19,078 research outputs found

    Adaptive Robot Navigation with Collision Avoidance subject to 2nd-order Uncertain Dynamics

    Full text link
    This paper considers the problem of robot motion planning in a workspace with obstacles for systems with uncertain 2nd-order dynamics. In particular, we combine closed form potential-based feedback controllers with adaptive control techniques to guarantee the collision-free robot navigation to a predefined goal while compensating for the dynamic model uncertainties. We base our findings on sphere world-based configuration spaces, but extend our results to arbitrary star-shaped environments by using previous results on configuration space transformations. Moreover, we propose an algorithm for extending the control scheme to decentralized multi-robot systems. Finally, extensive simulation results verify the theoretical findings

    A Real-Time Unsupervised Neural Network for the Low-Level Control of a Mobile Robot in a Nonstationary Environment

    Full text link
    This article introduces a real-time, unsupervised neural network that learns to control a two-degree-of-freedom mobile robot in a nonstationary environment. The neural controller, which is termed neural NETwork MObile Robot Controller (NETMORC), combines associative learning and Vector Associative Map (YAM) learning to generate transformations between spatial and velocity coordinates. As a result, the controller learns the wheel velocities required to reach a target at an arbitrary distance and angle. The transformations are learned during an unsupervised training phase, during which the robot moves as a result of randomly selected wheel velocities. The robot learns the relationship between these velocities and the resulting incremental movements. Aside form being able to reach stationary or moving targets, the NETMORC structure also enables the robot to perform successfully in spite of disturbances in the enviroment, such as wheel slippage, or changes in the robot's plant, including changes in wheel radius, changes in inter-wheel distance, or changes in the internal time step of the system. Finally, the controller is extended to include a module that learns an internal odometric transformation, allowing the robot to reach targets when visual input is sporadic or unreliable.Sloan Fellowship (BR-3122), Air Force Office of Scientific Research (F49620-92-J-0499

    Adaptive motor control and learning in a spiking neural network realised on a mixed-signal neuromorphic processor

    Full text link
    Neuromorphic computing is a new paradigm for design of both the computing hardware and algorithms inspired by biological neural networks. The event-based nature and the inherent parallelism make neuromorphic computing a promising paradigm for building efficient neural network based architectures for control of fast and agile robots. In this paper, we present a spiking neural network architecture that uses sensory feedback to control rotational velocity of a robotic vehicle. When the velocity reaches the target value, the mapping from the target velocity of the vehicle to the correct motor command, both represented in the spiking neural network on the neuromorphic device, is autonomously stored on the device using on-chip plastic synaptic weights. We validate the controller using a wheel motor of a miniature mobile vehicle and inertia measurement unit as the sensory feedback and demonstrate online learning of a simple 'inverse model' in a two-layer spiking neural network on the neuromorphic chip. The prototype neuromorphic device that features 256 spiking neurons allows us to realise a simple proof of concept architecture for the purely neuromorphic motor control and learning. The architecture can be easily scaled-up if a larger neuromorphic device is available.Comment: 6+1 pages, 4 figures, will appear in one of the Robotics conference

    Developing an embodied gait on a compliant quadrupedal robot

    Get PDF
    Incorporating the body dynamics of compliant robots into their controller architectures can drastically reduce the complexity of locomotion control. An extreme version of this embodied control principle was demonstrated in highly compliant tensegrity robots, for which stable gait generation was achieved by using only optimized linear feedback from the robot's sensors to its actuators. The morphology of quadrupedal robots has previously been used for sensing and for control of a compliant spine, but never for gait generation. In this paper, we successfully apply embodied control to the compliant, quadrupedal Oncilla robot. As initial experiments indicated that mere linear feedback does not suffice, we explore the minimal requirements for robust gait generation in terms of memory and nonlinear complexity. Our results show that a memory-less feedback controller can generate a stable trot by learning the desired nonlinear relation between the input and the output signals. We believe this method can provide a very useful tool for transferring knowledge from open loop to closed loop control on compliant robots

    Human Like Adaptation of Force and Impedance in Stable and Unstable Tasks

    Get PDF
    Abstract—This paper presents a novel human-like learning con-troller to interact with unknown environments. Strictly derived from the minimization of instability, motion error, and effort, the controller compensates for the disturbance in the environment in interaction tasks by adapting feedforward force and impedance. In contrast with conventional learning controllers, the new controller can deal with unstable situations that are typical of tool use and gradually acquire a desired stability margin. Simulations show that this controller is a good model of human motor adaptation. Robotic implementations further demonstrate its capabilities to optimally adapt interaction with dynamic environments and humans in joint torque controlled robots and variable impedance actuators, with-out requiring interaction force sensing. Index Terms—Feedforward force, human motor control, impedance, robotic control. I
    • …
    corecore