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Abstract— This paper presents a new reinforcement learning
algorithm for accelerating acquisition of new skills by real mobile
robots, without requiring simulation. It speeds up Q-learning by
applying memory-based sweeping and enforcing the “adjoining
property”, a technique that exploits the natural ordering of
sensory state spaces in many robotic applications by only allowing
transitions between neighbouring states. The algorithm is tested
within an image-based visual servoing framework on a docking
task, in which the robot has to position its gripper at a desired
configuration relative to an object on a table. In experiments,
we compare the performance of the new algorithm with a
hand-designed linear controller and a scheme using the linear
controller as a bias to further accelerate the learning. By analysis
of the controllability and docking time, we show that the biased
learner could improve on the performance of the linear controller,
while requiring substantially lower training time than unbiased
leaning (less than 1 hour on the real robot).

I. I NTRODUCTION

In this paper we present a new approach for accelerating
learning of new skills by mobile robots using reinforcement,
in order to eliminate the need for offline simulations as
in many current approaches. A new reinforcement learning
algorithm is proposed that greatly speeds upQ-learning by
applying memory-based sweeping [1] and reducing the num-
ber of allowed state transitions by enforcing the “adjoining
property” [2], [3], a technique from the field of optimal
control. This technique exploits the fact that in many robotic
applications, continuous sensory variables (interval numbers)
are quantized into discrete states, where the natural ordering
of states is preserved (ordinal numbers). While standardQ-
learning assumes unordered states (nominal numbers), the
adjoining property assumes that the states are ordered and
allows only transitions between neighbouring states.

The new algorithm is tested on a docking task for an
Activmedia PeopleBot mobile robot, in which the robot has to
move towards an object located on a table and then pick up that
object with its gripper (Fig. 1). Due to physical constraints, i.e.,
the very limited grasping capability of the PeopleBot, the robot
has to dock itself at a very precise position and orientation next
to the table, without hitting the table, so that the object can be
reached by the gripper. A solution based on visual servoing [4]
is applied, where the robot’s pan-tilt camera is used to keep
track of the object and the edge of the table while the robot
is steered to the desired configuration. An image-based visual

servoing method is used, where the control law is computed
directly from visual features, without explicit pose estimation.

In our approach, a separate tracking behaviour is used to
control the robot’s pan-tilt camera, in order to keep the object
in the centre of the image at all times while the robot is
moving. A minimal number of state variables are extracted
from the image (concerning the apparent slope of the table
edge) and the position encoders of the camera (concerning
the pan and tilt angles). These state variables are then used in
the input to the motor controller of the mobile robot.

In the experiments we compare a number of control al-
gorithms, including a hand-designed linear controller, the
new reinforcement learning algorithm, and a scheme using
the linear controller as a bias to accelerate reinforcement
learning. By analysis of the controllability and docking time,
we found that the biased learning system could improve on
the performance of the linear controller, while requiring much
less training than unbiased learning. With this approach, a high
performance controller could be acquired in less than 1 hour
on the real robot.

A. Related Work

In principle, a robot could learn any task from scratch
by reinforcement learning (RL) given enough time [5]. In
practice, however, this time is too high for most complex tasks,
and the designer must find some method to incorporate prior
knowledge into the learning process.

Asada et al. [6] usedQ-learning to acquire vision-based
behaviours in simulated soccer robots. A strategy called
“Learning from Easy Missions” (LEM) was used to reduce the
training time, by restricting the robot to easier situations at the
early stages of training. In addition, they introduced a method
for learning a new task from previously learned subtasks, e.g.,
combining shooting a ball with avoiding an opponent, thus
reducing training time for complex tasks.

Smart and Kaelbling addressed the practical issues of get-
ting Q-learning to work on a real mobile robot [7]. The
tasks investigated were wall following and obstacle avoidance.
Learning was carried out in two phases: first, with the control
policy being provided by a pre-programmed controller or a
human with a joystick, and second, using the learned policy
of the robot while RL continues (“fine tuning”). The tasks
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Fig. 1. Sequence of images showing the docking behaviour learned on the real robot.

were also simplified by controlling only a single variable, the
rotational velocity of the robot, while the translational velocity
was controlled by a hand-coded algorithm.

Gaskett et al. [8] introduced a RL-based approach for
training a mobile robot to wander (obstacle avoidance) and
pursue a target using real-time vision. This was implemented
in a subsumption architecture, such that target pursuit takes
over from wandering when a valid target is detected. They
used Advantage Learning to improve the optimal behaviour of
Q-learning and a neural network to map the states to actions.
Target pursuit was realised by visual servoing. This is simpler
than our robot docking task because it requires servoing to a
position but not to a particular orientation.

In work done independently, Weber et al. [9] used a neural
network based approach to solve the docking problem on
a Peoplebot robot by reinforcement learning. However, the
reinforcement learning was done in simulation, limiting the
generality of the approach to tasks and environments that can
be simulated accurately. In addition, the pan-tilt camera was
fixed to see the gripper and the object in the same image (i.e.,
the pan-tilt mechanism was not exploited). This means that
their visual controller is only valid when the robot is near to
the table (40-50 cm). Our controller is valid for much longer
distances of 3-4 m.

II. V ISUAL SERVOING TASK

The complete mobile manipulation task can be divided into
two phases: docking (approaching the table), and grasping
(picking up the object). Due to physical constraints of our
robot, the first task is relatively difficult while the second task
is relatively easy, provided that docking has been successful.
In this section, we therefore concentrate on the solution of the
docking problem by visual servoing. We define the 3D state
space used for input to the closed loop controller, and the
techniques for estimating the state variables on the real robot.

A. The robot

We used an Activmedia PeopleBot, a holonomic mobile
robot that is equipped with an array of sensors including sonar,
laser, infrared and a pan-tilt camera (see Fig. 1). The mobile
robot base has two DOF, corresponding to the translational and

Fig. 2. Representation of the state variables in Cartesian space.

rotational velocities. The robot also has a basic gripper with
one DOF that can be used for simple grasping operations.

In this work, only the vision sensor was used to estimate the
state variables. The pan-tilt unit has two DOF’s. The range of
the pan angle is±100 degrees, and the tilt angle has a range
of 0-90 degrees. The position of the camera on the robot is
especially suitable for this application, allowing the robot to
see both the gripper and the target object in the same image
when the robot has completed the docking phase.

B. The state space variables

In many vision-based manipulation applications, informa-
tion has to be extracted from the image concerning the posi-
tion, orientation, size and shape of the object. In our case, it is
not necessary to calculate a 3D pose estimate, it is sufficient to
use a 2D pose estimate to correct the pan-tilt angles in order
to keep the object in the centre of the image. Instead of using
the 2D position (relative x, y values in the image) as state
variables, we use the pan and tilt camera angles, since these
two variables implicitly contain 3D information.

Fig. 2 depicts the three state variables that define a new state
space(β, α, d), whereβ is the angle between the table and the
perpendicular direction to segmentd, α is the angle between
the mobile robot and the perpendicular direction to segmentd,
andd is the distance between the object and the robot. For the
docking task, the goal state in this relative coordinate system



is the origin. The state equations of this formulation are:

β̇ =
vT

d
sinα, (1)

α̇ =
vT

d
sinα− vR, (2)

ḋ = −vT cos α. (3)

wherevT is the translational velocity andvR is the rotational
velocity of the mobile robot.

In this paper, the problem is simplified by fixing the value of
vT . Then, the task is reduced to controlling the orientation of
the robot in a two-dimensional state space(β, α) by the action
vR. In our reinforcement learning experiments, we allow only
two possible actions in each state (turning left or right at 9
deg/s). In this case the controllability of the system is more
limited, since the controller cannot reducevT if big changes
in the orientation of the robot are required.

C. Estimating the state variables on the real robot

The state variables(β, α, d) can be estimated through the
variables(m, pan, tilt) respectively, which can all be obtained
from the image sensor (note that only the first two variables are
used in current experiments, as discussed above). The variable
m corresponds to the slope of the edge of the table in the
image (see Fig. 3). The pan and tilt angles are valid if the
object is kept in the centre of the image. For reinforcement
learning on the real robot,β is estimated usingarctan(m), and
α is estimated usingpan. The continuous state variables are
converted into discrete states (cells) by uniform quantization
(see section III).

For the success of the docking behaviour, it is essential to
track the object at all times while the robot is moving and
picking up the object. The pan-tilt camera has two DOF that
allow the independent control of thex-position with the pan
motor and they-position with the tilt motor. For each axis, a
Proportional-Derivative (PD) controller is employed in order to
keep the object in the centre of the image [10]. The parameters
of the controller were adjusted to avoid overshoot if the object
or the robot changes its position suddenly.

Fig. 3. Left: raw image. Right: image after colour thresholding.

The image processing steps can be described as follows.
The regions of the image corresponding to the object and the
table edge are extracted by simple colour segmentation in RGB

space. In our experiments, we simplified the experimental
set-up by using a green-coloured drink can and an orange
stripe placed on the edge of the table. However, we are also
investigating more advanced image processing in current work,
e.g., using a Hough transform to recognise the table edge
without needing the orange stripe. The centre of the object
(x, y) is determined by taking the median x and y values in
the segmented image. The gradient of the edge of the table,
m, is calculated by a standard least-squares fitting method.

III. R EINFORCEMENTLEARNING

Reinforcement learning methods only require a scalar re-
ward (or punishment) to learn to map states to actions. In
our approach, the learner is given a positive reward if it
successfully reaches the goal configuration, or a negative
reward if it fails. A small negative reward is also given for
every time step, in order to minimize the time taken to reach
the goal. The aim is to learn a policy, i.e., a mapping from
perceived states of the environment to actions to be taken in
those states, that maximizes the accumulated reward in each
state [1].

Here we present a novel reinforcement learning algorithm
for mobile robots. Its fundamental characteristics are: the
reinforcement learning mechanism is implemented through the
update equation ofQ-learning; the adjoining propertyis used
to approximate the optimal robot behaviour for continuous
state spaces; and the data are processed on-line to build a
model that is used to further accelerate the learning by “mental
rehearsal” or simulation, thus implementing anindirect rein-
forcement learningalgorithm.

A. Q-learning

Q-learning is one of most popular reinforcement learning
methods, since it can solve model-free optimization problems
and has a simple formulation. The knowledge is saved in a
look-up table that contains an estimation of the accumulated
reward for reaching the goal in each situation or state. The ac-
cumulated reward for each state-action pairQ(s, a) is updated
by the one-step equation

∆Q(s, a) = α (r + γmaxa′Q(s′, a′)−Q(s, a)) (4)

whereQ is the expected value of performing actiona in states,
r is the reward,α is a learning rate which controls convergence
andγ is the discount factor. The discount factor makes rewards
earned earlier more valuable than those received later. The
actiona with highestQ value at states is the best policy up
to instantt.

B. The adjoining property

Q-learning was conceived for discrete state and action
spaces, where the state space is not necessarily metric. In
robotic applications the state space is continuous, so it is
mandatory to discretize the state space into cells. The inherent
discretization errors can produce a poor approximation to



the optimal behaviour in complex nonlinear systems such as
mobile robots.

To address this problem we have introduced the adjoining
property taken from the CACM technique [2], [3], which is
an optimal control technique for nonlinear continuous dynamic
systems. This method is based on the Adjoining Cell Mapping
(ACM) technique, whose central concept is the creation of
a cell mapping where only transitions between adjoining
cells are allowed [11]. The adjoining property states that the
distanceDk between the current cell and the previous cell is
equal to some integer valuek equal or greater than 1. The
distance between two cellsz andz is defined as:

Dk(z, z′) = max
j
|zj − z′

j | = k (5)

In Q-learning the transitions between states are evaluated
at fixed sample times, while with our RL controller the
transitions have to satisfy the adjoining distance condition
in order to be evaluated. By appropriate selection of this
distance with respect to the number of cells, it is possible
to minimize quantization effects and better approximate the
optimal behaviour of the system.

C. Indirect reinforcement learning

The RL algorithm has been implemented as a model-based
reinforcement learning method, where the back-ups are made
by “non-prioritized” sweeping, a simplification of the Priori-
tized Sweeping (PS) algorithm [12]. In the full PS algorithm,
a prioritized queue of state-action pairs is maintained in order
to focus the search on transitions with big changes inQ. In
our application, where the sample time is 0.125 seconds and
the number of states is less than a thousand, prioritization of
the state-action pairs would not improve the efficiency of the
algorithm.

In direct reinforcement learning (e.g.,Q-learning), the back-
ups are only made by experimentation, which is suitable when
the back-up time for experimentation compared to simula-
tion is not very high. In general, model-based reinforcement
learning finds better trajectories and manages changes in
the environment (e.g., obstacles) more efficiently than direct
reinforcement learning.

The model stored in memory for each state-action pair(s, a)
is the estimation of the continuous statex′ reached by applying
an actiona and the average of the rewardr. The model is only
updated when the adjoining property is satisfied.

D. Implementation details

The RL algorithm that implements the concepts described
above is presented in Fig. 4. The state is represented in the
algorithm by a real valued vectorx, which is converted to
the discrete states (integer index) by the functioncell(). In
our experiments, uniform discretization was used with 31 cells
per variable in simulation and 15 cells on the real robot (see
Table I for full details of the RL parameters). The function
Dk−adjoining() is used to determine whether the adjoining
property has been satisfied. The indexs is used to update

Initialize Q(s, a) andModel(s, a)
x← current state
s← cell(x)
IF s = sink or goal
THEN reverse(x)
ELSE a← policy(s)

Execute actiona
Observe resultant statex′ and rewardr
IF Dk-adjoining(x, x′)
THEN Model(s, a)← x′, r

FOR all (s, a), repeat N times:
x̄′ ←Model(s, a)
s′ ← cell(x̄′)
UpdateQ table using Eqn. 5

UNTIL training terminated

Fig. 4. Reinforcement Learning Algorithm.

State variables: 2. x1: -65 ≤ β ≤ 65◦. Cells: 15 (31)
(961 states) x2: -80 ≤ α ≤ 80◦. Cells: 15 (31)
Objective state: (α, β) = (0◦, 0◦)
Control variables: 1. u1: -9 ≤ vR ≤ 9◦/s.
(2 actions) (u1: -10 ≤ vR ≤ 10◦/s.)
Sampling time: Ts: 0.125 sec.
Reward: r = 300 if goal

r = -50 if sink
r = -n (Ts) otherwise

Adjoining distance: D-1

TABLE I

PARAMETERS IN THE RL ALGORITHM ON THE REAL ROBOT. (BRACKETS

INDICATE DIFFERENT VALUES USED IN SIMULATION).

the Q-table, andx is used to update the functionmodel().
Since the controller uses noisy data from an image sensor, the
functionmodel() estimates the state of the system by filtering
before storing it. In our experiments an average filter was used.

For the docking behaviour the aim of the controller is to
move the robot from any initial position inside the region
of interest to the object position through a minimum-time
trajectory. A trial finishes when the robot moves outside of
the state space (sink cell) or when it enters in the goal. Then,
the functionreverse() moves the robot backward, using its
vision system to keep the object in the centre of the image,
until some starting position inside the state space is reached.
We use a range of thetilt angle in order to limit the area
where the robot is trained (20 < tilt < 43◦, corresponding
to a distance 0.20< d < 0.95 m), and to avoid collisions
between the robot and table. The functionreverse() finishes
when tilt < 20◦.

The functionpolicy() selects an action for each transition
of the system. The RL controller selects the actions randomly
to explore most of the state space during training. By chang-
ing the functionpolicy() it is possible to implement other
controllers, e.g., the RL-LC controller described in the next



section. In the update rule (Eqn. 5), the learning rateα is
variable, falling inversely with the number of transitions and
the discount factor is fixed toγ = 1.

The docking task is symmetric in the state and action spaces,
i.e., the actions taken when robot is to the right of the object
are symmetric with respect to the actions on the left side.
Each cell has amirror cell that satisfies this property. For
each transition, we exploit this symmetry by also updating the
model and theQ-factor for the mirror cell.

IV. OTHER CONTROLLERSINVESTIGATED

A. Linear controller

The equation of the state space linear controller is given as

vR = α̇ = K1β + K2α. (6)

The advantage of this simpler linear controller with respect
to optimal controllers is that it does not require a model of
the system and environment, and only requires tuning of the
(K1, K2) parameters to obtain satisfactory performance.

On the real robot, the linear controller was implemented
as VR = Kmm + Kppan, wherem and pan are the state
variables measured on the PeopleBot. The parameter values
used in our experiments wereKm = 100 andKp = 0.2.

B. RL-Linear controller

A number of schemes have been proposed to speed up
the learning phase of RL methods [6], [7]. Although the RL
algorithm presented in this paper learns the optimal policy
much faster than other RL methods (e.g., the flatQ-learning
algorithm requires a training phase over 10 times longer), it
is beneficial to accelerate the learning even further.

The linear controller can act as teacher of the RL controller
in the early stages of learning, causing a fast propagation of
the Q-factors in the state space. In order to incorporate the
information from the linear controller into the RL algorithm,
only the functionpolicy() in Fig. 4 was modified. In this case,
the function alternately selects between the actions provided
by the linear controller and the random exploration of the RL
controller for each trial of the learning process.

V. SIMULATION RESULTS

The controllers described in the previous sections were
compared using two measures of performance: thepercentage
of controllable cellsand theaverage docking time. A cell is
controllable if starting at the centre point of such a cell (initial
state), the system evolves reaching some point inside the
objective cell (final state). The average docking time indicates
the approximation to the optimal behaviour of the system. Both
statistics are calculated from a subset of the possible starting
states in a rectangular area between 1 and 2 meters from the
object, testing the trajectories that reach the goal.

Fig. 5 shows the learning process for RL, RL’ and RL-LC
controllers using the percentage of controllable cells over time,
averaged over 20 runs of the algorithm. Thex-axis represents
the estimated time that the real robot employs to acquire the
current behaviour. In order to test the improvement of using

Fig. 5. Percentage of controllable cells over time for the 4 algorithms.

the adjoining property in the RL controller, a version of the RL
controller without the adjoining restriction is depicted (RL’).
It is observed that the adjoining property provides a greater
controllabitity region in less time. Thus, the learning process
is faster and more reliable. The results also show that RL
improves the performance of the linear controller in both the
size of the controllable region and the average time to reach
the goal (Table II). Furthermore, the biased learning using the
RL-LC controller speeds up the learning phase, obtaining an
acceptable behaviour in much less time than the RL controller.

Fig. 6 depicts some trajectories of the robot employing the
linear controller (grey) and the biased reinforcement learning
controller (black) after training. The translation velocity was
fixed at a constant value ofvT = 0.1 m/s. As shown in Fig. 6,
the trajectories for the RL-LC controller are straighter than for
the linear controller, corresponding to a better approximation
to the time-optimal behaviour.

VI. ROBOTIC EXPERIMENTS

The reinforcement learning controllers have been imple-
mented successfully on the real robot (see Fig. 1). When the
table is reached at the goal position and orientation, the robot
picks up the object using a separate hand-coded controller that
moves the gripper downwards until its horizontal break beams
detect the object. The training time using the RL-LC controller
was 40 minutes. Fig. 7 shows some trajectories on the real
robot using the RL-LC controller, where both the position

Controller Av. Dock. Time(s) Control. Cells(%)

LC 14.00 44.4
RL 11.84 53.2
RL-LC 11.78 60.8
RL’ 11.85 42.3

TABLE II

AVERAGE DOCKING TIME AND PERCENTAGE OF CONTROLLABLE CELLS

AFTER 60 MINUTES.



Fig. 6. Some example trajectories using the linear controller (grey) and
biased reinforcement learner (black).

Fig. 7. Some example trajectories using the biased reinforcement learner on
the real robot.

and the orientation are smoothly controlled. Furthermore, the
robot can reach the object from a long distance (3-4 meters,
only limited by the image resolution) since the controller
does not have any distance restriction. The RL-LC controller
approximates the time-optimal behaviour, improving the per-
formance of the linear controller in time without overshoot in
the trajectory.

We also conducted some experiments to test the robustness
of the whole system with respect to changes in the environ-
ment. If the object is moved during docking, then the robot
follows the object (provided that the object is not moved too
quickly and stays within the robot’s field of view). If the table
is turned while the robot is close to the object, then the robot
turns to avoid hitting the table.

VII. C ONCLUSION

We presented a solution for mobile robot docking using
reinforcement learning in a visual servoing framework. A
new RL algorithm was presented that is better suited to real
robots that operate in continuous state spaces (by exploiting
the adjoining property and model-based sweeping). We also
showed that an easy-to-implement linear controller could be
used to accelerate the learning even further.

The approach requires no calibration or geometric models,
and the reactive behaviour is robust to perturbations and noise.
The closed loop solution is based on a relative coordinate
system: no global reference frame is required, so the system
is robust to positioning errors, e.g., due to odometry drift.

In future research, we intend to extend the approach to more
complex tasks and robots with higher dimensional state and
action spaces.
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