1,700 research outputs found

    Spectral methods in general relativistic astrophysics

    Get PDF
    We present spectral methods developed in our group to solve three-dimensional partial differential equations. The emphasis is put on equations arising from astrophysical problems in the framework of general relativity.Comment: 51 pages, elsart (Elsevier Preprint), 19 PostScript figures, submitted to Journal of Computational & Applied Mathematic

    Chebyshev model arithmetic for factorable functions

    Get PDF
    This article presents an arithmetic for the computation of Chebyshev models for factorable functions and an analysis of their convergence properties. Similar to Taylor models, Chebyshev models consist of a pair of a multivariate polynomial approximating the factorable function and an interval remainder term bounding the actual gap with this polynomial approximant. Propagation rules and local convergence bounds are established for the addition, multiplication and composition operations with Chebyshev models. The global convergence of this arithmetic as the polynomial expansion order increases is also discussed. A generic implementation of Chebyshev model arithmetic is available in the library MC++. It is shown through several numerical case studies that Chebyshev models provide tighter bounds than their Taylor model counterparts, but this comes at the price of extra computational burden

    A New Supersymmetric Index

    Full text link
    We show that Tr(−1)FFe−βH{\rm Tr}(-1)^F F e^{-\beta H} is an index for NN=2 supersymmetric theories in two dimensions, in the sense that it is independent of almost all deformations of the theory. This index is related to the geometry of the vacua (Berry's curvature) and satisfies an exact differential equation as a function of β\beta. For integrable theories we can also compute the index thermodynamically, using the exact SS-matrix. The equivalence of these two results implies a highly non-trivial equivalence of a set of coupled integral equations with these differential equations, among them Painleve III and the affine Toda equations.Comment: 60 page

    High-Order, Stable, And Efficient Pseudospectral Method Using Barycentric Gegenbauer Quadratures

    Full text link
    The work reported in this article presents a high-order, stable, and efficient Gegenbauer pseudospectral method to solve numerically a wide variety of mathematical models. The proposed numerical scheme exploits the stability and the well-conditioning of the numerical integration operators to produce well-conditioned systems of algebraic equations, which can be solved easily using standard algebraic system solvers. The core of the work lies in the derivation of novel and stable Gegenbauer quadratures based on the stable barycentric representation of Lagrange interpolating polynomials and the explicit barycentric weights for the Gegenbauer-Gauss (GG) points. A rigorous error and convergence analysis of the proposed quadratures is presented along with a detailed set of pseudocodes for the established computational algorithms. The proposed numerical scheme leads to a reduction in the computational cost and time complexity required for computing the numerical quadrature while sharing the same exponential order of accuracy achieved by Elgindy and Smith-Miles (2013). The bulk of the work includes three numerical test examples to assess the efficiency and accuracy of the numerical scheme. The present method provides a strong addition to the arsenal of numerical pseudospectral methods, and can be extended to solve a wide range of problems arising in numerous applications.Comment: 30 pages, 10 figures, 1 tabl

    Efficient solution of parabolic equations by Krylov approximation methods

    Get PDF
    Numerical techniques for solving parabolic equations by the method of lines is addressed. The main motivation for the proposed approach is the possibility of exploiting a high degree of parallelism in a simple manner. The basic idea of the method is to approximate the action of the evolution operator on a given state vector by means of a projection process onto a Krylov subspace. Thus, the resulting approximation consists of applying an evolution operator of a very small dimension to a known vector which is, in turn, computed accurately by exploiting well-known rational approximations to the exponential. Because the rational approximation is only applied to a small matrix, the only operations required with the original large matrix are matrix-by-vector multiplications, and as a result the algorithm can easily be parallelized and vectorized. Some relevant approximation and stability issues are discussed. We present some numerical experiments with the method and compare its performance with a few explicit and implicit algorithms
    • …
    corecore