79,502 research outputs found

    Management of Extremes in the Configuration of Interoffice Telephone Switch & Priority Systems

    Get PDF
    This paper describes how to enable diverse enterprise customers for voice-data switch to achieve in configuration a balance among users, features, and perceived reliability subject to extremes of traffic. The analysis entailed the simulation of the voice-data switch with embedded priority system, generation of latency times for various configurations and transaction traffic rates, and the development of a framework and theoretical propositions for configuration of super-saturated systems. It was shown that the concept of tolerance levels defined in the risk of extreme events can be applied for embedded priority systems and was the basis for the application of the zone-configuration evaluation diagram

    The Oyster River Culvert Analysis Project

    Get PDF
    Studies have already detected intensification of precipitation events consistent with climate change projections. Communities may have a window of opportunity to prepare, but information sufficiently quantified and localized to support adaptation programs is sparse: published literature is typically characterized by general resilience building or regional vulnerability studies. The Fourth Assessment Report of the IPCC observed that adaptation can no longer be postponed pending the effective elimination of uncertainty. Methods must be developed that manage residual uncertainty, providing community leaders with decision-support information sufficient for implementing infrastructure adaptation programs. This study developed a local-scale and actionable protocol for maintaining historical risk levels for communities facing significant impacts from climate change and population growth. For a coastal watershed, the study assessed the capacity of the present stormwater infrastructure capacity for conveying expected peak flow resulting from climate change and population growth. The project transferred coupled-climate model projections to the culvert system, in a form understandable to planners, resource managers and decision-makers; applied standard civil engineering methods to reverse-engineer culverts to determine existing and required capacities; modeled the potential for LID methods to manage peak flow in lieu of, or combination with, drainage system upsizing; and estimated replacement costs using local and national construction cost data. The mid-21st century, most likely 25-year, 24-hour precipitation is estimated to be 35% greater than the TP-40 precipitation for the SRES A1b trajectory, and 64% greater than the TP-40 value for the SRES A1fi trajectory. 5% of culverts are already undersized for the TP-40 event to which they should have been designed. Under the most likely A1b trajectory, an additional 12% of culverts likely will be undersized, while under the most likely A1fi scenario, an additional 19% likely will be undersized. These conditions place people and property at greater risk than that historically acceptable from the TP-4025-year design storm. This risk level may be maintained by a long-term upgrade program, utilizing existing strategies to manage uncertainty and costs. At the upper-95% confidence limit for the A1fi 25-year event, 65% of culverts are adequately sized, and building the remaining 35%, and planned, culverts to thrice the cross-sectional area specified from TP-40 should provide adequate capacity through this event. Realizable LID methods can mitigate significant impacts from climate change and population growth, however effectiveness is limited for the more pessimistic climate change projections. Results indicate that uncertainty in coupled-climate model projections is not an impediment to adaptation. This study makes a significant contribution toward the generation of reliable and specific estimates of impacts from climate change, in support of programs to adapt civil infrastructures. This study promotes a solution to today\u27s arguably most significant challenge in civil infrastructure adaptation: translating the extensive corpus of adaptation theory and regional-scale impacts analyses into localscale action

    Project scheduling under uncertainty using fuzzy modelling and solving techniques

    Get PDF
    In the real world, projects are subject to numerous uncertainties at different levels of planning. Fuzzy project scheduling is one of the approaches that deal with uncertainties in project scheduling problem. In this paper, we provide a new technique that keeps uncertainty at all steps of the modelling and solving procedure by considering a fuzzy modelling of the workload inspired from the fuzzy/possibilistic approach. Based on this modelling, two project scheduling techniques, Resource Constrained Scheduling and Resource Leveling, are considered and generalized to handle fuzzy parameters. We refer to these problems as the Fuzzy Resource Constrained Project Scheduling Problem (FRCPSP) and the Fuzzy Resource Leveling Problem (FRLP). A Greedy Algorithm and a Genetic Algorithm are provided to solve FRCPSP and FRLP respectively, and are applied to civil helicopter maintenance within the framework of a French industrial project called Helimaintenance

    Pilot decision making in a computer-aided flight management situation

    Get PDF
    An experimental representation of a computer-aided multi-task flight management situation has been developed. A computer aiding program was implemented to serve as a back-up decision maker. An experiment was conducted with a balanced design of several subject runs for different workload levels. This was achieved using three levels of subsystem event arrival rates, three levels of control task involvement, and three levels of availability of computer aiding. Experimental results compared quite favorably with those from a computer simulation which employed a queueing model. It was shown that the aiding had enhanced system performance as well as subjective ratings, and that the adaptive aiding policy further reduced subsystem delay
    corecore