, on the right side of the
mandible with a PZE osteotome and a standard implant
drill (IntraSurg300 plus, KaVo, USA and Implant drills,
Institute Straumann AG, Switzerland) (Fig. 1. Clinical
photograph of manual osteotomy). For the laser operation
theminipigwas turned on the other side, and the head was
fixed to the operation table using a customized device.
Aseptic draping was applied once again and the surgeon
exposed the edentulous ridge. Using the navigation
system, the surgical robotic arm guided the laser

osteotome to create the same osteotomy patterns on the
left side of the mandible (Fig. 2. Clinical photograph of
laser osteotomy). At the end of all procedures, the minipig
was moved to the monitoring room and the recovery from
full narcosis was closely monitored until it woke up.

Laser Head

In this study, a prototype laser housing was used. The
photoablation laser is a solid state Er:YAG laser lasing at a
wavelength of 2,940nm, integrated into a sealed housing,
mounted on the last stage of the surgical robot. The pulsed
Er:YAG laser is operated in the range of 150–500mJ and a
repetition rate ranging from 5–35Hz to create a cut of
500mm width. The laser beam is profiled by an optical
system with a final focusing element rendering a working
distance of 40mm from the laser housing. The bone surface
was permanently cooled and hydrated by a nozzle system
to create a fine sterile aqueous vapor.

PZE Osteotome

The Piezo-surgery 3 (Mectron S.p.A., Carasco, Italy) was
used as control. Tomake different size and shape of defects,
OT6, OT7, OT7S-3, andOT7S-4 tips were used. During the
osteotomy, the bone surface was permanently cooled and
hydrated by a nozzle array with sterile sodium chloride
with a flow rate of 80–90ml/min.

Scanning Electron Microscopy (SEM)

The bone blocks from the saddle defects were analyzed
with SEM. Bone blocks were fixed with 3.8% formaldehyde
in phosphate buffered saline (PBS) for 24 hours and
meticulously rinsedwithPBS. The sampleswere gradually
dehydrated in a series of graded ethanol/water mixtures
(50%, 70%, 80%, 90%, and 100%; each step for 4 hours at
room temperature). After the critical point drying, the
samples were sputter-coated with a thin layer of platinum

Fig. 2. Clinical photo of laser osteotomy. A saddle defect, three
straight lines, one S-shaped line and the bone chamber implant in
a cylindrical defect are marked with white arrows (from the
anterior to the posteriormandible ofminipig, left side). Fresh bone
bleeding is notable.

Fig. 3. SEM images of cut face created with PZE osteotome in different magnifications [a) x 50, b)
x 200] showing the typical flatteneddownand closed surface. Scratches (*) caused by the instrument
tip and tension cracks (#) as indicators for mechanical stress are clearly visible. Red boxes indicate
cutout for the subsequent magnification.
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of 2 nm in thickness (Sputter coater, Cressington,Watford,
England). Surface topography was qualitatively examined
using SUPRA 55 (ZEISS, Oberkochen, Germany) scanning
electron microscope.

RESULTS

Intra-Operative Observation

During the defect creation, fresh bleeding was clearly
notable more on the laser osteotomy side as compared to
the PZE osteotomy side (Fig. 1. and Fig. 2.). With all six
minipigs, the bleeding on the PZE osteotomy side was
minimal.

SEM–Closed Bone Surface and Open Bone Surface

The bone samples from PZE osteotomy showed a typical
flattened down and closed surface with tension cracks and

even scratches from the blade. This was clearly notable in
higher magnifications (Fig. 3. SEM images of cut face
created with PZE osteotome in different magnifications
[a–b]). On the contrary, the bone samples from laser
osteotomy showed an open surface with intact tissue
structures (Fig. 4. SEM images of cut face created with
laser osteotome in different magnifications [a–b]). We
suspected that the fresh bleeding during laser osteotomy
could be explained by the open surface structures
documented in the SEM images, while the closed surface
on the PZE osteotomy sides could explain the minimal
bleeding from the osteotomy gaps. These observations
were constant in all six animals.

Both experimentally created cut faces were compared to
the natural bone surface from the alveolar crest of the
mandible (Fig. 5. SEM images of natural bone surface in
different magnifications [a–b]). The SEM images showed a

Fig. 4. SEM images of cut face created with laser osteotome in different magnifications [a) x 50, b)
x 200] presenting an open surface and intact tissue structure. Red boxes indicate cutout for the
subsequent magnification.

Fig. 5. SEM images of natural bone surface in different magnifications [a) x 50, b) x 200]. The
sample was taken from the alveolar crest of the minipig’s mandible. Red boxes indicate cutout for
the subsequent magnification.
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Fig. 6. Comparison of SEM images of natural bone surface [a) x 200, b) x 1000], cut face createdwith
PZE osteotome [c) x 200, d) x 1000] and that created with laser osteotome [e) x 200, f) x 1000] at
highermagnification. The cut face after PZEosteotomyappears to be covered and closed by a coating
resembling the smear layer known indentistry from toothpreparation. At the same time the cut face
created by laser osteotomy is presenting a high structural analogy to the surfaces of natural bone.
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high resemblance between the natural bone surface and
the cut surface created with the laser osteotome (Fig. 6.
Comparison of SEM images of natural bone surface [a, b],
cut face createdwith PZE osteotome [c, d], and that created
with laser osteotome [e, f] at higher magnification).

DISCUSSION

A typical smooth and regular surface is notable in the
bone samples from the PZE osteotomy side. This closed
surface was also observed in another study with PZE
osteotome [16], and interpreted as a result of precise
cutting. We concluded that this flattened down tissue
structure resembles more the “smear layer” of the
mechanically instrumented teeth surface. The smear layer
is a two to five micrometer thick layer, which is left on the
dentinal surface after mechanical teeth preparation,
clogging the dentinal tubules [12]. In 1975 McComb and
Smith observed an amorphous layer of debris with an
irregular and granular surface, on instrumented dentinal
walls and first described the smear layer [13]. Ever since, it
has been debated whether the smear layer assists or
prevents the penetration of bacteria into the dentinal
tubules [17–20]. The smear layer became an important
research topic in dentistry, in relation with the surface
treatment after tooth preparation [14,15]. Nowadays
the smear layer is routinely removed before the filling of
the teeth, since it is proven to adversely affect the sealing
ability of sealers [21]. While the removal of the smear layer
and its effect on dental materials is actively studied in
dentistry, its equivalent on the bone surface has not been
reported yet. Does mechanical instrumentation not leave
anything on the bone surface? If it does, will it not affect
the subsequent bone healing?
Laser has been applied in medicine from the develop-

ment stage, but bone tissue laser ablation became
successful only recently. The problem of using laser in
bone cutting was the cutting efficacy and carbonization.
Especially carbonization was known to impair following
bone healing, and became the focus of the surface
evaluation after bone tissue laser ablation [22–24]. The
improvement of laser technology and effective cooling
systemsolved this problem, likeQ-switchedCO2 lasers [23]
and solid-state Er:YAG lasers [24]. Er:YAG lasers showed
more efficient photoablation as compared to conventional
lasers and proved to result in sufficient bone heal-
ing [24,25]. Contact-free bone cutting is one important
feature of laser osteotomy. The absence of the cutting tip,
in direct contact with the surface, must result in different
surface characteristic after cutting. The preparation of the
tooth with laser and its surface characteristics are already
studied in dentistry [26,27]. The advantages of contact-free
osteotomy are also well explained in many studies,
especially when the osteotomy is guided by surgical robot
to maximize the precision [10,28]. It is interesting that
even in these studies, showing the advantages of laser
osteotomy over mechanical osteotomy, the biological
explanation of subsequent better healing is only briefly
mentioned or omitted. We noted that very few studies

reported the characteristics of bone surface after mechani-
cal osteotomy [16], while the characteristics of enamel and
dentine surface after mechanical tooth reduction have
been widely studied [12–15].Consequently our assumption
is that what we found on the bone surface after mechanical
osteotomy is comparable to the smear layer on the tooth
surface after tooth preparation, which resulted from
mechanical ablation of enamel and dentine. We also
think that this layer can explain reported better bone
healing after laser osteotomy.We could confirm this layer’s
existence on the bone surface from the mandibles of six
minipigs, which were cut by PZE osteotome. We further-
more concluded that this smear layer on the bone surface is
responsible for the reduced bone bleeding observed after
PZE osteotomy. On the contrary, fresh bone bleeding after
laser osteotomy can be explained with the anatomically
open and biologically active surface, which might even
promote the healing process.

To prove that the smear layer is indeed responsible for
the impaired bone healing after PZE osteotomy, we plan
our next study on applying the techniques known from
dentistry to bone, to remove the smear layer after PZE
osteotomy. If this treatment improves bone healing, we
could conclude that the smear layer is indeed responsible
for the impaired healing characteristic after the mechani-
cal bone cutting.
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Intraoperative Findings of Laser Osteotomy

Manual osteotomy The first thing we could notice during the comparative

operation was good visibility and exposure of the PZE osteotomy site. The

tactile sense from the PZE osteotome cutting the minipig mandible was similar

with that from cutting the (hard) human mandible. As the surgeons were already

experienced with the instruments, changing of the tips following defect size and

shape was smoothly done; however, it surely did take up some time. Even with

the most slender tip, it was not so easy to make a planned curve of the S-shaped

defect.

Figure 5.1: Intraoperative picture of (A) the mechanical osteotomy side and
(B) the laser osteotomy side from the 5th minipig. We created 2 cylindrical
defects with the laser osteotome.

Laser osteotomy Bleeding from the bone defect was prominent after laser os-

teotomy (Figure 5.1B and 5.2B). Good visibility of the PZE osteotomy site turned

out to come from little bleeding from the bone, compared to the laser osteotomy

site. It was also obvious that the laser osteotome was superior in creating complex

defects, in terms of accuracy and speed. After we stopped laser osteotomy with

the 2nd minipig and realigned the optical path, the overall performance of the

laser osteotome improved. As can be seen in Figures 5.1B and 5.2B, we created

multiple cylindrical defects by laser in the 5th and 6th minipigs. For the 6th

minipig, one of the cylindrical defects was partially carbonized, because the cool-

ing water ran out. The carbonized bone cylinder from the defect was subjected
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Figure 5.2: Intraoperative picture of (A) the mechanical osteotomy side and
(B) the laser osteotomy side from the 6th minipig. We created 3 cylindrical
defects with the laser osteotome.

to the surface analysis with SEM.

Postoperative Surface Analysis of Bone Cut

From all saddle defects and some cylindrical defects from laser osteotomy, bone

blocks were taken for the post-op cut surface analysis (Figure 5.3). The bone

blocks were fixed in 3.8% formaldehyde in phosphate buffered saline (PBS) for

24 hours, meticulously rinsed with PBS afterwards, and shipped to Basel in 70%

ethanol solution. The samples from the saddle defects were cut in two parts

with a rotating disc bur, and each part was subjected to SEM and laser scanning

microscope.

Figure 5.3: Taking the bone block from the saddle defect. These pictures
are from the 5th minipig on the laser osteotomy side.
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Scanning electron microscope Saddle defects from PZE osteotomy showed

notably even and flat cut surfaces (Figure 5.4 and 5.5). When there were open

pores on the cut surface, they seemed narrow as if crushed or pressed (Fig-

ure 5.4B). Also small and big cracks on the flattened surface were noticeable

(Figure 5.5B and C). These findings agree with what Maurer et al. showed in

2008 [27]. With the same PZE osteotome used in our study, they compared ex

vivo bone cutting with micro-saw, Lindemann bur, and 2 tips of PZE osteotome.

On the bone block from the rabbit skull, the PZE osteotome yielded less debris

and more intact bone structure compared to two conventional cutting tools, i.e.

micro-saw and Lindemann bur. An “even surface” from the PZE osteotome was

examined with environmental surface electron microscopy and with confocal laser

scanning microscopy. The authors interpreted this even surface and low rough-

ness of PZE cut as favorable results of the PZE osteotome. Later, Simonetti et

al. got similar results with Lindemann bur, Sonosurgery, and PZE osteotome, to

conclude this “smooth and regular surface” as “precise cutting” from the PZE

osteotome [28].

On the other hand, the defects from laser osteotomy retained the clear shape

of open pores on the surface (Figure 5.6). With varying degrees, their surfaces

were irregular and rough compared to those from PZE osteotomy (Figure 5.6,

5.8, 5.9, and 5.10). This finding agrees with what Panduric et al. proved from

Er:YAG laser osteotomy in comparison to conventional osteotomies. In 2012,

they published in JOMS their ex vivo comparison between a surgical pilot drill

and an Er:YAG laser in cutting bone blocks from porcine ribs [29]. Er:YAG

Figure 5.4: SEM images of the cut face from PZE osteotomy in different
magnifications [A) x19, B) x50, C) x200]. Images are from the saddle defect
of the 1st minipig.
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Figure 5.5: SEM images of the cut face from PZE osteotomy in different
magnifications [A) x19, B) x50, C) x200]. Images are from the saddle defect
of the 6th minipig.

Figure 5.6: SEM images of the cut face from laser osteotomy in different
magnifications [A) x19, B) x50, C) x200]. Images are from the saddle defect
of the 3rd minipig.

laser removed more bone in a shorter time while retaining more of the original

structure compared to surgical drills. Although the maximal temperature during

laser ablation went up to 68.7 ◦C, overall average temperature was lower with

laser osteotomy. They concluded this temporary temperature increase was nec-

essary for bone ablation and, according to the histologic examination, did not

cause thermal damage to the surrounding tissue. Indeed the histology confirmed

smear layer formation only on the bone surface cut by surgical drills. In 2014,

similar author group published another ex vivo comparative study analyzed with

field emission SEM (FE-SEM), qualitative and semiquantitative energy disper-

sive x-ray analysis (SEM-EDX), and diffraction x-ray analysis (XRD) [30]. With

FE-SEM, they showed a nice picture of the laser cut surface and described it

as “rough, husky, and craggy, with micro-irregularities”, compared to “smooth,

completely covered with smear layer and visible microcracks” on drilled bone

surfaces. From SEM-EDX and XRD, they confirmed that the laser ablated bone
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Figure 5.7: SEM images of untreated alveolar bone surface in different
magnifications [A) x19, B) x50, C) x200]. Images are from the saddle defect
of the 6th minipig.

Figure 5.8: SEM images of the cut face from laser osteotomy in different
magnifications [A) x19, B) x50]. The junction between disc bur (lower left)
and laser osteotomy (upper right) [C) x50]. Images are from the saddle defect
of the 5th minipig.

retained similar chemical and crystallographic characteristics with the untreated

bone. Our evaluation with SEM also revealed high similarity between the laser

ablated bone surface and the natural alveolar bone surface (Figure 5.6 and 5.7).

Figures 5.5 and 5.7 are from the same bone block of the 6th minipig and depict

a good contrast between the PZE cut surface and the untreated alveolar bone

surface.

With some samples, we could capture other interesting contrasts in one pic-

ture. Figure 5.8 displays a saddle defect from laser osteotomy of the 5th minipig.

In picture C, we could see the intact open pore on the laser cut surface, with

which the cut surface from the disc bur meets (the disc bur was used to separate

the bone block to two samples). The disc bur indeed rendered much more even

and smooth cut surface compared to the PZE osteotome, as Maurer et al. [27]

and Simonetti et al. [28] described (Figure 5.8C lower left). Figure 5.9 shows
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Figure 5.9: SEM images of the cut face from laser osteotomy, partially
carbonized (lower right), in different magnifications [A) x19, B) x50]. Images
are from the cylindrical defect of the 6th minipig.

Figure 5.10: SEM images of the cut face from laser osteotomy in different
magnifications [A) x19, B) x50, C) x200, D) x1000, E) x5000]. Images are
from the saddle defect of the 4th minipig.

one of the cylindrical defects from laser osteotomy of the 6th minipig. During

laser osteotomy, cooling water ran out and one cylindrical defect came out with

partial carbonization. We can see the margin of the carbonized surface, where the

charred layer covers micro-irregular laser cut surface (Figure 5.9B lower right).

As shown by Kang et al. [15] and later studied by Zhang et al. [17], we could

confirm that the water layer played an important role in successful laser ablation

of bone tissue.

In Figure 5.10, we can see high magnification images of the laser cut surface,

from the saddle defect of the 4th minipig. Together with typical micro-irregular,

rough, craggy surface (B and C), higher magnification shows clear fibrin structure,

mostly from blood clots (D and E).

Laser scanning microscope The cut surface was also evaluated by a laser

scanning microscope (LEXT OLS4000, Olympus, Japan). For visualization, pic-

tures of the surfaces were taken at original magnifications of x431 and at x1072

at a grayscale. The three-dimensional pictures were used to visualize the wire
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Figure 5.11: Laser scanning microscope images of the cut surface from
PZE osteotomy [A) 3D reconstruction, B) x1072]. Same images with A by
the Image Slope Technique [C) from the top, D) from the bottom]; Red:
Highest, lilac: deepest. Images are from the saddle defect of the 6th minipig.

Figure 5.12: Laser scanning microscope images of the cut surface from
laser osteotomy [A) 3D reconstruction, B) x1072]. Same images with A by
the Image Slope Technique [C) from the top, D) from the bottom]; Red:
Highest, lilac: deepest. Images are from the saddle defect of the 3rd minipig.

frame modus (X and Y directions were displayed, interval 16), and the primary

area was enhanced with the image slope technique, for easy comparison of the

pore depth. In Figures 5.11 and 5.12 we can compare the cut surface from PZE

osteotomy with shallow pores and that from laser osteotomy with deep pores.

With the image enhancement, deep pores are shown in dark colors.

By the pathology team in laboratory Anapath, laser scanning microscope im-

ages were quantitatively analyzed to compare the surface roughness from differ-

ent osteotomies. The result is being prepared for publication, which will provide

quantitative evidences to our observation.
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Surface Treatment of Conventional Bone Cut—at

UniBasel and NYU

Analyzing the surface of the immediate bone cut and finding the smear layer was

one of the most interesting parts of my PhD project. Reviewing related literature,

I was convinced that further study in this part could expand the boundary of

our research. Supposing the function of the smear layer on the bone surface is

similar to that on the tooth surface, bone healing could have benefited from the

surface conditioning—i.e. removing the smear layer from the cut surface. We

had abundant references, from dentistry. I planned a single time point study

with Dr. Kawasaki, using the mandible from the fresh pig cadaver (Figure 5.13).

Mandibulectomy was performed with PZE osteotme, electric drill & bur, and

chisel & mallet. As a control, one molar tooth was cut with electric drill &

bur. Two small samples were taken from each surface with various shapes—to

prevent the confusion when multiple samples were placed on a metal disk for the

SEM analysis. One set of samples were treated by 38% Phosphoric acid for 15

seconds and rinsed with isotonic sodium chloride. After critical point drying, all

samples were analyzed with SEM. Same study was repeated twice, but the visible

change from the acid treatment was found only on the tooth surface (Figure 5.14).

Including not enough time and workforce, there were many points to improve

to overcome this failure. I concluded that finding a right surface conditioning

protocol for the bone surface is what to be done first. Different etching time,

different concentration of acid, or even different kind of acid could have been

required. As I was soon leaving for NYU, the study was stopped as incomplete.

In NYU, I repeated the same study using the jaw bone from minipigs with

Prof. Bromage. With 37% phosphoric acid, I tried several different amounts of

etching time and found it worked the best with 5 to 10 seconds. In Figure 5.15

we can see acid etched surface (A [right half], C, and D) reveals repeated bumpy

structures, compared to non-treated surface (B) which is covered by scaly layer.

Environmental SEM made this study easier, as we could examine the surface

immediately after the bone cutting, without the critical point drying and sputter

coating. As the time in NYU was limited, this study also ended as a single trial.
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Figure 5.13: Summary of the study plan, [Surface analysis of immediate
bone and teeth cut], performed at the University of Basel in 2014.

Figure 5.14: SEM images of the prepped tooth surface in high magnifica-
tions, taken at the NYU in 2015 [A) non-treated x1000, B) acid etched x1000,
C) non-treated x5000, D) acid etched x5000].

Figure 5.15: Environmental SEM images of the prepped bone surface in
different magnifications, taken at the NYU in 2015 [A) juction of non-treated
{left} and acid etched {right} x50, B) non-treated x200, C) acid etched x200,
D) acid etched x200].
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Chapter 6

Biologic Response to Er:YAG Laser—Bone Heal-

ing after Laser Osteotomy

The bone regeneration rate of the adult minipig mandible (1.2 − 1.5 µm/day)

is comparable to that of the young skeletally mature human mandible (1.0 −
1.5 µm/day) [31]. Essential parameters related to the bone physiology of female

Göttingen minipigs are well known to be similar in bone mineral density and

bone mineral concentration compared to those of human [32]. Hence minipigs

have been actively used as an experimental model for clinical CMF research, e.g.

implant dentistry and graft materials for the bone regeneration [33].

In this final publication, we reported the histologic result of the preclinical study

and compared the bone healing after laser osteotomy and mechanical osteotomy,

in the mandible of the minipig.

Comparing the Bone Healing after Computer-

assisted and Robot-guided Er:YAG Laser

Osteotomy and Piezoelectric Osteotomy—a

Pilot Study in Minipig Mandible

Summary of this paper was presented at the 66. Deutsche Geselschaft der Mund-

, Kiefer- und Gesichtschirurgie (DGMKG), June 2016 in Hamburg. The paper

was submitted to the Lasers in Surgery and Medicine in November 2017.
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Abstract		

Purpose: To take major advantages of Erbium-doped Yttrium Aluminium Garnet (Er:YAG) lasers—like freedom of 
cutting geometries and high accuracy—in osteotomy, integration and miniaturization of robot, laser, and navigation 
technology is tried and applied to the minipigs. The investigators hypothesized laser osteotomy would render 
acceptable bone healing based on the intraoperative findings and postoperative cut surface analysis. 

Methods: The investigators designed and implemented a comparative bone cutting surgery in the minipig mandible 
with the computer-assisted robot-guided Er:YAG laser osteotome and a piezoelectric (PZE) osteotome. The sample 
was composed of different patterns of defects in the mandibles of 6 grown-up female Goettingen minipigs. The 
predictor variable was Er:YAG osteotomy and PZE osteotomy. The outcome variable was the cut surface 
characteristics and the bone healing pattern 4 weeks and 8 weeks postoperatively. Descriptive and qualitative 
comparison was executed.  

Results: The sample was composed of 4 kinds of bone defects in both sides of 6 minipigs. We observed more bleeding 
during the operation, open cut surfaces, and a faster healing pattern with the laser osteotomy. There was a possible 
association between the intraoperative findings, postoperative cut surface analysis and the bone healing pattern. 

Conclusion: The results of this study suggest that characteristic open surfaces could explain favorable bone healing 
after laser osteotomy. Future studies will focus on the quantification of the early healing characteristics after laser 
osteotomy and the safety feature of laser osteotomy.  
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Ever since Homo habilis used stones as tools, human beings used hard tools to crack, open, and cut objects. “Harder 
tools for softer objects” has been a basic rule of instrumentation for a very long time. Medicine was no exception. 
Being probably the oldest surgical procedure, skull trepanation is still performed by opening the skull with mechanical 
instrument. Even with state-of-the-art devices, the basic mechanism is the same with the oldest existing bone cutting 
instruments from the Roman era1. With such instruments, cutting geometry is given by the shape of the cutting tip and 
affected by the surface characteristic of the bone. The latest technology of selective hard tissue cutting, with 
piezoelectric (PZE) osteotome, is not free from this limitation either2. On the other hand, there has been a development 
of totally different cutting method, neither with hard tool nor cutting tip. In 1960, Maiman3 invented a ruby laser and 
realized Einstein’s theory of stimulated emission of light4. Soon after its invention laser was applied in medicine. The 
first application was published in 1961 on retina coagulation5 and two years later followed skin application6. The 
absence of cutting tip in direct contact with tissue surface made it ideal for the precise cut on delicate soft tissue. Laser 
was also applied in dentistry this time; on teeth, dental pulp, and oral mucosa7. But not until late 1900s it became 
commonly accepted by dentists8. Even then laser application was limited to oral mucosa and gingiva for another 
decade9.  

Laser cutting of bone was considered to be impossible for a long time, as the produced heat carbonized cut surface and 
denaturized surrounding tissue. The charred layer prevented favorable healing of the cut tissue10. Improvements in 
laser technology and development of effective cooling system were required to achieve char-free cutting of 
mineralized tissue. Recently Erbium-doped Yttrium Aluminium Garnet (Er:YAG) laser has shown to be effective in 
bone cutting and actively applied in oral surgery11-13. Besides the advantage of contact-free tissue ablation, laser 
osteotomy features a cutting width of 200-500 µm, which makes high precision and absolute freedom of cutting 
geometry achievable. However, to use these benefits to full capacity, a robotic guidance and a navigational control for 
the laser system is necessary. And in order to successfully introduce this technology into clinical routine, whole system 
needs to be miniaturized and adopted to the ergonomic needs in an operation room (OR) environment.  

We developed a new computer-assisted and robot-guided laser osteotome and proved its applicability, efficacy and 
safety in oral and cranio-maxillofacial (CMF) surgery. 14,15 This paper focuses on the histological investigation of the 
bone healing after laser osteotomy. Uncomplicated bone healing is crucial for the routine application of the new laser 
osteotome. Proving adequate biologic response in CMF area will build a secure ground for further application of our 
laser system to other surgical fields. 

 

Materials	and	Methods		

Six fully-grown female Goettingen minipigs (mean age 25.5±5 months, mean weight 48.7±3 kg) were used in this 
study. The animals were housed in cots in groups of three, under controlled environmental conditions. Throughout the 
duration of the experiment, they were fed soft diet and water. All procedures were in accordance with the Swedish 
animal protection law and under the ethical approval number M-204-11.3 (Malmoe-Lunds djurfoersoeks etiska 
nämnd). 

 

Study	Design	

The study was carried out in two surgical phases and analyses. In the first surgical phase, the premolars and the first 
molar on both sides of the mandible were extracted to create the edentulous ridges. After 12 weeks of healing, 
different osteotomy patterns—from anterior to posterior, one saddle defect (5 mm x 10 mm size and the thickness of 
the full alveolar bone), three straight lines (10 mm length, 2-3 mm depth, and different width [minimal, 0.5 mm, 1 
mm]), one S-shaped curved line (5 x 10 mm size and 2-3mm depth) and one cylindrical defect (4.1mm diameter and 8-
10 mm depth)—were created on the edentulous mandibular ridges; one side with the computer-assisted and robot-
guided laser osteotome and the other side with manually guided mechanical osteotomes. Removed bone pieces form 
the saddle defects and cylindrical defects were subjected to the surface analyses. After 4 and 8 weeks the animals were 
sacrificed. The mandibles were harvested and histological examination was conducted to evaluate the bone healing.  

 

Surgical	Protocols	

All surgeries were performed under full narcosis with intramuscular injection of Ketamine hydrochloride mixed with 
Midazolam, and local anesthesia with Lidocaine containing adrenalin. No inhalation anesthesia was used. Detailed 
information on anesthesia can be found in our previous paper.15  
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In the first phase, the lower three premolars and the first molar (P2, P3, P4, and M1) on both sides of the mandible 
were removed. At this time 2 screws were placed in each side of the mandible to act as landmarks for intraoperative 
navigation. After 12 weeks, the second and main phase was performed in all six animals. Under the intramuscular full 
narcosis, 3-dimensional C-arm (Siemens ARCADIS Orbic 3D, Siemens AG, Germany) data were acquired for 
preoperative planning. The animal was then moved to the operation table right side up and aseptic draping was done, 
exposing only the mouth area. After local anesthesia, the mucosa was incised and the mucoperiosteal flap was 
dissected to expose the edentulous ridge of the mandible. On the right side of the mandible, the planned osteotomy 
patterns were created by a skilled surgeon with a PZE osteotome (PIEZOSURGERY® 3, Mectron s.p.a., Italy) and a 
standard implant drill (INTRAsurg® 300 plus, KaVo, USA; Straumann® implant drills, Institute Straumann AG, 
Switzerland). While the surgeons were operating, computer scientists executed the virtual planning for laser osteotomy 
on the contralateral side. For the laser operation the animal was turned to the left side and the head was fixed to the 
operation table using a customized device. Aseptic draping was reapplied and the surgeon exposed the edentulous 
ridge in the same way. After referencing the navigation system and indicating the position of the cutting areas, the 
surgical robotic arm moved the laser osteotome to the surgical site to create similar osteotomy patterns in an 
automated way (Fig. 1). The wounds were closed using absorbable suture. After the intervention, the animal was 
moved to the monitoring room and the recovery was closely monitored until complete wake-up. All intraoperative 
findings were recorded by manual charting, video clips and clinical photos. Removed bone pieces form the saddle 
defects and cylindrical defects were shipped to the laboratory for scanning electron microscope (SEM) and laser 
scanning microscope. 

	

Computer-assisted	and	robot-guided	laser	osteotome		

In this study, a prototype laser system was used. A solid state Er:YAG laser, lasing at a wavelength of 2,940 nm, was 
integrated into a sealed housing and mounted on the surgical robot. The pulsed Er:YAG laser created a cutting width 
of 500µm with a working distance of 40 mm from the laser housing16. The bone surface was permanently cooled and 
hydrated by a nozzle system, which creates fine aqueous vapor of sterile sodium chloride. A KUKA light-weight-robot 
(LWR4+, KUKA Robotics, Germany) was used to position the laser head. Having 7 degrees of freedom, this robot 
was extremely sensitive and provides increased safety; because of its integrated sensors which make it ideal for force-
controlled tasks. 

The entire robot-guided laser system was integrated with a computer-assisted preoperative planning and intraoperative 
navigation system. A software package, developed in house, used preoperative imaging to define sites and designs of 
osteotomies. The navigation system was a key safety feature: it monitored the position of the laser housing with 
respect to the target, and converted the preoperative digital data into a real osteotomy by driving the robot17. 
Referencing was done through fixed screws and anatomical landmarks with a passive marker system. 

 

PZE	osteotome	

A PZE osteotome was used as control. For the different sizes and shapes of defects, OT6, OT7, OT7S-3 and OT7S-4 
tips of the PIEZOSURGERY® 3 system were used. During the osteotomy, the bone surface was permanently cooled 
and hydrated by a nozzle array with sterile sodium chloride with a flow rate of 80–90 ml/min. 

 

Histology	

4 and 8 weeks after surgery, necropsy was performed and the mandibles were fixed in 3.8% formaldehyde. The ventral 
half of the mandible underwent decalcification, processing, embedding in paraffin and cutting with an approximate 
thickness of 5 µm for the staining with hematoxylin and eosin (H&E). The dorsal half was non-decalcified, dehydrated, 
methylmetacrylate embedded, cut by a diamond saw, and grinded and polished to a final thickness of 30–50 µm 
(EXAKT System, EXAKT Advanced Technologies GmbH, Germany). These samples were stained by Paragon 
(toluidine blue and basic fuchsin). All cutting planes were defined based on intraoperative photographs as well as 3D 
C-arm data. The sections from all samples were examined under light microscopy. 

 

SEM	
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The bone blocks harvested from the saddle defects were analyzed with SEM. The samples were fixed with 3.8% 
formaldehyde in phosphate buffered saline (PBS) for 24 hours and meticulously rinsed with PBS. Then they were 
gradually dehydrated in a series of graded ethanol/water mixtures (50%, 70%, 80%, 90%, and 100%). After the critical 
point drying, the samples were sputter-coated with a thin layer of platinum of 2 nm in thickness (Sputter coater, 
Cressington, England). Surface topography was qualitatively examined using SEM (SUPRA 55, ZEISS, Germany). 

 

Laser	scanning	microscope	

The cut surface was also evaluated by a laser scanning microscope (LEXT OLS4000, Olympus, Japan); including 
surfaces made by laser osteotomy, PZE osteotomy, and the surface produced arterially by post-biopsy mechanical 
trauma (break). The broken surface was made to compare the normal trabecular surface architecture to the cut surfaces 
made by laser or PZE osteotomy. For visualization, pictures of the surfaces were taken at original magnification of 
x431 and x1072 at a gray scale. The primary area was enhanced with the image slope technique, for easy comparison 
of the pore depth.  

 

Results	

Intraoperative	findings	

The tactile sense from the PZE osteotome cutting the minipig mandible was similar with that from cutting the (hard) 
human mandible. During the defect creation, fresh bleeding was clearly notable more on the laser osteotomy side than 
on the PZE osteotomy side (Fig. 1). In all six animals, bleeding on the PZE osteotomy side was recognizably less.  

 

 
Figure 1.  Clinical photograph of PZE osteotomy (A) and laser osteotomy (B). 

(A) A cylindrical defect, one S-shaped line, three straight lines, and a saddle defect are marked with white arrows (from the 
posterior to the anterior mandible of the minipig on the right side). A minimal bleeding from the bone is noticeable. (B) A 
saddle defect, three straight lines, one S-shaped line, and a bone chamber implant in a cylindrical defect are marked with 
white arrows (from the anterior to the posterior mandible of the minipig on the left side). The saddle defect and cylindrical 
defect are not yet removed from the mandible. A fresh bleeding from the bone is observed. 

 

Histology	

After 4 weeks, straight and S-shaped defects in both groups were bridged mainly by mesenchymal tissue. Thin bony 
trabeculae were growing from the lateral aspects into the defect covering less than half of the previously existed bone 
tissue. Saddle defects in both groups were incompletely healed on the surface and covered by tissue containing a large 
amount of collagen fibers. No inflammatory cell reaction was noted in both osteotomies. In some samples cut by the 
laser osteotome, mainly in S-shaped defects, the healing was so advanced that only small residual dark stained bands 
indicated the margins of previously existing defects. No comparable healing was observed in samples cut by the PZE 
osteotome (Fig. 2). 

After 8 weeks, all defects were almost covered by darker stained newly formed bone in both groups. The differences 
between the laser and PZE osteotomy sides were not very obvious, except that some defects made by the laser 
osteotome were no longer detectable in histology. In some cuts made by the laser osteotome, mainly in S-shaped 
defects, the healing was complete with only small residual dark stained bands. Again, no similar healing was observed 
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in those by the PZE osteotome. It was also notable that in some of the PZE osteotomy sides, subperiosteal bone 
resorption was observed; while in the laser osteotomy side, subperiosteal bone growth was observed (Fig. 3). 

 

 
Figure 2. Histology of 4 weeks with H&E staining. S-shaped defect from PZE osteotomy [A) lens x4, B) lens x10], 
straight defect from laser osteotomy [C) lens x4, D) lens x10].  

Both osteotomy sites are healed well. The healing of S-shaped defect is almost complete that only small residual dark stained 
bands indicated the previously existed cut line in laser osteotomy side (C, D). In the same defect made by the PZE osteotome, 
cut line is still notable with bony gap (A, B). Osteotomy lines are marked with white arrows. 

 

 
Figure 3. Histology of 8 weeks with Paragon staining. Straight lines from PZE osteotomy [A) lens x1.25, B) lens x4], 
those from laser osteotomy [C) lens x1.25, D) lens x4]. 
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Both osteotomy sites are healed well. The differences between laser and PZE osteotomy sides are not very obvious except 
that the defects made with the laser osteotome were partially no longer detectable in higher magnification (D). In PZE 
osteotomy side, subperiosteal bone resorption is observed (A) while subperiosteal bone growth is observed in laser osteotomy 
side (C). Osteotomy lines are marked with white arrows. 

SEM		

The bone samples from PZE osteotomy showed a flattened down surface and closed pores with tension cracks and 
even scratches from the blade. On the contrary, the bone samples from laser osteotomy showed open pores with rough 
tissue structures. These observations were valid in all six animals. Both experimentally created cut surfaces were 
compared to the natural bone surface from the alveolar crest of the mandible. The SEM images showed a high 
resemblance between the natural bone surface and the cut surface from laser osteotomy (Fig. 4). 

 

 
Figure 4. Comparison of SEM images of cut surface created with the PZE osteotome [A) x19, B) x50], those created 
with the laser osteotome [C) x19, D) x50] and natural bone surface [E) x19, F) x50].  

The cut surface from PZE osteotomy appears to be smoothened and the pores closed by a coating resembling the smear layer 
known in dentistry from tooth preparation (A and B). The cut surface from laser osteotomy retains the pores opened (C and 
D). We can compare these to the natural bone surface (E and F). 

 

Laser	scanning	microscope	

The cut surface made by laser osteotomy revealed deep open pores. This surface architecture was comparable to the 
normal structural parameters retrieved from the mechanically broken bone surface. In contrast, the cut surface from 
PZE osteotomy was flat and often showed parallel cut lineation orthogonal to the surface. The pores were filled with 
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detritus, hence shallow compared to open pores on the surface from laser osteotomy. The color scale showed deep 
pores dark and manifested the rough surface from laser osteotomy. Mechanical sawing artifacts in form of striations 
were clearly visible on the surface from PZE osteotomy (Fig. 5).  

 

Figure 5. Comparison of laser scanning microscope images of cut surface created with the laser osteotome [A) 3D 
reconstruction, B) x1072] and those with the PZE osteotome [E) 3D reconstruction, F) x1072]. Same images with A 
by the Image Slope Technique [C) from the top, D) from the bottom] and those with E by the same technique [G) from 
the top, H) from the bottom].  

Note the open pores on the cut surface created with the laser osteotome (A, B, C, and D). Also note the detritus over the 
pores and the mechanical striation artifacts on the cut surface created with the PZE osteotome (E, F, G, and H). In color 
images by Image Slope Technique, red color shows the highest and violet color shows the deepest point of the surface. The 
roughness of surfaces (including the size and depths of pores) revealed from both techniques can be estimated. Mechanical 
sawing artifacts in form of striations are visualized clearer by the latter technique (E–H). 

 

Discussion	

Efficient cutting and competitive bone healing with laser osteotomy has been reported in several studies. Panduric et 
al18 showed that more bone tissue was cut in a shorter time with Er:YAG laser compared to conventional drill, in 
porcine rib bone block. Stübinger et al19 used sheep tibia fracture model to compare the bone healing under functional 
load after PZE and Er:YAG laser osteotomy. The result was similarly acceptable, but they concluded that it indirectly 
confirmed the promising and profitable results of Er:YAG laser osteotomy. Similar author group20 showed that bone 
preparation with Er:YAG laser lead to a highest osseointegration of dental implants in sheep pelvis, compared to 
conventional drill and PZE osteotome. But none of those studies explained yet how and why the bone heals different 
after laser osteotomy compared to conventional methods. Surface analysis is one way to understand the characteristics 
of bone cutting and explain subsequent bone healing. Sasaki et al21 analyzed the ultrastructure of rat parietal bone 
treated by Er:YAG laser, CO2 laser, and bur drilling. They showed formation of the smear layer after bur drilling and 
minimal microstructural changes after Er:YAG lasing. Zhang et al22 studied on the cooling water layer thickness and 
consequent smear layer formation on fresh bovine shank bone with CO2 laser. Using SEM they proved the critical 
thickness of water layer for a given radiant exposure, but left the mechanism of water mediated hard tissue ablation for 
further study. These studies well investigated immediate post-osteotomy conditions and some even anticipated better 
start of healing process with Er:YAG laser osteotomy, based on the absence of a smear layer18,21. But as in vitro study 
only, they could not follow how their immediate findings actually resulted in subsequent bone healing.  

In this study we tried to verify preceding studies and complete them with resultant bone healing. We could confirm the 
proven efficiency of laser osteotomy along with the ergonomic setting and safety feature in our previous papers14,15.  

This paper focused on the biologic result of the translational study with minipig model. Our surface analysis of 
immediate post-laser-osteotomy showed the open cut face free of smear layer (Fig. 4), as was described by Panduric et 
al and Sasaki et al. The histologic analysis of post-osteotomy 4 and 8 weeks showed unimpeded bone healing after 
Er:YAG laser cutting. Some samples showed even more accelerated healing after laser cutting compared to PZE 
cutting (Fig. 2 and 3), which agrees with what Panduric et al and Sasaki et al anticipated, and Stübinger et al showed. 
But with small sample number and limited analysis methods, we could give only descriptive comparison, not the 
quantitative data. Also we found that the healing time for histologic analysis were too long for minipig mandible 
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model, while the osteotomy gaps were quite filled at both endpoints to see the early healing process. For further study, 
bigger sample number, quantitative analysis methods, and shorter endpoints—for example, 3 and 6 weeks—would 
give stronger evidence to support our interpretation.  

Another novelty of our study is that we wrote a full story of our laser osteotome, from its development to pre-clinical 
application, using the jaw bone of the large animal model. Pigs are one of the major animal species used in 
translational research and surgical models23. Their bone is known to be representative of human bone24. Especially 
minipig jaw bone is investigated for CMF research due to its comprehensive similarity to human jaw bone25,26. This 
made our study different from preceding in vitro experiments or small animal in vivo applications. We built our laser 
system for CMF surgery and designed our study with intraoral approach from the laboratory stage14. Mouth is the most 
frequently used nevertheless not the easiest access to the bone in CMF surgery. Moreover its normal flora raises the 
risk of post-operative infection. But this gives particular significance to our result compared to that from long bone 
model with relatively easy accessibility.  

We found an explanation for different healing speed and activity from the surface analysis. SEM images of an open 
surface after laser osteotomy (Fig. 4) corresponded to the laser scanning microscope images showing deeper pores on 
the cut surface (Fig. 5). Clinically, this explained the fresh bleeding we observed from the osteotomy gap after laser 
bone cutting (Fig. 1). On the contrary, closed cut surface and shallower pores can explain the minimal bleeding after 
the PZE bone cutting (Fig. 1, 4 and 5). Early studies with surface analysis also observed characteristic smooth surface 
of PZE cut and interpreted it as precise and delicate cut27,28. But later Sasaki et al21 confirmed the smear layer on the 
cut surface after the mechanical osteotomy and compared to the irregular surface of laser osteotomy. On the tooth 
surface, smear layer after tooth reduction has been a key topic in dentistry29–31. Since it is proven to adversely affect 
the sealing ability of sealers, nowadays the smear layer on the tooth surface is routinely removed before filling32. 
Converging these studies in dentistry and osteology, we concluded that the characteristic open surfaces of laser cut 
bone explain accelerated bone healing after laser osteotomy. Laser osteotomy did not leave a layer of debris on the cut 
surface; therefore the healing process was accelerated, as no removal of devitalized tissue was necessary. On the other 
hand, the closed surfaces after conventional osteotomy and the smear layer could have impeded bone healing as their 
equivalent on tooth surface does in dentistry. Following studies should be designed for deeper investigation of the 
early healing characteristics after laser osteotomy, focused on the cut surfaces paralleled with bone healing. Another 
important direction of the system development and the follow-up study must be the enhancement of the safety feature. 
Depth control is the key prerequisite for any bone cutting tools in CMF surgery, but even more for robot-guided laser 
osteotomy, where surgeons have no direct control or information of the cutting process. Various auxiliary technologies 
like optical coherence tomography, multispectral optoacoustic tomography, and diffuse reflectance spectroscopy can 
be added to get more information of the cut tissue and ensure the controlled osteotomy. 
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Analysis of Bone Healing—post-op 4 weeks

Six animals were randomly allocated in two groups and serial-numbered for

blinded analysis. (However, because of the 2nd animal, where we could not

perform laser osteotomy, complete blinding was impossible.) One group of three

animals were sacrificed at post-op 4 weeks and the other group of three animals

were sacrificed at post-op 8 weeks. The minipigs were induced cardiac arrest by

an intracardiac injection of 20% pentobarbital solution. The block resection of

the mandible was performed using an oscillating autopsy saw, including the soft

tissue intact to the bone. The mandible blocks were fixed by immersion in 3.8%

formaldehyde solution until shipped to Basel in 70% ethanol solution.

When the mandible blocks arrived in Basel, nanoCT images were acquired

first (phoenix nanotom®, GE, USA). Based on the intra-operative photographs

and nanoCT images, small bone blocks were created of each defect for the histo-

logic analysis. Each bone block was cut in half and processed for non-decalcified

(stained with Paragon) and decalified (stained with H&E) samples. In the ap-

pendix, the illustrations of the small bone blocks and cutting planes can be found.

(Appendix A)

Histology Figure 6.1 depicts the saddle defect from PZE osteotomy of the 1st

minipig. Figure 6.2 displays the same defect from laser osteotomy of the 4th

minipig. Both defects were incompletely healed on the surface and covered by

collagen tissue. In Figure 6.1A, we can see the level of the grown bone is lower

than the previous bone level. In both defects, no inflammatory lesions were

observed.

Figure 6.3 illustrates the straight defects from PZE osteotomy of the 1st

minipig. Figure 6.4 demonstrates the same defects from laser osteotomy of the

1st minipig. Both defects were incompletely healed. In both cases the wider the

defect was, the less the new bone had grown. In Figures 6.3A and B, we can

see the widest defects (1 mm width) are filled less than half, while narrower de-

fects (0.5 mm and minimal width) are almost filled up. This could be explained

by the fact that two narrower defects were made with one stroke of the corre-

sponding piezosurgery tips (OT7, OT7S-4), but the widest defect needed more
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Figure 6.1: Histology of the saddle defect from PZE osteotomy, post-op 4
weeks, Paragon stain [A) lens x1.25, B) lens x4].

Figure 6.2: Histology of the saddle defect from laser osteotomy, post-op 4
weeks, Paragon stain [A) lens x1.25, B) lens x4].

strokes—i.e. more trauma. In Figure 6.4, from the bone growth pattern and the

surrounding bone level, supraperiosteal bone growth can be suspected. Again no

inflammatory lesion was found in either case.

Figure 6.5 depicts the S-shaped defect from PZE osteotomy of the 1st minipig.

Figure 6.6 shows the same defect from laser osteotomy of the 1st minipig. There

was no inflammatory lesion in both sides. In Figure 6.6B, we can see the heal-

ing from the defect wall is very advanced that only small residue of dark bands

indicates the margin of original defect. Also in Figure 6.5, the growing bone

fills almost the whole defect but we can clearly notice the defect margin by the

wide gap with dark lining—which indicates residual thermal damage, accord-
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Figure 6.3: Histology of the straight defects from PZE osteotomy, post-op
4 weeks, Paragon stain [A) lens x1.25, B) lens x4].

Figure 6.4: Histology of the straight defects from laser osteotomy, post-op
4 weeks, Paragon stain [A) lens x1.25, B) lens x4].

ing to Martins, Puricelli, Baraldi, & Ponzoni [34]. Martins et al. compared in

vivo bone healing in dentoalveolar surgery with bur drilling and Er:YAG laser.

They performed in 20 Wistar rats comparative mandibulotomy—one side with

bur drilling and the other side with Er:YAG laser—which they fixed with tita-

nium plate and analyzed at post-op 7, 14, 45, 60, and 90 days. Without giving

detailed laser parameters, their laser osteotomies resulted in a thin layer of ther-

mal damage. They concluded that the bone healing was faster when surgical burs

were used. Had the unfavorable healing of laser cut attributed to unclarified laser

parameters and cooling environment, this paper is important in that it observed

in vivo bone healing pattern after laser osteotomy in the mandibles. They con-

cluded that the bone healing after Er:YAG laser osteotomy started on the surface
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Figure 6.5: Histology of the S-shaped defect from PZE osteotomy, post-op
4 weeks, H&E stain [A) lens x1.25, B) lens x4].

Figure 6.6: Histology of the S-shaped defect from laser osteotomy, post-op
4 weeks, H&E stain [A) lens x1.25, B) lens x4].

margins of the bone defect, similar to the process observed in a bone callus for-

mation, after a fracture. Their description of bone healing after laser ablation

seems to agree with our result. In Figures 6.2, 6.4, and 6.6, we can suspect

the new bone growth from the osteotomy margin into the defect. In addtion, it

actually explains SEM images from the laser cut surfaces, e.g. Figures 5.6, 5.8,

and 5.10. Together with open pores, micro-irregularity, and roughness, the cut

face made by the laser osteotome resembles the (purposedly and nicely) fractured

bone surface. We could also observe this with the laser scanning microscope. On

the contrary, new bone formation from conventional osteotomy is described by

Martins et al. as from the inner lesion towards the surface margin. Figure 6.7
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Figure 6.7: Histology of the straight defects from PZE osteotomy, post-op
4 weeks, Paragon stain [A and B) lens x1.25, C and D) lens x4].

shows straight defects from PZE osteotomy in the 2nd minipig. Like shown in

Figures 6.3 and 6.4, straight defects are partially filled with the newly forming

bone. With paragon stain, we can see the pattern of new bone formation, from

the defect margin growing upwards.

In 2002 Sasaki et al. analyzed the ultrastructure of rat parietal bone tissue

irradiated by Er:YAG laser [12]. From the result of their in vitro study, they

anticipated favorable start of the healing process. In the same year, the same

author group used Fourier Transformed Infrared (FTIR) Spectrometry to com-

pare the bone removal by Er:YAG laser, CO2 laser, and bur drilling [35]. In this

paper they presented SEM images of various magnifications, among which the

high magnification of Er:YAG laser cut showed fibrin structures similar to our

Figure 5.10. With FTIR spectroscopy, they found that the chemical composi-

tion of the Er:YAG laser irradiated bone surface was similar to that from bur

drilled bone surface. (On the other hand, CO2 laser irradiation produced toxic

substances.) Following this author group’s publications gives a brief picture of

how the research of Er:YAG laser osteotomy has evolved in CMF surgery. Al-

though their serial works broadened and deepened the understandings of Er:YAG

laser, their works had been limited to in vitro applications until mid 2000. In

2004 Pourzarandian et al. (from Sasaki group) published the early stages of bone

healing after Er:YAG laser irradiation [36]. Basically, this study confirmed their

anticipation from previous studies, about favorable healing after Er:YAG laser

ablation . They irradiated the calvarial bones of rats with Er:YAG laser, cw CO2

laser, and mechanically cut by bur drilling. The time points of termination were

post-op 10 minutes, 6 and 24 hours and 3, 7, and 14 days. They could prove that

the initial healing was faster following Er:YAG laser irradiation. We could ask

at this point whether our time point of 4 weeks was appropriate to compare the
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Figure 6.8: Histology of the saddle defect from PZE osteotomy, post-op 8
weeks, H&E stain (x1.25).

Figure 6.9: Histology of the saddle defect from laser osteotomy, post-op 8
weeks, H&E stain [A) lens x1.25, B) lens x4].

early healing. This question will be carried on and discussed again.

Analysis of Bone Healing—post-op 8 weeks

Histology After 8 weeks of healing, all saddle defects were almost filled by the

newly formed bone. Figure 6.8 depicts the saddle defect from PZE osteotomy of

the 6th minipig. Figure 6.9 displays the same defect of the same animal, from

laser osteotomy. Both defects showed no inflammatory lesions, and the difference

was not very obvious throughout 3 animals.

Figure 6.10 illustrates the straight defects from PZE osteotomy of the 5th
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Figure 6.10: Histology of the straight defects from PZE osteotomy, post-op
8 weeks, Paragon stain [A) lens x1.25, B) lens x4].

Figure 6.11: Histology of the straight defects from laser osteotomy, post-op
8 weeks, Paragon stain [A) lens x1.25, B) lens x4].

minipig. Figure 6.11 demonstrates the same defects from laser osteotomy of the

3rd minipig. Both defects are completely filled with the new bone and the bound-

ary of defect is noticeable only by different staining depth and bone structure.

In Figure 6.10A, we can observe subperiosteal bone resorption over the newly

formed bone. Figure 6.11A shows lower density of new bone close to the perios-

teum, compared to near the defect margin, but subperiosteal resoprtion is not

so obvious. However, if we see the contralateral side of Figure 6.10 animal (the

5th minipig), the straight defects from laser osteotomy show subperiosteal bone

growth. The histology with paragon stain is shown in Figure 3 of the third pa-

per in the Section 6.1 (page 47). Here the description by Martins et al. about

different healing patterns after laser and bur osteotomy is worth reflection:

In ostetomies performed with a surgical bur, bone repair was initi-
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ated in the inner regions of the bone defect, progressing toward the

periosteum. No bone callus was formed over the external surface of

the original cortical layer. When the laser system was used, however,

bone repair was initiated on the periosteum and endosteum of the sur-

face cortical margins of the lesion and progressed toward the central

regions. The process resulted in modifications of the external cortical

outline, with a convex morphology similar to that observed when a

bone callus is formed after a bone fracture [34].

Similarity of bone healing after laser osteotomy and fracture healing has coin-

cides with the result of the 5th minipig, especially for the convex cortical margin

resembling callus formation. In 1997, El Montaser, Devlin, Sloan, & Dickinson

studied the healing pattern of calvarial bone following Er:YAG laser application

with environmental scanning microscope and histology [37]. Given that many

study conditions were different, one of the most important being the absence of

cooling water, overall healing pattern agreed with what was reproduced later by

Martins et al. [34], and also with our result. Noteworthy is that the lased margin

defect remained till post-op 15 weeks, even though they used the rat calvarial de-

fect with the guided bone regeneration technique (using polytetrafluoroethylene

membranes). Persistent defect margin must be a remnant of layer of amorphous

material which deposited on the ostectomy site. In the study of Martins et al.

this layer disappeared up to post-op 8–9 weeks. In our study the amorphous layer

i.e. defect margin was the most prominent in the S-shaped defects.

Figure 6.12 displays the S-shaped defect from PZE osteotomy of the 3rd

minipig. Figure 6.13 shows the same defect of the same minipig, from laser

osteotomy. Both defects were completely filled. In Figure 6.13, new bone is as

mature as surrounding old bone that without small remnants of aforementioned

margin defect it’s difficult to distinguish the two.

We can bring the time point of analysis again and discuss about it here. Sev-

eral studies imply that 4 and 8 weeks can be a long time to compare the bone

healing, if not too long. Lo et al. compared the bone healing of mouse calvari-

otomy by trephine drill bit and Ti:Sapphire femtosecond pulsed laser [38]. Using

critical-size circular calvarial defects on wild-type CD1 mice, they followed in vivo

healing by microCT scans for 8 weeks. They also harvested the calvaria at various
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Figure 6.12: Histology of the S-shaped defect from PZE osteotomy, post-op
8 weeks, H&E stain [A) lens x1.25, B) lens x4].

Figure 6.13: Histology of the S-shaped defect from laser osteotomy, post-op
8 weeks, H&E stain [A) lens x1.25, B) lens x4].

time points and histologically analyzed thermal damage, microstructure, and the

speed of bone healing. Femtosecond laser showed less thermal damage, faster and

better ossification compared to trephine drill throughout all time points. How-

ever, they could not see the significant difference between two groups anymore by

post-op 8 weeks. They used small animal models and immobilized their defects,

like Martins et al. [34] or El Montaser et al [37]. Our study design was essen-

tially reproduced actual jaw bone defect of human, so the results of those studies

could not be applied to our case. However, we could still infer that with shorter

time point we could have found more to compare, especially for the early healing

patterns.

In 2009, Yoshino et al. from Sasaki’s author group published a long term

histologic analysis of Er:YAG laser irradiation [39]. The study condition was to

61



compare contact and non-contact dry (without water cooling) irradiation and

electrosurgery. Long term in this study was 12 months in rat calvarial bones.

They concluded that the thermal damage from Er:YAG irradiation was much

less than that from electrosurgery—even without water cooling—and did not

interfere with the ensuing bone healing. Nevertheless, it was remarkable that

the affected layer on the lased surface remained in the cortical bone 1 year after

irradiation. This shows the grave impact of the thermal damage. Granted that

the main issue of bone healing has been the thermal damage during the cutting,

we can imagine that the realization of cold ablation would ensure the favorable

aspects of laser osteotomy, in early and long term bone healing.
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Chapter 7

Conclusion and Outlook

In this thesis, we introduced our robot-guided laser osteotomy system and tried to

prove its clinical applicability. In light of the history of laser hard tissue cutting,

Er:YAG laser was chosen as irradiation source. The computer-robot system was

simultaneously developed to guide the laser. The whole system was designed to

maximize the benefits of contact-free laser cutting while ensuring the usability

for surgeons and the safety for surgeons and patients.

With the first preclinical study, we could confirm the operation of our laser

system with the ergonomic setup and safety features. Intraoperatively a high

precision of the cut and more bleeding was noticeable for osteotomies performed

with the laser. Post-op surface analysis revealed a cut surface made by the laser

osteotome analogous to the natural bone surface. In contrast, the cut surface

from PZE osteotomy looked similar to the smear layer, which is well known from

dentistry. At post-op 4 and 8 weeks, both mandibulotomies showed comparable

bone healing without complication, with a faster healing tendency for laser os-

teotomy. Our study proved that an Er:YAG laser guided by the robotic system

is applicable in a clinical environment and has potential for fast bone healing

compared to state-of-the-art mechanical osteotomy tools.

Certainly there were limitations given that this was our first preclinical ap-

plication. The animal number was minimal and we didn’t have enough samples

to make quantitative comparisons. Interesting findings from the surface analysis

were merely descriptive. However, the pathology team conducted a further anal-

ysis of the same cut surfaces, so their publication will supplement shortcomings

of this thesis. Many questions will be soon answered by follow-up studies.
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Contribution of this Thesis

Biologic evidence of new laser osteotome Uncompromised and adequate

bone healing is a prerequisite of any medical device. Better bone healing after

laser osteotomy was anticipated and already shown in several studies. This thesis

proved the accelerated bone healing tendency after Er:YAG osteotomy. Using

the mandible of the minipig model, our study condition had high similarity with

the human jaw bone. With the result from this first preclinical study, following

preclinical and clinical applications could be planned on a secure ground.

Preclinical application of new laser osteotome Throughout this thesis,

we focused on applying our miniaturized computer-assisted robot-guided laser

osteotome in a clinical environment. Trying to figure out ergonomic configura-

tions in an actual CMF OR setup, mixed team of surgeons, computer scientists,

robot scientists, and engineers worked together to solve encountered problems

from each field. As a result, we could confirm the clinical applicability, necessary

learning curve, optimal ergonomic setup, and the safety features of our system

clinical environment.

Cut surface analysis From the SEM images, a typical flattened down surface

was observed from the bone cut by the PZE osteotome. As CMF surgeons, we

hypothesized it to be equivalent of the smear layer. Originally found on treated

teeth surface, the smear layer on the bone surface was already described in a

few preceding papers. This hypothesis worked as Ockham’s razor and explained

several observations from our study. But our verification was limited by the

qualitative characteristics of the data from SEM and histology. In several ways I

tried to reproduce the smear layer formed by mechanical osteotomy and employ

surface treatment concept of dentistry. This is the part where further study can

be planned to improve the healing in diverse bone surgeries.
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Figure 7.1: Diagram of the methods of the project CMBDM. Diagram of
Nanoindentation is reprinted from Zysset PK in 1999.

Understanding Bone Metabolism—SNF Doc. Mo-

bility Fellowship

The original project title was [Convergent Morphological analysis of Bone in in-

duced type II Diabetes in Minipigs (CMBDM, Figure 7.1)]. Awarded by the

Swiss National Science Foundation (P1BSP3 155203), this fellowship program

was a part of my PhD for the enhancement of the scientific profile by working at

a research institution abroad. I worked for 8 months in the department of Bioma-

terials and Biomimetics of New York University College of Dentistry (NYUCD) as

a visiting scholar. For the project CMBDM (later renamed as [Characterization

of compromised minipig bone {NYU-110514}]), the whole procedure of the bone

sample preparation and various analyses was performed by myself. Figure 7.1

shows the summary of the project CMBDM, aimed to evaluate bony changes in

the progress of induced type II diabetes. High similarity of the minipig model

with humans gave a significance in this project. Following the natural disease

progress of obesity and diabetes in humans, we tried to understand how they af-

fect the general skeletal condition in minipigs. We found significant bony changes
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with diabetes and obesity in minipig long bones. Using minipigs as translational

animal model, like the main in vivo experiment for this thesis, I gained deeper

understandings about bone metabolism and healing, which were readily applied

to this thesis.

Future work

Immediate post-op cut surface analysis is worth further study. Even though it

is not the exact equivalent to the smear layer on the teeth surface from me-

chanical cutting, analyzing the bone surface after mechanical osteotomy will give

an understanding of both contact and non-contact osteotomy. If further studies

can prove benefits from conditioning of bone surface, its contribution will not be

confined to CMF surgery only.

Depth control is the key prerequisite for any bone cutting tool in CMF surgery,

but even more for robot-guided laser osteotomy, where surgeons have no direct

control or information of the cutting process. Optical coherence tomography is

already part of our system for this. Various auxiliary technologies like multispec-

tral optoacoustic tomography and diffuse reflectance spectroscopy can be added

to get more information of the cut tissue and enhance safety.

A follow-up preclinical study with our laser system is already ongoing. Based

on our 4 and 8 weeks result and preceding publications, the animal number, time

point of analysis, and methodology of analysis will be rectified to deepen the

understanding of early bone healing after laser osteotomy.

Conclusion

Robot-guided laser osteotomy is applicable in a clinical environment, particularly

when an individual cut design, high precision, minimal trauma, or faster healing

is required. Contact-free Er:YAG laser ablation renders cut surfaces similar to

the natural bone surface, which is believed to result in favorable bone healing.
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Appendix A

Bone Blocks and Cutting Planes

Based on the intra-operative photographs and nanotom images, small bone blocks were

created for each defect and cutting planes were defined for different histologic analysis.

Pig1 210227L Laser side

Figure A.1: Lower part of the defects
for the plastic embedding (2 blocks).
Upper part for the paraffin embedding (1
block).

Pig1 210227R Piezo side

Figure A.2: Lower part of the defects
for the plastic embedding (3 blocks).
Upper part for the paraffin embedding (2
blocks).

Pig2 210217L Laser side

Figure A.3: Lower part of the defects
for the plastic embedding (2 blocks).
Upper part for the paraffin embedding (2
blocks).

Pig2 210217R Piezo side

Figure A.4: Lower part of the defects
for the plastic embedding (2 blocks).
Upper part for the paraffin embedding (1
block).
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Pig3 209990L Laser side

Figure A.5: Lower part of the defects
for the plastic embedding (3 blocks).
Upper part for the paraffin embedding (2
blocks).

Pig3 209990R Piezo side

Figure A.6: Lower part of the defects
for the plastic embedding (3 blocks).
Upper part for the paraffin embedding (2
blocks).

Pig4 307551L Laser side

Figure A.7: Lower part of the defects
for the plastic embedding (2 blocks).
Upper part for the paraffin embedding (1
block).

Pig4 307551R Piezo side

Figure A.8: Lower part of the defects
for the plastic embedding (2 blocks).
Upper part for the paraffin embedding (1
block).

Pig5 210349L Laser side

Figure A.9: Lower part of the defects
for the plastic embedding (4 blocks).
Upper part for the paraffin embedding (2
blocks).

Pig5 210349R Piezo side

Figure A.10: Lower part of the defects
for the plastic embedding (3 blocks).
Upper part for the paraffin embedding (2
blocks).
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Pig6 310412L Laser side

Figure A.11: Lower part of the defects
for the plastic embedding (2 blocks).
Upper part for the paraffin embedding (5
blocks).

Pig6 301412R Piezo side

Figure A.12: Lower part of the defects
for the plastic embedding (3 blocks).
Upper part for the paraffin embedding (2
blocks).
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