446 research outputs found

    Real-time musculoskeletal visualization of muscle tension and joint reaction forces

    Get PDF
    International audienceThis paper presents a novel software that visualizes the physical burden of human body during movements. Its main objective is to support factory workers by monitoring the risk of physical health problems like low back pains. To achieve the goal, the software utilizes wearable sensors like IMUs to realize the measurement at a work-site. Several physical information like joint angles, joint torques, muscle tensions, joint reaction forces can be obtained by real-time musculoskeletal computation. The musculoskeletal information can be plotted and recorded by the visualization interface which is integrated to an ergonomic assessment software DhaibaWorks

    Combined musculoskeletal and finite element modelling of the lumbar spine and lower limbs

    Get PDF
    Bone health deterioration is a major public health issue increasing the risk of fragility fracture with a substantial associated psychosocioeconomic impact. In the lumbar spine, physical deconditioning associated with ageing and chronic pain is a potential promoter of bone structural degradation. General guidelines for the limitation of bone loss and the management of pain have been issued, prescribing a healthy lifestyle and a minimum level of physical activity. However, there is no specific recommendation regarding targeted activities that can effectively maintain lumbar spine bone health in populations at risk. The aim of this thesis was to develop a new predictive computational modelling framework for the study of bone structural adaptation to healthy and pathological conditions in the lumbar spine. The approach is based on the combination of a musculoskeletal model of the lumbar spine and lower limbs with structural finite element models of the lumbar vertebrae. These models are built with bone and muscle geometries derived from healthy individuals. Based on daily living activities, musculoskeletal simulations provide physiological loading conditions to the finite element models. Cortical and trabecular bone are modelled with shell and truss elements whose thicknesses and radii are adapted to withstand the physiological mechanical environment using a strain driven optimisation algorithm. This modelling framework allows to generate healthy bone architecture when a loading envelope representative of a healthy lifestyle is applied to the vertebrae, and identify influential activities. Prediction of bone remodelling under altered loading scenarios characteristic of lumbar pathologies can also be achieved. The modelling approach developed in this thesis is a powerful tool for the investigation of bone remodelling in the lumbar spine. Preliminary results indicate that locomotion activities are insufficient to maintain lumbar spine bone health. Specific recommendations to limit the effect of physical deconditioning related to muscle weakening back pain are suggested. The approach is also promising for the investigation of other lumbar pathologies such as age related osteoporosis and scoliosis.Open Acces

    Computational modelling of the scoliotic spine: A literature review

    Get PDF
    Scoliosis is a deformity of the spine that in severe cases requires surgical treatment. There is still disagreement among clinicians as to what the aim of such treatment is as well as the optimal surgical technique. Numerical models can aid clinical decision-making by estimating the outcome of a given surgical intervention. This paper provided some background information on the modelling of the healthy spine and a review of the literature on scoliotic spine models, their validation, and their application. An overview of the methods and techniques used to construct scoliotic finite element and multibody models was given as well as the boundary conditions used in the simulations. The current limitations of the models were discussed as well as how such limitations are addressed in non-scoliotic spine models. Finally, future directions for the numerical modelling of scoliosis were addressed

    Computational modelling of the scoliotic spine: A literature review

    Get PDF
    open4siScoliosis is a deformity of the spine that in severe cases requires surgical treatment. There is still disagreement among clinicians as to what the aim of such treatment is as well as the optimal surgical technique. Numerical models can aid clinical decision-making by estimating the outcome of a given surgical intervention. This paper provided some background information on the modelling of the healthy spine and a review of the literature on scoliotic spine models, their validation, and their application. An overview of the methods and techniques used to construct scoliotic finite element and multibody models was given as well as the boundary conditions used in the simulations. The current limitations of the models were discussed as well as how such limitations are addressed in non-scoliotic spine models. Finally, future directions for the numerical modelling of scoliosis were addressed.Marco Viceconti and Giorgio Davico were supported by the EU funded project Mobilise-D. The charity Reuse-WithLove is gratefully acknowledged for the financial support to this research.openGould, Samuele L; Cristofolini, Luca; Davico, Giorgio; Viceconti, MarcoGould, Samuele L; Cristofolini, Luca; Davico, Giorgio; Viceconti, Marc

    Computationally Efficient Finite Element Models of the Lumbar Spine for the Evaluation of Spine Mechanics and Device Performance

    Get PDF
    Finite Element models of the lumbar spine are commonly used for the study of spine mechanics and device performance, but have limited usefulness in some applications such as clinical and design phase assessments due to long analysis times. In this study a computationally efficient L4-L5 FSU model and a L1-Sacrum multi-segment model were developed and validated. The FSU is a functional spine unit consisting of two adjacent vertebral bodies, in this case L4 and L5. The multi-segment model consists of all lumbar vertebrae and the sacrum. The models are able to accurately predict spine kinematics with significantly reduced analysis times, relative to fully deformable representations. Analysis times were reduced from 3 hrs and 20 min to 2 min and 1 min for the multi-segment and FSU models, respectively. The vertebrae geometries were reconstructed from CT scans of the cadaveric specimen. Prior to model development, experimental testing was performed on the specimen using a custom multi-axis spine simulator. Collection of kinematic data in response to external loading made tuning of the model stiffness possible. The improved computational efficiency of the models makes them more useful for applications requiring multiple iterations and short analysis times such as clinical and design phase assessments of implants. The model can also be used in efforts to develop lumbar musculoskeletal models, which may require multiple runs for the optimization of muscle forces

    Musculoskeletal modelling of manual material handling in the supermarket sector

    Get PDF

    Subject-Specific Computational Musculoskeletal Modeling of Human Trunk in Lifting : Role of Age, Sex, Body Weight and Body Height

    Get PDF
    RĂ©sumĂ© Les troubles musculosquelettiques sont parmi les problĂšmes de santĂ© les plus frĂ©quents et les plus coĂ»teux au monde. Les maux de dos figurent en deuxiĂšme position sur la liste des Ă©tats chroniques les plus rĂ©pandus au Canada et quatre adultes sur cinq souffriront de lombalgie un jour ou l’autre de leur vie. Les efforts excessifs sur la colonne vertĂ©brale constituent l’un des facteurs de risque potentiels de lombalgie et peuvent initier ou gĂ©nĂ©rer de la douleur et de la dĂ©gĂ©nĂ©rescence des disques. À cet effet, plusieurs Ă©tudes s’accordent pour affirmer qu’une estimation juste des charges vertĂ©brales est utile pour une prĂ©vention efficace des blessures et pour des programmes de rĂ©adaptation appropriĂ©s. Toutefois, il n’existe pas de mĂ©thodes directes pour mesurer les charges vertĂ©brales et de plus, toutes les mĂ©thodes indirectes (comme la mesure de la pression intradiscale – PID – et l’estimation au moyen de prothĂšse discale instrumentĂ©e) sont invasives et limitĂ©es. Les modĂšles musculosquelettiques (MS) offrent toutefois une alternative intĂ©ressante en estimant de maniĂšre non invasive, Ă©conomique et prĂ©cise les forces musculaires, les charges vertĂ©brales ainsi que la stabilitĂ© de la colonne vertĂ©brale en tenant compte des diffĂ©rences individuelles. Dans cette thĂšse, un modĂšle MS du tronc par Ă©lĂ©ments finis (EF) guidĂ© par la cinĂ©matique a Ă©tĂ© mis Ă  niveau. L’architecture des origines et insertions musculaires a Ă©tĂ© amĂ©liorĂ©e, une unitĂ© vertĂ©brale comprenant un disque dĂ©formable a Ă©tĂ© ajoutĂ©e (T11-T12) et un nouvel algorithme de mise Ă  l’échelle a Ă©tĂ© introduit afin d’explorer les effets du sexe, de l’ñge, du poids et de la taille sur la biomĂ©canique et les charges appliquĂ©es sur la colonne vertĂ©brale. Au moyen de donnĂ©es issues d’imageries mĂ©dicales et Ă  partir de principes biomĂ©caniques, l’algorithme de mise Ă  l’échelle a permis d’ajuster l’architecture musculaire (les bras de levier des muscles et les aires transverses), la gĂ©omĂ©trie et les propriĂ©tĂ©s passives ligamentaires de la colonne vertĂ©brale ainsi que la charge gravitationnelle, le tout en fonction du sexe, de l’ñge, du poids et de la taille. Une analyse de sensibilitĂ© a Ă©tĂ© effectuĂ©e au moyen d’une analyse factorielle multiple. Les donnĂ©es d’entrĂ©es du modĂšle (sexe, Ăąge, poids et taille) ont Ă©tĂ© modifiĂ©es Ă  l’intĂ©rieur de plages physiologiques (sexe : femme et homme ; Ăąge : 35 Ă  60 ans ; poids : 50 Ă  120 kg ; taille : 150 Ă  190 cm) tandis que le modĂšle personnalisĂ© par EF Ă©tait guidĂ© par une cinĂ©matique spĂ©cifique Ă  l’ñge et au sexe lors de diffĂ©rentes tĂąches de flexion avant avec ou sans charges manuelles. Des graphiques illustrant les effets principaux et des analyses de variance ont Ă©tĂ© utilisĂ©s pour Ă©valuer les effets des donnĂ©es d’entrĂ©es sur le chargement au dos. Le poids du corps a Ă©tĂ© le facteur le plus influent, en expliquant 99 % du chargement lombaire en compression et 96 % de celui en cisaillement, alors que les effets de la taille, du sexe et de l’ñge (<5 %) Ă©taient minimes. Aussi, pour des poids et des tailles similaires aux hommes, les femmes supportaient gĂ©nĂ©ralement des charges plus importantes au dos (5 % en compression, 9 % en cisaillement) La prĂ©valence de l’obĂ©sitĂ©, dont l’indice de masse corporelle (IMC) dĂ©passe les 30 kg/m2, est en croissance constante dans les pays dĂ©veloppĂ©s comme dans les pays en voie de dĂ©veloppement et a atteint un seuil critique « d’épidĂ©mie mondiale ». Bien que l’obĂ©sitĂ© soit associĂ©e Ă  plusieurs problĂšmes au dos (ex. : dĂ©gĂ©nĂ©ration discale, fractures vertĂ©brales, maux de dos), le rĂŽle de la biomĂ©canique dans les problĂšmes liĂ©s Ă  l’obĂ©sitĂ© demeure inconnu. La distribution du tissu adipeux varie considĂ©rablement d’un individu obĂšse Ă  un autre, et ce, mĂȘme dans les cas d’IMC et de poids identiques. On retrouve diffĂ©rentes formes d’obĂ©sitĂ©, dont celle « en pomme » et celle « en poire » (androĂŻde et gynoĂŻde respectivement). Le rĂŽle de l’obĂ©sitĂ© et des formes d’obĂ©sitĂ© sur les charges supportĂ©es par la colonne vertĂ©brale et sur les fractures de compression vertĂ©brale a Ă©tĂ© Ă©tudiĂ© Ă  l’aide du modĂšle personnalisĂ© mis Ă  jour. Trois formes distinctes d’obĂ©sitĂ© (correspondant Ă  une taille de circonfĂ©rence minimale, moyenne et maximale) pour un poids et un IMC identiques ont Ă©tĂ© simulĂ©es au moyen de mensurations anthropomĂ©triques obtenues Ă  partir de 5852 individus obĂšses et d’une analyse par composantes principales. L’obĂ©sitĂ© a des consĂ©quences significatives sur le chargement lombaire : la compression sur L4-L5 a bondi de 16 % (2820 N vs 3350 N) pour une flexion avant sans charges lorsque l’IMC a augmentĂ© de 31 kg/m2 Ă  39 kg/m2. Dans une comparaison entre une taille de circonfĂ©rence minimale (obĂ©sitĂ© en forme de poire) et celle d’une circonfĂ©rence maximale (obĂ©sitĂ© en forme de pomme), le chargement lombaire a subi une augmentation similaire Ă  celle d’ajouter 20 kg de poids supplĂ©mentaire, ainsi qu’un risque de fracture de fatigue vertĂ©brale sept fois plus Ă©levĂ©. En somme, l’obĂ©sitĂ© et les formes d’obĂ©sitĂ© ont une influence considĂ©rable sur la biomĂ©canique de la colonne vertĂ©brale, et donc, devraient ĂȘtre prises en compte lors d’une modĂ©lisation spĂ©cifique aux sujets. En plus de servir Ă  l’évaluation de la force maximale du tronc et Ă  la normalisation de l’électromyographie (EMG), les contractions musculaires volontaires maximales (CVM) peuvent ĂȘtre utilisĂ©es pour calibrer et valider les modĂšles MS. La performance du modĂšle MS personnalisĂ© a Ă©tĂ© Ă©tudiĂ©e en comparant les activitĂ©s musculaires estimĂ©es avec les EMG durant diverses tĂąches de CVM. Le stress musculaire maximal des muscles du tronc a Ă©galement Ă©tĂ© calculĂ© pour chaque sujet. Ce dernier a variĂ© considĂ©rablement entre diffĂ©rents sujets et groupes musculaires. Le muscle grand droit et le muscle oblique externe de l’abdomen ont eu, respectivement, le plus petite (0,40 ±0,22 MPa) et la plus grande valeur (0,99 ±0,29 MPa) de stress musculaire maximal parmi les groupes de muscles. Pour les CVM en flexion et en extension, les activitĂ©s musculaires estimĂ©es correspondaient adĂ©quatement avec les EMG. Cependant, cette correspondance Ă©tait faible pour les CVM en flexion latĂ©rale et rotations axiales. Le chargement lombaire des femmes Ă©tait en gĂ©nĂ©ral plus faible que celui des hommes. Les charges vertĂ©brales maximales lors des CVM ont Ă©tĂ© obtenues lors des efforts en extension (compression d’environ 6000 N Ă  L5-S1) tandis que les plus faibles ont Ă©tĂ© enregistrĂ©es en flexion avant (compression d’environ 3000 N Ă  L5-S1) ; les participants ont subi des chargements lombaires assez importants durant des CVM en flexion latĂ©rale et rotation axiale. (5500 N en compression et 1700 N en cisaillement). La prĂ©diction exacte du stress musculaire maximal et l’évaluation complĂšte de la performance d’un modĂšle MS nĂ©cessitent la prise en compte des tĂąches de CVM dans toutes les directions et l’application des moments dans les plans principaux et couplĂ©s du modĂšle. Une simulation adĂ©quate des ligaments passifs de la colonne vertĂ©brale, l’une des composantes majeures d’un modĂšle MS du tronc, est d’une importance capitale. Les modĂšles dĂ©taillĂ©s d’EF peuvent capturer avec prĂ©cision les rĂ©actions non linĂ©aires et temporelles de la colonne vertĂ©brale. Toutefois, en raison des coĂ»ts de calcul importants des modĂšles dĂ©taillĂ©s d’élĂ©ments finis, des modĂšles simplifiĂ©s (c.-Ă -d. Ă  partir de joints sphĂ©riques et de poutres ayant des propriĂ©tĂ©s passives linĂ©aires ou non linĂ©aires) sont couramment utilisĂ©s dans les principaux modĂšles MS. Par consĂ©quent, la prĂ©cision et la validitĂ© de l’utilisation de modĂšles simplifiĂ©s et de leur positionnement antĂ©ro-postĂ©rieur dans l’estimation de la cinĂ©matique de la colonne vertĂ©brale ligamentaire, des forces musculaires et des charges spinales ont Ă©tĂ© Ă©tudiĂ©es. Contrairement aux poutres, les articulations de type sphĂ©rique nĂ©gligeaient les degrĂ©s de libertĂ© en translation et n’ont pas rĂ©ussi Ă  prĂ©dire la cinĂ©matique de la colonne lombaire avec prĂ©cision, surtout dans la direction craniocaudale. Les poutres et les joints sphĂ©riques non linĂ©aires ont prĂ©dit de maniĂšre satisfaisante la PID en comparaison avec les mesures in vivo d’activitĂ©s physiques variĂ©es. En revanche, l’utilisation des poutres ou des joints sphĂ©riques aux propriĂ©tĂ©s linĂ©aires passives n’a donnĂ© que des rĂ©sultats valides que pour des angles de flexion d’amplitude faible ou modĂ©rĂ©e (<40 o). En nĂ©gligeant les propriĂ©tĂ©s passives des articulations (joints sphĂ©riques sans frottement), on a considĂ©rablement augmentĂ© le chargement lombaire en compression et en cisaillement, de 32 % et 63 % respectivement. Le dĂ©placement postĂ©rieur (de 8 mm) d’une articulation simplifiĂ©e a augmentĂ© les charges lombaires (en compression et en cisaillement) d’environ 20 %, tandis qu’un dĂ©placement vers l’avant (2 mm) a diminuĂ© de 10 % la compression et de 18 % la force de cisaillement. De plus, un dĂ©placement postĂ©rieur du modĂšle simplifiĂ© a rĂ©duit la force passive des muscles agonistes, et ce, tout en augmentant leurs composantes actives. Les modĂšles d’articulation simplifiĂ©s avec des propriĂ©tĂ©s passives non linĂ©aires devraient se situer entre -2 Ă  +4 mm (+ : postĂ©rieur) du centre du disque pour des prĂ©dictions justes des forces sur la colonne vertĂ©brale et des forces musculaires actives/passives. L’obtention de rĂ©sultats valides Ă  l’aide des modĂšles MS exige des moyens considĂ©rables comme une collecte complĂšte de donnĂ©es (ex. : cinĂ©matiques, EMG), un laboratoire bien Ă©quipĂ© et une formation suffisante. Par ailleurs, des Ă©quations de rĂ©gression faciles Ă  utiliser ont prĂ©cĂ©demment Ă©tĂ© mises au point pour estimer le chargement lombaire. Cependant, ces Ă©quations ne tiennent pas compte de l’anthropomĂ©trie des participants (ex. : poids et taille) fondĂ©e sur une approche physiologique, et elles nĂ©gligent souvent l’asymĂ©trie de la tĂąche. Dans cette partie de l’étude, des Ă©quations de rĂ©gression spĂ©cifiques aux sujets ont Ă©tĂ© dĂ©veloppĂ©es pour prĂ©dire le chargement lombaire (Ă  L4-L5 et L5-S1) en utilisant un modĂšle d’EF guidĂ© par la cinĂ©matique. L’exactitude de ce modĂšle et des Ă©quations de rĂ©gression ont Ă©tĂ© Ă©valuĂ©es en comparant les activitĂ©s musculaires estimĂ©es par le modĂšle avec ceux obtenus au moyen de l’EMG et des PDI calculĂ©es avec ceux de la littĂ©rature existante. Les valeurs estimĂ©es de la PDI spĂ©cifiques aux sujets prĂ©sentaient des corrĂ©lations Ă©levĂ©es avec les rĂ©sultats d’études in vivo lors de tĂąches symĂ©triques et asymĂ©triques (R2=0.82). Dans le cas des tĂąches symĂ©triques, les estimations d’activitĂ© musculaire Ă©taient raisonnablement comparables avec les rĂ©sultats d’EMG. Toutefois, dans les tĂąches asymĂ©triques, les estimations Ă©taient moyennement (muscles du dos) ou faiblement (muscles de l’abdomen) en accord avec les EMG. En somme, les Ă©quations de rĂ©gression dĂ©veloppĂ©es peuvent ĂȘtre utilisĂ©es dans le but d’estimer le chargement lombaire dans des tĂąches de levage symĂ©triques et asymĂ©triques. Ces Ă©quations personnalisĂ©es pourraient servir Ă  l’évaluation des risques de blessure au dos lors d’activitĂ©s de manutention. En rĂ©sumĂ©, un modĂšle MS d’EF guidĂ© par la cinĂ©matique, mis Ă  jour par une architecture musculaire amĂ©liorĂ©e, un disque dĂ©formable additionnel (T11-T12) et un nouvel algorithme de mise Ă  l’échelle a Ă©tĂ© utilisĂ© pour examiner la biomĂ©canique personnalisĂ©e de la colonne vertĂ©brale. En personnalisant tous les paramĂštres du modĂšle MS (les bras de levier des muscles, les aires transverses musculaires, le chargement gravitationnel, la gĂ©omĂ©trie de la colonne, les propriĂ©tĂ©s passives et la cinĂ©matique de la colonne vertĂ©brale), et en effectuant une analyse de sensibilitĂ© sur les donnĂ©es d’entrĂ©es du modĂšle (sexe, Ăąge, taille et poids), il a Ă©tĂ© dĂ©montrĂ© que le poids d’une personne influence nettement les forces de chargement subies par la colonne vertĂ©brale, alors que l’influence des autres facteurs Ă©tait plutĂŽt faible. Deux formes distinctes d’obĂ©sitĂ© ont Ă©tĂ© reconstituĂ©es Ă  partir d’un ensemble de donnĂ©es anthropomĂ©triques disponibles dans la littĂ©rature. Les rĂ©sultats ont Ă©tabli que l’obĂ©sitĂ© et les formes d’obĂ©sitĂ© (formes en pomme ou en poire) affectent, toutes les deux, les forces sur la colonne vertĂ©brale ainsi que le risque de fracture de fatigue vertĂ©brale. Lors de tĂąches de CVM (en extension, en flexion, en flexion latĂ©rale et en rotation axiale), les grandeurs du stress musculaire variaient substantiellement parmi les sujets et diffĂ©rents groupes musculaires. Dans le cas des CVM en flexion et en extension, les valeurs prĂ©dites d’activitĂ© musculaire par le modĂšle personnalisĂ© Ă©taient prĂšs des EMG enregistrĂ©s, alors que les prĂ©dictions concernant les CVM en rotation axiale et en flexion latĂ©rale n’avaient pas la mĂȘme exactitude. Des poutres et des joints sphĂ©riques ayant des propriĂ©tĂ©s non linĂ©aires (d’une position variant de -2 Ă  +4 mm [+ : postĂ©rieur] du centre des disques) prĂ©disait avec exactitudes les cinĂ©matiques de la colonne vertĂ©brale, le chargement lombaire et les activitĂ©s musculaires. Par contre, les modĂšles articulaires qui avaient des propriĂ©tĂ©s linĂ©aires ou qui n’avaient pas de degrĂ©s de libertĂ© en translation dĂ©tĂ©rioraient l’exactitude des prĂ©dictions. Enfin, des Ă©quations de rĂ©gression faciles Ă  utiliser ont Ă©tĂ© mises au point dans le but de prĂ©dire les forces de compression et de cisaillement subies par la colonne vertĂ©brale (aux niveaux L4-L5 et L5-S1) lors de tĂąches symĂ©triques et asymĂ©triques. Les Ă©quations personnalisĂ©es ont correctement estimĂ© les valeurs de PID en comparant les valeurs calculĂ©es avec les rĂ©sultats mesurĂ©s in vivo retrouvĂ©s dans la littĂ©rature. Lors de plusieurs tĂąches symĂ©triques et asymĂ©triques, les valeurs estimĂ©es des activitĂ©s musculaires Ă©taient moyennement (pour les muscles du dos) Ă  faiblement (pour les muscles abdominaux) comparables avec les EMG enregistrĂ©s des participants. Par consĂ©quent, les Ă©quations de rĂ©gression proposĂ©es peuvent ĂȘtre utilisĂ©es pour Ă©valuer les risques de blessures lors d’activitĂ©s de manutention. ---------- Abstract Musculoskeletal disorders are one the most frequent and costly disabilities in the world. Back problems are the second most common chronic condition in Canada. Four out of five adults experience low back pain in their lifetime. As one of the potential risk factors of back pain, excessive loads on the spine can initiate and promote disc degeneration and pain, so accurate estimation of spinal loads are helpful in designing effective prevention, evaluation, and treatment programs. There is no direct method to measure spinal loads, and all indirect methods (intradiscal pressure – IDP – and instrumented vertebral replacement) are invasive and scarce. Alternatively, musculoskeletal (MS) models with physiological scaling algorithms economically and accurately estimate muscle forces, spinal loads and spinal stability margin by taking into account individual differences. An existing kinematics driven (KD) finite element (FE) MS musculoskeletal model of the trunk has been upgraded in this work by refining the muscle architecture, by adding a new deformable disc level (T11-T12), and by introducing a novel scaling algorithm to explore likely effects of sex, age, body weight (BW) and body height (BH) on spine biomechanics and spinal loads. By using imaging datasets and biomechanical principles, the scaling algorithm adjusted the muscle architecture (muscle moment arms and cross-sectional areas), spine geometry, passive properties of the ligamentous spine and gravity loads based on subject’s sex, age, BH and BW. To perform a sensitivity analysis in a full-factorial design, model inputs (i.e., sex, age, BH and BW) were altered within physiological ranges (sex: female and male; age: 35-60 years; BH: 150-190 cm; BW:50-120 kg) while the personalized KD-FE model of the trunk was driven with sex- and age-specific kinematics during different forward flexion tasks with and without a hand-load. Main effect plots and the analysis of variance were employed to investigate effects of inputs on spinal loads. As the most influential factor, BW contributed 99% to compression and 96% to shear spinal loads while effects of BH, sex and age (<5%) remained much smaller. At identical BH, BW and waist circumference, females had slightly greater spinal loads (5% in compression; 9% in shear). The prevalence of obesity (body mass index; BMI>30 kg/m2) is rising in both developed and developing countries, and has reached “global epidemic” proportions. Although obesity has been associated with various back problems (e.g., disc degeneration, vertebral fracture and back pain),the likely role of biomechanics in obesity-related back problems is still unknown. At identical BMI and BW, fat distribution varies substantially from one obese individual to another. Different obesity types have qualitatively been described as apple- and pear-shaped (or android and gynoid). Therefore, effects of obesity and obesity shapes on spinal loads and vertebral compression fracture were investigated by using the upgraded subject-specific model. At identical BW and BH, three distinct obesity shapes (corresponding to minimum, average and maximum waist circumferences) were reconstructed by using available anthropometric measurements of 5852 obese individuals and principal component analysis. Obesity markedly affected spinal loads; L4-L5 compression increased by 16% (2820 N vs 3350 N) in forward flexion without a hand-load when BMI increased from 31 kg/m2 to 39 kg/m2. Greater waist circumferences (apple-shaped obesity) in comparison with smaller waist circumferences (pear-shaped obesity) increased spinal loads to the extent of gaining 20 kg additional BW and the risk of vertebral fatigue fracture by up to ~7 times. Therefore, both obesity and obesity shapes substantially affected spine biomechanics and should be taken into account in subject-specific modeling of the spine. Apart from serving in the trunk strength quantification and electromyography (EMG) normalization, maximum voluntary exertions (MVEs) can be used to calibrate and validate MS models. The performance of the current upgraded subject-specific MS model was investigated by comparing estimated muscle activities with reported EMGs during various MVE tasks. Maximum muscle stresses of trunk muscles were also calculated for each subject individually. Estimated maximum muscle stresses varied substantially among subjects and different muscle groups; rectus abdominis and external oblique had the smallest (0.40±0.22 MPa) and largest (0.99±0.29 MPa) maximum muscle stresses, respectively. In sagittal symmetric MVEs (extension and flexion), estimated muscle activities were found in satisfactory agreement with measured reported EMGs while in lateral and axial MVEs, the agreement was rather weak. Females in general had smaller spinal loads. Peak spinal loads were obtained in extension MVE (~6000 N compression at L5-S1) while flexion MVE yielded the smallest spinal loads (~3000 N compression at L5-S1); subjects experienced rather large spinal loads (5500 N in compression and 1700 N in shear) under lateral and axial MVEs. Accurate prediction of maximum muscle stresses and comprehensive evaluation of the performance of a MS model require the consideration of MVE tasks in all directions with the application of both primary and coupled moments to the model. Accurate simulation of the passive ligamentous spine, as one of the integral components of a trunk MS model, is of great importance. Detailed FE models can accurately capture nonlinear and time-dependent responses of the spine; however, due to the significant computational costs of detailed FE models, simplified models (i.e., spherical joints/beams with linear/nonlinear passive properties) are commonly used in the trunk MS models. Therefore, the accuracy and validity of using simplified models and their anterior-posterior positioning in estimating kinematics of the ligamentous spine, muscle forces and spinal loads were investigated. Unlike beam elements, spherical joints overlooked translational degrees of freedom and failed to accurately predict kinematics of the lumbar spine particularly in the cranial-caudal direction. Nonlinear shear deformable beams and spherical joints were found to satisfactorily predict IDPs in comparison with in vivo measurements during various activities. In contrast, using beams or spherical joints with linear passive properties yielded valid results only in small to moderate flexion angles (<40o). Neglecting passive properties of joints (frictionless spherical joints) substantially increased compression and shear spinal loads by 32% and 63%. Shifting a simplified joint posteriorly (by 8 mm) increased spinal loads (compression and shear) by ~20% while an anterior shift (by 2 mm) decreased spinal loads by 10% and 18% in compression and shear directions. Moving simplified joint models posteriorly reduced also passive muscle forces of agonist muscles while increasing their active components. Simplified joint models with nonlinear passive properties should be located in -2 to +4 mm (+: posterior) range from the disc center for accurate predictions of spinal loads and active/passive muscle forces. Obtaining reasonably accurate results by MS models requires comprehensive data collection (e.g., kinematics, EMG), equipped laboratory, and sufficient training. Alternatively, easy to use regression equations have previously been developed to estimate spinal loads, but they do not take account of personalized anthropometric factors (e.g., BW and BH) based on a physiological approach and often overlook task asymmetry. Thus, in this work, subjects-specific regression equations were developed to predict spinal loads at lower spinal levels (L4-L5 and L5-S1) by using the upgraded KD-FE model, and the Accuracy of the model and regression equations were subseq

    Association between sagittal alignment and loads at the adjacent segment in the fused spine: a combined clinical and musculoskeletal modeling study of 205 patients with adult spinal deformity

    Get PDF
    Fusion surgery; Sagittal alignment; Spine surgeryCirugía de fusión; Alineación sagital; Cirugía de columnaCirurgia de fusió; Alineació sagital; Cirurgia de columnaPurpose Sagittal malalignment is a risk factor for mechanical complications after surgery for adult spinal deformity (ASD). Spinal loads, modulated by sagittal alignment, may explain this relationship. The aims of this study were to investigate the relationships between: (1) postoperative changes in loads at the proximal segment and realignment, and (2) absolute postoperative loads and postoperative alignment measures. Methods A previously validated musculoskeletal model of the whole spine was applied to study a clinical sample of 205 patients with ASD. Based on clinical and radiographic data, pre-and postoperative patient-specific alignments were simulated to predict loads at the proximal segment adjacent to the spinal fusion. Results Weak-to-moderate associations were found between pre-to-postop changes in lumbar lordosis, LL (r =  − 0.23, r =  − 0.43; p < 0.001), global tilt, GT (r = 0.26, r = 0.38; p < 0.001) and the Global Alignment and Proportion score, GAP (r = 0.26, r = 0.37; p < 0.001), and changes in compressive and shear forces at the proximal segment. GAP score parameters, thoracic kyphosis measurements and the slope of upper instrumented vertebra were associated with changes in shear. In patients with T10-pelvis fusion, moderate-to-strong associations were found between postoperative sagittal alignment measures and compressive and shear loads, with GT showing the strongest correlations (r = 0.75, r = 0.73, p < 0.001). Conclusions Spinal loads were estimated for patient-specific full spinal alignment profiles in a large cohort of patients with ASD pre-and postoperatively. Loads on the proximal segments were greater in association with sagittal malalignment and malorientation of proximal vertebra. Future work should explore whether they provide a causative mechanism explaining the associated risk of proximal junction complications.Study funding was provided by Maxi Foundation. Open access funding was provided by Swiss Federal Institute of Technology Zurich
    • 

    corecore