16,261 research outputs found

    Abstractions and sensor design in partial-information, reactive controller synthesis

    Get PDF
    Automated synthesis of reactive control protocols from temporal logic specifications has recently attracted considerable attention in various applications in, for example, robotic motion planning, network management, and hardware design. An implicit and often unrealistic assumption in this past work is the availability of complete and precise sensing information during the execution of the controllers. In this paper, we use an abstraction procedure for systems with partial observation and propose a formalism to investigate effects of limitations in sensing. The abstraction procedure enables the existing synthesis methods with partial observation to be applicable and efficient for systems with infinite (or finite but large number of) states. This formalism enables us to systematically discover sensing modalities necessary in order to render the underlying synthesis problems feasible. We use counterexamples, which witness unrealizability potentially due to the limitations in sensing and the coarseness in the abstract system, and interpolation-based techniques to refine the model and the sensing modalities, i.e., to identify new sensors to be included, in such synthesis problems. We demonstrate the method on examples from robotic motion planning.Comment: 9 pages, 4 figures, Accepted at American Control Conference 201

    Specification Patterns for Robotic Missions

    Get PDF
    Mobile and general-purpose robots increasingly support our everyday life, requiring dependable robotics control software. Creating such software mainly amounts to implementing their complex behaviors known as missions. Recognizing the need, a large number of domain-specific specification languages has been proposed. These, in addition to traditional logical languages, allow the use of formally specified missions for synthesis, verification, simulation, or guiding the implementation. For instance, the logical language LTL is commonly used by experts to specify missions, as an input for planners, which synthesize the behavior a robot should have. Unfortunately, domain-specific languages are usually tied to specific robot models, while logical languages such as LTL are difficult to use by non-experts. We present a catalog of 22 mission specification patterns for mobile robots, together with tooling for instantiating, composing, and compiling the patterns to create mission specifications. The patterns provide solutions for recurrent specification problems, each of which detailing the usage intent, known uses, relationships to other patterns, and---most importantly---a template mission specification in temporal logic. Our tooling produces specifications expressed in the LTL and CTL temporal logics to be used by planners, simulators, or model checkers. The patterns originate from 245 realistic textual mission requirements extracted from the robotics literature, and they are evaluated upon a total of 441 real-world mission requirements and 1251 mission specifications. Five of these reflect scenarios we defined with two well-known industrial partners developing human-size robots. We validated our patterns' correctness with simulators and two real robots

    MetTeL: A Generic Tableau Prover.

    Get PDF

    Toward Specification-Guided Active Mars Exploration for Cooperative Robot Teams

    Get PDF
    As a step towards achieving autonomy in space exploration missions, we consider a cooperative robotics system consisting of a copter and a rover. The goal of the copter is to explore an unknown environment so as to maximize knowledge about a science mission expressed in linear temporal logic that is to be executed by the rover. We model environmental uncertainty as a belief space Markov decision process and formulate the problem as a two-step stochastic dynamic program that we solve in a way that leverages the decomposed nature of the overall system. We demonstrate in simulations that the robot team makes intelligent decisions in the face of uncertainty
    • …
    corecore