15,385 research outputs found

    Efficient Data Collection in Multimedia Vehicular Sensing Platforms

    Full text link
    Vehicles provide an ideal platform for urban sensing applications, as they can be equipped with all kinds of sensing devices that can continuously monitor the environment around the travelling vehicle. In this work we are particularly concerned with the use of vehicles as building blocks of a multimedia mobile sensor system able to capture camera snapshots of the streets to support traffic monitoring and urban surveillance tasks. However, cameras are high data-rate sensors while wireless infrastructures used for vehicular communications may face performance constraints. Thus, data redundancy mitigation is of paramount importance in such systems. To address this issue in this paper we exploit sub-modular optimisation techniques to design efficient and robust data collection schemes for multimedia vehicular sensor networks. We also explore an alternative approach for data collection that operates on longer time scales and relies only on localised decisions rather than centralised computations. We use network simulations with realistic vehicular mobility patterns to verify the performance gains of our proposed schemes compared to a baseline solution that ignores data redundancy. Simulation results show that our data collection techniques can ensure a more accurate coverage of the road network while significantly reducing the amount of transferred data

    Road Condition Estimation with Data Mining Methods using Vehicle Based Sensors

    Get PDF
    The work provides novel methods to process inertial sensor and acoustic sensor data for road condition estimation and monitoring with application in vehicles, which serve as sensor platforms. Furthermore, methods are introduced to combine the results from various vehicles for a more reliable estimation

    Road Condition Estimation with Data Mining Methods using Vehicle Based Sensors

    Get PDF
    The work provides novel methods to process inertial sensor and acoustic sensor data for road condition estimation and monitoring with application in vehicles, which serve as sensor platforms. Furthermore, methods are introduced to combine the results from various vehicles for a more reliable estimation

    CPD: Crowd-based Pothole Detection

    Get PDF
    Potholes and other damages of the road surface constitute a problem being as old as roads are. Still, potholes are widespread and affect the driving comfort of passengers as well as road safety. If one knew about the exact locations of potholes, it would be possible to repair them selectively or at least to warn drivers about them up to their repair. However, both scenarios require their detection and localization. For this purpose, we propose a crowd-based approach that enables as many of the vehicles already driving on our roads as possible to detect potholes and report them to a centralized back-end application. Whereas each single vehicle provides only limited and imprecise information, it is possible to determine these information more precisely when collecting them at a large scale. These more exact information may, for example, be used to warn following vehicles about potholes lying ahead to increase overall safety and comfort. In this work, this idea is examined and an offline executable version of the desired system is implemented. Additionally, the approach is evaluated with a large database of real-world sensor readings from a testing fleet and therefore its feasibility is proved. Our investigation shows that the suggested CPD approach is promising to bring customers a benefit by an improved driving comfort and higher road safety

    Bridges Structural Health Monitoring and Deterioration Detection Synthesis of Knowledge and Technology

    Get PDF
    INE/AUTC 10.0

    Managed information gathering and fusion for transient transport problems

    Get PDF
    This paper deals with vehicular traffic management by communication technologies from Traffic Control Center point of view in road networks. The global goal is to manage the urban traffic by road traffic operations, controlling and interventional possibilities in order to minimize the traffic delays and stops and to improve traffic safety on the roads. This paper focuses on transient transport, when the controlling management is crucial. The aim was to detect the beginning time of the transient traffic on the roads, to gather the most appropriate data and to get reliable information for interventional suggestions. More reliable information can be created by information fusion, several fusion techniques are expounded in this paper. A half-automatic solution with Decision Support System has been developed to help with engineers in suggestions of interventions based on real time traffic data. The information fusion has benefits for Decision Support System: the complementary sensors may fill the gaps of one another, the system is able to detect the changing of the percentage of different vehicle types in traffic. An example of detection and interventional suggestion about transient traffic on transport networks of a little town is presented at the end of the paper. The novelty of this paper is the gathering of information - triggered by the state changing from stationer to transient - from ad hoc channels and combining them with information from developed regular channels. --information gathering,information fusion,Kalman filter,transient traffic,Decision Support System
    • …
    corecore