
Vision-Based Reinforcement Learning using Approximate Policy
Iteration

Marwan R. Shaker, Shigang Yue and Tom Duckett

Abstract— A major issue for reinforcement learning (RL)
applied to robotics is the time required to learn a new skill.
While RL has been used to learn mobile robot control in many
simulated domains, applications involving learning on real
robots are still relatively rare. In this paper, the Least-Squares
Policy Iteration (LSPI) reinforcement learning algorithm and a
new model-based algorithm Least-Squares Policy Iteration with
Prioritized Sweeping (LSPI+), are implemented on a mobile
robot to acquire new skills quickly and efficiently. LSPI+
combines the benefits of LSPI and prioritized sweeping, which
uses all previous experience to focus the computational effort
on the most “interesting” or dynamic parts of the state space.
The proposed algorithms are tested on a household vacuum
cleaner robot for learning a docking task using vision as the only
sensor modality. In experiments these algorithms are compared
to other model-based and model-free RL algorithms. The results
show that the number of trials required to learn the docking
task is significantly reduced using LSPI compared to the other
RL algorithms investigated, and that LSPI+ further improves
on the performance of LSPI.

I. INTRODUCTION

Reinforcement learning from delayed rewards has been
applied to mobile robot control in various domains. The ap-
proach has been especially successful in applications where
it is possible to learn policies in simulation and then transfer
the learned controller to the real robot.However, applications
involving learning on real robots are still relatively rare. In
principle a mobile robot could learn any task from scratch
by reinforcement learning, but learning of complex tasks
can be very time consuming, so the researcher must find
a way to speed up the learning. Techniques for accelerating
reinforcement learning on real robots include (1) guiding ex-
ploration by human demonstration, advice or an approximate
pre-installed controller, (2) using replayed experiences or
models to generate “simulated” experiences, and (3) applying
function approximators for better generalization. Function
approximators also provide a means for dealing with con-
tinuous state and action spaces.

Many previous works on reinforcement learning in mo-
bile robotics have applied value-based algorithms such as
Q-learning, which estimate the long-term expected value
of each possible action given a particular state. However
when used with function approximators this approach can
suffer from various problems including parameter-sensitive
convergence behaviour, failure to converge in stochastic
environments, sensitivity to perturbances, etc. [11]. Recent
research in artificial intelligence has focused instead on

Marwan R. Shaker, Shigang Yue and Tom Duckett
are with the Department of Computing and Informatics,
University of Lincoln, LN6 7TS Lincoln, United Kingdom
{mshaker,tduckett,syue}@lincoln.ac.uk

policy search methods, which perform direct search in policy
space to determine the optimal policy.

This paper applies and extends a policy search algorithm
called Least-Squares Policy Iteration (LSPI) [6]. The ap-
proach is particularly suited to mobile robot applications
as it has no learning rate parameters to tune and does
not take gradient steps, meaning there is no risk of over-
shooting, oscillation or divergence. The approach uses linear
approximation to represent the state-action value function,
followed by approximate policy improvement. This generally
results in a small number of very large steps directly in
policy space, whereas gradient-based policy search methods
typically make a large number of relatively small steps to a
parameterized policy function.

This paper presents an application of LSPI to learning
control of a real mobile robot in a visual-servoing context.
In addition, the paper introduces a model-based extension
of LSPI that incorporates prioritized sweeping to further
accelerate learning of new skills by mobile robots (LSPI+).
Prioritized sweeping uses all previous experience to focus the
computational effort on the most “interesting” or dynamic
parts of the state space. Both algorithms, LSPI and LSPI+,
were tested on a docking task using a Roomba mobile
robot with vision as the only sensor and without explicit
pose estimation, following the visual servoing framework
introduced in [8]. The algorithms are compared to other state-
of-the-art algorithms including Q-learning, Dyna-Q, Dyna-Q
with prioritized sweeping (Dyna-Q+PS) and Dyna-Q with
both prioritized sweeping and directed exploration (Dyna-
Q+PS+DE). The results show that the number of trials re-
quired to learn the docking task is significantly reduced using
LSPI compared to the other RL algorithms investigated, and
that LSPI+ further improves on the performance of LSPI.

II. RELATED WORK

Many authors have applied value-based reinforcement
learning algorithms in mobile robotics. Weber and Zo-
chios [13] proposed a neural network based approach for
learning the docking task on a simulated robot with RL.
Martı́nez-Marı́n and Duckett [8] proposed a model-based RL
that accelerates the learning of docking on a real mobile
robot. They used two controllers: a PD controller to extract
the state variables from the vision sensors, and a RL con-
troller which is used to drive the robot. Bakker et al. [2]
introduce a model-based method based on Dyna-Q using
prioritized sweeping, directed exploration and a transformed
reward function to provide additional speed-ups on a real
robot task, involving finding a specific object and moving
towards that object while avoiding bumping into walls.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Lincoln Institutional Repository

https://core.ac.uk/display/55463?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

More recently various authors have applied policy search
methods. Bagnell and Schneider [1] presented a gradient-
based policy search method to learn control of a helicopter.
Kwok and Fox [5] implemented LSPI on a simulated ball-
kicking task in a soccer game, and used the trained controller
in real robot experiments. Morimoto and Doya [9] applied
a hierarchical RL method by which an appropriate sequence
of sub-goals for the task is learned in the upper level while
behaviors to achieve the subgoals are acquired in the lower
level. Kolter et al. [4] used a similar state space representa-
tion and proposed a method for hierarchical apprenticeship
learning, which allows the algorithm to accept isolated advice
at different hierarchical levels of the control task.

Our approach differs from the above approaches in that we
learn the control policy from scratch on the real robot using
only vision for state estimation, and that the time and number
of trials required to learn the docking task is significantly
reduced using approximate policy iteration.

III. OVERVIEW OF THE APPROACH

A. Policy Iteration and Approximate Policy Iteration

Policy iteration consists of two phases: (1) policy evalu-
ation, computing the value function Qπ(s, a) by solving a
set of linear equations, and (2) policy improvement, using
Qπ(s, a) to find a better policy π′(a|s). Typically an e-
greedy action selection policy is used to balance exploration
of unknown parts of the state space and exploitation of the
existing learned policy. It is known that repeating policy eval-
uation and policy improvement results in the optimal policy
π∗ [12]. The convergence guarantee relies upon a tabular
representation of the value function, and exact solution of
the Bellman equations. However such representations and
methods are impractical for large state and action spaces. In
this case, approximation methods suggested by [6] are used,
where the tabular representation of the policy π(s) of the
Q-learning algorithm is replaced by a parametric function
approximator π̂(s; θ), where θ are the adjustable parameters
of the representation, as shown in Fig 1. Policy iteration
and approximate policy iteration in a high dimensional state
space has been demonstrated previously in several papers [5],
[6].

Fig. 1. Approximate Policy Iteration

B. Value function and approximate value function

In the evaluation phase of approximate policy iteration,
the Q-value function needs to be updated, as shown in Fig 1.
Even though policy iteration or approximated policy iteration
is guaranteed to approach the optimal policy, a tabular
representation of the state space will be impractical for real
robot applications when the state space is very large or
continuous, because the time required to reach the optimal
policy will be infeasibly large. To overcome this dilemma,
an approximated Q-value function is used instead of a
tabular representation. The Q-value function is approximated
by a parametric function Q̂π(s, a;W), where W are the
adjustable parameters of the approximator. The parametric
function approximator Q̂π(s, a;W) can be expressed as a
linear weighted combination of a fixed number of basis
functions as in Eq. 1.

Q̂π(s, a;W) =
k∑
i=1

φi(s, a)wi = Φ(s, a)TW, (1)

where Φ(s, a) = (φ1(s, a), φ2s, a), ..., φk(s, a)) are fixed
basis functions: each entry correspond to the basis function
φi(s, a) at the state-action pair (s, a), k is the number of
basis functions and wi are the model parameters (weights).
Note that k � |S| ∗ |A|.

C. Directed Exploration

One of the problems with RL algorithms is exploration
when the agent does not have prior knowledge of the envi-
ronment. By directing the exploration towards “interesting”
parts of the state-action space (called Directed Exploration)
and adding an exploration bonus (as shown in Eq. 2) to
the Q-value function we gain a more efficient exploration
technique than using undirected exploration [2].

Q(s, a)← Q(s, a) + ε
√
m(s, a)/n(s, a), (2)

where ε is a constant, m(s, a) is the number of time steps
since action was first tried in state s, and n(s, a) is the total
number of times action a was tried in state s. If n(s, a) is
equal to zero it is replaced by one. This results in exploration
that focuses on learning from actions that have been accessed
more than other state-action pairs in that state.

IV. LSPI+ ALGORITHM

This section describes the basic components of LSPI+
(subroutines for model-free and model-based least-squares
Q-learning, and prioritized sweeping).

A. Model-Free Least-Squares Q-Learning

The tabular representation can be rewritten as the orthog-
onal set of basis functions φ(i) = [0, ...i, ...0] for each state
in the state space. This representation is not efficient because
it does not explain the topology of the specific state space.
This problem requires more efficient approximations, such
as the polynomial basis function used in this paper, where
the Q-value function Qt(s) is approximated by a linear com-
bination of the first k elements of a sequence of polynomial

basis functions as shown in Eq. 1 defined over all s ∈ S.
While this encoding is sparse, it is numerically unstable for
a large state space [7]. But this numerical instability can
be solved by scaling the values of φ. LSPI addresses these
issues by using a function approximator with polynomial
basis function instead of the tabular representation.

Assume that we have |A| actions in the current state s,
and |S| is the total number of states. Then φ will comprise
|A| vectors of k elements, where the first element of each
vector is 1 and the remaining elements are calculated based
on Eq. 3, with i from 1 to k.

φi(s, a) = φi−1(s, a) ∗ (10 ∗ s)/S (3)

The benefits from using linear approximation methods to
represent the state space as a combination of k basis func-
tions (features) can be viewed as performing dimensionality
reduction: the linear approximation methods approximate the
state-action value function Qπ(s,a) for the policy π using
a set of hand coded basis functions φ(s,a), which reduces
the vector Qπ(s,a) in high dimensional space R|S|∗|A| to Rk

where k is some fixed number usually equal to the order of
the polynomial plus one, k �| S | × | A | [6], [7]. This
dimensionality reduction is used to generalize the obtained
experience from a small subset of the state space to a larger
subset of the state space.

Using Eq. 1 to approximate the state-action value function,
let Qπ be a real vector ∈ R{|S|∗|A|}. The approximated
action-state value function can be written as Qπ = ΦWπ ,
where Wπ is a vector of length k. Each row of Φ specifies
all the basis functions for a particular state action pair (s, a),
and each column represents the values of particular basis
function over all state-action pairs (s, a).

Using Eq. 1 with the Bellman backup operator yields the
following solution for the coefficient (see [6] for proof):

Wπ = (ΦT (Φ− γP
∏
π

Φ))−1ΦTR, (4)

where P is a stochastic matrix that contains the transition
model of the process, and R is a vector that contains the
reward values.

Now, we need to calculate the values of W , but the values
of P and R will be unknown or too large to be used in
practice. To overcome this problem, we need to solve the
linear system of equations GWπ = b to obtain the required
Wπ . The value of Wπ can be calculated by solving the
following linear system of equations [6]:

G = ΦT∆µ(Φ− γP
∏
π

Φ), (5)

b = ΦT∆µR, (6)

where µ is the probability distribution over (S × A) that
defines the weights of the projection. But the values of G and
b are unknown or very large also because P and R are either
large or unknown, so we will use the least-squares fixed
point approximation to learn the state-action value function

of a fixed policy from samples as in Eqs. 7 and 8, which is
equivalent to the learning of parameter Wπ of Qπ = ΦWπ .

G̃t+1 = G̃t + φ(st, at)(φ(st, at)− γφ(s′t, π(s′t)))
T ,(7)

b̃t+1 = b̃t + φ(st, at)rt, (8)

where (st, at, rt, s′t) is the tth sample of experience from
a trajectory generated by the agent. The computation of G,
b based on samples and the resulting Wπ by solving the
linear system of equations GWπ = b is called least-squares
Q-learning (LSQ), which is repeated for some number of
iterations or until the algorithm converges.

TABLE I
LSQ MODEL-FREE ALGORITHM

Function LSQ model-free(SS, k,φ,γ,π)

SS: set of samples (s, a, r, s’), k: number of basis functions
φ: Basis function, γ: Discounted factor, π: Policy

1. G → Zero, b → Zero
2. for each sample(s, a, r, s’)

perform equation 7 & 8
3. Wπ = G−1 b
4. return Wπ

B. Model-Based Least-Squares Q-Learning

A classical model-based algorithm to learn Qπ from
simulated trajectory data can be explained as follows [3].

1) From the state transitions and rewards observed so far,
build in memory an empirical model of the Markov
chain. The sufficient statistics of this model are as
follows:

a) A vector n recording the number of times each
state has been visited.

b) A matrix C recording the observed state-
transition counts: Cij i.e. how many times state
xi is changed directly to state xj .

c) A vector u recording the sum of all observed one-
step rewards from each state.

2) Whenever a new estimate of the state-action value
function Qπ is desired, solve the linear system of Bell-
man equations corresponding to the current empirical
model, where N is a diagonal matrix of the vector n,
then the solution vector of the empirical model is

(N − C)−1u (9)

The model links each state to all the downstream states that
follow that state on any trajectory, and records how much
each state has influence on the other states. All this can be
viewed as doing two steps:

1) Each state is visited, C and u are updated and a
Markov chain is built from that state to every possible
other state.

2) The chain compactly models all the backups performed
on the data. As shown in Eq. 10, each time the state-
action pair is visited, the G and b matrices are updated
based on the changes in the model.

The proposed model does not maintain any statistics on
observed transitions and rewards, it just updates the compo-
nents of Eq. 9 directly. The advantage of the model-based
method is that it makes the most of the available training
data.

It is clear that the role of b is the sum of all reward
received, which is exactly the same as the vector u in the
proposed model. The outer product from Eq. 7 is a sparse
matrix. Summing such a sparse matrix for each observed
transition gives G ≡ N − C.

G = ΦT (N − C)Φ , b = ΦT s (10)

Matrices G and b effectively record a model of all the
observed transitions. In this case, we can view LSQ as
implicitly building a compressed version of the empirical
model’s transition matrix (N − C) and summed-reward
vector u, and the resulting G and b from Eq. 10 can be
written as shown in Eqs. 11 and 12.

G̃t+1 = G̃t + φ(st, at)(Nt − Ct)φ(st, at)T (11)
b̃t+1 = b̃t + φ(st, at)st (12)

If (N −C) is singular, we can write (N −C) in a different
format N − C = N(I − N−1C), where I is the identity
matrix. Now if we impose ‖N−1C‖ < 1 then the matrix
(N −C) is always non-singular. But if (N −C) is singular
then Singular Value Decomposition (SVD) [10] can be used
to find the solution where the dependant columns correspond
to a smaller singular value that can be omitted to find the
solution.

C. Model-Based Least-Squares Q-Value with Prioritized
Sweeping

In RL, state transitions are stored in state-action pairs that
may be selected uniformly at random from all previously ex-
perienced pairs, but uniform selection is usually not the best
method; planning can be much more efficient if simulated
transitions and backups are focused on particular state-action
pairs [12], [2]. The number of state-action pairs backed up
often grows rapidly, producing many pairs that could usefully
be backed up. But not all of these will be equally useful:
the important parts of the state that have changed a lot are
also more likely to change a lot, whereas others will change
little [12].

By prioritizing the state-action pairs based on the number
of times the state-action pair has been visited and based on
the transition from one pair to another pair, each time state
s is visited the value of the state-priority for that state is
increased by one. The final priority p for that state-action pair
is shown in Eq. 13, with p > 0 as threshold. Table I shows the
model-free LSQ algorithm [6], while Table II shows model-
based LSQ.

p = reward+(γQ(s′, a′)−Q(s, a))∗state−priority (13)

TABLE II
LSQ MODEL-BASED ALGORITHM

Function LSQ model-based(SS, k,φ,γ,π)

SS: set of samples (s, a, r, s’), k: number of basis functions
φ: Basis function, γ: Discounted factor, π: Policy

1. G → Zero , b → Zero
2. prioritize n and C based on their values
3. for each sample (s, a, r, s’)

perform Eq. 11 & 12
4. Wπ = G−1 b
5. return Wπ

D. Model-Based LSPI with Prioritized Sweeping

LSPI+ combines the policy search efficiency of policy iter-
ation and data efficiency of Least-Squares Q-learning (LSQ)
with the efficient back-up of state-action pairs of prioritized
sweeping. The LSQ algorithm provides a means of learning
an approximate state-action value function, Qπ(s,a), for any
fixed policy [6]. By integrating LSQ and the empirical model
into an approximate policy iteration algorithm we obtain the
LSPI+ algorithm, which is summarised in Table III.

TABLE III
LSPI MODEL-BASED ALGORITHM

Function LSPI Model-based (S, k,φ,γ,π)

SS: set of samples (s, a, r, s’), k: number of basis functions
φ: Basis function, γ: Discounted factor, π: Policy

1. i ← Zero, w0 ← initialize weights to zero
2. Repeat

a. i = i +1
b. wi = LSQ(SS, k,φ,γ,π)
c. repeat for N times

wi = LSQModel(SS, k,φ,γ,π)
3. Until ‖ wi+1-wi ‖< ε or i > imaximum
4. return Wπ

V. EXPERIMENTS

The performance of the introduced LSPI+ and LSPI algo-
rithms are investigated and compared to Q-learning, Dyna-Q,
Dyna-Q with prioritized sweeping (Dyna-Q+PS), and Dyna-
Q with prioritized sweeping and directed exploration (Dyna-
Q+PS+DE) on a docking task.

In our experiments, a Roomba vacuum cleaner robot
was used for the docking task using vision only for state
estimation. To simplify the detection process, an artificial
landmark consisting of an orange square was used to mark
the goal for the docking task. As shown in Fig 2(a), the robot
was equipped with a low-cost wireless camera (powered by a
9 volt battery) used to send images to an off-board computer.
A Bluetooth to serial adapter was used to send commands
back from the off-board computer to the robot. In the docking
task, the robot has two actions: either turn left or turn right,
while driving forwards at a constant speed.

A. Docking Task and State Space Representation

The docking task given to the robot consists of starting
from a random position in the vicinity of a docking station
and driving while steering itself towards a desired configura-
tion at the docking station. The docking station is not defined

(a) Roomba robot (b) Docking Task State Space (c) Square on the left side (d) Square Coordinates

Fig. 2. Orange Square on the left side of the captured image.
TABLE IV

DOCKING TASK PARAMETERS

State Variables Alpha: [−80o, 80o] sampled every 10 degrees
Distance :[0,3] meter sampled every 0.2 meter

Reward

reward =100 if it gets to the goal
reward =-50 if it finishes outside state space
reward equal to a value, this value is decrease
as the number of the steps to the goal increases

Goal State (alpha, distance) = ([−5o, 5o],[0,180] mm)

Control Variables Vr (Rotational Velocity)
is fixed to either -5o/s or 5o/s

beforehand as a known robot location. On the contrary it is
specified as a set of sensor perceptions obtained from this
station. In our experiments we used a vision system to detect
an orange square used to mark the docking station.

We used a state space consisting of two variables: alpha
and distance. Alpha is the angle between the robot heading
direction and the line that is pointing from the central
position of the robot to the orange square. Alpha and distance
are calculated from the vision system information. Table IV
summarizes the state space representation.

B. Distance and Alpha calculation using the vision system

On initialization, the robot attempts to detect the orange
square. If it is not detected then the robot rotates at 10 degree
intervals until part of the orange square becomes visible.

The state variables Alpha and Distance are then calculated
as follows. As shown in Fig. 2(c), the location of the upper
left corner of the square is (iL, nL) and the upper right corner
is (iH, nH). The distance r as shown in Fig. 2(d) is equal to
the number of orange columns between the two points. We
then calculate the angle Alpha as:

Alpha = cos−1(
r√

(iH − iL)2 + (nH − nL)2
) (14)

The Distance variable is estimated from the number of
columns and rows inside the orange square in the image.
This is done by simple linear interpolation. We captured one
image when the robot distance from the orange square was
one meter and we captured a second image when the robot
distance was 2 meters. In both captured images we calculate
the number of columns and rows, then for new images we
obtain Distance by interpolating on the stored values for 1
and 2 meters.

C. Simulated Results

The simulated experiments were performed using Mo-
bileSim (http://robots.mobilerobots.com/wiki/MobileSim). In
the simulated environments the docking station is defined by
a box and the robot has to learn how to move toward this box
and dock to a goal state, as specified in Table IV, using two
actions (turn right or turn left) while the robot moves forward
with a constant velocity starting from a random position in
the environment.

The previously described algorithms were compared using
the percentage of successful docking attempts versus the
number of learning trials. For all the algorithms, after every
5 trials of learning we stopped the learning and performed
100 trials without learning, calculating the proportion of
successful trials. The results are shown in Fig. 5. As can be

Fig. 5. Simulated results showing the percentage of successful docking
attempts against the number of learning trials.

seen in Fig. 5 the performance of Q-learning is the worst of
all algorithms, and the performance gets better for Dyna-Q,
Dyna-Q+PS and Dyna-Q+PS+DE respectively. Model-free
LSPI gives better performance than the above algorithms,
where it took about 31 trials to get near the maximum value
obtained by LSPI+, while LSPI+ gets the best results with 25
trials to get to the maximum percentage of successful trials.
In comparison Q-learning took 223 trials to get to 80% and
Dyna-Q took 180 trials to get to 80%.
D. Real Robot Experiments

LSPI+ and LSPI were tested for the proposed state space.
The state space is represented by using a polynomial of order
2 and 4: for the case of 2 this means that the fixed number k
for the linear architectural representation equals 3, but LSPI+
and LSPI required more than 27 iterations to converge for
each state and sometimes did not select to the correct value,
while for the polynomial of order 4, this means that the fixed
number k for the linear architectural representation equals

(a) Trial vs average of success (b) Trial vs average reward per step (c) Trial vs average number of actions
Fig. 3. Real Robot Experiments results.

Fig. 4. sequence of images showing the docking behavior learned by LSPI+ on the real robot.

5, and LSPI and LSPI+ required more than 3 iterations to
converge for each state. So we used in our experiments the
polynomial of order 4, and with initial policy exploration
equal to 40 percent (ε = 0.4), a discount factor of 0.9, total
number of actions equal two and zero initial weights. For
the convergence criterion we set ε = 0.001 with at least 5
steps for each trial (we checked for more than 5 steps and
found no difference in the performance of the algorithm and
sample collection). The results of the Roomba robot training
can be summarized as follows: for LSPI+ after 28 trials of
learning (taking 29 minutes), the robot was able to dock to
the orange square from any location within the state space,
while model-free LSPI required 33 trials (taking 35 minutes).

Fig. 4 shows an image sequence of the docking behaviour
obtained using LSPI+ after 30 trials of learning. Fig. 3 show
the results of the LSPI+ experiments (including the percent-
age of successful attempts to reach the goal in Fig. 3(a), the
average reward received per step in Fig. 3(b) and the average
number of actions taken to get to the goal in Fig. 3(c), where
after every 10 trials of learning we stopped the learning and
performed 50 trials without learning, calculating the three
performance measures for those 50 trials.

VI. CONCLUSION AND FUTURE WORK

This paper implemented the LSPI algorithm on a real
mobile robot docking task and also introduced model-based
LSPI with prioritized sweeping (LSPI+). The experiments
and simulated results demonstrate that the performance of
LSPI and LSPI+ is significantly better than the other algo-
rithms investigated in terms of both time and trials required
to learn the docking task. LSPI and LSPI+ found the optimal
policy faster than traditional techniques with fewer samples,
evaluating the policy in a single pass over the collected
samples. There is also a modest improvement in performance
using LSPI+ compared to LSPI. We understand this to be
a ceiling effect where both algorithms are already close to
the best possible performance on the vision-based docking
task. In future work we will investigate tasks with higher-

dimensional continuous state spaces to further evaluate the
performance of the proposed algorithm.

VII. ACKNOWLEDGEMENT

The authors would like to acknowledge the support of both
Lincoln University and the Council for Assisting Refugee
Academics (CARA).

REFERENCES

[1] J. A. Bagnell and J. G. Schneider. Autonomous helicopter con-
trol using reinforcement learning policy search methods. In Proc.
ICRA Robotics and Automation IEEE International Conference on,
volume 2, pages 1615–1620, 2001.

[2] B. Bakker, V. Zhumatiy, G. Gruener, and J. Schmidhuber. Quasi-
online reinforcement learning for robots. In Proc. IEEE International
Conference on Robotics and Automation ICRA 2006, 2006.

[3] Justin A. Boyan. Least-squares temporal difference learning. In
Machine Learning: Proceedings of the Sixteenth International Con-
ference. Morgan Kaufmann, 1999.

[4] J. Zico Kolter, Pieter Abbeel, and Andrew Ng. Hierarchical apprentice-
ship learning with application to quadruped locomotion. In J.C. Platt,
D. Koller, Y. Singer, and S. Roweis, editors, NIPS 20, Cambridge,
MA, 2008. MIT Press.

[5] C. Kwok and D. Fox. Reinforcement learning for sensing strategies.
In Proc. IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2004), volume 4, pages 3158–3163, 2004.

[6] Michail G. Lagoudakis and Ronald Parr. Least-squares policy iteration.
Journal of Machine Learning Research, 4:2003, 2003.

[7] Sridhar Mahadevan. Representation policy iteration. Proceedings of
the 21st Conference on Uncertainty in AI (UAI-2005), Edinburgh,
Scotland, July 26-29, 2005.

[8] T. Martinez-Marin and T. Duckett. Fast reinforcement learning for
vision-guided mobile robots. In Proc. IEEE International Conference
on Robotics and Automation ICRA 2005, pages 4170–4175, 2005.

[9] Jun Morimoto and Kenji Doya. Acquisition of stand-up behavior by
a real robot using hierarchical reinforcement learning. Robotics and
Autonomous Systems, 36(1):37–51, 2001.

[10] William H. Press, Saul A. Teukolsky, William T. Vetterling, and
Brian P. Flannery. Numerical Recipes in C++: The Art of Scientific
Computing. Cambridge University Press, February 2002.

[11] Richard S. Sutton, David Mcallester, Satinder Singh, and Yishay Man-
sour. Policy gradient methods for reinforcement learning with function
approximation. In In Advances in Neural Information Processing
Systems 12, pages 1057–1063. MIT Press, 2000.

[12] R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction.
MIT Press, 1998.

[13] Cornelius Weber, Stefan Wermter, and Alexandros Zochios. Robot
docking with neural vision and reinforcement. Knowledge-Based
Systems, 17:165–172, 2004.

