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Abstract

Artificial Intelligence (AI) has proven to be very helpful in different areas, including the

medical field. One important parameter for healthcare professionals’ decision-making

process is blood pressure, specifically mean arterial pressure (MAP). The application

of AI in medicine, more specifically in Intensive Care Units (ICU) has the potential to

improve the efficiency of healthcare and boost telemedicine operations with access to

real-time predictions from remote locations. Operations that once required the presence

of a healthcare professional, can be done at a distance, which facing the recent COVID-19

pandemic, proved to be crucial.

This dissertation presents a solution to develop an AI system capable of accurately

predicting MAP values. Many ICU patients suffer from sepsis or septic shock, and they

can be identified by the need for vasopressors, such as noradrenaline, to keep their MAP

above 65 mm Hg. The presented solution facilitates early interventions, thereby minimis-

ing the risk to patients.

The current study reviews various machine learning (ML) models, training them to

predict MAP values. One of the challenges is to see how the different models behave

during their training process and choose the most promising one to test in a controlled

environment. The dataset used to train the models contains identical data to the one

generated by bedside monitors, which ensures that the models’ predictions align with

real-world scenarios. The medical data generated is processed by a separate component

that performs data cleaning, after which is directed to the application responsible for

loading, classifying the data and utilising the ML model. To increase trust between

healthcare professionals and the system to be developed, it is also intended to provide

insights into how the results are achieved.

The solution was integrated, for validation, with one of the telemedicine hubs de-

ployed by the European project ICU4Covid through its CPS4TIC component.

Keywords: Telemedicine, Artificial Intelligence, Machine Learning, Decision Support

Systems
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Resumo

A Inteligência Artificial (IA) é muito útil em diferentes áreas, incluindo a saúde. Um

parâmetro importante para a tomada de decisão dos profissionais de saúde é a pressão

arterial, especificamente a pressão arterial média (PAM). A aplicação da IA na medicina,

mais especificamente nas Unidades de Cuidados Intensivos (UCI), tem o potencial de

melhorar a eficiência dos cuidados de saúde e impulsionar operações de telemedicina com

acesso a previsões em tempo real a partir de locais remotos. As operações que exigiam a

presença de um profissional de saúde, podem ser feitas à distância, o que, face à recente

pandemia da COVID-19, se revelou crucial.

Esta dissertação apresenta como solução um sistema de IA capaz de prever valores

de PAM. Muitos pacientes nas UCI sofrem de sepse ou choque séptico, e podem ser

identificados pela necessidade de vasopressores, como a noradrenalina, para manter a

sua PAM acima dos 65 mm Hg. A solução apresentada facilita intervenções antecipadas,

minimizando o risco para doentes.

O estudo atual analisa vários modelos de machine learning (ML), e treina-os para

preverem valores de PAM. Um desafio é ver o desempenho dos diferentes modelos du-

rante o seu treino, e escolher o mais promissor para testar num ambiente controlado. O

dataset utilizado para treinar os modelos contém dados idênticos aos gerados por moni-

tores de cabeceira, o que assegura que as previsões se alinhem com cenários realistas. Os

dados médicos gerados são processados por um componente separado responsável pela

sua limpeza e envio para a aplicação responsável pelo seu carregamento, classificação e

utilização do modelo ML. Para aumentar a confiança entre os profissionais de saúde e o

sistema, pretende-se também fornecer uma explicação relativa à previsão dada.

A solução foi integrada, para validação, com um dos centros de telemedicina implan-

tado pelo projeto europeu ICU4Covid através da sua componente CPS4TIC.

Palavras-chave: Telemedicina, Inteligência Artificial, Machine Learning, Sistemas de

Apoio à Decisão
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Introduction

Computational processing power has been constantly increasing and can potentially help

humans in many different areas. This constant upgrade enabled machines to match or

even surpass humans in some cognitive tasks. As a result, the impact that Artificial

Intelligence (AI) can have on everyday life is highly promising [2].

According to Haenlein and Kaplan it is hard to pinpoint the roots of AI however, it can

be traced back to the 1940s. It was from that time onwards, that these new technologies

began to be discussed and developed. In 1942, an American science fiction writer, Isaac

Asimov, published a short story, Runaround, about a robot. This story ended up inspiring

some scientists in the robotics area. At the same time, Alan Turin developed a machine

that was able to decipher the Enigma code used by the Germans during the second world

war. He ended up publishing a seminal article in 1950, “Computing Machinery and

Intelligence”, where he described how to test and develop an intelligent machine [2].

The word “Artificial Intelligence” was coined in 1956 during the workshop Dartmouth

Summer Research Project on Artificial Intelligence (DSRPAI) at Dartmouth College in

New Hampshire, hosted by Marvin Minsky and John McCarthy: two computer scientists

[2].

The field of AI has been evolving since then, as well as its definition. Even though the

meaning of AI revolves around a machine’s ability to demonstrate human capabilities,

scientists have not yet found a unique consensus. In another article, Kaplan and Haen-

lein defined AI as “a system’s ability to correctly interpret external data, to learn from

such data, and to use those learnings to achieve specific goals and tasks through flexible

adaptation”[3] whereas Poole and Mackworth described it as “the synthesis and analysis

of computational agents that act intelligently”[4]. The foundation of the presented defi-

nitions is that AI involves the study and development of agents to achieve goals. Some AI

models are very flexible and can even learn through experience, improving performance

without human intervention. It might be said that these types of programs are more

intelligent than programs that just follow a fixed set of rules that guides into a specific set

of actions. Because of its advantages, AI is currently being implemented in many areas of

relevant social impact, including medicine and health related domains.

1



CHAPTER 1. INTRODUCTION

Medicine evolved heavily with the help of AI, especially with the arising of Machine

Learning (ML) and other AI techniques. Artificial Intelligence in Medicine (AIM) can cre-

ate personalised medicine. According to Kaul, Enslin, and Gross [5], AIM “may improve

diagnostic accuracy, improve efficiency in provider workflow and clinical operations, fa-

cilitate better disease and therapeutic monitoring, and improve procedure accuracy and

overall patient out-comes”. One example of an AIM application is IBM’s artificial in-

telligence business unit Watson for Health. It analyses large amounts of data and, by

efficiently giving relevant data to clinicians, it helps to improve informed medical deci-

sions and care experiences [6]. For instance, at Minnesota’s Mayo Clinic Watson for Health

is assisting doctors in choosing the best treatment for their patients and is supporting

doctors at 16 leading cancer institutes to provide individualised therapy options to the

patients [7].

AI applications tend to grow in the medical field with the principal objective of im-

proving people’s lives. This dissertation aims to train an AI algorithm that, through the

analyses of data generated by sensors present in a Intensive Care Units (ICU) environ-

ment, can predict future values of Mean Arterial blood Pressure (MAP), giving valuable

insights to healthcare professionals.

1.1 Motivation

With the technological progress enabling better data analysis and processing in real-time,

with proven results in many areas that range from heavy industry, such as car manufac-

turing, to professional sports with the analysis of multiple scenarios and statistics, it is

necessary to take advantage of these resources to also improve the health-related areas,

specifically, hospitals’ ICU where decisions need to be taken very quickly, and the more

data is available the better the decision can be. The available resources have the capa-

bility of improving patient care and helping clinician’s work. This would allow the ICU

to be less overcrowded in critical situations while also providing better treatment, hence

improving the healthcare service to citizens.

A properly designed program, capable of easing and decreasing human work and

error, respectively, can be a solution for these problems and many others. Furthermore,

it can also help physicians to make better-informed decisions. According to an article

published in The Harvard Gazette, “in May 2019, researchers at Google and several aca-

demic medical centres reported an AI designed to detect lung cancer that was 94 percent

accurate, beating six radiologists and recording both fewer false positives and false neg-

atives”[8]. In another article, O’Meara [9] states that China developed an intelligent

algorithm that has been put into use to reduce the burden of radiologists during the

pandemic, capable of detecting multiple respiratory diseases, including COVID-19. Both

examples show that AIM can be a valuable asset. On top of that, knowing that machines

can outperform humans without the side effects (e.g., fatigue), a human-machine collab-

oration would have a great impact since it could be more efficient, less exhausting, and

2



1.1. MOTIVATION

help reduce costs.

Additionally, the COVID-19 pandemic outbreak in 2019 brought novel crisis man-

agement scenarios and many adversities to society. It was clear that healthcare systems

had enormous flaws, with hospitals being constantly congested. This proved to be a ma-

jor problem not only because of doctors’ work and information overload, which lead to

burnout situations, but also because of non-covid patients who needed to have appoint-

ments and could not have them due to the situation. According to Jornal de Notícias [10],

in Portugal, hospitals were overpopulated with patients in ICU and outside. In the next

Figure, 1.1, it is possible to observe two charts: on top, the number of COVID-19 patients

hospitalised, and on the bottom, the number of COVID-19 patients in the ICU.

Figure 1.1: Covid Patients in hospital [11] and ICU [12].

3



CHAPTER 1. INTRODUCTION

This data shows many concerns and proves that, despite the advancements made

in technological areas, humans were not properly prepared for a pandemic. Suddenly,

remote working started to be used, and when equipped with the necessary technology,

also medical staff benefited from it, promoting the execution of healthcare services with a

reduced physical presence of healthcare providers next to the patient, hence reducing the

risk of COVID propagation. This technology is called telemedicine (is also referred to as

telehealth or e-medicine) and provides the ability to monitor patients remotely and have

consultations virtually (through the computer and at long distances). Figure 1.2 depicts

a telemedicine context where it is possible to have in-house consultations or do remote

monitoring.

Figure 1.2: In-house consultations or remote monitoring [13].

The potential benefits of telemedicine associated with AI were on the genesis of the

ICU4Covid project [14], which started in January 2021 and ended in December 2022,

intending to build an effective solution to fight against the difficulties caused by COVID-

19. It is an innovative solution that uses the concept of telemedicine to overwatch patients

found in the ICU. It consists of a new set of AI-enabled technologies that are placed at

the patient’s bedside and with a real-time connection to an observation centre (called the

cockpit) to enable doctors to observe the patient’s development from a distance, and still

make informed decisions. This model reduces the face-to-face contact between medical

personnel and patients but decreases the risk of infections, thus helping maintain the

performance of medical staff during pandemics [15].

One of the main objectives of the ICU4Covid project is to develop an Internet of

Things (IoT) Hub that provides constant monitoring of a patient in the ICU. This disserta-

tion aims to contribute to this objective by establishing a connection between the IoT Hub

and medical devices that collect real-time patient data. By enabling remote monitoring,
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healthcare professionals can access and analyse vital patient data, including bio-signals

such as vital signs, heartbeat, and blood pressure. If the Hub detects any anomalies or

irregularities in the bio-signals detected, it uses sophisticated and predefined AI algo-

rithms to provide some feedback to doctors and nurses, and even automate some actions.

Leveraging AI technology, the system can recognise patterns, cross-reference with similar

cases, and identify potential health issues affecting the patient. This valuable informa-

tion enhances the reliability of reports provided to the medical staff, assisting them in

making well-informed decisions regarding patient care. Furthermore, the IoT Hub can

even actuate on its own, keeping medication administration within a limited threshold.

1.1.1 Problem Identification and Integration with ICU4Covid

Currently, the ICU has an absence of tools to support clinicians’ decision-making, and

medication administration requires the intervention of a healthcare professional to adjust

the dosage, which could be adjusted by AI systems that follow a specific set of rules based

on patient observations [16]. Moreover, telemedicine is not a common practice, apart

from the fact that some hospitals do not have the necessary equipment to adopt it, which

is desirable in critical situations.

These issues have been noticed during the COVID-19 pandemic. The potential of

AI and the needs for telemedicine were factors that encouraged this dissertation. The

proposed solution, and the objective of this dissertation, is to develop a system capable of

analysing multiple sensor information and, using AI methods, providing relevant infor-

mation to healthcare professionals. Monitoring could be done remotely (telemedicine),

and decision-making handled by a healthcare professional, only with better and faster in-

formation. The system may even automate some actions, but only with the authorisation

of a professional could the system act autonomously.

To conclude, I believe that the system to be developed can be applied in other areas

and improve healthcare systems.

1.2 Research Methodology

To ensure success, every research work needs a research methodology. The research

methodology adopted after the elaboration of the identified problem in this dissertation

is presented in Figure 1.3.
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Figure 1.3: Scientific research methodology.

With an eight-step configuration, the research methodology consists in the following

steps:

1. Problem identification: the first step consists of the identification of a meaningful

problem, which led to the start of this research. The problem identification was

described in the Section 1.1, Motivation.

2. Research question: in this step it is defined a research question. The research ques-

tion is presented in the next Section (1.2.1 Research Question), and it is important

because it helps to guide the project.

3. Background research: it is collected important and relevant background informa-

tion about the topic. The information gathered is in the State of the Art, presented

in Chapter 2.

4. Proposed solution: through the study of the information collected in the previous

step, it is proposed a solution against the problem identified. It is also necessary to

study the technologies available to use. This step is presented in Chapter 3

5. System development: start developing the proposed solution and carry out the

necessary tests for its validation. This is presented in Chapter 4.

6. System validation: analysis of the results from the previous phase and the proposed

solution is evaluated. If the solution is valid, the results are discussed, and we carry

on to the next step. If not, it is necessary to go back a few steps and change the

solution. As well as the previous step, this is presented in Chapter 4
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7. Conclusions: conclusions are made whether the system development was a success

or not and ends by stating what future improvements can be done to the developed

work. It is presented in Chapter 5.

8. Publish results: the final step is to make a final review of the project and prepare

the dissertation for publication. Additionally, a paper related to the dissertation

has been accepted for presentation at the 29th ICE IEEE/ITMC Conference in Edin-

burgh. This recognition provides an opportunity to share the research findings and

engage in scholarly discussions with fellow researchers and experts in the field [17].

1.2.1 Research Question and Hypothesis

This dissertation aims to contribute to the development of an IoT Hub that through the

application of AI and Big Data techniques can help manage an ICU environment. So, the

question that the dissertation proposes to answer is:

By applying AI techniques in ICU using patient’s clinical data, is it possible improve

intensive care and minimise the adversities exposed by COVID-19?

Initially, this dissertation had a very broad vision about what was the aim of this study,

however, during the development of it, the focus started to be on the development of an

AI algorithm to reliably predict future values of blood pressure, specifically MAP values,

based on information generated by ICU sensors. Based on that a more precise research

question was made, which is:

Collecting data generated by ICU sensors and feeding them to an AI model, can

reliably predict MAP values, helping healthcare professionals in the decision-making

process?

Based on the research question, this dissertation is guided by the following hypothesis:

The analysis of data generated in ICU by an AI model can reliably predict future

MAP values, helping healthcare professionals’ decision-making

This statement will undergo testing and validation throughout the course of this

dissertation.

1.3 Document Overview

The presented document has the following structure:

1. Introduction: it is where the topic, motivation and research question are presented.
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2. State of the Art: based on previously done studies, published articles or books and

some websites, it is provided an overview about some relevant topics related to the

development of the dissertation.

3. Proposed Solution: based on the reviewed technologies, it aims to present the pro-

posed solution for the ongoing work.

4. Implementation: it explains the developed worked and the obtained results. Im-

plementation details, encountered problems and final results are all presented in

this section.

5. Conclusion: the final conclusions are presented in this chapter as well as future

improvements of the developed work.
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State of the Art

As stated before, AI is currently being implemented in the medical field. Some AI-related

areas are ML and Big Data. These concepts are interconnected and rely on information

collected from multiple medical devices. By combining several techniques related to

ML and Big Data, such as Deep Learning and Big Data Analytics, it is possible to create

a Clinical Decision Support Systems (CDSS). A CDSS can deliver reliable feedback to

medical staff and become a solution for real-time monitoring in ICU [7].

In this chapter, several concepts related to the applications of AI in medicine are

presented. They will provide knowledge to develop a solution to the research question.

2.1 Machine Learning

According to Bartneck et al. [18], the first-ever ML program was designed in 1950 by

Alan Turing, who developed a program, called the “Turing Test”, intending to to speak

to a person and see if it could fool the person into thinking they were talking to another

person.

Nowadays, with the constant increase in computational power, more sophisticated

programs can be designed and so, more companies are investing in ML. According to MIT

[19], “a 2020 Deloitte survey found that 67% of companies are using machine learning,

and 97% are using or planning to use it in the next year”. ML provides immeasurable

tools for a company to develop and is now spreading across many industries.

ML is considered a sub-category of AI, where algorithms can autonomously learn

through the data and information acquired without needing human intervention. Some

algorithms can even change and improving on its own [18].

Over the years, many real-world problems have been solved using ML methods. How-

ever, for a program to be independent and provide reliable and accurate feedback, it is

necessary to train and come up with a model: two concepts that are going to be explained

in this section.
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2.1.1 Models

A ML model is a trained file (the next section, Section 2.1.2, explains the training process)

that analyses large amounts of data to recognise patterns. A model is trained over a set of

data, providing it with an algorithm that can be used to reason over and learn from data.

The result of training is a mathematical representation of patterns hidden in data. That

mathematical expression can be applied to new unseen data and make predictions about

it [20].

The idea of a model-based approach in machine learning is to create a model specific

to each new application. The hypothesis may come in varieties of knowledge representa-

tion forms, such as decision trees, equations, probabilistic models, graphical models, etc.

Normally, a division is made between symbolic and sub-symbolic forms however, despite

this division, nowadays there are symbolic applications with sub-symbolic characteristics

and vice-versa [21].

Symbolic methods are easily readable by a human. A characteristic of symbolic

methods is that they can clarify how they got to a conclusion. They provide a human-

understandable computational flow that makes them easier to understand, explain and

control. In particular, it is easy to alter the knowledge base by inserting or removing

some knowledge units. Moreover, it is possible to transfer knowledge to closely related

applications [22].

Contrary to symbolic methods, sub-symbolic methods do not have a clear interpreta-

tion. They establish relations between input and output variables, and, in this approach,

knowledge is represented by numerical patterns. Although they are highly dependent on

training data, sub-symbolic methods are more robust against noisy and missing data, and

generally have better performances than symbolic methods. However, one problem with

sub-symbolic methods is the lack of interpretability. This represents a significant barrier

in fields where justifications and interpretations are crucial [22], such as medicine.

2.1.2 Training

A ML training process involves providing a machine learning algorithm with some train-

ing data. Then, the algorithm must find patterns in the training data and map the input

attributes to the output. One thing to keep in mind is that the input-output answer must

be correct in the training data [23].

It is possible to divide the training data into three sets. The first set is the training set,

the second is the validation or development set, and the last is the testing set [24].

As the name implies, the training set is used to train the model and the test set is

used to verify how well the trained model performs when provided with new unseen

data. By evaluating the model using the test set, it is possible to get an estimate of its

error and compare it with the training error. If it so happens that the training error is

low, but the testing error is high, it means the model is overfitting the training data (too

adapted to the training set). One solution is to create the mentioned validation set. To use
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it, multiple models are trained with multiple hyperparameters in a reduced training set

and the model that best performs on the validation set is selected and trained again using

the whole training set. Lastly, the chosen model’s predictive power is verified using the

testing set. This can be useful, for example, when working with neural networks since

it can be used to find the optimal size of the network, the number of hidden layers, and

other characteristics [24].

TensorFlow [25] is an example of an open-source powerful, developed by Google tool

used to train models. TensorFlow provides a collection of workflows to develop and

train machine learning algorithms, using Python or JavaScript. TensorFlow runs in a web

server or a Node.js environment.

TensorFlow APIs provide methods to create multi-dimensional arrays (tensors) and

implement standard mathematical operations on them. Each tensor represents a data

input, and the goal is to obtain the mathematical expression that best relates the inputs

to the outputs. To obtain the most appropriate expression, TensorFlow will perform

multiple iterations (with new inputs and respective outputs) where it will adjust the

value of the input weights and the bias value. As stated in Section 2.1.1, the weight of

an input is related to the importance of the inputs. The more important an input is, the

greater its weight. The bias value is used to make little adjustments and helps the models

to be more efficient. Both values only change during the training process and at the end

of the training, the model should be acquired with the best weight values.

One more important tool is Keras [26]. Keras is another open-source tool, written in

Python, that offers simple and consistent APIs to provide the user with a more comfort-

able neural network implementation. Keras was recently integrated into TensorFlow so,

users can now access it via the tf.keras module.

2.1.2.1 Data Labelling

Data labelling is part of the preprocessing stage of developing a model. It is the process

of identifying meaningful and informative raw data and labelling it to give context so

that the machine learning models can make accurate predictions. To label data, a human

has to make a judgement about a given piece of unlabelled data and tag the necessary

aspects. Labelled data makes the training process more efficient and simple, and it is

used in supervised learning [27].

On the other hand, unlabelled data is used in unsupervised learning and can discover

new patterns in data, allowing for new categories when labelling.

Supervised and unsupervised learning are explained in the next section (Section

2.1.3).

2.1.3 Types of Learning

Typically, ML is categorised into three main types of learning: supervised learning, un-

supervised learning, and reinforcement learning [18]. This section makes an overview
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about the different types of learning.

2.1.3.1 Supervised Learning

Supervised learning is applied when the data comes in the form of inputs (x) and the

desired outputs (f(x)). The algorithm is required to learn and needs to generate a new

function (h(x)) that best approximates the original function (f(x)) by analysing several

input-output examples of the original (f(x)) [21]. This approach can be divided into two

main categories: classification and regression learning.

Classification and Regression are two different predictive models. Predictive mod-

elling “is the problem of developing a model using historical data to make a prediction

on new data” [28] where the answer is not known.

In classification, during the training process, a computer program learns to categorise

data into different data classes while considering several factors. The task of a classi-

fication algorithm is to find the appropriate function that relates inputs (x) to discrete

outputs (y) [21]. In other words, classification aims to classify discrete values such as

male and female, infected or not infected, or, as shown in Figure 2.1, distinguish circles,

squares, and triangles.

Figure 2.1: Classification model [29].

Regression is a technique that discovers correlations between dependent and indepen-

dent variables, somewhat like a mathematical expression. The objective of a regression

algorithm is to find the function that relates the inputs (x) to the continuous outputs (y)

[21]. It helps to predict values such as price or salary, as shown in Figure 2.2.

Figure 2.2: Regression model.
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Both are supervised procedures and, based on previously trained data, they learn how

to label and interpret new unseen data [21].

A study made by Hashi, Uz Zaman, and Hasan [30] compares the performance of

two data mining classification predictive models: C4.5, a decision tree technique, and

K-Nearest Neighbor (KNN) (these algorithms are further explained in Section 2.1.5). The

objective of both models is to correctly identify patients with diabetes. For the training

and testing phase, a dataset with 768 entries, where 500 are negative results and 268

positives, was used. A 70:30 percentage split was made to evaluate the classification

result. Of the 768 inputs, 538 were randomly chosen to train the model and the rest

were used for the testing phase. The final analysis showed promising results. This system

gives benefits to healthcare providers, regarding disease diagnosis. The system achieves

100% accuracy in the training phase using the decision tree algorithm (the KNN was not

specified) and 90.43% and 76.96% accuracy in the testing phase using C4.5 and KNN,

respectively.

2.1.3.2 Unsupervised Learning

Unsupervised learning is applied when an algorithm looks for patterns in unlabelled data

because there is no labelled data available. Data is available only in the form of input and

there is no corresponding output. Such algorithms model non-implicit patterns so they

can learn about their characteristics. One of its main examples is clustering [29].

Clustering is an unsupervised task, whose aim is to divide the population or data

points into different groups called clusters where all data points within a group are

similar. Data points should be internally similar and externally different. This method is

based on an important notion which is similarity [21], and a cluster analysis allows one to

discover hidden structures and patterns in data. Also, there are multiple approaches to

clustering. Figure 2.3 exemplifies a prototype-based clustering method, where identical

elements are placed in the same group.

Figure 2.3: Prototype-based clustering method [29].
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Ribeiro et al. [31] noticed that one main problem found in ICU is unplanned admis-

sions. There is a lack of technologies to identify who needs to enter. Therefore, they

applied clustering techniques to data extracted from INTCare, a Clinical Decision Sup-

port System used in the ICU of Centro Hospitalar do Porto in Portugal. They identified

several useful factors which helped to generate patterns that would allow for a better

understanding of a patient’s state during admission. This enabled clinicians to quickly

determine whether or not a patient had similar values to those reported by the clusters.

Another aim of the project was to alert clinicians if a patient has an important detail to

consider, for example, surgery or transplant.

During the modelling phase, they used a dataset composed of thirty-three attributes

yet, for the demonstration part, they reduced the attributes to four: TYPEOFADMISSION,

TYPEOFADMISIONSURGERY, RISK, and TRANSPLANTED. They ended up concluding

that RISK was the only feature that had a negative impact on the results.

According to the paper, the cluster cannot ensure who is admitted to the ICU but they

provide important information about who needs to be. Finally, the model and results

obtained were implemented to strengthen INTCare.

2.1.3.3 Reinforcement Learning

Reinforcement learning involves exploring an unknown environment to attain an objec-

tive. Reinforcement learning is based on the hypothesis that every decision has either

a penalty or a reward and, to achieve a goal, a system must maximise the cumulative

reward. These are closed-loop problems because every action taken influences future in-

puts. In some cases, actions not only affect immediate rewards but can also affect future

situations, and consequently all those that follow. Furthermore, unlike many forms of

machine learning, the system is not taught the actions to do but must find the decisions

that offer the best outcome by trying them out. These characteristics - being a closed-

loop, actions having future repercussions, and not having direct instructions - are unique

features of reinforcement learning [32]. Figure 2.4 represents the reinforcement learning

logic.

Figure 2.4: Reinforcement Learning [33].
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2.1.4 Deep Learning

As stated before, ML is a subcategory of AI. Similarly, Deep Learning can be considered a

subcategory of ML. Deep Learning is a technique used to mimic the way of learning and

thinking by humans. To do that, Deep Learning makes use of Artificial Neural Network

(ANN), more precisely deep neural networks [34].

An ANN is a computational model inspired by the structure and function of biological

neural networks, particularly the human brain. ANNs are composed of a large number of

interconnected processing elements, known as neurons or nodes, that work in parallel to

process information [34]. ANNs are algorithms that process information by mimicking

the behaviour of the human brain. The network comprises multiple layers, with the first

layer receiving the input variables. It is followed by one or more hidden layers, where

the network performs calculations, and it ends with the output layer [34]. Figure 2.5

illustrates a representation of a simple neural network.

Figure 2.5: Simple neural network.

The input layer is the first layer of the ANN, where the input data is introduced into

the network. The input data is then passed through the hidden layers, which perform

calculations on the input data. Each connection between neurons is associated with a

weight value, which reflects the importance of that connection. The more important an

input is, the greater its weight. During the training process, these weight values are

adjusted to optimise the network’s performance [34].

In addition to the weight values, a bias value can be added to adjust the output of the

neurons and help the network to be more efficient. After the calculations, the network
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applies an activation function to the resulting values. The activation function transforms

the previously calculated value into another value normally comprehended between 0

and 1. The activation function is critical as it introduces non-linearity to the network and

allows it to model complex relationships between inputs and outputs [34]. An example

of an activation function is a sigmoid function, shown in Figure 2.6, where x is equal to

the sum of all the inputs (multiplied by their weights) plus the bias value.

Figure 2.6: Sigmoid activation function.

The final layer of the ANN is the output layer, which produces the desired output

based on the input data and the learned relationships between the input and output data

[34]. The described operations are represented in Figure 2.7.

Figure 2.7: Operation of a neural network [35].
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ANNs are the core of Deep Learning and the process of a Deep Neural Network

(DNN) is identical. The difference between a simple neural network and a DNN is the

number of hidden layers. The number of hidden layers of a DNN is bigger, which makes

the complexity of a neural network increase, improves the expression power, and the

performance of these methods [34]. Figure 2.8 shows an example of a DNN.

Figure 2.8: Deep neural network [36].

DNN are very promising and there have been a development of new technologies

that use this technique to improve the ICU. Critically ill patients in the ICU suffer, or

may develop, life-threatening conditions. Early recognition is crucial and may identify

patients in need of life-saving interventions as well as help in the decision-making process

[37].

Since 1990, Sequential Organ Failure Assessment (SOFA) has been implemented in

the daily monitoring of the ICU. It was firstly designed to provide population insights,

however, its scope has expanded significantly and is currently utilised as a key criterion

of sepsis on an individual level [38].

SOFA is based on a scoring system. It gives a score value, between 0 and 4, for each of

the respiratory, cardiovascular, hepatic, coagulation, renal and neurological systems. The

higher the score is, the worse is the organ dysfunction. The sum of these scores yields the

overall score, which can be used to determine the illness severity and prevent mortality

[38]. Even though SOFA gives a reasonable evaluation of a patient, it lacks flexibility

for each component score and many of its variables are frequently absent in Electronic

Health Records (EHR). Furthermore, as time passes, the SOFA accuracy worsens since

the scores are given at the time of entrance and it does not consider the patient evolution.

Shickel et al. [37] propose an innovative solution to face SOFA faults. The solution
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proposed is called DeepSOFA and uses deep learning to analyse clinical data in the ICU.

To compare the accuracy of the new model, two more models were used: the traditional

SOFA and the Bedside SOFA. By observing the results, it is possible to conclude that

DeepSOFA performed better than the other models. After patients were admitted to ICU,

DeepSOFA was able to follow the patients’ development better and have a better accu-

racy. The following figure (2.9) shows the “Model accuracy for prediction windows of

increasing time from hospital discharge or death. (A,B) Externally validated DeepSOFA,

Bedside SOFA, and Traditional SOFA score accuracy in predicting in-hospital mortality,

expressed as area under the receiver operating characteristic curve (AUC) for 100hours

preceding death or hospital discharge. (C,D) Externally validated DeepSOFA accuracy

for individual models corresponding to variable sets derived from SOFA organ system

classification for the 100hours preceding death or hospital discharge. Shaded regions rep-

resent 95% confidence intervals based on 100 bootstrapped iterations. Columns specify

the validation cohort. DeepSOFA model validated in UFHealth (A,C) was trained using

MIMIC, and DeepSOFA model validated in MIMIC (B,D) was trained using UFHealth.

SOFA: Sequential Organ Failure Assessment”.

Figure 2.9: DeepSOFA results [37].

The superior accuracy of deep learning models can be attributed to their capacity for

learning and associating multiple types of data. With that said, deep learning techniques

may improve decision-making processes by analysing large volumes of data (a difficult
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and time-consuming task) and serving as an early warning system to notify healthcare

providers about patients who need clinical interventions.

2.1.5 Machine Learning for Blood Pressure Prediction

The ML models used in the medical field varies from more conventional approaches, such

as Logistic Regression (LR), to more sophisticated ones, like ANN. They are intended

to give medical professionals a tool to assist in clinical decision-making [39]. In this

section, a review is made of several machine learning techniques applied in the medical

field to observe blood pressure values, as well as a brief description of these methods, in

particular those that will be further compared in the next section.

Linear Regression defines a linear relationship between independent and dependent

variables. It is a relatively simple algorithm that generates a linear equation that

best fits a given problem. This algorithm relies on continuous output [24].

Support Vector Machine is an algorithm, capable of performing regression, linear and

non-linear classification, and even outlier detection. It is one of the most widely

used models because it can categorise complex but small to medium size datasets.

SVM works by creating boundaries between distinct classes and when prompted

with new instances categorises them as belonging to one of the classes [24].

Logistic Regression is commonly use to determine if an instance belongs to a given

class. Its output ranges from 0 to 1 and it is designed to predict a binary outcome.

It gives an estimated probability and, if it is above 50%, the model predicts that the

instance belongs to a given class or else not [24].

Naive Bayes classifier is simple probabilistic classifier that uses Bayes’ theorem for

classification tasks. In the Naive Bayes approach, it is assumed that all features into

consideration are independent from one another. The independence assumption

is a naive assumption made in the classifier, but it works well in practice for many

datasets. This helps to simplify the optimal classifier making it easy to write and

run more efficiently than more complex Bayes algorithms [40].

Linear Discriminant Analysis is used for classification problems. It is a statistical

technique, and it aims to find a linear combination of features that separate different

classes as well as possible. It does this by maximising the separation between the

classes while minimising the variance within each class. It is a linear method, which

means that it tries to find a linear decision boundary that separates the different

classes. The resulting function is linear with the form of

f (x) = w ∗ x+ b,

where w represents the weight vector, x the characteristic vector, and b is simple a

threshold [41].
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Random Forest Classifier is an ensemble machine learning algorithm that is used for

classification tasks. It is called “random forest” because it is made up of a large

number of decision trees, where each tree is “trained” or created using a random

sample of the data. Each decision tree in the forest independently makes a predic-

tion about the class of a given data point, and the final prediction of the random

forest is the majority class predicted by the individual decision trees. The use of

multiple trees helps to reduce overfitting and improve the overall performance of

the model. In simple terms, a random forest classifier is a collection of decision

trees that work together to make a prediction about the class of an input sample

[42].

C4.5 decision tree is a specific type of decision tree algorithm used for classification

tasks. It is an extension of the ID3 algorithm and is known for its ability to handle

both continuous and categorical input variables. The main difference between a

C4.5 decision tree and a random forest classifier is that a C4.5 decision tree is a

single decision tree, while a random forest classifier is an ensemble of multiple

decision trees. A C4.5 decision tree generates a tree by recursively splitting the

data based on the feature that maximises the information gain at each split, while a

random forest classifier generates multiple decision trees by using random subsets

of the features at each split [42].

Multi Layer Perceptron is a type of feed forward ANN, which means that the informa-

tion flows only in one direction, from the input layer to the output layer, without

feedback loops. The Multi Layer Perceptron consists of multiple layers of neurons,

including an input layer, one or more hidden layers, and an output layer [43]. Its

way of operating is much alike the one described in Section 2.1.4.

Backpropagation Neural Networks represent a kind of ANNs that uses backpropa-

gation techniques during its training process. During training, the input data is

propagated through the network, and the output generated by the model is com-

pared to the desired output. The difference between the two is calculated, and the

weights of the neurons are adjusted using a Deepest-Descent algorithm to minimise

the error. This process is repeated over many iterations until the model achieves

the desired level of accuracy. This allows the model to learn and adjust its weights

by propagating the error information backwards from the output layer to the input

layer, which helps the model make better predictions over time [44].

Radial Basis Function Neural Network is a type of ANN that uses radial basis functions

as activation functions and is usually divided into three layers: input, hidden, and

output layers. Traditionally, its basis functions are Gaussian functions, and it aims

to minimise the least-squares criterion resulting in better performance [45].
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Convolutional Neural Networks are a deep learning technique inspired by the human’s

brain visual cortex, used in image recognition and processing. A CNN architecture

consists of multiple layers, including convolutional layers, pooling layers, and fully

connected layers. Each layer has its functionality and, by working together, they

provide the final output [24].

K-Nearest Neighbour aims to classify new data entries into the most similar labelled

entries. It assumes that similar things are near each other using distance metrics

such as Euclidean or Manhattan distance to find the closest points. To make a

prediction, the KNN algorithm calculates the distance between the new data entry

and the training set data points. It then selects the k closest data points based on the

calculated distance, and the prediction is made based on the class or value of those

nearest neighbours. The variable k decides how many neighbours will be chosen

for the KNN algorithm and has a significant impact on the model’s performance.

Sequential Minimal Optimisation is an algorithm used to train Support Vector Machine

(SVM)s. The algorithm is designed to efficiently solve the quadratic programming

problems that arise during the training of SVMs, which involves finding the hyper-

plane that maximally separates two classes of data in a high-dimensional feature

space. It works by breaking down the large quadratic optimisation problems into a

series of smaller sub-problems that can be solved analytically. Sequential Minimal

Optimisation works by iteratively selecting two Lagrange multipliers to optimise

and then updating them analytically. This process continues until the algorithm

converges to a solution that satisfies the Karush-Kuhn-Tucker conditions, which are

necessary for an optimal solution to the SVM problem [46].

2.1.5.1 Analyses of Machine Learning Approaches

Moghadam et al. [47], developed a LR model to predict hypotension events. Hypoten-

sion events are events defined by abnormally low values of blood pressure. The authors

used the Medical Information Mart for Intensive Care III (MIMIC-III) database [48] to

randomly select 1000 records which had physiological signals of interest. Among those

signals were values of arterial blood pressure, heart rate, systolic blood pressure, diastolic

blood pressure, respiration rate and oxygen saturation, all collected from multiple sen-

sors present in ICU. Throughout the study multiple ML classification techniques were

trained, tested, and compared. The authors stated that, a LR algorithm and a SVM had

similar performance to each other, and both outperformed the rest of the developed al-

gorithms. However, because of the shorter training time of the LR compared to the SVM,

the authors solely focused on the former and did specifying the accuracy of the SVM. It

is stated that the LR can predict hypotension events within 30 minutes with an accuracy

of 95%, a sensitivity of 85% and a specificity of 96%.
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In a recent study, Cherifa et al. [49] developed an ensemble ML method that was

capable of predicting hypotensive events in the ICU 10 min in advance. The authors used

patient baseline data, physiological signals (heart rate, systolic and diastolic blood pres-

sure, oxygen saturation and mean arterial pressure), as well as given treatment variables

like the administration of vasopressors, during the 60 min prior observation window, to

establish their feature set. The model was tested using the Multiparameter Intelligent

Monitoring in Intensive Care II (MIMIC-II) database [50] and achieved an accuracy of

87%, a sensitivity of 70% and a specificity of 92%.

In another study from Moghadam et al. [51], the authors stated that invasive measure-

ments of blood pressure signals are neither comfortable nor feasible for all patients, so

the authors proposed a machine learning algorithm that can predict hypotensive events

up to 30 minutes in advance using noninvasive physiological signals and compared it

with an invasive method. The features used to train the model were comprised of several

physiological signals of interest which included blood pressure, heart rate, breathing rate

and oxygen saturation. Those features were calculated using the MIMIC-III database.

The MIMIC-III database does not have a large enough dataset that contains non-invasive

values so, to overcome this challenge, the authors simulated the non-invasive values of

the different features by down-sampling their corresponding invasive measured signals.

This also helped to make a better comparison by using the same dataset for the invasive

model. The final results showed that even though the invasive algorithm achieved better

performance, the non-invasive one was not far behind, achieving an accuracy of 93%, a

sensitivity of 84%, and a specificity of 94%, against 95% accuracy, 85% sensitivity, and

97% specificity of the invasive method.

Additionally, more complex models of ML in the field of deep learning are used to per-

form hypertension classification tasks. For instance, Lee and Mark [52] trained an ANN

to find patterns in ICU patients’ physiological signals that could distinguish impending

hypotensive events. The authors used minute-by-minute generated data from 6 different

time series (heart rate, systolic blood pressure, diastolic blood pressure, mean arterial

pressure, pulse pressure and cardiac output) to predict hypotension 1 hour beforehand.

The trained algorithm was tested using the MIMIC-II database and achieved an accuracy

of 85.8%, a sensitivity of 82.6% and a specificity of 85.9%.

Also, several studies discussed the classification and prediction of hypertensive events.

Hypertension events, commonly known as high blood pressure, are the opposite of hy-

potension events. Hypertension events are characterised by abnormally high values of

blood pressure. Patnaik et al. [53] compared the performance of multiple ML classifica-

tion techniques. The classification techniques used in this study are Naive Bayes Classifier,

SVM, LR, Random Forest and Multi Layer Perceptron. The data used to develop the dif-

ferent models was taken from the Korean National Health Insurance Corporation (NHIC)

which contains EHRs of multiple patients who had their annual checkups between 2002

and 2013. The data considered to train the models were related to the population den-

sity, health checkup results, demographic details, and income-quantile details. The best
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accuracy obtained by the different models did not vary much however the SVM stands

out with an accuracy of 80.23%.

In another paper, Nour and Polat [54] proposed a ML-based method for the classifica-

tion of hypertension types based on personal data. They used the photoplethysmography-

blood pressure (PPG-BP) dataset [55], which contains eight features that define the hyper-

tension types: sex, age, height, weight, systolic blood pressure, diastolic blood pressure,

heart rate, and body mass index. The models developed for the classification of hyperten-

sive patients were a Random Forest Classifier, a C4.5 Decision Tree, a Linear Discriminant

Analysis, and a linear SVM. The models achieved an accuracy of 99.5%, 99.5%, 96.3%,

and 92.7%, respectively.

Additionally, more complex models of ML in the field of deep learning are used to per-

form hypertension classification tasks. For instance, Kwong, Wu, and Pang [56] generated

two models to classify high blood pressure, using factors related to a person’s age and

lifestyle. The models raise alerts when the predicted systolic blood pressure is above the

hypertension alarm value. The authors proposed two models: a Back-propagation Neural

Network and a Radial Basis Function Neural Network. The dataset used was composed of

498 samples and included 9 different features (systolic blood pressure, age, body mass in-

dex, stress level, exercise level, alcohol consumption level, smoking status, and salt intake

level). According to the findings, the best accuracy achieved by the Back-propagation

Neural Network was 94.28%, with four hidden nodes, and by the Radial Basis Function

Neural Network 91.06%, with five hidden nodes. Both models had one hidden layer.

Other works have used more complex models, such as Convolutional Neural Network

(CNN)s. For example, Luo et al. [57] implemented a CNN to do the same task. The study

data were obtained from the MIMIC-II Waveform Database Matched Subset, which con-

tains heart rate, systolic blood pressure, diastolic blood pressure, mean blood pressure,

central venous pressure, pulse rate, respiration, and oxygen levels. Moreover, the authors

present a comparison of their model to six other ML techniques: a KNN, a C4.5 Decision

Tree, a Random Forest, a Sequential Minimal Optimisation, a Native Bayes, and a LR.

The final accuracy reached by the CNN was 89.95%, having surpassed all the mentioned

techniques, which reached an accuracy of 79.84%, 78.26%, 79.28%, 81.25%, 49.44%, and

76.58%, respectively.

Table 2.1 presents a summary of the discussed studies and their respective methods.
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Table 2.1: Summary of machine learning algorithms to predict and classify blood pressure
values.

Study Approach Accuracy

Moghadam et al. [47] LR 95%

Cherifa et al. [49] Ensembled ML Algorithm 87%

Moghadam et al. [51] Non-invasive ML Algorithm 93%

Lee and Mark [52] ANN 85.8%

Patnaik et al. [53]

Naive Bayes Classifier 77.71%

SVM 80.23%

LR 79.55%

Random Forest Classifier 79.58%

Multi-Layer Perceptron 73.85%

Nour and Polat [54]

Random Forest Classifier 99.5%

C4.5 Decision Tree 99.5%

Linear Discriminant Analyses 96.3%

SVM 92.7%

Kwong, Wu, and Pang [56]
Back-propagation Neural Network 94.28%

Radial Basis Function Neural Network 91.06%

Luo et al. [57]

CNN 89.95%

KNN 79.84%

C4.5 Decision Tree 78.26%

Random Forest 79.28%

Sequential Minimal Optimisation 81.25%

Native Bayes 49.44%

LR 76.58%

2.2 Big Data

The definition of Big Data has evolved rapidly, which has raised some confusion. It is

a concept that became widespread in more recent years and can be defined as a set of

extremely large, complex, and fast data which traditional data processing methods are

inadequate and special tools are needed for its processing. This concept is often simply

referred to as the use of different algorithms to extract as much information as possible
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from different data sets. However, the standard definition was made by Doug Laney

in 2001 [58]. It has as his reference the three V’s as a common framework to describe

big data: velocity, volume, and variety. Nowadays, this definition has been updated and

other V’s are added to better describe this term. One problem, which has caused some

controversy, is the number of V’s used to describe Big Data. There are many websites and

papers published that differ from each other, however, the most accepted V’s, in addition

to those already mentioned, are value and veracity [58].

1. Volume: Volume is connected to the very concept of Big Data. Without it, Big Data

will never be that big. Nowadays, there are a lot of data to be stored and the amount

of it, tends to grow exponentially, and due to the improvement of technology, it is

possible to store these vast amounts of data in different locations (or even clouds)

for more affordable prices, but it must be ensured that new technologies can cope

with the growing size of data [58]. Figure 2.10 indicates the volume of data stored

around the world in zettabytes (1021), during the years.

Figure 2.10: Data growth over the years [59].

2. Velocity: Big Data velocity concerns mainly two aspects: the increasing speed at

which data is created and the speed at which data is analysed and stored.

As seen before, data volume is exponentially growing, and this velocity contributes

to bigger and bigger databases. It can even be said that data generates more data,

and this only contributes to the velocity at which data is created [58]. According

to an article published in Medium in September 2020 [60], “Facebook generates 4

petabytes of data per day – that’s a million gigabytes”. This shows how fast data

volume is increasing.

In addition, data acquired has to be processed in an adequate time. It has become

more frequent for consumers and companies to demand data to be received and

processed in real-time, with minimum latency [58].
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3. Variety: It regards the wide variety of existing data and its corresponding sources.

With the arrival of Big Data, data begins to arrive in many different formats, from

structured to unstructured. Besides, there are a lot of varieties of structured, semi-

structured, and unstructured data [58]. For example, in ICU, multiple sensors, such

as temperature, oxygen, pressure, humidity, etc, collect different types of values

or information. One of the challenges of Big Data is to be able to deal with this

diversity.

4. Veracity: It refers to data quality. Because there are many different sources, it

becomes difficult to know whether they are reliable or not. They can provide false

information, and, in Big Data, this becomes a major problem as it is impossible to

check these large quantities of information [58].

It is also necessary to know that systems are imperfect and may produce false data.

Every inaccurate data can lead to the wrong path/decision. This is important in

a telemedicine environment because there is no mechanism for knowing whether

the values obtained by the ICU sensors were correct or if a problem had occurred.

Furthermore, the patient’s data must be protected as well as his or her identity [58].

5. Value: Value is referent to the usefulness of the gathered data for specific tasks.

Some data may be of use for some assignments and not for others. Big Data extracts

values from data and reveals hidden truths, creating value. Data by itself, regardless

of its volume, has no value [58].

2.2.1 Big Data Lifecycle

Arass, Tikito, and Souissi [61] provide a definition of the data lifecycle. It states that a

data lifecycle is a set of steps (or phases) through which data passes from the point it

enters a system until it leaves it.

In the same article, Arass, Tikito, and Souissi [61] analyse a series of different lifecycles

and, through their analysis, they found that certain phases are mandatory whatever the

field of application of Big Data, namely: Creation, Analysis, Storage, and Archiving.

Creation involves the creation and consequent capture of data generated from various

sources. In this dissertation, this part could be associated with the data generated by the

sensors presented in ICU. It is the followed by the Analysis phase. It is where data is

analysed to provide accurate future observations. This phase also involves the selection

of appropriate tools and methods for data processing. This phase is represented by the

model and the application responsible for classifying the data and cleaning it. Next comes

the Storage phase. As the name implies, is the storage of data in the system. In this step,

information security is also present. Security becomes more relevant in this dissertation

context, since patients information must remain anonymous. It is represented by the

application responsible for storing the received data for future improvements of the

26



2.2. BIG DATA

model. The final phase is the Archiving one. It allows to archive data that is no longer

needed [61].

2.2.2 Big Data Analytics

Gather meaningful information from massive amount of data has become increasingly

important. With the existing variety of data in big data, extracting meaningful insights

from different data sources is challenging. Big data analytics is responsible for processing

and analysing the necessary data, discovering hidden patterns, and finding meaningful

information. The tools available to handle all this data have significantly increased and

today it is possible to examine data and obtain almost real-time responses. In general,

these technologies are not expensive, and most software is open source [62].

Once data can be analysed, there are some methods to turn Big Data into valuable

insights. ML is one example of a Big Data Analytics technique. It is a type of AI that en-

ables software applications to predict outcomes more accurately without being expressly

programmed to do so. ML methods were mentioned in more detail in Section 2.1 and its

methods are at the base of some other Big Data Analytics techniques. Further Big Data

Analytics techniques are:

• Descriptive Analytics: It helps to describe or summarise the historical data and

provides insights into what has already happened. It involves mining large datasets

to identify patterns and relationships, and then presenting the results in a way that

is easy to understand [63].

• Diagnostic Analytics: This technique helps to diagnose the reasons behind an past

event. It involves analysing the data to identify the factors that contributed to the

event or problem [63].

• Predictive Analytics: This technique helps to predict future events or trends based

on historical data. It understands the insights of data and identifies patterns that

can be used to predict future outcomes [63].

• Prescriptive Analytics: This technique helps to prescribe or recommend the best

course of action to achieve a desired outcome. It involves using the insights gener-

ated from descriptive, diagnostic, and predictive analytics to make recommenda-

tions and optimise decision-making processes [63].

In healthcare organisations, there is a wide variety of data, and Big Data technologies

are essential to capture all available data and improve the quality of healthcare. Ristevski

and Chen [64] stated that “applications of big data analytics can improve the patient-

based service, to detect spreading diseases earlier, generate new insights into disease

mechanisms, monitor the quality of the medical and healthcare institutions as well as

provide better treatment methods”.
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Big Data Analytics techniques employed on clinical data available can do early detec-

tions of multiple diseases and identify the optimal practical guidelines for their treatment.

Moreover, it can provide customised patient treatment by constantly monitoring patients’

development. Analysing the patient data and data generated by other patients, who had

similar symptoms, enables the doctors to make more informed decisions and provide

better treatments. Furthermore, doing a live analysis helps predict the spreading of viral

diseases [65].

Big Data Analytics software is either used for batch processing or real-time processing.

Batch processing is an efficient way of processing high volumes of data, where the data

collected is grouped or batched over a while for further processing. Apache Hadoop is

one of the most used open-source tools for batch processing. However, when it comes to

real-time processing, or stream processing, which involves a continual input, processing,

and output, Apache Hadoop’s performance degrades and that is where Apache Spark

appears. Apache Spark is another open source tool mostly used for real-time processing

even though it can do batch processing [66]. These technologies are analysed in the

following sections.

2.2.2.1 Hadoop

Apache Hadoop [67] is one of the most used open-source tools. It is a framework that

allows the distribution of large volumes of data across multiple clusters of computers.

Each machine offers local storage and computational power. This method can do parallel

processing and is designed to detect and handle failures, delivering a high-available

service on top of clusters of computers, each one prone to errors. Hadoop is composed by

four main modules:

• Hadoop Common - refers to a collection of common utilities that support the fol-

lowing modules.

• Hadoop Distributed File System (HDFS) - HDFS is Hadoop’s storage unit. It is

a distributed file system designed to run on commodity machines 1, splitting data

into multiple blocks and saving it into various data nodes. HDFS makes copies and

stores data across multiple computers, so if one data node crashes, that data is not

lost, making HDFS highly fault-tolerant.

• YARN - Separates the resource management and job scheduling / monitoring func-

tions into distinct daemons2.

• Map Reduce - A software framework used for applications that process vast amounts

of data in parallel on various commodity hardware clusters. Map Reduce usually

divides the input data into small independent blocks, which are then processed in

1A term used to describe affordable devices.
2Programs that run as background processes.
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parallel by map tasks. The outputs of the map tasks are then inputs of the reduced

tasks, which will aggregate the results that will lead to the final output. Tasks are

scheduled, monitored, and failed tasks are re-executed by the framework.

Hadoop is currently utilised by a wide variety of companies and organisations for

research and production.

2.2.2.2 Apache Spark

Apache Spark [68] is a tool that allows combining Big Data analysis and AI over a large set

of data. It provides high-level Application Programming Interfaces (API) and multiple

components, each designed for a specific purpose.

The foundation of the platform is Spark Core. Spark Core includes components

responsible for memory management, fault recovery, scheduling, monitoring and dis-

tributing tasks, and interacting with external systems. Spark Core is the basis of all Spark

components.

One of its components is Spark Streaming. Spark Streaming is a Complex Event

Processing (CEP). A CEP is a set of technologies used for querying continuous data inputs

to obtain timely responses and detect opportunities and information before storing the

data or, in some cases, discarding it. Spark Streaming is a solution that leverages Spark

Core’s fast scheduling capabilities to do real-time processing.

Spark Streaming has a Receiver that gets data streams coming from one or multiple

sources. Those data streams are represented as Discretized Streams or simply DStreams,

and they are the basic abstraction provided by Spark Streaming. Internally, a DStream is

represented by a series of RDDs (Resilient Distributed Datasets). which contains batches

of data from an interval of time. RDDs are a fault-tolerant collection of elements that can

be processed in parallel. Any operation applied on the DStreams translates to operations

on the RDDs. In the end, the processed data is ready to be outputted to other systems.

2.2.2.3 Apache Storm

One last technology used either for batch processing or real-time processing is Apache

Storm [69]. Just like Spark Streaming, Apache Storm is also a CEP.

The Storm architecture is composed of two parts: spouts and bolts. Spouts are the

parts where the data streams enter the processing unit, and they are connected to bolts

and are responsible for passing the continuous streams to them. There can be multiple

layers of bolts and a bolt possibly emits new streams and sends them to another bolt.

Spouts and bolts are both programmed by users. Figure 2.11 shows an example of an

Apache Storm topology. A topology is a computational graph that shows how information

is transmitted.
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Figure 2.11: Apache Storm topology.

Each node runs in parallel, and the topology will continue its work until it is shut

down.

2.2.3 Unstructured Data

Unstructured data is information, stored in many different forms, which do not have an

identifiable structure. Due to its lack of structure, unstructured data is difficult to process

and analyse using traditional data analysis techniques. Also, unstructured data repre-

sents most of the generated data [70]. According to IBM [71], “projections indicate that

unstructured data is over 80% of all enterprise data, while 95% of businesses prioritise

unstructured data management”. Examples of unstructured are the values collected by

sensors or handwritten clinical information. Storing this types of data, requires different

techniques such as Not Only SQL (NoSQL)3 databases, which are used instead of tra-

ditional relational databases. NoSQL databases offer more flexible and scalable storage

solutions, with the ability to handle a wide range of data types, including unstructured

data.

2.2.4 Structured Data

Opposite of unstructured data, structured data is highly organised, follows a predefined

schema, and is easily understandable. A good example of structured data is a relational

3Generic term used to represent non-relational databases.
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database system, such as Structured Query Language (SQL) or a JavaScript Object No-

tation (JSON) file. Both provide enough details to be easily understandable. However,

designing a schema is an elaborate process because it must be defined before inserting

any content [70]. Figure 2.12 shows examples of structured and unstructured data in the

medical field.

Figure 2.12: Example of structured and unstructured data in the medical field [72].

Unstructured data can account for up to 80% of data in a healthcare institution [73].

Unstructured clinical data contain valuable information, so it is necessary to be aware of

its importance and existence. However, it is easier to interpret structured and standard-

ised data. In a study made by Karim et al. [74], an application for structured reporting

was created. This application was aimed at the radiology area, where most of the reports

were done by hand, and many times two reports on the same image, by two radiolo-

gists, did not match. The objective of this application was to achieve a structured and

standardised model and verify the impacts.

The built application aided the radiologist’s workflow and data extraction, according

to the findings. It is also mentioned that “structured standardised reporting has the

potential to improve the patient care process and expand in other clinical realms within

vascular imaging and other diseases”.
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An example of a standard structured model is Fast Healthcare Interoperability Re-

sources (FHIR). FHIR is a standard model, developed by Health Level 7 (HL7), for health-

care data exchange. It allows healthcare clinical data to be exchanged and shared, with

security, with those who need to access it. Moreover, FHIR can normalise and integrate

unstructured data and then be shared among systems.

Since FHIR is a standard model in a telemedicine context, where there is cross-system

communication, it also boosts interoperability.

2.2.4.1 FHIR

According to the Office of the National Coordinator for Health Information Technology

[75], FHIR’s development began in 2012. The purpose of FHIR was to combat the diffi-

culties of interoperability faced in the medical area. One of the encountered problems

was that healthcare facilities had their own database, which created conflict when sharing

data with two different facilities. The growth in the availability of health data created the

need for clinicians and patients to share data in an easy, reliable, and fast way.

FHIR is a set of “Resources” that describe clinical concepts in healthcare. The re-

sources can be coded and handled separately, or they can be combined into sophisticated

structures and documents that can be preserved and accessed when needed. FHIR re-

sources are based on basic Extensible Markup Language (XML) or JSON representations,

with an Hypertext Transfer Protocol (HTTP)-based RESTful protocol, and each resource

is identified by a Uniform Resource Locators (URL) [76].

FHIR can be used for data analysis and AI by providing a consistent way to access and

retrieve healthcare data from disparate sources. By using FHIR, healthcare data can be

easily integrated into AI applications for analysis, prediction, and decision-making [77].

FHIR supports a wide range of data types and structures, making it ideal for capturing

and exchanging complex healthcare data. It also includes features such as versioning and

auditing, which can help ensure the accuracy and integrity of the data. Overall, FHIR

provides a standardised, interoperable framework for accessing and analysing health-

care data, which can help facilitate the development of innovative AI applications in

healthcare [77].

In the paper, “A FHIR-Enabled Streaming Sepsis Prediction System for ICUs”, Henry

et al. [78] present an application developed by Georgia Tech and Emory School to detect

the risk of Sepsis using a ML framework. Sepsis is a life-threatening illness caused

by a human’s immune system’s extreme response to an infection, which causes extreme

inflammations and may damage oneself tissues and organs [79]. It is a well-known disease

by the ICUs and the survival outcome is greatly influenced by the speed and suitability

of the chosen treatment. The approach presented in the paper is “a cross-platform Sepsis

Prediction and alert system which combines real-time data acquired from an FHIR server,

a machine learning sepsis prediction tool and a front-end user interface intended for use

by an ICU clinician” [78]. The system gathers information about a patient and, using ML
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algorithms, calculates a score that translates into a patient’s risk of sepsis. The system

demonstrated an accuracy of nearly 85% in detecting sepsis in a 4-hour gap, which was

possible due to advancements in ML and the availability of real-time vital signs, both

stated to be capable of improving healthcare systems. Additionally, systems that are

compatible with FHIR standards, are also compatible with this system, which brings an

improvement in interoperability.

2.2.5 Some Considerations on Medical Field Big Data

Some issues should be considered regarding Big Data. First off, there is a lot of hetero-

geneity of data sources (for example, the multiple sensors present in the ICU), which may

lead to interoperability challenges. Multiple Big Data Analytics methods can be applied

to better handle the heterogeneity of data.

Secondly, clinical data may be influenced by the staff who entered the data, which

can lead to a variety of problems such as entering missing values or incorrect data. These

problems may also lead to other problems for instance data quality, integration, and

inconsistency.

Lastly, Big Data privacy and security are two important issues. All medical data is

sensitive, and this data is legally considered to be possessed by the patient. So, it is

necessary to ensure that when data is shared, patients’ identities must be anonymous

while also having good encryption algorithms [64].

2.3 Explainable AI and Clinical Decision Support

In the medical field, with the implementation of EHRs, the creation of datasets has been

getting bigger, to the point that it can be referred to as “Big Data”. Clinical “Big Data”

can be used to revolutionise several aspects of healthcare, such as the ones mentioned in

Section 2.2.2, and can also help the development of new decision support systems. The

ICU is the one that can take the most advantage of Big Data. It is possible to monitor

patients with life-threatening conditions while recording all the data available, producing

large amounts of data, and making discoveries. In addition, it is possible to integrate data

from previous similar cases, enabling clinicians to choose the appropriate approach for

each individual [80].

With the rapid increase in data, there is a need to use new technologies to help clin-

icians to make better-informed decisions. CDSS are systems designed to help clinicians

make these informed decisions for everyone.

CDSS help to decrease human error in the medical field. It is estimated that human

error is responsible for the deaths of 200.000 people per year, and it also has a cost of

1.9billion$ annually [8]. If used properly, CDSS can change how medicine is delivered.

According to Payne [81], there are several ways that computers can help clinicians, which

are the following (quoting):

33



CHAPTER 2. STATE OF THE ART

• Simplify Access to Data Needed to Make Decisions - Reporting results and creat-

ing standard and structured reports can help reveal important details and help in

speeding decision making.

• Provide Reminders and Prompts - Reminders and prompts influence physician be-

haviour, resulting in better chronic, critical, and preventative medical care delivery.

• Assist in Order Entry - When preparing a prescription for a patient is necessary

to take into account some factors such as allergies or previous prescriptions, and

assisting clinicians to order medication can help reduce medication prescription

errors.

• Assist in Diagnosis - There have been multiple programs that consider various

factors to help determine the presence or absence of diseases.

• Review New Clinical Data; Alert When Important Patterns Are Recognised - When

new events occur or new data is found or altered, sometimes bringing that informa-

tion to the clinicians’ attention is necessary.

Moreover, sometimes multiple resources need to be handled in an ICU environment

and sometimes this handling proves to be a challenging task. All medical resources

need to be dispatched at an adequate time when needed but with the increasing size and

complexity of incidents, the difficulties of resource allocation also increase. Besides, in

emergencies, medical information may be uncertain and incomplete.

Multi-criteria decision making (MCDM) methods can be a solution to these adversi-

ties. They provide tools that enable the management of the different resources whilst

prioritising the needs and coordinating the resource distribution [82].

Multiple pieces of evidence show that CDSS helps clinicians carry for patients, and ML

techniques are capable of improving these systems. However, ML techniques normally

work as a black box, making it almost impossible to follow the logic of a system / machine

while making important predictions in critical contexts. For this reason, the demand

for transparency has been increasing. Explanations supporting an output are crucial,

especially in situations where professionals need more information than just a simple

binary prediction.

Improving the interpretability of a machine could also improve the human-machine

relationship and trustworthiness. In addition, it is possible to correct the system defi-

ciencies. This is where Explainable Artificial Intelligence (XAI) appears. XAI focuses

on the challenge of demystifying the ML black box. It is a set of processes and methods

that proposes developing a set of ML techniques to produce more explainable models

while maintaining the performance level and allowing humans to comprehend, trust and

manage systems [83].

One approach for AI transparency is explainability by design. Explainability by de-

sign involves developing models that are inherently interpretable so that they can be
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easily understood and trusted by users. This may involve using simpler, more transpar-

ent models [83], such as decision trees or linear regression, rather than complex models

such as ANN.

Another XAI approach is post-hoc explainability. Post-hoc explainability techniques

are methods used to explain the decision-making process of a ML model after it has

made predictions or classifications. These techniques do not require any modification

of the model during training or testing, but instead, analyse the model’s outputs and

behaviour to provide explanations for the decisions made. Post-hoc operations can either

be model-agnostic or model-specific [83].

Model-agnostic techniques are methods that can be applied to any type of ML model,

regardless of the algorithm or architecture used to train the model. These techniques

are not specific to a particular model and can be used to analyse, interpret, or improve

the performance of any ML model. In general, there are three model-agnostic methods:

explanation by simplification, feature relevance estimation, and visualisation explanation

[83].

Explanation by simplification refers to the process of generating an interpretable, sim-

plified version of a complex black-box model that can help provide insights into how the

model works and why it makes certain predictions. The goal of explanation by simpli-

fication is to create a simpler, more transparent model that approximates the behaviour

of the original model, while also being easier for humans to understand. This simplified

model can then be used to identify important features or variables that contribute to the

model’s predictions and to gain insights into how the model operates [83].

Feature relevance estimation is a process of determining the influence of different

features or variables in a predictive model, without assuming any particular model struc-

ture or form. The goal of feature relevance estimation is to identify the features that

have the greatest impact on the model’s predictions and to understand how changes in

these features affect the model’s output. It is particularly useful in situations where the

model is complex and difficult to interpret, such as in deep learning models. One fruitful

contribution to this path is SHapley Additive exPlanations (SHAP) [84] [83].

SHAP is based on the concept of Shapley values from cooperative game theory, which

quantifies the contribution of each player in a coalition. In the AI context, the players

are the features and the “coalition” is the set of features used for the prediction. To

compute the SHAP values for a given instance, SHAP explores combinations of features

and calculates the contribution of each feature by comparing the predictions with and

without the feature. As such, SHAP can estimate the impact of each feature towards a

final output [85].

SHAP also provides a tool called the SHAP summary tool, which helps visualise the

contribution of each feature to the final model output. The tool presents the variables on

the left side of the plot, sorted in descending order based on their impact on the model’s

output. Features at the top had a greater impact than those at the bottom. The plot

includes a horizontal axis that indicates whether a feature had a positive or negative

35



CHAPTER 2. STATE OF THE ART

impact on the model’s output. Features on the right side of the axis had a positive

impact, while those on the left side had a negative impact. Each feature is represented

by a coloured ball on the plot, with the colour relative to the value of multiple features.

Features with higher values appear redder, while those with lower values appear bluer.

Overall, the SHAP summary plot provides a quick and intuitive way to interpret the

importance of features in a ML model. In Section 4.6 an illustrative example of a chart

generated by the SHAP summary tool can be found. This chart serves the purpose of

enhancing the comprehension of the provided explanation.

Visualisation explanation, as the name implies, refers to methods of generating visual-

isations to help explain the behaviour of a predictive model. Visual explanations can help

provide insights into how the model is making its predictions, which features are most

important, and how changes in input data affect the model’s output. These techniques

are often used in combination with feature relevance techniques, which help identify

the most important features in the model and provide the information that is eventually

displayed to the end user. However, visual explanations are less common in the field of

XAI as these methods must be able to work with any type of ML model. This can be a

complex task, as it often requires the development of new algorithms or visualisation

methods that are tailored to specific types of models [83].

On the other hand, model specific techniques are methods that are designed to work

with a specific type of ML model or algorithm. These techniques are tailored to the

characteristics and assumptions of a particular model and can provide more specific

insights into its performance or behaviour [83].

Overall, the choice between model agnostic and model specific techniques depends

on the goal of the analysis and the characteristics of the ML model. Model-agnostic tech-

niques are more general and can provide insights into any model, while model specific

techniques can provide more detailed and tailored insights into specific types of models.

These techniques can help identify biases and errors in the model and increase trust in

its predictions.

In the mid-1990s, an ANN was trained to determine which pneumonia patients should

be admitted to hospitals and treated as outpatients4. Initial findings indicated that the

network would improve accuracy however, it inferred that pneumonia patients with

asthma had a lower risk of dying. Medically, this is counter-intuitive, yet, because patients

with asthma were directly admitted to the ICU and had proper care, their chances of

survival were in line with what was supposed. Since this factor was unknown, it was

impossible to see why the network had come to such a conclusion, and the application

of AI, for clinical purposes, was stopped. Only by interpreting the model would it be

possible to discover such a problem and correct it [86].

4a person who goes to a hospital for treatment, but does not need to stay a night there
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Proposed Solution

The proposed solution relies on the improvement of healthcare conditions in the ICU en-

vironment by validating an AI model in the context of the ICU4Covid European project.

To contribute to the project, it is intended to validate a ML algorithm capable of provid-

ing feedback to ease and facilitate healthcare professionals’ daily work. The proposed

approach involves collecting data from sensors at the disposal of an ICU environment

and using the trained model to make predictions that can assist clinicians in making

more informed and prompt decisions. This would be a valuable asset as the ICU is a

high-pressure environment where quick responses are often required, and practitioners

could take action before something happens. Not only that, but also, patients’ supervision

could be done remotely, as the data collecting would be done by an intelligent system and

practitioners would only need to take action if, based on sensors’ data, irregular patterns

start to appear.

As patient data is involved, trust and reliability are critical factors to consider when

developing a system for the medical field. When dealing with human well-being and sen-

sitive data, practitioners must have a clear understanding of the ML model’s process and

how it arrived at a purported solution. As machines are not infallible and several errors

can occur, an XAI algorithm capable of providing insights into how a ML algorithm ar-

rived at a solution is another essential aspect of development, enhancing human-machine

interaction. The proposed solution comprises two main phases: training methodology

and prediction approach (including its following explanation), which are explained in

the following sections. To provide a more comprehensive context, a chapter on clinical

relevance is also provided.

In conclusion, the proposed solution presents a significant opportunity to improve

healthcare conditions in the ICU environment. However, it is crucial to develop a re-

liable and trustworthy system, given the sensitive nature of patient data and human

well-being. The proposed approach’s effectiveness will depend on its ability to predict,

give interpretable insights and effective communication between healthcare professionals

and the AI model. Consequently, the focus of this study is to give insights to healthcare

professionals on MAP values. The idea is to develop an AI algorithm that, based on the
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data generated by the ICU sensors, can predict future MAP values, making it possible

for healthcare professionals to actuate before something happens, allowing to dosage

medication at a safe distance.

3.1 Clinical Relevance

Among several parameters for ICU patients, the measurement of blood pressure has been

considered an appropriate way to obtain important clinical information. By measuring

the systolic, diastolic, and mean arterial pressure it is possible to identify several problems

that arise. Beyond that, many patients who enter the ICU are suffering from sepsis or

septic shock. In many situations, a patient may suffer from one of those if the MAP is

below 65 mm Hg [87].

Sepsis is a life-threatening illness caused by a human’s immune system’s extreme

response to an infection, which causes extreme inflammations and may damage tissues

and organs. Septic shock is defined as a subset of sepsis where severe cellular, metabolic,

and circulatory anomalies are linked to a higher risk of death than sepsis alone. Clinically,

septic shock patients can be distinguished by the need for vasopressors to keep their MAP

at 65 mm Hg or higher [79].

One of the most commonly used vasopressors is noradrenaline (or norepinephrine)

which aims to maintain the MAP values above the desired threshold (normally the men-

tioned 65 mm Hg) [88]. This chapter aims to propose a solution that can help manage the

administration of noradrenaline through the analyses of bio-signals to predict unusual

MAP values, allowing for remote medication management, using an AI algorithm.

3.2 Training Methodology

As observed in the Section 2.1.5, different ML models obtain distinct performances. Thus,

it is believed that it is meaningful to train several models, using the same dataset (pre-

sented in Section 3.2.1), whose characteristics are distinguishable from one another. In

this case, the proposed models are:

• LR.

• SVM.

• ANN.

These models are chosen for their different characteristics, and for the fact that they

are suitable for different types of problems. LR and SVM are algorithms that aim to

classify data entries, whereas the ANN can output continuous values.

After the models are trained, it is necessary to evaluate their performance using appro-

priate evaluation metrics such as accuracy, precision, recall (also called sensitivity or true
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positive rate) and f1-score. Accuracy represents the ratio of correctly predicted instances

(both True Positives (TP) and True Negatives (TN)) to the total number of instances (TP,

TN, False Positives (FP), and False Negatives (FN)). In other words, accuracy assesses the

proportion of correct predictions made by the model out of all predictions. Precision is

a metric that focuses on the correctness of positive predictions made by the model. It

calculates the ratio of TP (correctly predicted positive instances) to the sum of TP and

FP (incorrectly predicted positive instances). Precision in typically used along with the

recall metric. Recall measures the model’s ability to correctly identify positive instances

from the entire population of actual positive instances. It calculates the ratio of TP to

the sum of TP and FN (positive instances incorrectly classified as negatives). F1-score

is a metric that combines precision and recall into a single value, providing a balanced

measure of a model’s performance. The F1-score provides an overall assessment of a

model’s effectiveness in both precision and recall, making it useful when a balanced per-

formance between the two is desired [24]. For better understanding, the equation from

the presented methods are the following:

Accuracy =
T P + TN

T P + TN +FP +FN
· 100 (3.1)

P recision =
T P

T P +FP
(3.2)

Recall =
T P

T P +FN
(3.3)

F1− score =
2

1
P recision + 1

Recall

= 2 · P recision ·Recall
P recision+Recall

=
T P

T P + FN+FP
2

(3.4)

It is also important to use techniques such as cross-validation and grid search to

tune the hyperparameters of the models, which can improve their performance. The

model that obtains the best performance is then chosen for further testing in a real-world

simulation [24].

For the sake of simplicity, it is proposed to start by training the LR to predict if

the following measure of MAP will be below 65 mm Hg, specified in the above section

(Section 3.1). Then it is proceeded to the SVM and concluded with the ANN.

Finally, it is important to note that the final model can be retrained over time with

new data to improve its performance and adaptability. Keeping records of all the data

processed and repeating the whole training process using the stored data, enables the

model to be more efficient and know how to adapt to new situations. Additionally, the

stored data can be added to the previously used dataset for the future development of a

new model, improving the overall quality of the dataset.

Figure 3.1 shows the proposed training process.
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Figure 3.1: Training methodology.

The first step in this process is to obtain a large and representative dataset that is

suitable for the task at hand.

3.2.1 Training Dataset

The development and comparison of multiple ML models using a single dataset is an

important aspect in the field of ML, since training all the models with the same data,

offers a better comparison method. The dataset must be comprehensive, diversified, and

large enough to reflect the population under consideration. Internal data sources, public

data repositories, and data given by third-party providers may all be included.

A rigorous search was conducted to locate datasets that contained the requisite vari-

ables and features necessary to model and address the identified problem accurately.

Multiple potential datasets were identified, and each dataset’s quality and relevance were

evaluated. Specifically, the accuracy and completeness of the data were checked, and

any missing or incomplete records were identified, in addition to any potential biases or

errors that may affect the model’s accuracy. The datasets identified as potential targets

were:

• Cardiovascular Disease Dataset [89].

• Heart Attack Analysis & Prediction Dataset [90].

• Multi-parameter Intelligent Monitoring in Intensive Care (MIMIC) [91].

• MIMIC-II.

• MIMIC-III.

• PPG-BP.
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MIMIC-II, MIMIC-III and PPG-BP were mentioned in Section 2.1.5.1, however, these

are not publicly available datasets and so they were excluded from the potential datasets

to use. The Cardiovascular Disease Dataset and the Heart Attack Analysis & Prediction

Dataset did not have as much variables of interest as MIMIC, and were not as extensive.

So, through much deliberation, the MIMIC Database was chosen as the most suitable

dataset to train the ML model because it is a publicly available critical care dataset that

contains de-identified health-related data of over 90 patients who were admitted to the

ICU. The data includes the patient’s vital signs, laboratory test results, medications, and

fluid balance, as well as detailed information about the patients’ ICU stays. The database

contains nearly 200 days of real-time signals and accompanying data, each record typi-

cally consists of several hundred individual files. The recordings length varies; some are

at least 20 hours, and others may exceed 40 hours. The database contains electrocardio-

grams, alarms related to changes in the patient’s status, annotations related to changes in

the functioning of the monitor, and values for arterial blood pressure, pulmonary arterial

pressure, central venous pressure, and fingertip plethysmograph for records that have

the corresponding signals.

The database information for use is comprised of six signals, these being the respective

values of blood pressure (systolic, diastolic, and MAP), heart rate, breathing rate (or

respiration rate) and oxygen saturation. All these signals were obtained from bedside

monitors, and it is important to note that the dataset was pre-labelled.

To have a more robust model, information related to the person’s age, gender and

condition have also been considered. Notice that when dealing with medical data an

important thing to take into consideration is the privacy of the patients. Their personal

data, such as name, identification, etc, should not be available for public disclosure and

are not present in this dataset.

Table 3.1 showcases a subset of the dataset used in the analysis. The table consists

of three rows, with each row, representing a sensor reading. The readings are listed in

consecutive order, from top to bottom. The objective is to develop three separate models

that accurately predict future MAP values based only on the preceding sensor reading.

To develop a LR, a SVM, and an ANN, the dataset includes two distinct target columns:

a binary target and a target column. Each model will utilise the appropriate column based

on its specific characteristics.

For the LR and the SVM models, the binary target column will be used to classify

whether the next reading will be below 65 mm Hg or not. The binary target column

contains a value of 1 if the subsequent MAP reading is greater than 65 mm Hg, and 0 if it

is not. These models will aim to predict the binary outcome.

On the other hand, the ANN model will utilise the target column to predict the actual

numerical value of the next MAP reading. The target column directly represents the

numerical value of the subsequent reading.

To summarise, the binary target column is used for classification by the LR and SVM

models, while the target column is used the prediction by the ANN model. Each model
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solely utilises one of these target columns during its development process.

Table 3.1: Dataset sample.

Reference Age Sex Condition MAP SBP DBP HR PR BR O2 Target Binary Target

230 75 1 CHF 65 104 46 72 72 15 97 65 0

230 75 1 CHF 65 105 46 72 72 15 97 66 1

230 75 1 CHF 66 105 46 72 72 15 97 66 1

MAP: Mean Arterial Pressure.
SBP: Systolic Blood Pressure.
DBP: Diastolic Blood Pressure.
HR: Heart Rate.
PR: Pulse Rate.
BR: Breathing Rate.
O2: Oxygen Saturation.

3.3 Prediction Approach

The model is trained with a dataset of variables, and it can be used to make predictions

by feeding it with the same variables used during the training process. The sensors are

connected to a program that loads the stored trained model and listens to incoming sensor

information. The program keeps doing constant predictions, compares the predicted

values with a defined threshold and raises an alarm if multiple predicted values are lower

than the defined one so that healthcare professionals can act to prevent the MAP from

dropping to values below the set value or authorise the administration of noradrenaline.

Whenever sensors read values, the model makes a blood pressure prediction.

It is important to note that regular monitoring and maintenance of the system are

necessary. The sensors and the program need to be calibrated and checked regularly

to ensure that they are working correctly and that the predictions are accurate. For

instance, the first time the program is launched, certain information must be provided.

As stated before, the normal MAP threshold is 65 mm Hg still, this value does not apply

to all patients. Depending on the patient’s medical condition or some health problems

(e.g., hypertension, diabetes, etc.), the MAP threshold can vary to higher or lower values,

and the doctor is responsible to provide the best-suited threshold value for each patient.

Additionally, a plan for handling errors or malfunctions should be in place.

Furthermore, since the sensors are constantly reading values, it is necessary to have

a receiver that can get data streams coming from one or multiple sources. Based on the

technologies analysed in the Section 2.2.2 it is proposed on using Spark Streaming since

it is stated to be an easy-to-implement technology and provides tools to store data and
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discard it if needed. It comes in handy since one of the objectives is to save the processed

data for future improvements of the model, as indicated in Section 3.2.

It is also important to have a robust cybersecurity plan in place to protect sensitive

patient data from being accessed by unauthorised parties and ensure compliance with

relevant regulations.

3.3.1 Prediction Architecture

In computer science, an architecture is the entire design and structure of a system, appli-

cation, or program. An architecture defines the fundamental components, relationships,

and principles that control the behaviour and functionality of the system.

Defining an architecture entails identifying the problem or goal that the system must

solve or achieve. It comprises establishing the system’s requirements, restrictions, and

desired outcomes. Then, the components that will compose the architecture must be

designed as well as the way they will interact with each other, all of this while consider-

ing multiple factors that will affect the overall system such as performance, scalability,

maintainability, and security.

Once the architecture has been specified, it may be developed, tested, and modified

iteratively as needed. The architecture serves as a blueprint for the system, helping to

ensure that the final product meets the desired objectives and requirements.

For easier understanding Figure 3.2 represents the architecture of the proposed solu-

tion.

Figure 3.2: Prediction high level architecture.

It can be categorised into six different layers: data acquisition layer, communication
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layer, data cleaning layer, streaming layer, intelligence layer, and application layer, de-

scribed as follows:

• Data Acquisition Layer is responsible for gathering data from various sensors and

other data sources. It includes hardware components such as sensors, data loggers,

and other devices that are used to collect data, as well as the software needed to

manage and process the data. In this study, it would be composed of the multiple

sensors present in the ICU.

• Communication Layer is responsible for transmitting data between different com-

ponents of the system. It handles the communication between the physical devices

and the component responsible for processing the information received (the pro-

cessing unit, which, in this study, will be the B-Health IoT Box). It may include

network hardware such as routers, switches, and hubs, as well as the protocols and

software needed to ensure reliable, secure and efficient communication between

different devices. In this study, it is mandatory to be in constant communication

between the multiple sensors of the ICU and the processing unit.

• Data Cleaning Layer is responsible for performing various data cleaning processes

to ensure the quality, the consistency, and the reliability of the data being used

by the system. By eliminating excess or irrelevant data, the layer reduces the data

size that needs to be transmitted, thereby improving the efficiency and speed of

the overall process. This optimisation enables faster and more streamlined data

transfer from the communication layer to the streaming layer. In this study, it

collaborates closely with the communication layer. The Data Cleaning Layer ensures

that the transmitted data is appropriately cleansed, standardised, and aligned with

the expected format, facilitating seamless integration with subsequent layers.

• Streaming Layer is responsible for processing and analysing data streams in real-

time as they are generated, rather than processing stored data. It allows continuous

processing of data and enables immediate feedback, making it particularly useful

for applications that require real-time analytics or quick responses. It is required in

this system since data is continuously being generated and it is useful to be classified

and processed before a prediction is given.

• Intelligence Layer is responsible for analysing data and generating insights using

machine learning, artificial intelligence, or other advanced analytics techniques. It

is where the future chosen model is loaded and will play its part.

• Application Layer includes the user-facing components of the system, such as the

feedback provided to medical staff. It is where most user interaction happens, and

that is why it requires it to be simple and easy to understand. In this study, this

layer would be a simple user interface where the ML model reasoning would be
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explained, and the initial settings would be entered, or the communication with the

actuator part of the system enabled.

3.3.2 Workflow for Blood Pressure Prediction

The architecture previously presented represents the data flow through the system. This

section aims to show how each layer enters the workflow for the prediction of blood

pressure values. The process initiates with the collection of data from diverse sensors

in the ICU. These data are then subjected to a cleaning process and forwarded to the

system accountable for their classification. The purpose of the cleaning process is to

remove unnecessary data generated by the ICU sensors, making the transmission process

smoother and start preparing the data for prediction.

Upon receiving the data, the system classifies the input and initiates the prediction

process. If the resulting prediction exceeds the multiple times the predefined threshold

value, the system triggers an alarm to notify the medical personnel. In contrast, if the pre-

diction does not breach the limit, the system reverts to its original state of data collection.

Concurrently, upon making a prediction, the system also presents a model explanation

to exhibit the impact of each variable on the resultant output. The diagram in Figure 3.3,

represents the system’s conduct.

Figure 3.3: Blood pressure prediction workflow.
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3.4 Integration with ICU4Covid

As mentioned before, this study is part of the ICU4Covid project. It is pretended to

validate the trained model through its integration with the ICU4Covid’s Cyber-Physical

System for Telemedicine and Intensive Care (CPS4TIC).

CPS4TIC provides means to establish continuous operations between the ICU Hubs

in central and remote hospitals to share information and predictions in real-time, reduc-

ing the risk of infection for the staff. The system is composed of several components

which provide means for telemedicine and remote monitoring and enable prediction

models to be stored, adapted, and shared. The system enables the collection of data from

patients through its real-time connection to ICU devices and existing Patient Data Man-

agement Systems (PDMS), providing means for the development of prediction models

for diagnosis, prognostics and treatment schemes based on evidence, data, and the ex-

perts’ decisions. CPS4TIC focuses on the real-time monitoring of patients, telemedicine

consultation, and the development and rapid sharing of models between ICU Hubs [92].

The ongoing study would be deployed on CPS4TIC, and its function would be to

receive the data collected in the ICUs and send feedback to the intended destination,

becoming an additional resource since the model contributes to the improvement of

telemedicine while maintaining the same standards of quality care.

Moreover, the ICU4Covid project uses Federated Learning to develop ML models.

Federated Learning is a ML technique that enables multiple devices or systems to train a

shared model while keeping their data locally on the device, rather than centralising the

data in a single location. This allows for training models on a large, decentralised dataset,

while also addressing privacy concerns [93].

The basic idea behind Federated Learning is that each device or system trains a local

copy of the model using its data, and then sends updates to a central server. The central

server then aggregates these updates to create a shared global model. This process is

repeated several times, with each device or system updating its local model using the

shared global model, and sending updates back to the central server. It is particularly

useful in situations where data is distributed across multiple devices or systems, and it is

not practical or possible to centralise it [93].

Federated Learning enables organisations or devices to train ML models without

compromising the privacy and security of their data. These features are very useful in

the ICU4Covid framework since medical organisations have to work under strict patient

data privacy policies, and data is distributed across multiple hospitals and cannot be

centralised easily [93]. Figure 3.4 is a visual representation of what federated learning is.
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Figure 3.4: Federated Learning.
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Implementation

This chapter outlines the implementation procedures undertaken for the development of

a predictive model for MAP in the ICU4Covid project. It commences with an examination

of the training process of multiple models, with a subsequent analysis of their outcomes.

The chapter then delves into the various steps taken to rigorously test the model using

a simulator and provides detailed explanations of all associated settings. Finally, the

integration and validation of the model in the ICU4Covid project are presented, including

a discussion of encountered challenges throughout the implementation process.

Figure 4.1 depicts the architecture presented in Section 3.3.1 and associates the com-

ponents of the final solution to the different layers. It also shows how data flows through

the various components and the tools used.

The data acquisition layer is composed solely of the Philips IntelliVue Information

Center iX (PIIC iX) component (more details about PIIC iX are presented in Section 4.2),

which generates the initial data. The data is then transmitted to the communication

layer, which is composed by Mirth [94]. From there, the data is further directed to the

data cleaning layer, where using Mirth’s framework, various data cleaning and filtering

operations are executed, ensuring the quality and integrity of the data. Once the data has

undergone the necessary cleaning processes, it returns to the communication layer. The

communication layer facilitates the seamless flow of the cleaned data. It leverages the

outputs from the data cleaning layer to enhance the data transmission process, ensuring

the delivery of high-quality and refined data. Section 4.3 presents these operations in

more detail. The communication layer subsequently transmits the cleansed data to the

B-Health IoT Box [95], which houses the remaining layers of the system.

The B-Health IoT Box, an integral component of the CPS4TIC, is strategically posi-

tioned near the patient’s bed in the ICU. The B-Health IoT Box collects and transmits

vital patient data to a centralised observation centre. It is also a versatile and customis-

able device that allows for the installation of various applications. This enables real-time

monitoring and analysis of patients’ health status, facilitating timely interventions and in-

formed decision-making by medical professionals. The validation of the developed work

takes place within this context, and Section 3.4 provides a comprehensive exploration of
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the B-Health IoT Box and the validation process carried out in the dissertation.

The streaming layer, which is part of Spark Streaming (and the B-Health IoT Box),

then loads the model and awaits incoming data to classify it (Section 4.4). The resulting

data is passed on to the intelligence layer, also part of Spark Streaming, which uses the

trained ANN to provide a prediction. Section 4.5 delves into more details about the

intelligence layer and its results.

Upon completion of these operations, the classified data, along with the prediction,

is stored by the application layer. The application layer also displays an explanation of

the prediction to the user and may raise an alarm depending on the value predicted and

the frequency of values equal to or below it. The explanation is analysed in Section 4.6,

while the alert and the data storage are explained in Section 4.5.

It should be noted that the streaming layer and the intelligence layer are both compo-

nents of Spark Streaming, which is also a part of the B-Health IoT Box. In addition, the

application layer can be added to the B-Health IoT Box.

Overall, the system consists of various layers and components that work in tandem

to ensure the accurate and efficient prediction of medical data, along with appropriate

explanations and alerts for healthcare professionals.

Figure 4.1: Architecture.

4.1 Models Training and Testing

Before starting the models’ training, it was necessary to convert the data from the MIMIC

dataset into the .csv format as it facilitates the training process since it is presented in

a structured format. As the data from this dataset came in multiple .txt files, a small
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Python script was developed to aggregate these files into a single .csv file. However, as

a consequence of the substantial size of the dataset, certain practical limitations arose

when attempting to handle it as a single .csv file. Consequently, it became imperative

to partition the dataset into two .csv files to circumvent these constraints. The division

of the dataset into two separate files did not present any issues, as it aligns with the

standard practice in model training that necessitates both training data and testing /

validation data. The first file, encompassing 85% of the dataset, was exclusively employed

for the training process. Conversely, the second file, constituting 15% of the dataset,

was dedicated to testing purposes. This division allowed for the assessment of model

performance with new data inputs.

The training consisted of the development of three different models as stated in Sec-

tion 3.2. To evaluate the performance of the models trained, an evaluation metric was

chosen. Within the existing evaluation metrics, accuracy was the one used. The mathe-

matical expression of the accuracy metric in ML is typically represented as the proportion

of correct predictions made by the model out of all predictions made, often represented

as (number of correct predictions) / (total number of predictions). It is usually denoted

by the symbol “Accuracy” and is often represented in percentage form (multiplied by

100). The equation is represented by equation 3.1:

Accuracy =
Correct P redictions

T otal Number of P redictions
· 100 (4.1)

Since accuracy is the ratio of correctly predicted instances, it can also be represented

by the quotient between the sum of TP and TN, divided by the sum of TP, TN, FP, and

FN, as shown in Section 3.2.

Accuracy is calculated during the testing process of a ML model after the model has

been trained. The purpose of the testing process is to evaluate the performance of the

trained model on previously unseen data. During the testing process, the model makes

predictions for the target variables of the test data, and the accuracy metric is calculated

by comparing these predictions to the actual target values. This gives an estimate of how

well the model has learned from the training data and how well it generalises to new data.

To improve this step, it was used the referred second dataset file to put each model to

the test which will provide a new value of accuracy. Figure 4.2 gives a intuitive explana-

tion of the process.
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Figure 4.2: Training and testing accuracy.

The technologies to be used in the training process are TensorFlow, Keras, and scikit-

learn. TensorFlow and Keras are more directed to the development of deep learning

models, while scikit-learn relates more to statistical models and machine learning models

outside the deep learning area. Hence, TensorFlow and Keras will be used for ANN

training and scikit-learn for LR and SVM.

4.1.1 Logistic Regression

The LR model was implemented as the first model. In preparation for its implementation,

the “Target” column was omitted from the dataset, as LR models produce binary outputs

of either “true” or “false”. To facilitate the development of this model, the scikit-learn

library was utilised.

The LR model training process was promply implemented. The accuracy obtained

after the training phase was 98.420%, however, this value dropped to 90.139% when

presented to the second dataset file. Even so, the results achieved were promising.

4.1.2 Support Vector Machine

The SVM was the second model to be put into action. Similar to the LR, the "Tar-

get"column was dropped from the dataset as both produce identical outputs, and the

scikit-learn library was utilised to aid in the implementation of the SVM.

Contrary to the LR model, the SVM training was a time-consuming process, and the

accuracy obtained was below the previously obtained. This value was 92.428% which

then had a significant drop to 67.576% when tested with the second dataset file.
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4.1.3 Artificial Neural Network

Finally, the ANN was trained. The training preparation for the ANN was more complex.

Firstly, it is necessary to define the ANN structure, and secondly, its accuracy will vary

depending on multiple hyperparameters, specifically the batch size and the number of

epochs.

Regarding the ANN structure, the ANN is implemented using TensorFlow’s Keras

library. The network is composed of eight layers and constructed as a sequential model,

meaning that the layers are added one after another. The first layer, which serves as the

input layer, has 10 units. The next layer is a Dense layer with 16 units and a Rectified

Linear Unit (ReLU) activation function. A Dense layer is a type of layer where every

neuron in the previous layer is connected to every neuron in this layer. Since this one

is composed of many neurons and would have many connections if the next layer was

another Dense layer, it was decided to insert a Dropout layer with a rate of 0.2 between

them. A Dropout layer is used to randomly turn off a portion of the connections to prevent

overfitting. The next layer is another Dense layer with 8 neurons and a ReLU activation

function and, for the same reasons as before, it is followed by another Dropout layer. This

is followed by two more Dense layers, with 4 and 2 units, respectively and ReLU and

sigmoid activation functions. The final layer is a Dense layer with 1 unit and a sigmoid

activation function, which provides the output of the network. Figure 4.3 provides better

visualisation of the neural network.

Figure 4.3: Trained Neural Network.

Concerning the ANN’s accuracy variability, the best values for batch size and the

number of epochs were found by training the network multiple times while varying these

hyperparameters. This is what is called a grid search. A grid search is a technique used

for tuning hyperparameters of a ML model. A grid search algorithm will train the model

with different hyperparameters combinations and evaluate their performance using cross-

validation. Grid search will verify the best combination of hyperparameters that result

in the best performance. To implement this technique the network was trained nine
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times. The batch size number was varying between 16, 32 and 64, and the epochs number

between 25, 50 and 100. The network was trained one time for each possible combination

and its accuracy results were saved and can be seen in 4.1 as well as the network loss. A

loss value in a neural network refers to the error or discrepancy between the actual output

values of the network and the expected output values. It measures how far the network’s

predictions are from the target values and is used as a performance metric for training

the network. The goal of training a neural network is to minimise the loss value. A lower

loss value indicates that the network is making better predictions and is therefore better

trained [24]. In this case, the mean squared error was used to calculate the loss value, and

its expression is as follows:

Mean Squared Error =
1
n
·

n∑
i=1

(yi − ȳi)2 (4.2)

Where:

• n is the number of samples in the dataset

• y represents the actual (true) values

• ȳ represents the predicted values

While doing the grid search technique, it was verified that the training time of the

network is dependent on the number of epochs and the batch size. As can be seen in table

4.1, the loss and the accuracy values were very similar in every case, so it was decided to

use the network whose training time was the lowest. In this case, it was the one with 25

epochs and a batch size of 64.

Table 4.1: Artificial Neural Network accuracy with different parameters.

Batch Size Epochs Final Loss Accuracy

16 25 0.5190 88.898%

16 50 0.5189 88.867%

16 100 0.5188 88.887%

32 25 0.5188 88.882%

32 50 0.5188 88.885%

32 100 0.5188 88.883%

64 25 0.5187 88.885%

64 50 0.5187 88.880%

64 100 0.5188 88.841%
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Once the network to use was chosen, it was tested with the second part of the dataset.

Similarly, to the previous models, its accuracy dropped to 75.063%.

4.1.4 Models Comparison

Only one model will be used for the actual prediction, so this section presents a compari-

son between the three tested models.

Among the three models trained, the LR was the one that got the highest accuracy in

both phases. Additionally, it required less time for training compared to the SVM and

the ANN. While SVM exhibited higher accuracy during the training, its performance

dropped to values below the ANN’s accuracy when fed with new data. Besides, the SVM

takes more time to train than any other model trained and was excluded from the models

to use in the following steps. The final selection came down to the LR model and the

ANN. Despite the LR yielding higher results and being faster to train than the ANN, the

ANN provided continuous outputs instead of binary outputs. The fact that it provides

continuous outputs was a decisive factor since it allows doctors to precisely know the

expected reading value and MAP variations. In contrast, the LR binary classification

provided limited information, with the value 0 indicating that a subsequent reading will

be some value below 65 mm Hg and the value 1 some value above 65 mm Hg.

Considering these factors, the ANN model was chosen to proceed with the simulation

due to its ability to provide continuous predictions, offering more detailed insights for

medical professionals.

4.2 presents in a tabular form, the comparisons made in this section.

Table 4.2: Models’ comparison.

Model Training Accuracy Final Accuracy Time of Training Output

LR 98.420% 90.139% Fast Discrete

SVM 92.428% 67.576% Long Discrete

ANN 88.841% 75.063% Medium Continuous

4.2 Data Collection

As mentioned in the architecture diagram in Section 3.3.1, Data Acquisition Layer is

responsible for collecting the data generated by the multiple sensors present in an ICU

environment. This data is then transmitted to upstream layers for processing and analy-

sis.

To implement this layer, a partnership with Philips Portugal [96] was made. From this

partnership, a simulator of ICU bedside systems was provided by Philips. Its objective
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is to generate real-time medical data which will be then sent to be processed in the

following processes presented in the following sections. The simulator received is named

PIIC iX Demo and is a patient monitoring simulator that allows healthcare professionals

to practice and develop their clinical skills in a safe and controlled environment. It

simulates the vital signs of a patient, including heart rate, blood pressure, and oxygen

saturation, as well as alarms and other features found in a typical patient monitoring

system.

The PIIC iX is designed to provide an accurate simulation of a patient’s vital signs and

can be used to train healthcare professionals in the use of patient monitoring equipment,

as well as in the recognition and management of critical situations. The system can be

configured to simulate a wide range of patient conditions, including normal vital signs,

critical conditions such as sepsis and cardiac arrest, and various alarm scenarios.

It is widely used in healthcare training and education programs, to help prepare

healthcare professionals for real-world scenarios and ensure that they are equipped to

provide the best possible care for their patients. Once in operation, the PIIC iX Demo

broadcasts pre-recorded monitor simulation waveforms and data that can be processed

and used to make a prediction.

The simulator comprised eight beds, each equipped with distinct equipment. Differ-

ent equipment means different broadcasted data, and, unfortunately, not all beds transmit

the intended data due to the variances in equipment. As a resolution, it was imperative to

access the simulator definitions and modify the equipment assigned to beds whose data

transmission was not the desired. This process entailed a considerable amount of trial

and error. Eventually, the appropriate equipment was identified, although the amount

available was not sufficient to make all the beds transmit the intended data. Nonetheless,

there were sufficient beds to test the entire system which broadcast the wanted data for

each reading done.

The trained model analyses the broadcasted information and makes predictions for

future MAP values. However, instead of receiving the expected data in FHIR format,

the system received data in HL7 format. In PIIC iX, the usage of the FHIR format is

reserved for batch data transmission, whereas the HL7 format is employed for continuous

data streaming. Given the requirement for real-time data processing and the fact that

generating FHIR resources is more time-consuming compared to HL7, a decision was

made to proceed with the available HL7-formatted data. It is essential to highlight that

the format choice does not impact the actual content of the transmitted data.

Moreover, the simulator runs in a virtual machine environment. Not only a virtual

machine places high demands on the computer processing capabilities but also takes a

lot of storage space so, it was decided to send the broadcasted information to the local

machine. To simplify the exchange of data between the virtual machine and the local ma-

chine, a trusted and secured shared folder was configured. A shared folder is a directory

accessible by multiple machines (in this case the virtual machine and the local machine),

allowing for the seamless transfer of files. This configuration allows the simulator to write
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the generated information to a designated shared folder, which can later be accessed and

analysed by the local machine. This approach facilitates the integration of data gener-

ated by the simulator with the rest of the system, enabling subsequent processing and

analysis. To do that, some configurations were done. The next section explains all the

configurations step by step.

4.2.1 Simulator Configuration

1. First of all, to install the simulator is necessary to have virtualisation software. The

software used is Virtual Box [97], which is provided by Oracle [98] and can be

downloaded from their website. After its installation, a new virtual machine is

created using the provided virtual disc image.

2. Inside the simulator, a channel must be configured so that when the simulation is

running, the generated data is sent to the desired port. In this case, the port in use

is port 6661, and, as mentioned in the next section (Section 4.3), the port chosen

will be the same as the one defined in Mirth (further details on Mirth are provided

in the Section 4.3). It does not have to be mandatory to be port 6661. The only thing

to bear in mind is that it must correspond to the mirth port, or else the data will be

sent elsewhere and not received.

The steps mentioned are done through the simulator settings (PIC iX System Con-

figuration), more specifically in the tab “Outbound HL7 Data”, as shown in Figure

4.4.

Figure 4.4: Simulation configuration.

3. While on this tab, the button “Add HL7 Client” allows the creation of new channels

and to do so, it is required to give it a name, define the port, as mentioned before,

the beds that will send information and the frequency at which they send the data.

Figure 4.5 shows the initial steps to configure a client.

57



CHAPTER 4. IMPLEMENTATION

Figure 4.5: Configuration of an HL7 Observation Client.

4. In the tab "bed assignments", the beds to send information are chosen, which, in this

case, will be all those present in the ICU. In addition to the beds, it is also chosen

the transmission frequency, which has a minimum value of 5 seconds. Besides this,

the simulator also allows sending extra information, such as some alerts. For that,

simply select the desired checkboxes. Figure 4.6 shows the bed assignment process.

Figure 4.6: Bed assignments.

By the end of the process, the initial Bed Assignments tab should look like Figure

4.7.
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Figure 4.7: Observation Client with beds assigned

5. It is also necessary to establish a method which enables the virtual machine to

communicate with the local one. For the sake of simplicity, a shared folder was

configured, which, as the name implies, is a feature that allows the access of files

from a host system within a guest system.

To establish a shared folder, first, the virtual machine must be turned on and the

Guest Additions installed. To install the Guest Additions go to the window of a

running virtual machine and select "Insert Guest Additions CD Image"from the

"Devices"menu. Then, "This PC"from Windows File Explorer should have a new

drive, and inside it, there is a new executable file which has to run to install the

Guest Additions. Figure 4.8 shows how the “This PC” window should look.

Figure 4.8: New drive in “This PC”.

6. To round off, in the top left corner of the Virtual Machine window, the option

Shared Folder Settings from the Shared Folder option in the Devices menu has

to be selected. In the new menu, it is only required to open the option to add a

shared folder and set the path of the local machine to the intended folder. Figure

4.9 displays the new menu and its configuration.
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Figure 4.9: New shared folder.

7. To verify if the shared folder was properly configured, one can access the Network

tab in Windows File Explorer and check if the folder is present. If that is the case,

data can now be transferred between the two machines.

4.3 Data Transfer and Cleaning

This activity regards the second and third layers of the architecture, responsible for the

transmission of data and subsequent removal of any unuseful information from the incom-

ing data obtained from the sensors, which are generated by the simulator. The purpose

of these layers is to enable smooth transfer of data to the machine that is responsible for

processing the information.

To transfer the information from the virtual machine to the local machine, it is nec-

essary to have an application that works as a middleman. The application is responsible

to receive the data and send it to the defined shared folder. The chosen application to do

this work was Mirth Connect.

Mirth Connect is an open-source healthcare integration engine that allows organi-

sations to efficiently and securely exchange health data between systems. It provides

a scalable platform for transforming, routing, and transferring data between various

healthcare systems, including EHRs, lab systems, and medical devices. With its intuitive

interface, Mirth Connect makes it easy to manage complex data integration workflows

and handle a wide range of data formats. Additionally, its support for a variety of proto-

cols and standards makes it a versatile solution for healthcare data integration.

Mirth’s framework is an ideal choice as it effectively handles data transmitted in HL7

format from the simulator. Mirth’s framework provides a range of tools that facilitate

data transformations, making it suitable for performing essential data cleaning operations.
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The framework enables the extraction and transformation of data, ensuring that only the

relevant information required for the model’s prediction is retained. This ensures that the

data passed on to the subsequent layer is refined, streamlined, and devoid of unnecessary

elements. Figure 4.10 illustrates an example of a received message.

Figure 4.10: Received HL7 message.

Mirth’s framework enables the user to create JavaScript scripts that can perform trans-

formations on incoming data, particularly in the case of HL7 data. In this study, a small

script was created to perform data cleaning on the data sent by the simulator. The script

examines the received data, selects the relevant information required for the model, and

discards unnecessary data for the subsequent steps. Once the data is processed, it is

transmitted in a JSON format, following the structure depicted in Figure 4.11.

Figure 4.11: Generated JSON file.
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For every message received, Mirth is capable of transforming the data into the pre-

tended JSON file format, excluding any excess of data that was initially generated by the

simulator. The cleaned data is then written in the configured shared folder. By remov-

ing the unnecessary data, Mirth facilitates a more streamlined and efficient data transfer

process to the subsequent layers.

In the system, Mirth is employed once enough beds are transmitting the required data

but first, some configurations had to be made for Mirth to do the desired work. Those

configurations are described in the next section (Section 4.3.1).

4.3.1 Mirth Configuration

1. First and foremost, Java 8 [99] must be installed for Mirth to function. Installing

Java 8 is possible through Oracle’s official website. Once installed, Mirth installation

can begin.

2. Mirth was installed on the virtual machine using the official website to download the

executable file. The executable file installs two Mirth components: Server Manager

and the Administrator Launcher, which have to be configured before the channel is

activated.

3. In the Server Manager is necessary to define the HTTP and Hypertext Transfer

Protocol Secure (HTTPS) ports since it is in those that Mirth will be running. In this

case, the ports chosen are 8383 and 8442, respectively, however, it is not necessary

to be these two as long as there is no conflict with other ports already in use. Figure

4.12 shows the final configuration of the Server Manager.

Figure 4.12: Mirth Server Manager.
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4. The port of the Internet Protocol (IP) address in which Mirth is launched has to

match the HTTPS port chosen when configuring the Server Manager, which is 8442.

Moreover, Mirth will be running on the local host represented as 127.0.0.1. This

configuration is done in the Administrator Launcher before launching Mirth itself.

Figure 4.13 shows the configuration of the Administrator Launcher, where it is

possible to see that the address field is composed of the local host followed by the

8442 port.

Figure 4.13: Mirth Administrator Launcher.

5. While on Mirth, it is necessary to do three different things to configure a channel.

Firstly, the data type that will be received on Mirth has to be set to HL7 v2.x., which

corresponds to the data sent by the simulator. Secondly, the channel connector

type has to be a Transmission Control Protocol (TCP) Listener, and the local port in

which the channel runs needs to correspond to the same as the simulator (6661).

6. Thirdly and lastly, Mirth provides tools to process the information received and

send it elsewhere, making it possible to establish operations that aim to extract

the required data and send it to the desired destination. The destination can be a

folder, a web server or a local server, but in this case, the desired destination is the

shared folder configured between the local machine and the virtual machine. It is

also necessary to set the type of data and the name of the file which is going to be

forwarded. The following figures show each of these steps. Figure 4.14 shows the

first step, where the data type is chosen.
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Figure 4.14: Mirth Channel summary.

Figure 4.15 shows the channel type and port.

Figure 4.15: Mirth Channel source.

Figure 4.16 displays the configuration made to work on and forward a message.

Figure 4.16: Mirth Channel destinations.
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4.4 Data Streaming and Classification

Real-time data classification is an important task in many domains, including healthcare.

In recent years, there has been a surge in the volume and velocity of data generated

in real time, making it increasingly challenging to process and classify data promptly.

To address this challenge, several tools have been developed, such as the ones analysed

in Section 2.2.2. This section relates to the architecture’s third layer and following the

proposed solution, Spark Streaming was the tool used to stream the generated data, as it

is stated to be an easy to implement tool and has multiple tools to manage incoming data.

Section 2.2.2.2 dives into more detail about Spark Streaming. Its implementation was

done through a small python script. Since Spark Streaming is capable of doing different

tasks, it needs to know what it will be doing. In this case, its objective is to firstly, load

the ML model and, secondly, keep actively checking if the shared folder has any new files

so the model can process them.

It is mandatory to specify two things: the JSON file schema and the tasks which Spark

Streaming is responsible for. The JSON file has to be manually defined and must match

the one sent by Mirth. Figure 4.17 shows the JSON schema.

Figure 4.17: JSON schema.

The task is defined by a simple code line shown in Figure 4.18.

Figure 4.18: Spark Streaming task.

Afterwards, Spark Streaming starts running and actively monitors the shared folder

for any new files. Once Mirth has processed and sent the data into a JSON format, and as

soon as new files are detected, Spark Streaming automatically performs data processing

on the file. The JSON file is parsed, and the contained information is classified before

feeding to the model for prediction. Following the prediction, the result is written, along

with the information received, in a .csv file. The saved information is then used for future

model improvement by feeding the model with new data.
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The use of Spark Streaming in this pipeline allows for real-time data processing,

providing the ability to respond to incoming data as soon as it is available. Additionally,

by storing the model prediction along with the original data in a .csv file, the system

can keep track of previous predictions and adjust the model accordingly to improve its

accuracy.

4.4.1 Difficulties with Spark Streaming

The installation of Spark Streaming was not straightforward. To be able to use Spark

Streaming, it is necessary to install or download the zip file, of Hadoop, Java, and Python.

Scoop [100] was used to help with the Spark Streaming installation process. Scoop is

a package manager for Windows that makes it easy to install and manage software from

the command line. It enables users to install and manage applications, dependencies, and

system tools without having to manually download and install each component. With

Scoop, it is possible to install, update, and remove packages on a Windows computer

with a few simple commands. Scoop provides a large repository of pre-compiled software

packages, making it a convenient alternative to manual installations, especially for users

who are not familiar with Windows command-line tools. It also adds the newly installed

softwares to the environment variables automatically.

Java and Python were both installed using Scoop.

Spark Streaming is said to be compatible with Java 8/11/17, however, it was impos-

sible to run the developed Spark Streaming script using version 8. By that, the version

in use is 11.0.15. To install it, the instruction used in PowerShell was "scoop install

microsoft11-jdk", which installs Java through the Microsoft website. It should be noted

that Java 8 support is deprecated for versions of Hadoop higher than 3.2.0.

In Python’s case, the 3.7 and above versions are compatible, and the version in use

is 3.10.8. To install Python, the instruction was "scoop install python", which installs

Python from the official website.

Finally, the Spark Streaming version being used is 3.1.3, not the most recent at the

moment (3.3.0), and the Hadoop version in use is 3.2.2, also not the latest version (3.3).

To install Spark Streaming, it is necessary to access the official website and download the

corresponding zip file. After unzipping it, it is necessary to add the environment variable

SPARK_HOME, which will be pointing to the path where Spark Streaming files were

unzipped. Regarding Hadoop, to download it is necessary to access the following GitHub

repository: https://github.com/cdarlint/winutils, download the version in use, and

unzip it, just as done for Spark Streaming. Then, the HADOOP_HOME variable has to

be added to the system variables and pointed to Hadoop files. In Hadoop’s case, it is also

necessary to add the bin folder to the path variables. After all the steps, the installation

should be correctly done and completed.
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4.5 Prediction

The fourth layer in the system architecture under consideration is the model’s prediction,

which plays a pivotal role in achieving the desired objective. As previously mentioned,

Spark Streaming is responsible for loading the model, which is deemed to be the core ele-

ment of this study, as it is designed to deliver the required prediction. Upon receiving the

classified data from Spark Streaming, the model processes it and generates the intended

output. Since the predictions yielded by the model exhibit a high degree of similarity to

the actual values, it can be safely inferred that the developed work has been successful in

achieving the intended objective.

To ensure the accuracy and reliability of the system, the system was tested multiple

times. The repeated tests were instrumental in verifying the system’s consistency and

the variability of the model’s outputs based on the received input values. Moreover, the

input values received are not static. New values, that are distinct from the previous ones,

are continuously received over time, resulting in new predictions being generated. The

variation in the predicted values is evident from Figure 4.19 presented below. In the

presented graph it is noticeable that the predictions are not constant and are identical

to the next readings. The next readings refer to the next values read by the sensors or,

to simplify, the real values. The red line represents the threshold, the blue and orange

are related to predictions and readings, respectively, from patient 39, and the grey and

yellow are the same but for the patient with identification number 6.

Figure 4.19: Graph with predictions and the following readings.
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It can be inferred from the figure that the model’s predictions are not constant and

exhibit a noticeable degree of variability over time. This finding underscores the ro-

bustness and effectiveness of the model in generating accurate predictions based on the

real-time data stream received from the sensors. The continuous flow of input data and

the corresponding variability in the model’s output values indicate that the system is well-

equipped to adapt to changing conditions and provide accurate and reliable predictions

over an extended period.

In addition to predicting the MAP value, the developed system includes an alarm

mechanism that raises a visual alert on the computer when a predicted MAP value is

below 65 mm Hg. However, as with any automated system, there is a possibility of

system errors or poorly generated data. To prevent unnecessary alarm notifications, the

system incorporates a count mechanism to track the persistence of such low MAP values.

Specifically, the system counts the number of consecutive predictions that are below

the 65 mm Hg threshold. If the count exceeds a predetermined threshold, an alarm is

triggered to simulate a request for attention by healthcare professionals. It is important

to note that this alarm mechanism is solely designed for testing purposes and should

not be relied upon as a substitute for medical attention. In a real-world scenario, the

alarm mechanism would be replaced with an audible or mobile notification to ensure

that healthcare professionals can respond promptly and appropriately to any potentially

critical situations. Overall, this alarm mechanism serves as an essential component of the

system, ensuring that any abnormalities in the predicted MAP values are appropriately

addressed and reducing the risk of harm to patients.

4.6 Explainability

Developing an XAI algorithm can be challenging, especially if the model is complex or

not inherently interpretable. However, it is becoming more demanding, especially in

fields where transparency is required, such as healthcare. Therefore, there is a growing

interest in developing XAI algorithms that can provide interpretable and transparent

explanations of the decision-making process of a model.

Several approaches exist for developing an XAI algorithm, which varies depending on

the specific application domain and model architecture. It is important to emphasise that

there is no one-size-fits-all solution, and developing an XAI algorithm requires careful

consideration of the particular use case and model architecture. Moreover, it is worth

noting that developing an XAI algorithm can be a demanding task, and it may not be

feasible to create a single algorithm that can work for all trained models.

The applicability of an XAI technique depends on the nature of the model and the

requirements of the specific use case. Some XAI techniques can be applied across a wide

range of models with minimal modifications while others may need to be tailored to

the specific requirements of a particular model. It is therefore essential to evaluate the
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strengths and limitations of different XAI techniques and select the one(s) that best meet

the specific requirements of the different models.

In light of the above, it is generally advisable to develop an XAI algorithm for each

trained model separately. This approach ensures that the algorithm is optimised for

the specific model and use case, thereby increasing its interpretability and transparency.

Due to its demanding nature, it was determined that an algorithm would be developed

exclusively for the selected model, rather than for each of the trained models. Although

not explicitly mentioned in the proposed solution, a model based on XAI was deemed a

valuable addition to the ongoing study.

Based on Section 2.3, and because the model is an ANN, it was decided to use a model-

agnostic approach, specifically a feature relevance estimation, as it enables healthcare

professionals to know which variable were most impactful in the model’s prediction. To

help with the implementation, the SHAP library was used. As stated in Section 2.3, it

provides a unified way of explaining the output of any ML model, and it can be used

with various types of models such as tree-based models, deep learning models, and linear

models (more information is provided in Section 2.3.

Its implementation consists of three code lines as shown in Figure 4.20, where the first

instruction generates an explainer object for a given model and data, the second returns

the matrix of values for the given set of input instances, and the last regards SHAP’s final

plot to interpret the model.

Figure 4.20: SHAP instructions.

Figure 4.21 shows a plot example with multiple predictions made by the model and

the features’ importance. As can be seen, the features with the most impact on the model’s

prediction were the Mean Arterial Pressure and the Respiration Rate while the rest did

not have a significant impact, if none. The feedback provided, can help increase the

healthcare professionals trust towards the model as they can confirm that the model

reached a conclusion based on the variables from which they themselves would use to

reach the same conclusion.
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Figure 4.21: SHAP plot.

4.7 ICU4Covid Integration and Validation

After the system test was a success, it was decided to incorporate the solution developed

in the CPS4TIC as foreseen and explained in Section 3.4, more precisely in the B-Health

IoT Box [95].

The B-Health IoT Box is a key component of the CPS4TIC. It is an IoT device de-

signed to be placed near a patient’s bed in the ICU to support the health and well-being

of healthcare professionals that consists of a Raspberry Pi and multiple environmental

sensors such as CO2, temperature, humidity, and luminosity sensors. The B-Health IoT

Box serves as a data collection and transmission hub. It collects vital patient data from

ICU sensors, including from the PIIC iX, and sends the collected data to a centralised ob-

servation centre for further analysis and interpretation. Figure 4.22 shows the B-Health

IoT Box as a data acquisition platform in an ICU environment.
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Figure 4.22: B-Health IoT Box in ICU environment.

One key features of the B-Health IoT Box is its versatility and adaptability. It is a

customisable device that allows for the installation of various applications. These ap-

plications can enhance the functionality of the B-Health IoT Box, enabling additional

features and functionalities based on specific requirements. By supporting the installa-

tion of applications, the B-Health IoT Box can be adapted to different healthcare settings

and integrated with advanced algorithms, data processing tools, and decision support

systems. Figure 4.23 depicts where the B-Health IoT Box is placed in a ICU environment

and its function in the CPS4TIC component of the ICU4Covid project.

Figure 4.23: B-Health IoT Box in a ICU and CPS4TIC context.
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The integration of the program with the B-Health IoT Box not only increases its func-

tionality but also enables remote monitoring and management of the ICU environment,

which is essential in telemedicine. Moreover, implementing the solution directly in the

B-Health IoT Box could take advantage of the sensor data collected by the box itself, in

addition to the PIIC iX signals. Hence, using the B-Health IoT Box to collect data from

the ICU sensors and making it available to authorised hospital staff, including remote

healthcare professionals, the B-Health IoT Box with the integrated program can support

telemedicine practices, providing real-time information and facilitating remote decision-

making. Furthermore, the integration can enhance the safety of healthcare professionals

and patients, allowing for better control of the ICU environment, which is crucial in the

context of telemedicine. A photo of the B-Health IoT Box is provided in Figure 4.24.

Figure 4.24: B-Health IoT Box [95].

To deploy the developed program into the B-Health IoT Box it is necessary to have

access to its Raspberry. It was necessary to install several tools and libraries such as Java,

Python and Spark Streaming, as well as multiple files that had to be transferred to execute

the developed solution in the box and test its functionality. Although the setup process

was time-consuming, the outcome was in accordance with the expected results. One thing

that should be noted is that the box runs in a Linux environment and the version of Spark

Streaming installed was not the same as the one installed when doing the initial tests. So,

the version of Spark Streaming being used is the latest (3.3.2 and is already pre-built for

Hadoop) and was installed using the Linux instructions designated for this. The Java and

Python versions are the same. None of this affected the outcome of the program.

It is worth noting that the computing power of the B-Health IoT Box is inferior to

that of a computer, resulting in slower program execution. However, this did not impede

the consistency and accuracy of the program outputs and predictions, which remained

unchanged across both machines. Also, considering that the training of the model (ANN

network) is the most demanding activity in terms of physical resources, the training
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can be performed in advance in an external environment. An example of the solution

prevision execution time (0.281s) in the B-Health IoT Box, is depicted in Figure 4.25, as

well as a prevision.

Figure 4.25: B-Health Box output.

The solution was subjected to testing in a simulation room at Hospital Dr. Melo

Mendonça, a collaborative partner of the ICU4Covid project. The preliminary results of

the integrated solution are encouraging, although its effectiveness in a real clinical setting

has yet to be tested. These initial outcomes provide grounds for optimism regarding the

potential of the solution. However, it is imperative to acknowledge that comprehensive

assessment in a real clinical setting is necessary to validate its performance.

If the performance is maintained, the integration of the solution can even have the

potential to enhance the field of telemedicine. This is due to the fact that the intelligent

system is capable of evaluating a patient and making predictions, thus reducing the

need for constant monitoring by a healthcare professional. Implementing such a system

could result in increased efficiency, more timely interventions, and ultimately, improved

patient outcomes. Nonetheless, it should be emphasised that such technology does not

replace the need for medical expertise and clinical judgement. It is crucial that healthcare

professionals continue to be promptly alerted when abnormalities are detected, enabling

them to take appropriate actions on time.
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Conclusion and Future Plans

The motivation for the presented work was the potential of AI in ICUs because these

are areas where a lot of data is available, intervention has to be done quickly and are

susceptible to errors. For this reason, it is essential to continuously innovate by bringing

in new forms of technology.

The susceptibilities exposed during the COVID-19 pandemic were the main drivers of

this dissertation and were what led to the development of this prototype that could be in-

tegrated with a telemedicine environment as the ICU4Covid. During its development, the

AI potential in the health area has become evident, supporting healthcare professionals

in decision making.

The primary objective of this study was to establish a system capable of managing

medication administration and intensive care environments, however, during its research,

it became interesting to focus more on blood pressure values, specifically MAP. MAP is

an significant aspect in ICUs so, predicting future MAP values through the analysis of

multiple variables collected from sensors ICU became the goal of this study. To achieve

this goal, three distinct AI models were trained and tested: LR, SVM, and ANN. The

purpose of developing these models was to perform a comparison of their respective

performances. Moreover, the variables used for the model’s training were all read by

bedside monitors. Some examples are respiration rate, heart rate, pulse rate, oxygen

saturation, besides the components of blood pressure (systolic, diastolic and MAP).

To make a fair comparison, the same dataset was used to train all three models, which

enabled a more rigorous evaluation of their respective performances. Following the

models’ training it was noticeable that the training time for each model was different,

with the SVM taking almost a day to finish its process, the LR finishing in mere minutes,

and the ANN standing in the middle. One specificity of ANN training was that it was

trained several times with different hyperparameters to check if there was any change in

its performance and these were also found to have an impact on training time.

After evaluating the results, the ANN model was deemed to be the most suited for

the task at hand. Even though the ANN did not get the highest accuracy (75.063%), it

was not only the sole model that outputs continuous values, but it also did not have an
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excessive training time. Therefore, the ANN was chosen for further testing and validation.

To validate the performance of the ANN model, the Phillips Simulator was used to gen-

erate patient data in real time, creating a controlled environment for testing the model.

This allowed for a thorough evaluation of the ANN model’s performance and helped to

determine the model’s potential for practical application in a hospital setting.

The proposed prediction system used Spark Streaming as a means of classifying the

data generated from the Phillips Simulator. It was necessary to appeal to a simulator

since testing a model directly in a hospital environment can be risky and should only be

done after careful consideration of the potential risks and benefits, and after conducting

thorough validation and testing to ensure that the model is accurate and reliable. The

simulator’s data was transmitted through the Mirth Connect software, which acted as a

mediator between the simulator and the Spark Streaming. Upon receipt, Spark Streaming

utilised its capabilities to process and categorise the incoming data for subsequent use in

prediction by the ANN model. This approach allowed for a robust and efficient method

of handling the large amounts of data generated by the simulator and facilitated the

prediction process by the ANN model. In addition, Spark Streaming was also responsible

for storing the received and processed data in a .csv file to later retrain the ANN.

After the implementation of the proposed system, an evaluation of the performance of

the ANN was conducted. The results indicated that the ANN’s predictions were consistent

with the subsequent readings taken. This validates the hypothesis that the system can

accurately predict future MAP. The successful implementation and evaluation of the

proposed system suggests that it has the potential to be scaled up and applied in a larger

clinical settings. The system’s ability to accurately predict future MAP could improve

patient care and outcomes by providing clinicians with real-time information about a

patient’s blood pressure. With additional testing and validation in larger populations,

the system could become a valuable tool for clinicians seeking to improve patient care

and outcomes.

To enhance the trustworthiness of the system, an XAI algorithm was trained to provide

a clear explanation of how the ANN arrived at a particular output, thereby boosting a

healthcare professional confidence in the system. The developed XAI model incorporates

an interface that displays the various input variables fed into the ANN and their respective

contributions towards the final output. This explanation serves as an important tool for

clinicians to understand how the ANN makes its predictions, as it aids in justifying the

decisions made by the model. Ultimately, the XAI model improves the transparency

of the system and enhances the interpretability of the ANN, making it more useful for

clinical decision-making.

Lastly, the developed program was deployed in the B-Health Box, which is a com-

ponent of theCPS4TIC in the ICU4Covid project and serves as a tool for supporting

clinicians in the ICU environment, connecting real data to a telemedicine environment.

The developed program takes advantage of the data collected by the B-Health Box sensors

to make MAP predictions and provide additional functionalities to the box. After the
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initial configurations, and once the program was successfully deployed, on the B-Health

Hub, no significant differences were observed in comparison to the previously tested

version. The predictions made by the program were identical.

Further studies and improvements to the system may be necessary to ensure its relia-

bility and accuracy, but the current results are promising.

5.1 Future Plans

Although the implementation of the system was successful, several areas merit further

consideration. Firstly, even though the trained model was successfully integrated into

the ICU4Covid project, it was not integrated into the Federated Learning component.

However, future enhancements aim to include the model in the Federated Learning aspect

of the project. This would allow for a distributed and collaborative approach to training

and refining the model using data from multiple healthcare institutions while preserving

patient privacy. By incorporating the trained model into the Federated Learning aspect,

the accuracy and generalisation capabilities of the model can be improved, which can

ultimately lead to better patient outcomes. Also, utilising the most recent dataset would

not only provide a larger amount of data but also incorporate the latest and diverse

information, thereby improving the model’s performance by uncovering new variables

whose impact may be positive on its predictions.

Secondly, the use of a simulator for data generation and transmission in the current

study was adequate for the study’s purposes. However, it should be noted that the simula-

tor used is a past version of the real software. As such, it would be beneficial to integrate

the model with a more recent version of the software and other systems, so that it is

not only compatible with Philips’ systems. This would enable the model to be more ver-

satile and adaptive to the changing technological landscape of the healthcare industry.

Furthermore, the addition of new sensor variables to the model would also enhance its

adaptability and robustness. Moreover, the communication between these systems must

be secure and robust to protect the patients’ privacy and prevent any unauthorised access

to their data. This can be achieved through the use of technologies such as encryption,

Virtual Private Network (VPN), firewalls, two-factor authentication, or other technologies

as long as they can ensure safe data transmission.

Thirdly, a warning mechanism should be improved. This will ensure that healthcare

professionals are promptly notified and take appropriate action to address the situation.

The warning mechanism should be designed to be easy for healthcare professionals to un-

derstand the alert and take appropriate action. The design should also take into account

the potential for false positives and false negatives and provide appropriate guidance

to minimise these occurrences. Moreover, it is important to note that the alarm should

not only be present in a monitor, as healthcare professionals may miss the notification

and would not be capable of monitoring patients from a distance. Therefore, additional
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notification methods such as an audible signal or cellphone communication are viable so-

lutions. These methods can provide healthcare professionals with immediate notification,

enabling them to take prompt action to address the situation. By improving the warning

mechanism, healthcare professionals can act quickly and prevent adverse events from

occurring, ultimately improving patient outcomes.

Finally, the success of the model in predicting MAP suggests that it could potentially

be applied to other clinical scenarios. However, any expansion of the model’s use must

be done with careful consideration of ethical and regulatory requirements. Before im-

plementing the model in new use cases, it would be necessary to seek approval from an

appropriate ethical committee. This would ensure that any potential risks to patients are

identified and mitigated, and that the model’s benefits are maximised while protecting

patient privacy and autonomy. By following ethical guidelines and seeking appropriate

approvals, the model’s potential impact on patient care can be further realised.
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