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Abstract— Incorporating the body dynamics of compliant
robots into their controller architectures can drastically reduce
the complexity of locomotion control. An extreme version of
this embodied control principle was demonstrated in highly
compliant tensegrity robots, for which stable gait generation
was achieved by using only optimized linear feedback from the
robot’s sensors to its actuators. The morphology of quadrupedal
robots has previously been used for sensing and for control
of a compliant spine, but never for gait generation. In this
paper, we successfully apply embodied control to the compliant,
quadrupedal Oncilla robot. As initial experiments indicated that
mere linear feedback does not suffice, we explore the minimal
requirements for robust gait generation in terms of memory
and nonlinear complexity. Our results show that a memory-
less feedback controller can generate a stable trot by learning
the desired nonlinear relation between the input and the output
signals. We believe this method can provide a very useful tool for
transferring knowledge from open loop to closed loop control
on compliant robots.

I. INTRODUCTION

Compliant robots have steadily been gaining interest due
to their increased ability to interact with the environment and
unexpected disturbances. One way to implement compliance
is by controlling impedance and joint torque [1], often
referred to as active compliance. Successful implementations
of this approach can be found in the well-known Big-Dog
quadrupedal robot [2] or the SARCOS humanoid [3].How-
ever, robots with active compliance rely on inticrate software
solutions and often complex sensors to make stiff actuation
modules compliant. To reduce the complexity of the sensing
and control modules, and motivated by energy efficiency
and a safer robot-human-world interaction, recent trends in
robotics tend to use compliant actuation modules, which can
have either fixed or regulated compliance [4], [5]. The evo-
lution towards compliance also extends to other parts of the
robot as flexible materials are being used for structural parts
of the robot. Examples of such robots are the quadrupedal
robots Oncilla [6] and StarlETH [7], the i-HY hand, which
consists of flexible fingers that can manipulate a wide variety
of objects [8], and the tensegrity robot ReCTeR [9].

Unfortunately, compliant robots are harder to control due
to the increased non-linear behaviour of the elastic elements.
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Fig. 1. The Oncilla robot on the treadmill.

For this reason, the focus on the control algorithms has
been shifted towards the morphology. The idea is that
control tasks, such as locomotion control, can be partially
outsourced to the compliant body elements and their in-
teraction with the environment. This concept is known as
morphological computation [10]. Recently, it was shown that
certain compliant structures such as spring-mass networks
have universal computing power [11]. This is highly related
to the field called physical reservoir computing, in which
the principles of reservoir computing [12]–[14] are applied
to physical systems. While physical implementations exist
ranging from a water bucket [15] to integrated photonics
devices [16], robotic implementations are rare. Nevertheless,
recent work [9], [17] illustrated that locomotion control
can be outsourced to the body of a tensegrity robot: a
structure composed of compression elements held together
by a compliant tensile network. Stable gait generation was
achieved by using only optimized linear feedback from the
robot’s stretch sensors to its actuator control signals.

In this paper, we test the same principle on a much less
compliant robot, the quadrupedal robot Oncilla [6], shown
in Fig. 1. In earlier research, the morphology of quadruped
robots has been used for sensing [18] and for control of
a compliant spine [19], but never for gait generation. We
not only show that robust locomotion control by a simple
mapping from the rotary encoders in the motors is possible,
but we also investigate under which conditions this can be
achieved.

When physical reservoir computing is applied to robotics,
the robot body is a highly specific dynamical system, to
which, in general, existing proofs of computational univer-
sality do not apply. This implies that a mismatch can exist
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between the actually observed robot states and the dynamical
transformations that are required for the task. It has been
shown that, when keeping a fixed number of observed states
(i.e., sensor readouts), there is a trade-of between memory
and non-linear computing power [20]. In this paper, we
propose the introduction of an additional transformation
between the physical body and the linear combination layer.
We investigate the requirements to such a transformation
by tuning two dimensions of its complexity: memory and
nonlinearity. By doing so, we can investigate which dynamics
are desired in order to outsource locomotion control for the
Oncilla quadrupedal robot platform.

The remainder of this paper is structured as follows. We
first describe our robot and describe the control architecture
we have used. We subsequently describe the experimental
setup and present and discuss the results obtained with
our approach on the Oncilla robot. We end our paper by
presenting our conclusions.

II. THE ONCILLA ROBOT

The quadrupedal Oncilla robot is the compliant platform
used in this work, see Fig. 1. Each of the robot’s legs has
a three-segmented pantographic system to achieve similar
dynamical to those of felines. The robot has actuated hip
and shoulder joints that can perform both an abduction and a
flexion motion. The knee joint is actuated with a short thread
so it can only perform actuated flexion, while an opposite
pushing spring does the extension. For a complete overview
of this robot platform, see [6].

The robot has 12 actuated degrees of freedom and a variety
of sensors. In this paper, we only use the 8 rotary encoders
on the hip and knee joints of the robot. These sensors are
chosen as they are found in nearly all quadrupedal robots,
which will allow for a broader application of this approach.
The time between consecutive updates of the sensor readings
and motor actuations is on average ∆t ≈ 8.2 ms. However,
this period can vary as much as 15 % depending on the
computational complexity of the controller. The robot can
operate fully autonomously, but for the sake of this paper, we
power the robot with a power cable and process the signals
on a remote computer.

In order to run experiments without being constrained by
the space available in our lab, we put our robot on a treadmill.
The robot is equipped with a distance sensor on its head, such
that the treadmill can adjust speed to keep the robot in the
middle of the treadmill, as shown in Fig. 2. An assistant sits
next to the setup to intervene when the robot would put its
own safety in jeopardy.

III. CONTROLLER ARCHITECTURE

A. Embodied Computation

In earlier work [9], [17], it was shown that for a tensegrity
robot, a linear transformation from the sensor signals to the
motor signals was enough to generate stable locomotion.
The idea behind this is that the body of the robot itself
has computing power, and that this power is being harvested
by using it as a reservoir. This embodiment of computation

distance
sensor

Fig. 2. The Oncilla robot on the treadmill. The distance sensor measures
the distance from the robot to the front of the treadmill. The treadmill then
adjusts speed to keep the robot in the center of the treadmill. This setup
allows the robot to run for minutes at end while not having to deviate from
a straight line.

allows the robot to generate stable locomotion without the
requirement to explicitly use the state of its compliant
elements in a digital control algorithm.

On our robot however, we found that we could indeed
generate a gait this way, but that it was not stable and did
not always return to its limit cycle. In other words, the
robot’s internal dynamics in response to the environment
do not exactly match the required dynamics for stable gait
generation. However, the fact that they suffice to generate a
close but unstable approximation indicates that the mismatch
is not very large.

Therefore, we propose to digitally add additional transfor-
mations to the sensor signals. In this way, the computations
are still partially embodied in the morphology of the robot.
In this setting, we want to quantify the minimal complexity
of these transformations as expressed by their memory and
nonlinear complexity. The next sections describe its parts in
more detail.

B. Linear Transformation

The aim of the linear transformation is to find the M ×N
transformation matrix W that optimally maps the N × 1
vector of the N normalized input signals x to the M × 1
vector of the M output signal ŷ :

ŷ = W · x .

Optimality is defined as the minimisation of the mean
squared error (MSE ) between the output signals ŷ and the
target output signals y . This can be achieved by using linear
regression:

W = y · x+

To achieve the right bias, we add a constant signal to the
inputs x .

This approach is limited to one-shot learning. In order
to continue optimizing this relation while running, we will
use the recursive least squares (RLS) algorithm [21], an
online method for linear regression. In what follows, we
introduce the vector xrls to indicate the inputs for the RLS-
algorithm, because in the remainder of this work these will



be transformed versions of the sensor outputs x . In RLS, the
weight matrix Wrls is updated at each time step according
to the following equations:

Lrls(t) =
Prls(t) · xrls(t)

1 + xrls
T(t) · Prls(t) · xrls(t)

Prls(t + ∆T ) = Prls(t) − Prls(t) · xrls(t) · xrls
T(t) · Prls(t)

1 + xrls
T(t) · Prls(t) · xrls(t)

erls(t) = y(t) − Wrls(t− ∆t) · xrls(t)

Wrls(t) = Wrls(t− ∆t) + erls(t) · Lrls
T(t).

Here, ∆t is the controller time step. Prls is the N × N
precision matrix, which is initialized with the identity matrix,
such that the noise on the input signals is initially assumed
uncorrelated. erls represents the M × 1 a priori error vector.
Wrls is the matrix that represents the linear transformation,
which is initialized with zeros.

C. Adding Non-Linear Dynamics

Between the robot body and the linear transformation,
we now add an additional transformation layer in order
to increase the richness of signals received by the linear
transformation. In order to be able to separately explore the
need for memory and nonlinearity, we introduce two separate
modules: a nonlinear layer and a memory buffer.

The nonlinear transformations are generated by introduc-
ing a hidden layer of H nonlinear neurons, each of which
receives a random mixture of the sensor signals (again
augmented with a constant bias signal):

xnl(t) = tanh(Whidden · x(t) + wbias).

This technique is known as Extreme Learning Machines
(ELM) [22]. In our paper, we initialize all elements in the
matrix Whidden and the vector wbias by sampling them from
the standard normal distribution. These elements are not
optimized.

The memory buffer of length B is added to each non-
linearly transformed signal, such that the RLS algorithm
obtains direct access to the signals from previous time
steps in xrls(t). xrls thus contains all signal values from a
small time window in the past. This allows us to explore a
further richness of the dynamics which were added by the
morphology of the robot:

xrls(t) =



xnl(t)
xnl(t− ∆t)
xnl(t− 2∆t)

...
xnl(t−B∆t)


.

The resulting detailed controller architecture is schematically
represented in Figure 3.
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Fig. 3. A schematic of the control system. The signals measured in the
motor encoders are first normalized, are then send through a layer of hidden,
untrained neurons, the outputs of these neurons are buffered and a linear
transformation is performed on these buffered signals to generate the motor
signals. It is only this linear transformation which is learned through a linear
regression method (RLS).

IV. EXPERIMENTAL SETUP

We want our robot to realise a stable gait based on the
feedback from the 8 rotary encoders. Using these sensors,
the proposed controller must be trained to derive a motor
command which is sent to the end-effectors. In sequential
operation, this should result in the robot moving with a stable
gait. The training procedure outlined in this section enables
the controller to discover the relation between the received
sensor signals and the output it needs to generate at that
moment.

As target signals, we use motor signals for stable gaits
resulting from previous work [23], [24]. We have the robot
trot at a frequency of 1.7 Hz, corresponding to a speed
of about 0.76 m/s. Before each experiment, the robot runs
for 5 seconds with this gait, using the desired signal as
input, in order to reach steady state. During these 5 seconds,
we measure the mean and the standard deviation of the
sensor signals. These are used to normalize the input signals
such that they have a mean of 0 and a standard deviation
of 1. After normalization, we add Gaussian noise with an
amplitude of 0.01 to each input signal for regularization
during training.

In the first training phase, the linear combination is opti-
mized using RLS. As a result of this training, the control
system finds a relation between the input and the output
signals, but it fails to find a stable attractor. Every time the
robot has a small error in the output signal, this error is
reflected in the input signals of the next time step. Since
the controller has never learned to handle those errors, they
accumulate and destabilize the attractor.
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Fig. 4. On the left ( ), the trajectory of the robot’s right hind leg in the joint space is shown while the robot is performing a trotting gait (top) or walking
gait (bottom), with qhip and qknee being the angle measured over time by the hip and knee encoder respectively. These were recorded during the first 5
seconds of the first training stage. A higher angle means the leg is moved to the front or the knee is extended. On the right ( ), the same trajectory is
shown, but with the learned controller, with B = 5 and H = 50 on top and B = 12 and H = 50 on the bottom. These were recorded between 25 and
30 seconds into the running stage.

For the controller to learn to deal with its own errors, we
add a second training phase, with RLS still active. In this
stage, the output signals sent to the motors are mixtures of
the target signals and the signals generated by the linear
transformation [17]. The fraction of the target signals is
reduced over time until it becomes zero. After this phase,
the RLS learning is switched off and the resulting gait is
evaluated.

We thus split up the learning process into multiple phases:

1) The normalization phase: We wait for transient ef-
fects caused by starting from standstill to fade out,
and when we record the average and variance of each
sensor to normalize them. This stage takes 5 s.

2) The first training phase: We send the teacher signal to
the motors, and use RLS to learn the relation between
these outputs and the normalized inputs from the
sensors. This stage takes 10 s, unless noted differently.

3) The second training phase: The motor signals are
mixed between the teacher signal and the signals gen-
erated by the linear transformation. The RLS-algorithm
still updates Wrls. This stage takes 10 s, unless noted
differently.

4) The running phase: The robot stops optimizing the

linear transformation, but continues to run and where
we test the stability of the attractor.

In the controller described in the previous section, there
are three parameters: the number of hidden neurons H , the
number of time steps in the time window B and the training
time ttrain . As the hidden neuron layer is the only nonlinear
part of the controller, the number of hidden neurons H gives
an indication of the amount of nonlinearity that is needed in
the system. The number of time steps in the time window
B is a measure for how much the system depends on time
information. Finally, the training time ttrain is a measure for
the complexity of the learning task. When a stable attractor
is found quickly, this suggests that we may be able reduce
the number of input signals for linear regression, at the cost
of a longer training time. Vice versa, if it takes long to find a
stable attractor, the training time could probably be reduced
by adding more input signals to the linear regression.

In order to evaluate the importance of each of these three
parameters, we conducted three experiments. These were
aimed at determining the interaction between these parame-
ters and at finding their minimal values before the attractors
become unstable. We are however limited by computation
speed. The RLS-algorithm scales with O(N2), with N being
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Fig. 5. Evolution of the MSE during training, in which the noise has been filtered by a moving average filter with the length of one gait period: without
time window (turkoise and blue), with reduced number of hidden neurons (orange and pink) and a result in which the controller failed to find a stable
attractor because it did not have enough signals (light green).

the number of signals it receives. In our case, this is equal to
(B+1)H+1. When this number becomes too large, ∆t needs
to increase to allow enough time for computations, which is
bad for the accuracy of the movements of the robot.

We identify three types of undesired behavior the trained
controller can display:

• the output signals die out and the robot motion freezes,
because the attractor has a stable, fixed point equilib-
rium;

• the robot moves erratically because the attractor has the
wrong limit cycle or no limit cycle;

• the robot is stable while in gait, but cannot return to
the limit cycle once it has left it, because the attractor
has a limit cycle for which the basin of attraction is too
small.

In this paper, we therefore look for the minimal values of
the parameters in our control system that allow our robot
to run stably for 30 seconds, and to return to its gait after
the motors have been powered off and are powered back on.
This way we test the controller’s robustness to these three
problems.

V. RESULTS

To evaluate our approach, we optimized a controller with
H = 50 hidden nodes and a time window B of 5 time
steps (44 ms or 7.5 % of the gait period). For these settings,
an attractor was found that generated a stable gait and was
able to return to its limit cycle after stopping. The resulting
attractor is depicted in Fig. 4.

In order to prove that this result is reproducible on
different setups, we trained the Oncilla robot to perform
a walking gait. For this situation, we again used H = 50
hidden nodes, but we had to increase the time window B
to 12 time steps (103 ms or 17.5 % of the gait period). The
resulting attractor is shown in Fig. 4. We also needed to
increase the length of the first and second training stage to
30 s.

The fact that we needed to increase both B and ttrain
is explained by the increased complexity of a walking gait.
In this gait, each leg has a different phase which means that
there is less dependence between the motor signals that need

to be generated. Therefore, we had to increase the number of
inputs to the RLS layer to the maximum we could compute
in real time. Additionally, we needed to increase the training
time to find the proper relation between the inputs and the
outputs.

Since our approach was reproducible, we consequently
tried to reduce the parameters for the easier trot gait to
identify the point at which the controller fails to find a stable
attractor. We first reduced the number of hidden neurons
H . It makes little sense to have H < 12, since we have
12 independent outputs to generate. We found that with 12
hidden neurons, we needed B to be at least 16 time steps
(115 ms or 20 % of the gait period) for a stable gait.

Secondly, we removed the buffer (B = 0), and searched
for the minimal number of hidden neurons required for
finding a stable attractor. We found that without a time
window, we need at least H = 128 ± 32 hidden neurons.

Thirdly, we tried to reduce the training time. For this, we
used a controller without a buffer and with H = 250 hidden
neurons. We found that 1.18 s, or two gait periods are enough
for both the first and second training stage, or 2.36 s in total.

VI. DISCUSSION

We can explain the observations in the previous section by
looking at the MSE during the optimization process. At each
time step, we can evaluate the difference between the output
generated by the linear transformation and the output of the
teacher signal. In Fig. 5 we plot the evolution of the MSE
over time for different optimizations, filtered by a moving
average with a time window of one gait period.

The figure shows that a lower number of signals N =
(B + 1)H + 1 received by the RLS algorithm results in a
higher value of the MSE during training. Moreover, when
the MSE is too high during training, the system fails to find
a stable attractor. This implies that we can use the MSE as
a dynamic stopping criterion for training. As long as the it
is too high, the controller will not be able to compensate
its own errors which accumulate over time. The fact that
we were able to considerably reduce the training time also
supports this. The figure also shows that the MSE drops
rapidly during the first seconds.



When we compare the relative importance of memory and
nonlinearity, we find that both contribute to the performance
of the controller, but that they are more or less interchange-
able. This can possibly be explained by the nonlinearity of
the body dynamics, which results in sensor signals being to
some extent correlated to nonlinearly transformed versions
of their own history. The setup of our research did not
allow to find a significant difference in relative importance
between their contribution. Since ∆t can vary as much as
15 % and that Whidden and wbias were arbitrarily sampled
from a standard normal distribution, both contributions could
be further optimized. However, this would unnecessarily
complicate the setup. Moreover, it is an indication that this
approach is robust and we believe that it could be more
broadly applicable.

We want to stress that allthough the controller might seem
complex, it does not eliminate the existence of morphological
computation in our setup. In the rudementary case where
H = 128, B = 0, the linear regression might receive 129
linearly independent signals. These signals are however non-
linearly dependent, and have at most 8 statistically inde-
pendent components, namely the 8 sensor signals. We have
undergoing research to show more clearly that morphological
computing plays an essential role in this approach.

VII. CONCLUSION

In this paper, we demonstrated how an embodied control
system with memory-less nonlinear feedback can generate
a dynamically balanced trot on a compliant quadrupedal
robot. Our feedback controller, based on extreme learning
machines, learns the desired relation between the input and
the output signals in the time span of only a couple of strides.

We have shown that this method can be extended to
other gaits, such as a walk, when increasing the training
time and the model complexity. The incorporation of either
additional memory or additional non-linearities contribute
approximately equally to the controller performance. The
parameter that mainly determines the performance is the
number of signals that is fed into the the linear transfor-
mation.

As our controller was trained directly on the actual robot,
we did not have to rely on a simulation model, which
is often unreliable on a compliant robot. In addition, the
controller optimisation was fast, happened entirely online
and automatically. We believe that the proposed method can
provide a useful tool for transferring knowledge from open
loop to closed loop control.
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[5] B. Vanderborght, A. Albu-Schäffer, A. Bicchi, E. Burdet, D. G. Cald-
well, R. Carloni, M. Catalano, O. Eiberger, W. Friedl, G. Ganesh, et al.,
“Variable impedance actuators: A review,” Robotics and Autonomous
Systems, vol. 61, no. 12, pp. 1601–1614, 2013.

[6] A. Sproewitz, L. Kuechler, A. Tuleu, M. Ajallooeian, M. D’Haene,
R. Moeckel, and A. J. Ijspeert, “Oncilla robot: a light-weight bioin-
spired quadruped robot for fast locomotion in rough terrain,” in
Procedures of the Fifth International Symposium on Adaptive Motion
on Animals and Machines, 2011.

[7] M. Hutter, C. Gehring, M. Bloesch, M. Hoepflinger, C. D. Remy,
and R. Siegwart, “Starleth: A compliant quadrupedal robot for fast,
efficient, and versatile locomotion,” in 15th International Conference
on Climbing and Walking Robot-CLAWAR 2012, no. EPFL-CONF-
181042, 2012.

[8] L. U. Odhner, L. P. Jentoft, M. R. Claffee, N. Corson, Y. Tenzer, R. R.
Ma, M. Buehler, R. Kohout, R. D. Howe, and A. M. Dollar, “A com-
pliant, underactuated hand for robust manipulation,” The International
Journal of Robotics Research, vol. 33, no. 5, pp. 736–752, 2014.

[9] K. Caluwaerts, J. Despraz, A. Işçen, A. P. Sabelhaus, J. Bruce,
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