6,272 research outputs found

    Reinforcement Learning for Automatic Test Case Prioritization and Selection in Continuous Integration

    Full text link
    Testing in Continuous Integration (CI) involves test case prioritization, selection, and execution at each cycle. Selecting the most promising test cases to detect bugs is hard if there are uncertainties on the impact of committed code changes or, if traceability links between code and tests are not available. This paper introduces Retecs, a new method for automatically learning test case selection and prioritization in CI with the goal to minimize the round-trip time between code commits and developer feedback on failed test cases. The Retecs method uses reinforcement learning to select and prioritize test cases according to their duration, previous last execution and failure history. In a constantly changing environment, where new test cases are created and obsolete test cases are deleted, the Retecs method learns to prioritize error-prone test cases higher under guidance of a reward function and by observing previous CI cycles. By applying Retecs on data extracted from three industrial case studies, we show for the first time that reinforcement learning enables fruitful automatic adaptive test case selection and prioritization in CI and regression testing.Comment: Spieker, H., Gotlieb, A., Marijan, D., & Mossige, M. (2017). Reinforcement Learning for Automatic Test Case Prioritization and Selection in Continuous Integration. In Proceedings of 26th International Symposium on Software Testing and Analysis (ISSTA'17) (pp. 12--22). AC

    Usage of Network Simulators in Machine-Learning-Assisted 5G/6G Networks

    Full text link
    Without any doubt, Machine Learning (ML) will be an important driver of future communications due to its foreseen performance when applied to complex problems. However, the application of ML to networking systems raises concerns among network operators and other stakeholders, especially regarding trustworthiness and reliability. In this paper, we devise the role of network simulators for bridging the gap between ML and communications systems. In particular, we present an architectural integration of simulators in ML-aware networks for training, testing, and validating ML models before being applied to the operative network. Moreover, we provide insights on the main challenges resulting from this integration, and then give hints discussing how they can be overcome. Finally, we illustrate the integration of network simulators into ML-assisted communications through a proof-of-concept testbed implementation of a residential Wi-Fi network

    Scenarios for the development of smart grids in the UK: literature review

    Get PDF
    Smart grids are expected to play a central role in any transition to a low-carbon energy future, and much research is currently underway on practically every area of smart grids. However, it is evident that even basic aspects such as theoretical and operational definitions, are yet to be agreed upon and be clearly defined. Some aspects (efficient management of supply, including intermittent supply, two-way communication between the producer and user of electricity, use of IT technology to respond to and manage demand, and ensuring safe and secure electricity distribution) are more commonly accepted than others (such as smart meters) in defining what comprises a smart grid. It is clear that smart grid developments enjoy political and financial support both at UK and EU levels, and from the majority of related industries. The reasons for this vary and include the hope that smart grids will facilitate the achievement of carbon reduction targets, create new employment opportunities, and reduce costs relevant to energy generation (fewer power stations) and distribution (fewer losses and better stability). However, smart grid development depends on additional factors, beyond the energy industry. These relate to issues of public acceptability of relevant technologies and associated risks (e.g. data safety, privacy, cyber security), pricing, competition, and regulation; implying the involvement of a wide range of players such as the industry, regulators and consumers. The above constitute a complex set of variables and actors, and interactions between them. In order to best explore ways of possible deployment of smart grids, the use of scenarios is most adequate, as they can incorporate several parameters and variables into a coherent storyline. Scenarios have been previously used in the context of smart grids, but have traditionally focused on factors such as economic growth or policy evolution. Important additional socio-technical aspects of smart grids emerge from the literature review in this report and therefore need to be incorporated in our scenarios. These can be grouped into four (interlinked) main categories: supply side aspects, demand side aspects, policy and regulation, and technical aspects.

    A Survey on Explainable AI for 6G O-RAN: Architecture, Use Cases, Challenges and Research Directions

    Full text link
    The recent O-RAN specifications promote the evolution of RAN architecture by function disaggregation, adoption of open interfaces, and instantiation of a hierarchical closed-loop control architecture managed by RAN Intelligent Controllers (RICs) entities. This paves the road to novel data-driven network management approaches based on programmable logic. Aided by Artificial Intelligence (AI) and Machine Learning (ML), novel solutions targeting traditionally unsolved RAN management issues can be devised. Nevertheless, the adoption of such smart and autonomous systems is limited by the current inability of human operators to understand the decision process of such AI/ML solutions, affecting their trust in such novel tools. eXplainable AI (XAI) aims at solving this issue, enabling human users to better understand and effectively manage the emerging generation of artificially intelligent schemes, reducing the human-to-machine barrier. In this survey, we provide a summary of the XAI methods and metrics before studying their deployment over the O-RAN Alliance RAN architecture along with its main building blocks. We then present various use-cases and discuss the automation of XAI pipelines for O-RAN as well as the underlying security aspects. We also review some projects/standards that tackle this area. Finally, we identify different challenges and research directions that may arise from the heavy adoption of AI/ML decision entities in this context, focusing on how XAI can help to interpret, understand, and improve trust in O-RAN operational networks.Comment: 33 pages, 13 figure

    Adoption of Big Data and AI methods to manage medication administration and intensive care environments

    Get PDF
    Artificial Intelligence (AI) has proven to be very helpful in different areas, including the medical field. One important parameter for healthcare professionals’ decision-making process is blood pressure, specifically mean arterial pressure (MAP). The application of AI in medicine, more specifically in Intensive Care Units (ICU) has the potential to improve the efficiency of healthcare and boost telemedicine operations with access to real-time predictions from remote locations. Operations that once required the presence of a healthcare professional, can be done at a distance, which facing the recent COVID-19 pandemic, proved to be crucial. This dissertation presents a solution to develop an AI system capable of accurately predicting MAP values. Many ICU patients suffer from sepsis or septic shock, and they can be identified by the need for vasopressors, such as noradrenaline, to keep their MAP above 65 mm Hg. The presented solution facilitates early interventions, thereby minimising the risk to patients. The current study reviews various machine learning (ML) models, training them to predict MAP values. One of the challenges is to see how the different models behave during their training process and choose the most promising one to test in a controlled environment. The dataset used to train the models contains identical data to the one generated by bedside monitors, which ensures that the models’ predictions align with real-world scenarios. The medical data generated is processed by a separate component that performs data cleaning, after which is directed to the application responsible for loading, classifying the data and utilising the ML model. To increase trust between healthcare professionals and the system to be developed, it is also intended to provide insights into how the results are achieved. The solution was integrated, for validation, with one of the telemedicine hubs deployed by the European project ICU4Covid through its CPS4TIC component.A Inteligência Artificial (IA) é muito útil em diferentes áreas, incluindo a saúde. Um parâmetro importante para a tomada de decisão dos profissionais de saúde é a pressão arterial, especificamente a pressão arterial média (PAM). A aplicação da IA na medicina, mais especificamente nas Unidades de Cuidados Intensivos (UCI), tem o potencial de melhorar a eficiência dos cuidados de saúde e impulsionar operações de telemedicina com acesso a previsões em tempo real a partir de locais remotos. As operações que exigiam a presença de um profissional de saúde, podem ser feitas à distância, o que, face à recente pandemia da COVID-19, se revelou crucial. Esta dissertação apresenta como solução um sistema de IA capaz de prever valores de PAM. Muitos pacientes nas UCI sofrem de sepse ou choque séptico, e podem ser identificados pela necessidade de vasopressores, como a noradrenalina, para manter a sua PAM acima dos 65 mm Hg. A solução apresentada facilita intervenções antecipadas, minimizando o risco para doentes. O estudo atual analisa vários modelos de machine learning (ML), e treina-os para preverem valores de PAM. Um desafio é ver o desempenho dos diferentes modelos durante o seu treino, e escolher o mais promissor para testar num ambiente controlado. O dataset utilizado para treinar os modelos contém dados idênticos aos gerados por monitores de cabeceira, o que assegura que as previsões se alinhem com cenários realistas. Os dados médicos gerados são processados por um componente separado responsável pela sua limpeza e envio para a aplicação responsável pelo seu carregamento, classificação e utilização do modelo ML. Para aumentar a confiança entre os profissionais de saúde e o sistema, pretende-se também fornecer uma explicação relativa à previsão dada. A solução foi integrada, para validação, com um dos centros de telemedicina implantado pelo projeto europeu ICU4Covid através da sua componente CPS4TIC

    RLOps:Development Life-cycle of Reinforcement Learning Aided Open RAN

    Get PDF
    Radio access network (RAN) technologies continue to witness massive growth, with Open RAN gaining the most recent momentum. In the O-RAN specifications, the RAN intelligent controller (RIC) serves as an automation host. This article introduces principles for machine learning (ML), in particular, reinforcement learning (RL) relevant for the O-RAN stack. Furthermore, we review state-of-the-art research in wireless networks and cast it onto the RAN framework and the hierarchy of the O-RAN architecture. We provide a taxonomy of the challenges faced by ML/RL models throughout the development life-cycle: from the system specification to production deployment (data acquisition, model design, testing and management, etc.). To address the challenges, we integrate a set of existing MLOps principles with unique characteristics when RL agents are considered. This paper discusses a systematic life-cycle model development, testing and validation pipeline, termed: RLOps. We discuss all fundamental parts of RLOps, which include: model specification, development and distillation, production environment serving, operations monitoring, safety/security and data engineering platform. Based on these principles, we propose the best practices for RLOps to achieve an automated and reproducible model development process.Comment: 17 pages, 6 figrue
    corecore