10 research outputs found

    Energy Efficiency

    Get PDF
    This book is one of the most comprehensive and up-to-date books written on Energy Efficiency. The readers will learn about different technologies for energy efficiency policies and programs to reduce the amount of energy. The book provides some studies and specific sets of policies and programs that are implemented in order to maximize the potential for energy efficiency improvement. It contains unique insights from scientists with academic and industrial expertise in the field of energy efficiency collected in this multi-disciplinary forum

    Interference management and system optimisation for Femtocells technology in LTE and future 4G/5G networks

    Get PDF
    Femtocells are seen to be the future of Long Term Evaluation (LTE) networks to improve the performance of indoor, outdoor and cell edge User Equipments (UEs). These small cells work efficiently in areas that suffer from high penetration loss and path-loss to improve the coverage area. It is said that 30% of total served UEs in LTE networks are vehicular, which poses challenges in LTE networks due to their high mobility, high vehicular penetration loss (VPL), high path loss and high interference. Therefore, self-optimising and dynamic solutions are required to incorporate more intelligence into the current standard of LTE system. This makes the network more adaptive, able to handle peak data demands and cope with the increasing capacity for vehicular UEs. This research has drawn a performance comparison between vehicular UEs who are served by Mobile-Femto, Fixed-Femto and eNB under different VPL scales that range between highs and lows e.g. 0dB, 25dB and 40dB. Deploying Mobile-Femto under high VPLs has improved the vehicular UE Ergodic capacity by 1% and 5% under 25dB and 40dB VPL respectively as compared to other eNB technologies. A noticeable improvement is also seen in signal strength, throughput and spectral efficiency. Furthermore, this research discusses the co-channel interference between the eNB and the Mobile-Femto as both share the same resources and bandwidth. This has created an interference issue from the downlink signals of each other to their UEs. There were no previous solutions that worked efficiently in cases where UEs and base stations are mobile. Therefore, this research has adapted an efficient frequency reuse scheme that worked dynamically over distance and achieved improved results in the signal strength and throughput of Macro and Mobile-Femto UE as compared to previous interference management schemes e.g. Fractional Frequency Reuse factor1 (NoFFR-3) and Fractional Frequency Reuse factor3 (FFR-3). Also, the achieved results show that implementing the proposed handover scheme together with the Mobile-Femto deployment has reduced the dropped calls probability by 7% and the blocked calls probability by 14% compared to the direct transmission from the eNB. Furthermore, the outage signal probabilities under different VPLs have been reduced by 1.8% and 2% when the VPLs are 25dB and 40dB respectively compared to other eNB technologies

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Délestage de données en D2D : de la modélisation à la mise en oeuvre

    Get PDF
    Mobile data traffic is expected to reach 24.3 exabytes by 2019. Accommodating this growth in a traditional way would require major investments in the radio access network. In this thesis, we turn our attention to an unconventional solution: mobile data offloading through device-to-device (D2D) communications. Our first contribution is DROiD, an offloading strategy that exploits the availability of the cellular infrastructure as a feedback channel. DROiD adapts the injection strategy to the pace of the dissemination, resulting at the same time reactive and relatively simple, allowing to save a relevant amount of data traffic even in the case of tight delivery delay constraints.Then, we shift the focus to the gains that D2D communications could bring if coupled with multicast wireless networks. We demonstrate that by employing a wise balance of multicast and D2D communications we can improve both the spectral efficiency and the load in cellular networks. In order to let the network adapt to current conditions, we devise a learning strategy based on the multi-armed bandit algorithm to identify the best mix of multicast and D2D communications. Finally, we investigate the cost models for operators wanting to reward users who cooperate in D2D offloading. We propose separating the notion of seeders (users that carry content but do not distribute it) and forwarders (users that are tasked to distribute content). With the aid of the analytic framework based on Pontryagin's Maximum Principle, we develop an optimal offloading strategy. Results provide us with an insight on the interactions between seeders, forwarders, and the evolution of data dissemination.Le trafic mobile global atteindra 24,3 exa-octets en 2019. Accueillir cette croissance dans les réseaux d’accès radio devient un véritable casse-tête. Nous porterons donc toute notre attention sur l'une des solutions à ce problème : le délestage (offloading) grâce à des communications de dispositif à dispositif (D2D). Notre première contribution est DROiD, une stratégie qui exploite la disponibilité de l'infrastructure cellulaire comme un canal de retour afin de suivre l'évolution de la diffusion d’un contenu. DROiD s’adapte au rythme de la diffusion, permettant d'économiser une quantité élevée de données cellulaires, même dans le cas de contraintes de réception très serrées. Ensuite, nous mettons l'accent sur les gains que les communications D2D pourraient apporter si elles étaient couplées avec les transmissions multicast. Par l’utilisation équilibrée d'un mix de multicast, et de communications D2D, nous pouvons améliorer, à la fois, l'efficacité spectrale ainsi que la charge du réseau. Afin de permettre l’adaptation aux conditions réelles, nous élaborons une stratégie d'apprentissage basée sur l'algorithme dit ‘’bandit manchot’’ pour identifier la meilleure combinaison de communications multicast et D2D. Enfin, nous mettrons en avant des modèles de coûts pour les opérateurs, désireux de récompenser les utilisateurs qui coopèrent dans le délestage D2D. Nous proposons, pour cela, de séparer la notion de seeders (utilisateurs qui transportent contenu, mais ne le distribuent pas) et de forwarders (utilisateurs qui sont chargés de distribuer le contenu). Avec l'aide d’un outil analytique basée sur le principe maximal de Pontryagin, nous développons une stratégie optimale de délestage

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    1-D broadside-radiating leaky-wave antenna based on a numerically synthesized impedance surface

    Get PDF
    A newly-developed deterministic numerical technique for the automated design of metasurface antennas is applied here for the first time to the design of a 1-D printed Leaky-Wave Antenna (LWA) for broadside radiation. The surface impedance synthesis process does not require any a priori knowledge on the impedance pattern, and starts from a mask constraint on the desired far-field and practical bounds on the unit cell impedance values. The designed reactance surface for broadside radiation exhibits a non conventional patterning; this highlights the merit of using an automated design process for a design well known to be challenging for analytical methods. The antenna is physically implemented with an array of metal strips with varying gap widths and simulation results show very good agreement with the predicted performance

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium
    corecore