761 research outputs found

    Vision-based reinforcement learning using approximate policy iteration

    Get PDF
    A major issue for reinforcement learning (RL) applied to robotics is the time required to learn a new skill. While RL has been used to learn mobile robot control in many simulated domains, applications involving learning on real robots are still relatively rare. In this paper, the Least-Squares Policy Iteration (LSPI) reinforcement learning algorithm and a new model-based algorithm Least-Squares Policy Iteration with Prioritized Sweeping (LSPI+), are implemented on a mobile robot to acquire new skills quickly and efficiently. LSPI+ combines the benefits of LSPI and prioritized sweeping, which uses all previous experience to focus the computational effort on the most “interesting” or dynamic parts of the state space. The proposed algorithms are tested on a household vacuum cleaner robot for learning a docking task using vision as the only sensor modality. In experiments these algorithms are compared to other model-based and model-free RL algorithms. The results show that the number of trials required to learn the docking task is significantly reduced using LSPI compared to the other RL algorithms investigated, and that LSPI+ further improves on the performance of LSPI

    Learning visual docking for non-holonomic autonomous vehicles

    Get PDF
    This paper presents a new method of learning visual docking skills for non-holonomic vehicles by direct interaction with the environment. The method is based on a reinforcement algorithm, which speeds up Q-learning by applying memorybased sweeping and enforcing the “adjoining property”, a filtering mechanism to only allow transitions between states that satisfy a fixed distance. The method overcomes some limitations of reinforcement learning techniques when they are employed in applications with continuous non-linear systems, such as car-like vehicles. In particular, a good approximation to the optimal behaviour is obtained by a small look-up table. The algorithm is tested within an image-based visual servoing framework on a docking task. The training time was less than 1 hour on the real vehicle. In experiments, we show the satisfactory performance of the algorithm

    Visual Servoing from Deep Neural Networks

    Get PDF
    We present a deep neural network-based method to perform high-precision, robust and real-time 6 DOF visual servoing. The paper describes how to create a dataset simulating various perturbations (occlusions and lighting conditions) from a single real-world image of the scene. A convolutional neural network is fine-tuned using this dataset to estimate the relative pose between two images of the same scene. The output of the network is then employed in a visual servoing control scheme. The method converges robustly even in difficult real-world settings with strong lighting variations and occlusions.A positioning error of less than one millimeter is obtained in experiments with a 6 DOF robot.Comment: fixed authors lis

    Fast reinforcement learning for vision-guided mobile robots

    Get PDF
    This paper presents a new reinforcement learning algorithm for accelerating acquisition of new skills by real mobile robots, without requiring simulation. It speeds up Q-learning by applying memory-based sweeping and enforcing the “adjoining property”, a technique that exploits the natural ordering of sensory state spaces in many robotic applications by only allowing transitions between neighbouring states. The algorithm is tested within an image-based visual servoing framework on a docking task, in which the robot has to position its gripper at a desired configuration relative to an object on a table. In experiments, we compare the performance of the new algorithm with a hand-designed linear controller and a scheme using the linear controller as a bias to further accelerate the learning. By analysis of the controllability and docking time, we show that the biased learner could improve on the performance of the linear controller, while requiring substantially lower training time than unbiased learning (less than 1 hour on the real robot)

    OPEB: Open Physical Environment Benchmark for Artificial Intelligence

    Full text link
    Artificial Intelligence methods to solve continuous- control tasks have made significant progress in recent years. However, these algorithms have important limitations and still need significant improvement to be used in industry and real- world applications. This means that this area is still in an active research phase. To involve a large number of research groups, standard benchmarks are needed to evaluate and compare proposed algorithms. In this paper, we propose a physical environment benchmark framework to facilitate collaborative research in this area by enabling different research groups to integrate their designed benchmarks in a unified cloud-based repository and also share their actual implemented benchmarks via the cloud. We demonstrate the proposed framework using an actual implementation of the classical mountain-car example and present the results obtained using a Reinforcement Learning algorithm.Comment: Accepted in 3rd IEEE International Forum on Research and Technologies for Society and Industry 201

    Docking control of an autonomous underwater vehicle using reinforcement learning

    Get PDF
    To achieve persistent systems in the future, autonomous underwater vehicles (AUVs) will need to autonomously dock onto a charging station. Here, reinforcement learning strategies were applied for the first time to control the docking of an AUV onto a fixed platform in a simulation environment. Two reinforcement learning schemes were investigated: one with continuous state and action spaces, deep deterministic policy gradient (DDPG), and one with continuous state but discrete action spaces, deep Q network (DQN). For DQN, the discrete actions were selected as step changes in the control input signals. The performance of the reinforcement learning strategies was compared with classical and optimal control techniques. The control actions selected by DDPG suffer from chattering effects due to a hyperbolic tangent layer in the actor. Conversely, DQN presents the best compromise between short docking time and low control effort, whilst meeting the docking requirements. Whereas the reinforcement learning algorithms present a very high computational cost at training time, they are five orders of magnitude faster than optimal control at deployment time, thus enabling an on-line implementation. Therefore, reinforcement learning achieves a performance similar to optimal control at a much lower computational cost at deployment, whilst also presenting a more general framework
    corecore