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Abstract

In this paper we take a new look at numerical techniques for solving parabolic equations by the method of lines.
The main motivation for the proposed approach is the possibility of exploiting a high degree of parallelism
in a simple manner. The basic idea of the method is to approximate the action of the evolution operator on a
given state vector by means era projection process onto a Krylov subspace. Thus, the resulting approximation
consists of applying an evolution operator of very small dimension to a known vector which is, in turn,
computed accura_ly by exploiting well-known rational approximations to the exponential. Because the rational
approximation is only applied to a small matrix, the only operations required with the original large matrix are
matrix-by-vector multiplications, and as a result the algorithm can easily be parallelized and vectorized. Some
relevant approximation and stability issues are discussed. We present some numerical experiments with the
method and compare its performance with a few explicit and implicit algorithms.
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1 Introduction

In recent years there has been a resurgence of interest in explicit methods for solving parabolic partial

differential equations, motivated mainly by the desire to exploit the parallel and vector processing capabilities

of new supcrcomputcr architectures. The main attraction of explicit methods is their simplicity, since the

basic operations involved in them are matrix-by-vector multiplications, which, in general, arc rather easy to

parallelizc and vectorizc. On the other hand, the stringent constraint on the size of the time steps required

to ensure stability reduces efficiency to such an extent that the use of implicit methods becomes almost

mandatory when integrating on long time intervals. Implicit methods do not suffer from stability related
restrictions but have another disadvantage: they require the solution of linear systems that arc often large and

sparse. For this reason implicit methods tend to bc far more difficult to implement on parallel machines than

their explicit counterparts, which only require matrix-by-vector multiplications. Thus, the trade-off between

the two approaches seems to be a large number of matrix-by-vector multiplications on the one hand, versus

linear systems to solve on the other. For two-dimensional and, more important, for three-dimensional

problems, methods of an explicit type might be attractive if implemented with care.
We next observe that in spite of the above conventional wisdom, the distinction between the explicit

and implicit approaches is not always clear. Consider the simple system of ordinary differential equations

V' = AV + f. We first point out that if our only desire is to use exclusively matrix-by-vector products

as operations with the matrix A, for example, for the purpose of exploiting modem architectures, then

certainly standard explicit methods do not constitute the only possibility. For example, one may use an

implicit scheme and solve the linear systems approximately by some iterative method, such as the conjugate

gradient method, with no preconditioning or with diagonal preconditioning. When the accuracy required for

each linear system is very low, then the method will be akin to an explicit scheme, although one of rather

unusual type since its coefficients will vary at every step. As the accuracy required for the approximations

increases, the method will start moving towards the family of purely implicit methods. Therefore, if we

were to call "explicit" any scheme that requires only matrix-vector products, then the borderline between

the two approaches is not so well-defined.
We would like to take advantage of this observation to develop schemes that arc intermediate bctwccn

explicit and implicit. In this paper we will use the term polynomial approximation method for any scheme

for which the only operations required with the matrix A arc matrix-by-vector multiplications. The number

of such operations may vary from one step to another and may be large.
To derive such intermediate methods we explore systematically the ways in which an approximation

to the local behavior of the ordinary differential equations can be obtained by using polynomials in the

operator A. Going back to the comparison sketched above, we note that the process involved in one single

step of an implicit method is often simply an attempt to generate some approximation to the operation

exp(6t A)v via a rational approximation to the evolution operator [49]. If a CG-like method is used to

solve the linear systems arising in the implicit procedure, the result will be a polynomial scheme. Thus,

there are two phases of approximation: the first is obtaining a rational or polynomial approximation to the

exponential, and the second is solving the linear systems by some iterative method. We would like to reduce

these two phases to only one by attempting to directly approximate exp(6t A)v. The basic idea is to project

the exponential of the large matrix A into a small Krylov subs'pace.
To make the discussion more specific and introduce some notation, we consider the following linear

parabolic partial differential equation:

0,,(x,0
= -Lu(z,t)+ r(x), x E fl, (I)

Ot

u(0,x) = uo, x_ft,



u(t, x) = o,(x), x e ocz,t > o,

where -L is a second order partial differential operator of the elliptic type, acting on functions defined

on the open, bounded and connected set fL Using a method of lines (MOL) approach, equation (1) is first

discretized with respect to space variables, resulting in the system of ordinary differential equations

dw(O
= -Aw(t) + r, (2)dt

w(O) = wo.

For the remainder of our discussion, we will assume A to be time-independent. In this situation the solution

is explicitly given by

w(t) = A-It + e-tA(w0-- A-lr) (3)

If we let tb(t) - w(t) - A-lr, and accordingly, _o -- wo - A-lr, then (3) is equivalent to the following

expression:

_,(t) = e-_A60.

Note that when r = 0, w(t) is the same as tb(t). An ideal one-step method would consist of a scheme of the
form

¢(t + _) = e-_A,_(t) (4)

in which _ constitutes the time step.

The basic operation in the above formula is the computation of the exponential of a given matrix

times a vector. If we were able to perform this basic operation with high accuracy, we would have what

is sometimes called a nonlinear one-step method [24], because it involves a nonlinear operation with the

matrix A. We should stress that there is no need to actually evaluate the matrix exponential exp(-/_A), but

only its product with a given vector. This brings to mind an analogous situation for linear systems in which

it is preferable to solve Az = b than to compute A -1 and then multiply the solution by b.

We point out that we follow an approach common in the literature [2, 39], putting the emphasis on

the semi-discrete problem (2). As a result, our discussion of stability is purely from an Ordinary Differential

Equation point of view and is not concerned with the effect of space discretization errors and convergence.

We establish conditions under which our methods, applied to the stiff system of ODEs (2), satisfy certain

criteria of stability which, in ram, is an important step toward any investigations of convergence. (See also

[4, 37].)

The Krylov subspace method presented here was introduced in [12] for general nonsymmetric ma-

trices. However, similar ideas have been used previously in various ways in different applications for

symmetric or skew-symmetric matrices. For example, we would like to mention the use of this basic idea

in Park and Light [31] following the work by Nauts and Wyatt [27]. The idea of exploiting the Lanczos

algorithm to evaluate terms of the exponential of Hamiltonian operators seems to have been first used in

chemical physics by Nauts and Wyatt in the context of the Recursive-Residue-Generation method [26]. More

recently, Friesner et al. [8] have demonstrated that these techniques can be extended to solving nonlinear

stiff differential equations. The approach developed in this paper is related to the work of Nour-Omid [29],

in which systems of ODEs are solved by first projecting into Krylov subspaces and then solving reduced

tridiagonal systems of ODEs: the approach of Tal-Ezer and Kosloff [43]; and also the work of Tal-Ezer



[42] and Schaefer [38] on polynomial methods based on Chebyshev expansions. The idea of evaluating

arbitrary functions of a Hermitian matrix with the use of the Lanczos algorithm has also been mentioned by

van der Vorst [48]. The use of preconditioning for extending the stability interval of explicit methods, thus

bringing them closer to fully implicit methods, has been discussed in [47, 34]. Although our method works

from a subspace, it does not suffer from some of the aspects of partitioning methods (see, for example,

[52]). Partitioning methods rely on explicitly separating and treating differently the stiff and nonstiffparts.

However, it is usually impractical to confine stiffness to a subsystem [3]. The Krylov method, on the other

hand, relies on the nice convergence property of Krylov approximations to essentially reach a similar goal in

an implicit manner [36]. The outermost eigenvalues, including the largest ones, will be well approximated

by the K_lov subspace, so that the Krylov approximation to the matrix exponential will be accurate in

those eigenvalues, thus accommodating stiffness. We also note that there have been several recent efforts to

design agorithms for the solution of time-dependent problems, some of which may be particularly suited to

parallel processing; see [45, 17, 19, 20, 40] and [46] for a review.

The structure of our paper is as follows. In Section 2 we formulate the Krylov subspace approximation

algorithm and prove some a priori error bounds. In Section 3 we present a method for the accurate

approximation of the exponential of the Hessenberg matrix produced in the course of the Amoldi or

Lanczos algorithm. In Section 4 we consider problems with time-dependent forcing and introduce two

approaches to handle the integration of the non-homogeneous term. We then proceed in Section 5 with a

stability analysis of each approach in the context of the quadrature techniques used, leading to Theorem 5.1.

In Section 6 we present numerical experiments for problems of varying difficulty, and finally, in Section 7,

our concluding remarks.

2 Polynomial approximation and the use of Krylov subspaces

In this section we consider using polynomial approximation to (4), that is, we seek an approximation of the
form:

e-Av _-, prn-l(A)v, (5)

where Pm-l is a polynomial of degree m - 1. There are several ways in which polynomial approximations

can be found. The simplest technique is to attempt to minimize some norm of the error e -z - p,_-I (z) on a

continuum in the complex plane that encloses the spectrum of A. For example, Chebyshev approximation

can be used, but one disadvantage is that it requires some approximation to the spectrum of A. In this

paper we consider only approaches that do not require any information on the specmun of A. This will be

considered in Section 2.1. A theoretical analysis will then follow in Section 2.2.

2.1 The Krylov subs'pace approximation

The approximation (5) to e-A'o is to be taken from the gaylov subspace

K,,,= span{v,Av, ...,A"_-Iv}.

InordertomarfipulamvectorsinKm,itisconvementtogencrateanorthononnalbasisVm = [vl,t2,_,...,vm].

We willtakeasinitialvectorvl = ,_/[],d[2andgeneratethebasisVm withtlmwell-known Amoldi algorithm,

describedbelow.
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Algorithm: Arnoldi

1. Initialize:

Compute Vl := v/llvll2.
2.1terate: Do j = 1,2, ...,m

1. Compute w := Avj

2. Doi= 1,2,...,j

(a) Compute hij := (w, vi)

Co) Compute w := w -- hi,.ivi

3. Computehi+i,¢ - Ilwll2andvj+t -
By construction the above algorithm produces an orthononnai basis Vm = [vl, v2,. •., v,,_], of the

Krylov subspace Kin. If we denote the m × m upper Hessenberg matrix consisting of the coefficients hij

computed from the algorithm by H,,,, we have the relation

AVm = V,,,H,,, + h,,_+l,_v,,,+le T. (6)

For the remainder of this discussion, for any given k. et will denote the k th unit vector belonging to R m.

From the orthogonality of the columns of V,n we get that H,,, = V_AVm. Therefore Hm represents the

projection of the linear transformation A to the subspace Kin, with respect to the basis Vm.

Since V,,, is orthonormal, the vector Zopt = V,,,V_e-Av is the projection of e-Av on K=, that is,

it is the closest approximation to exp(-A)v from K,n. Since for/_ - IIv[12,we can write v =/_vl and

vl = V,,,el, it follows that:

=

We can thus write the optimal solution as x_t -- Vmvo_t where Vo),t -/_VTe-AVmel • Unfortunately, Vol,t

is not practically computable, since it still involves e -A. We can approximate VTe-AV,,, by e -H=, leading

to the approximation l/opt _ _ e-n" el and

e-av _ BV, ne-n=et. (7)

From the practical point of view there remains the issue of efficiently computing the vector e -H" el

which we address in Section 3.

The approximation (7) is central to our method, and its effectiveness is discussed throughout the

remainder of the paper. The next section is devoted to providing the theoretical justification.

We also note that when A is symmetric, Amoldi's algorithm simplifies into the Lanczos process,

which entails a three-term recurrence. This is a result of the fact that the matrix Hm = V_AVm must be

symmetric and therefore tridiagonal symmetric, and so all hid = 0 for i = 1,2, ..,j - 2. However, the

resulting vectors, which are in theory otthogonal to each other, tend to lose their orthogonality rapidly.

2.2 A priori error bounds and general theory

The next question that arises concerns the quality of the Krylov subspace approximation defined in Section
2.1. A first observation is that the above approximation is exact for m = n, because in this situation

v=+t = 0 and (6) becomes Air= = V,,,FIm, where V= is an n x n orthogonal matrix. In fact, similarly to

the conjugate gradient method and the Amoldi process, the approximation will be exact for m whenever m

is larger or equal to the degree of the minimal polynomial of Vl with respect to A. As for these algorithms,

we need to investigate what happens when m is much smaller than this degree.
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In the sequel we will need to use the concept of the logarithmic norm of a matrix. Let B be a given

matrix. The logarithmic norm p(.) is defined by:

#(B) =-_ lim III + hB[[- 1
h--,0+ h

Note that # is associated with a particular norm. Unless it is otherwise specified, we assume that the reference

norm is the usual 2-norm. Then the logarithmic norm p(B) is equal to the maximum eigenvalue of the

symmetric part of B, that is,

#(B) = .,_na,x(B 2BT).

The function/_ satisfies many norm-like properties, but it can also take negative values. We refer to

[5, 4] for a description of its properties. It can be shown in particular that

Ilemll _<e.tm'. (8)

We assume throughout that A is a real matrix. We now state the main theorem of this section.

Theorem 2.1 Let A be any matrix and let p =

approximation (7) is such that

where

IIAII2,/_ = [Ivll2and ,7 =- I_(-A). Then the error or me

Ile-av-/_V,_e-n'_elli2 < 2_p_¢(,7) _< 2_-_!max(1,en )

_'_)-_ :- k_--o_ "

(9)

The proof of the theorem is established in Appendix B.

To see what one can gain in using the logarithmic norm instead of a standard spectral norm, compare

Theorem 2.1 with the bound proposed earlier in [12]:

For the sake of illustration let

lie-A+- _V_e-n'e_ll2 _<2fl_.

B
0.50130 -0.0938 0.0000 )

= -0.4063 05000 -0.13938

0.0000 -0.4063 0.5000

(10)

and let A = I ® B + B ® I, where ® is the symbol for the Kmnecker product, and I the identity

matrix. Such an A arises from the diseretization of uzx + u_ + _(ux + u_), when _ = 10.0. In that

ease/_(-A) = -0.2929, whereas IIAII2= 1.7235. When m = 7, the bound for the remainder I obtained

from Theorem 2.1 is 0.009, whereas the estimate from (113) is 0.0502, and the actual remainder norm is

11,'7(-A)112= 0.0066. Hence the use of the logarithmic norm results in an overshoot factor of only 1.3, in

comparison to 7.5 when using the spectral norm. In general, the advantage of using the logarithmic norm

D

1. Note that for simplieily we are here coDeerned oldy with the remailider oflhe Taylor f,elies for • -A, arid hence only with the

IIr,,(A)ll2 partof the bound.
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follows from the inequality []A[] >_ #(-A) which is among the properties of #(.) (cf. [5]). One can construct

examples however, for which the bounds from using #(-A) are as loose as those obtained from using IIA[I
(cf. [4]). Also, asymptotically the rates of convergence as estimated by the bounds (10) and (9) are both of

the form p/(m!) Urn. The following corollary follows trivially from Theorem 2.1.

Corollary 2.1 //'the eigcnvalues of tbe symmetric part of the matrix A arc non-negative, then:

pyrt

[[e-Av - flV,_e-Hme1112 S 2fl_-T.w•

Hence the bound of Corollary 2.1 holds for many important classes of matrices including positive definite

matrices and normal matrices with eigenvalues in the positive half-plane.
We note that when A is normal, the bound of Corollary 2.1 can be derived without invoking logarithmic

norms because we can write A = OAQ H where A is the diagonal matrix of eigenvalues of A and O is

unitary. Then

IIr, (A)ll2 -II (-A)kll2 -II (-A)kll2 •
k---m k=m £"

From the assumption on A, _e [A] > 0. Applying component-wise a result of E. Landau [22], (cf. [33, p.

35, problem 151]), the remainder can be bounded by its first term:

II-A"II2 IIA"II2
IIr' (A)ll2 -< m! m!

The bound of Corollary 2.1 follows after using a similar treatment for Hm and combining the results.

When we know that A is symmetric positive defmite, an even better bound can be obtained by

applying the previous theory m A - _I, where _ >_ Amia(A) (the minimum eigenvalue of A). We refer to

[ 11] for the proof.

Theorem 2.2 L_t A be a symmetric positive definite matrix and let p = [IA[I2 and/_ = ]lvl[2. Then the

error of the approximation (7) is such that

pm
Ile-Av - _V, ne-H,,,elll2 </32__1m[ , (11)

These theorems show convergence of the approximation (7). They can also serve as a guide to

choosing the step size in a time-stepping procazlure. Indeed, if we were m replace A by the scaled matrix

7-A, then the Krylov subspace will remain the same; that is, Vm will not change, and H,n will be scaled m

vH,_. As a result, for arbitrary 7-one can use the approximation

e-_Av _ )_Vme-_'H'nel , (12)

and the bound (9) becomes

II: A,: - 112-< 2/_(7"p)'_(#(-l"A)). (13)

The consequence of (13) is that by reducing the step-size one can always make the scheme accurate enough,

without changing the dimension m. We note that these bounds are most useful when m is much larger than

what is usually used by standard explicit methods. Indeed, in our experiments, we have used large values of

m to our advantage. We refer the reader m [35] for additional results on error bounds for this method.



3 Practical computation of exp(-H,_)el

We now address the problem of evaluating y = e-He1, where H is the Hessenberg or tridiagonal matrix

produced by Amoldi's method or the Lanczos method. We drop the subscript m for convenience. Although

H is a small matrix, the cost of computing y can easily become non-negligible. For example, when H is

tridiagonal symmetric, the simplest technique for computing _/is based on the QR algorithm. However, this

is rather expensive. We would thus like to use approximations which have high accuracy, possess desirable

stability properties, and allow fast evaluation. The method we recommend is to use rational approximation

to the exponential, evaluated by partial fraction expansion. This technique has been discussed in the context

of implicit methods by the authors [12, 9], and we would Hke to take advantage of it in the present context.

The (serial) complexity of the QR algorithm is O(m 3) for Hessenberg matrices and O(m 2) for tridiagonal

matrices, compared with a cost of O(rn 2) for Hessenberg and O(m) for tridiagonal matrices when the

rational approximation method is used. In addition, parallelism can be exploited in this approach.

The rational approximation to the exponential has the form

(14)

where p_ and q_ are polynomials of degrees vl and _ respectively.

An approximation of this type, referred to as a Pad_ approximation, is determined by matching

the Taylor series expansion of the left-hand-side and right-hand-side of (14) at the origin. Since Pad_

approximations are local, they are very accurate near the origin but may be inaccurate far away from it.

Other schemes have been developed [49, 2, 16] to overcome this difficulty. For typical parabolic problems

that involve a second order partial differential operator -L that is self-adjoint elliptic, the eigenvalues of

L are located in the interval [0, +oo), and it is therefore natural to seek the Chebyshev (uniform) rational

approximation to the function e-: which minimizes the maximum error on the interval [0, +oo). To unify

the Pad_ and uniform approximation approaches, we restrict ourselves to "diagonal" approximations of the

form (_,, _), that is, in which the numerator has the same degree v as the denominator. We note however that

alternative strategies (e.g., (_, - 1, v)) will frequently work better for Pad6 approximations, without altering

the principle of the method. Note that the stability properties of the aforementioned rational approximations

are discussed extensively in the literature [51, 6, 18].

A comparison between the Pad_ approximation and the Chebyshev rational approximation reveals the

vast superiority of the latter in the context of the Krylov-based methods presented in this paper, at least for

symmetric positive matrices H, and relatively large values of rn. To see why this is so, we note that the idea

of the method presented in this paper is to allow the use of large time steps by utilizing Krylov subspaces of

relatively high order. However, for our method to be successful, the ability to use a large time step/_ must also

carry over to the computation of exp(-tt_)el. We mentioned earlier that the Pad_ approximations provide

good approximation only near the origin. Using the Chebyshev rational approximation to the function e -:

over the interval [0, +oo) [1, 49], it becomes possible to utilize time steps as large as our Krylov-based
method allows.

For example in the diagonal Chebyshev rational approximation, the infinity norm of the error over the

interval [0, + oo ) is of the order of 10-10 as soon as v reaches 10. For each additional degree the improvement

is of the order of 9.289025... [1]. What this means is that for all practical purposes e -z can be replaced by a

rational function of relatively small degree. When H is nonsymmetric and its eigenvalues are complex, then

the rational function is no longer guaranteed to be an accurate approximation to the exponential.Althougha

rigorous analysis is lacking, we experimentally verified that for the examples we treated, the approximation

still remained remarkably accurate when the eigenvalues were near the positive real axis. Although little

is known concerning rational uniform approximation in general regions of the complex plane, a promising



alternative is to use asymptotically optimal methods based on Faber transformations in the complex plane

[7]. We also point out that there exist other techniques for approximating matrix exponentials by rational

functions of A; see, for example, [28, 16]. The reslricted Pad_ approximations of [28] avoid complex

arithmetic at the price of a reduced order of approximation, and reduced levels of parallelism caused by the

occurrence of multiple poles.

For compactness of notation in the diagonal approximations we will write simply Rv from now on

for the (v, v) rational approximation to e-z. Then, in order to evaluate the corresponding approximation to

e-Hel, we need to evaluate the vector _, where

fl = pu(H)q_(H)-lel = qu(H)-lpv(H)el. (15)

It has been proposed in several contexts that an efficient method for computing some rational matrix

functions is to resort to their partial fraction expansions [9, 12, 10, 21, 23, 30, 41]. The approach is possible

since it can be proved analytically that the diagonal Pad6 approximation to e-* has distinct poles [53].

Explicit calculations indicate that this seems to be also true for the uniform approximation. In particular we
write

V

oti

Re(z) = so + __, z - ,Xi
i----1

where

,re pv(,X,)
oto= and oti= i=1,2, .. v

inwhich _r,,,_¢,,aretheleadingcoefficientsofthepolynomialsp,,and q_respectively.

With thisexpansionthealgorithmforcomputing(15)becomes:

Algorithm:

1. For i = 1,2,..., v solve (H - ,_iI)yi = el.

2. Compute _ = aoq + _=1 o_iyi.

The motivation in [9] for using the above scheme was parallelism. The first step in the above algorithm

is entirely parallel since the linear systems (H - All)y; = el can be solved independently from one another.

The partial solutions are then combined in the second step. The matrices arising in [9] are large and sparse,

unlike those of the present situation. However, parallel implementation of the above algorithm can be

beneficial for small Hessenberg matrices as well. For example, in a parallel implementation of the Krylov

scheme, the "Amdahl effect" may cause severe reduction in efficiency unless all stages of the computation

were sufficiently parallelized.

We should also point out that even on a scalar machine, the above algorithm represents the best way

of computing _. It requires fewer operations than a straightforward use of the expression (15). It is also far

simpler to implement. The poles Ai and partial fraction coefficients oi of R,,(z) are computed once and for

all and coded in a subroutine or tabulated. These are shown in Appendix A for u = 10 and v = 14 for the

case of Chebyshev rational approximation.

4 The case of a time-dependent forcing term

In the previous sections we made the restrictive assumption that the function r in the fight-hand side is

constant with respect to time. In this section we address the more general case where r is time dependent.

In other words, we now consider the system of ODEs of the form

9



dw(t) = -Aw(O +
dt

As is well known, the solution of this system is of the form

w(t) = e-tAwo+ fo te('-0Ar(s)ds.

Proceeding as in Section 1, we now express w(t + 6) as

( /'÷' )= e -6A w(t)+ e-(t-')Ar(s)ds
Jt

t+5= e-6Aw(t) 4- e-(6+t-')Ar(s)ds
Jt

Z-- e-_Aw(t) + e-(6-')Ar(t + r)dr.

(16)

(17)

In one way or another, the use of the above expression as the basis for a time-stepping prDc_ure will require

numerical integration. Note, however, that under the assumption that we can evaluate functions of the form

e-ASv accurately, we have transformed the initial problem into that of evaluating integrals. Simple though

this statement may seem, it means that the concerns about stability disappear as soon as we consider that

we are using accurate approximations m the exponential. The reason for this is that the variable w does not

appear in the integrand. The issue of stability will be examined in detail in Section 5.

The next question we would like to address is how to evaluate the integral in (17); for this we consider

two distinct approaches.

4.1 The first approach

To begin with, consider a general quadrature formula of the form,

6 e_(6_r)Ar( t + v
fro v)dT _ E pje-(6-rJ)Ar(t + rj) (18)

j----l

where the rj's are the quadrature nodes in the interval [13,6]. One of the simplest rules is the trapezoidal rule

on the whole interval [0, 6] which leads to

w(t + 6) = e-SAw(t) Jr e-6Ar(t) + _r(t + 6)

=

The above formula is attractive because it requires only one exponential evaluation. On the other

hand it may be too inaccurate to be of any practical value since it means that we may have to reduce the step

size 6 drastically in order to get a good approximation to the integrals. The next alternative is to use a higher

order formula, that is, a larger p in (18). For example we tried a Simpson formula instead of trapezoidal

role. The improvements are noticeable, but we have to pay the price of an additional exponential evaluation

at the mid-point t + 6/2.

10



The recommended alternative is based again on a judicious exploitation of Krylov subspaces. In the

formula (18) we note that each term e-(6-*j)Ar(t + 7"j) need not be evaluated exactly. Observe that in the

ideal situation where r(s) is constant, equal to r, in the interval [t, t + 5], then formula (12) shows that we
can evaluate e-(6-*)Ar for all r from the Krylov subspace generated for r = 0 (for example), via

e-(6-*)Ar ,

where V,,_ and H= correspond to the Krylov subspace KIn(A, r). In the more general case where r varies

in the interval [t, t + 5] we can use a projection formula of the form

e-tt-')A (t + 0 + (19)

The combination of the quadrature formula (18) and formula (19) has been tested and was found

to be remarkably accurate. Our experiment in Section 6.4 shows an example of a rapidly varying forcing

term r(t), where the method can perform adequately with only one additional exponential evaluation (at the

midpoint). We note, however, that for some highly oscillatory forcing terms, a (preferably adaptive) scheme

involving additional exponential evaluations or a reduction of the time step 6 may be needed.

4.2 The second approach

In the above approach we need to compute two Krylov subspaces: one associated with the current iterate

w(t) and the other associated with r(t). We would like to show that we can reduce the computation to only

one Krylov subspace. The resulting algorithm has different numerical properties from the one presented in
Section 4.1.

The main idea is to use the identity:

/0 /0'6 e-'ads I A e-(t-_)Adr,e -6A = I- A = -

which is obtained readily by integration. This is then substituted in the first term of the right-hand side of

the equation

w(t + 5) = e-6Aw(t) + [6 e-(6-*)Ar( t + r)dr (20)
do

to obtain

w(t + 5) = to(t) + fo6e-(6-')A[r(t + r) - Aw(t)]dr. (21)

Note the important fact that the term e-6Aw(Q, which was in the previously used formula (20),

has been removed at the slight expense of modifying the function r(t + ,') in the interval r £ (0, _5).

The modification Consists of subtracting a vector that is constant in the interval of integration. In terms

of computations, this modification requires one matrix-by-vector multiplication, certainly an inexpensive

overhead, compared with that of applying the propagation operator to a vector. There is one fundamental

difference between the scheme (20) used in the first approach and the scheme (21) of the second approach:

the unknown function to now figures in the integrand. This may mean completely different numerical

properties and, as is shown in Section 5, the loss of the unconditional stability.

11



5 Stability

In this section we investigate the linear stability of the Krylov time-stepping methods when used for the

solution of the semi-discrete system (2). As noted in the introduction, this discussion will not take into

account the interaction between space and time discretizations.

We first consider the stability properties of the approximate evolution operator in (7). If A is positive

real 2 i.e., if its symmetric part S = _(A + A T) is positive defirdte, then, so is the matrix H,_, [32]. Moreover

the eigenvalues of A and H,,, have positive real parts and the smallest eigenvalue Amin(S) of the symmetric

part of A is a lower bound for the eigenvalues of S,n = ½(H,_ + H_)/2, because S,n = V_SV,,_. In

terms of logarithmic norms, p(-H=) <_ p(-A) <_ 0; see also Lemma B.3 in Appendix A. Since Vm has

orthonormal columns, the approximate evolution operator satisfies

IIV=e-n=_ll2 _< lie-n'6112.

As a result, we can state that in the case where exp(-Hm_) is evaluated exactly then

[lVme-H"6l[2 _ [le-H'6ll2

et4 -H=6) _< et4 "A6)

_< 1.

If, on the other hand, exp(- H,,_) is not computed exactly, then stability will depend upon the method

of evaluation used. In particular, let exp(- H,,, $) be evaluated using a diagonal (v, v) Pad_ approximation R_,.

Diagonal Pad_ approximations are A-acceptable. From above, _z HIImz >_ 0 for any z and p(-H,,_ ) _< 0.
We then obtain

IIV,,R,,(H=6)II2 _< IIR_(H,,,$)]I2 _< 1

from a result of yon Neumann which states that, when the field of values of a matrix B is contained

in 7/, the nov_negative half of the complex plane, and if a rational function f maps 7-/in the unit disk,

then [[f(B)[[2 <_ 1; see also [44] and [13, Theorem 4]. A similar conclusion holds for the subdiagonal

(v - 1, u) approximation. When a diagonal Cbebyshev approximation is used then this no longer holds as

these approximations may amplify small eigenvalues of Hm near zero. We can only state that for symmetric

positive definite matrices and large enough values of v, and 6Am_(Hm) bounded away from zero then

IIV_R_,(It=6)II2 <_ 1.

For the remainder of this section it will be assumed that the exponential terms exp(-Hm_) are

computed exactly.

$.1 Stability behavior of the first approach

Consider a general solution scheme for (16) of the form

Wn+l = e-A6wn + 8n (22)

where s,, is some approximation to the integral (18). The above scheme is a one-step technique where

is the time step. If we assume that the exponential term is exactly evaluated, then the above methods are

referred to as the nonlinear multistep methods by Lee [24]. It was remarked in [25] that these methods are

stable. More generally, let us assume that the error incurred in the evaluation of the term e-A6wn in (22) is

el,n, while the error in the evaluation of the integral tema ,,_ is e2,n. Then the recurrence (22) is replaced by

wr,+l = e-ASw,_ + et,, + *_ + e2,, (23)

2. A matrix B is positive real if zTBz > 0 for any real vector z # 0 [50].
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in which a_, is the exact integral (18). In this situation, the total error at each step is of the form

en+l ------t0(tn+l) -- Wn+l "- e-A6en "]" el,n + e2,n. (24)

This shows that if A has no eigenvalues in the negative half-plane of the complex domain, then the above

procedure is stable. Note that this is independent of the procedure used to compute the approximation to

the matrix exponential by vector product. If one uses the Krylov approximation to the exponential, then we

essentially have an explicit procedure that is stable. Although this may seem like a contradiction, notice that

we have made very special assumptions. The important point is that we are essentially considering accurate

one-step methods. In the extreme case where r is constant, the solution can be evaluated in just one step at

any point in time provided the exponential is accurately approximated.

5.2 Stability behavior of the second approach

As mentioned earlier the alternative approach described in Section 4.2 is attractive from the point of view

of efficiency but may have poor numerical properties. We will outline in this section a stability analysis of
this class of methods in an effort to determine how to select the quadrature formulas that are most likely to

lead to robust procedures.

We consider the simple time stepping scheme derived by applying a quadrature formula to the equation

(21)
k

Wn+l = Wn + $Epie-(6-r')a[r(t + ri) - Aw,] (25)
i=1

where ri, i = 1, ..., k are the quadrature nodes in the interval [0, 6] and Pi their corresponding weights. Once

more, we assume that the exponential term in (25) is exactly calculated. The above equation can be recast

in the form:

wn+t = I-6 wn + gn
i=l /

in which g,_ is a term that does not contain the variable wn. The stability of the above recurrence is easily

studied by replacing the matrix A by a generic eigenvalue A. This leads to the scalar recurrence:

Wn+! = 1 - 6Epie-(6-_i)XA wn + gn.
i=|

We need to determine under which conditions the modulus of the evolution operator

k

i=l

does not exceed one.

Before proceeding with the more complicated general analysis, we first consider in detail two basic

quadrature formulas: the trapezoidal rule and the mid-point rule. For the trapezoidal nile we have

+

We restrict ourselves to the case where A is real and positive. We need to have

-1 _<a(a) = l - + 1]___1

13



or, since ",hesecond inequality is trivially satisfied,

6A[e -_6 + 1] _< 4. (26)

Since e -_6 _< 1, a sufficient condition for the above inequality to hold is that

6A < 2,

which is just as restrictive as an ordinary explicit method. Note that a necessary condition for (26) to be true

is that 6A < 4.

For the mid-point rule, we have

a(,X) = 1 - 6Ae -_6/2.

Considering again real and positive A, we will seek conditions under which we have

- 1 _<a(A) = 1 --/_Ae -'x6/2 _< 1. (27)

The second inequality is always satisfied and from the first we get the condition

A6e -;_612 <_ 2.

As is easily seen through differentiation, the maximum with respect to AS of the left-hand sidc is reached

for A5 = 2, and its value is 2e -1 which is less than 2. Therefore, inequality (27) is unconditionally satisfied.

This fundamental difference between the tra_zoidal rule and the mid-point rule underscores the change of

behavior in the second approach depending on the quadrature rule used. We will extend this analysis shortly.

The above development for the mid-point rule was restricted to A being on the positive _ line. Let

us consider this case in more detail for A complex. Setting u = A6 = a - i/3, we have

= 1 -- ue -u/2

-- 1 -- (o-- i_)e -(0-i0)/2

= l -- ae-a/2(cos(/3/2) +/sin(]_/2)) ÷ i/_e-a/2(COS(_/2) + isin(/_/2))

= 1 - e -a/2 ((ae + _8) + i(as - _c))

where we have set c = cos(/3/2) and ,s = sin(/_/2). The modulus of a(A) is easily found to satisfy

la(A)l 2 = 1 + e-a(o 2 d- ]_2) _ 2e-0/2(o c + _8)

-- 1 + e-° (t, 12- 2e0/2(0c "t- _s)).

This leads to the region of stability, symmetric about the positive real axis, defined by

(02 + ]_2) _< 2ea/2 (ocos(]_/2) + _sin(/_/2)). (28)

Figure 1 shows shaded, the part of the complex domain [0,50] x [-25,25] which corresponds to

values of u satisfying (28).

If we concentrate on the shaded region enveloping the positive real axis, we note that for large

a, the limits of the curve bounding that section of the stability region are/_ = +a-. This is because for

_r < I_l -< 27r, the coefficient cos(l_/2) becomes negative, making (28) impossible to satisfy for large 0, U3

being fixed). On the other hand, for fixed/_ such that -< wehavecos( /2) _ 0 andtherewm always
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Figure 1: Stability region for the mid-point rule (cf. (28)).

be an c_largeenough thatwillsatisfy(28).Inaddition,allthelines/5= +4k_r,k = 0,1,2,..willbelong

partlytotheregion:specificallyallthosepointsintheselineswith_ largerthanthe(only)positivemot of

z(2e_/2- x) =/52 areacceptablepoints.As shown inFigureI,aroundeachoftheselinesthereisawhole

subregionof stability,whereasinbetween,thereareregionsaroundthelines/5= +2(2/c+ 1)_rwhich are

unstable.

We now go back tostudyingthegeneralscheme and extendtheabove analysistothegeneralcase.

Again we restrictourselvestothecasewhere A isrealpositive.Thisconditionwillbe replacedby aweaker

conditionlater.However we do not necessarilyassume thattheweightsarepositive.Then we examine the

conditionsunderwhich

k

-I _<a(A) = I - __p+e-(_-n)_A _<I
/--I

or

0 < 6Ae-_A _"_l_ien;__<2. (29)
i=I

Consider now any quadrature rule that satisfies tim following two conditions:

1. Positivity condition:
k

/,_e _r+ > O, for A > O.
i=1

(30)
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2. Undervaluation condition:

6 k

r,k = fo e_°as - _-'Pie"_ >-O, for ,_ _>0. (31)
i=l

The purpose of the positivity condition is to restrict the quadrature rule so that it yields nonnegative
approximations to the integral of the function e_'° on any positive interval. It is verified whenever the

quadrature weights are normegative. In particular

Lemma 5.1 The positivity condition is satisaed for any Gaussian quadrature formula.

Proof The fact that the weights are positive for Gaussian quadrature is well known; see, e.g. [15, p. 328].
D

For the undervaluation condition, we can prove the following lemma.

Lemma 5.2

1. Any oomposite or simple open Newton-Cotes formula satisfies the undervaluation condition (3 I).

2. Any k-polnt Gaussian quadratme rule satisfies the undervaluation condition (31).

Proof This is a consequence of the well-known error formulas for open Newton-Cotes rules [15, p.

313-314], and for Gaussian quadrature rules [15, p. 330], and the fact that all the derivatives of the function

e_" are positive in the interval [(3, 6]. o

Going back to the condition (29), we first observe under the positivity condition (30) the left-hand

inequality is trivially satisfied. Mow, over, under the undervaluation condition we have

and as a result

k [6 e ;_5- I

6 E Izier_ <- Jo eX*ds =
i = l '_

0<6)_e -6x_pie r_x <Ae -6_ ex -1 =l-e -x6 <2.
i=l

We have therefore proved the following result.

(32)

Theorem $.1 Consider the time-stepping ptocedum (25) based on the second approach (Section 4.2) using

a quadrature formula satisfying the positivity condition (30) and the undervaluation condition (31). Then

the region o£ stability o£ this scheme contains the positive real line.

Note that schemes with such properties are said to be Ao-stable in the literature [39]. In many of our

numerical experiments, we have observed this difference in stability behavior between schemes that satisfy

the conditions of the theorem and those that don't. In many instances the composite closed-type Newton-

Cotes formulas tended to diverge for a small number of subintervals. On the other hand we never noticed

any stability difficulties with the open Newton-Cotes formulas or with the Gauss-Oaebyshev quadrature.

As a general recommendation, it is advisable to use open Newton-Cotes formulas instead of closed

formulas. Although these formulas satisfy the underval':ation condition according to the previous lemma,

it is not known whether all of them satisfy the positivity condition (30). We do know that some of the low

order, open Newton-Cotes rules O-point, 4-point, and 6-point) do satisfy this condition since their weights

are positive.
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Gaussian rules are extremely attractive not only because of their stability properties but because of

their potential to drastically reduce the number of function evaluations needed to produce a certain level of

accuracy. There is still much work to be done to determine which of the qu_rature formulas will yield the
best results.

As is suggested by the analysis of the mid-point rule for complex _, we expect the full analysis of the

stability of the second approach to be very complicated for such cases.

6 Numerical experiments

6.1 A symmetric model problem

Our first test problem is issued from the semi-discretization of the heat equation

ut = u_x+%v+uzz, x,y, zE (0,1)

u = 0 on the boundary

using 17 grid points in each direction, yielding a matrix of size N = 153 = 3375. The initial conditions are
chosen after space discretization, in such a way that the solution is known for all t. More precisely,

" 1 ii'x ""' kk'lr

u(O, zi, yj, zk ) = __, i, + j, + k, sin -_-_ sin _ sin _.
i'd,,k,=l + 1 n + 1

The above expression is simply an explicit linear combination of the eigenvectors of the discretized

operator. In order to separate the influence of spatial discretizafion errors and emphasize the time evolution

approximation, for the experiments in this section we consider the solution of the semi-discrete problem

ut = -An to be the exact solution.
The purpose of the first test is to illustrate one of the main motivations for this paper, namely the

effectiveness of using large dimensional Krylov subspaceswhenever possible. As shown in [12, 9], similar

conclusions also hold for methods based on rad0_n_ approximations to the exponential.
Assume that we want to inte_ the above equation between t=0 and t=0.1, and achieve an error-

norm at t = 0.1 which is less than e = 10-1°. Here by error-norm we mean the 2-norm of the absolute

error.

We can vary both the degree m and the time-step 6. Normally we would prefer to first choose a

degree m and then try to determine the maximum 6 allowed to achieve the desirable error level. However,

for convenience, we proceed in the opposite way: we first select a step-size _ and then determine the

minimum m that is needed to achieve the desirable error level. This experiment was performed on a Cray

Y-MP. What is shown in Table 1 are the various time steps chosen (column 1) and the minimum needed
values of m (column 2) to achieve an error norm less than e 10-l° at t=0.1. We show in the third

column the total number of matrix-by-vector multiplications required to complete the integration. The times

required to complete the integration on a tray Y-MP are shown in column 4. We also timed separately the

evaluations of e-6U-e] and found these times to be negligible with respect to the rest of the computation.

The last column of the table shows the type of rational approximation used when evaluating e -6n" el, with

C(v, v) representing the diagonal (v, v) approximation and P(v, v) representing the diagonal (u, v) Pad<_

approximation.
==

Another point is that the matrix is symmetricl so we have used a Lanczos algorithm to generate the

v_8 instead of the full Amoldi algorithm. No reorthogonalizadon of any sort was performed. The matrix

consists of 7 diagonals, so the matrix by vector products are performed by diagonals resulting in a very
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0.5000E-04

0.1000E-03

0.5000E-03

0.1000E-02

0.5000E-02

0.1000E-01

0.2000E-01

0.3000E-O1

0.4000E-01

0.5000E-01

0.1000E+00

m

6

7

10

12

20

26

34

39

44

49

71

M-vet's Tune (see) ][Error[12 Method

120O6

7OO7

2010

1200

4OO

26O

170

156

132

98

71

0.8173E+01

0.4793E+01

0.1342E+01

0.7983E+00

0.2672E+00

0.1740E+00

0.1080E+00

0.9876E-01

0.8030E-01

0.5932E-01

0.4186E-01

0.1957E-11

0.3308E-10

0.1800E-10

0.226OE-10

0.5271E-10

0.7247E-10

0.3236E-10

0.6362E-10

0.4122E-10

0.5791E-10

0.9993E-10

1'(22)
1"(22)
P(4,4)

P(4,4)

P(S,8)
P(S,8)
C(14,14)

C(14,14)

C(14,14)

C(14,14)

C(14,14)

Table 1: Performance of the polynomial scheme with varying accuracy on the Cray Y-ME

effective use of the vector capabilities of the Cray architecture. Based on the time for the last entry of the

table, we have estimated that the average Mflops rate reached, excluding the calculation of e-6H'nel, was

around 220. This is achieved with little code optimization.

Observe that the total number of matrix by vector products decreases rapidly as m increases. The

ratio between the lowest degree m = 6 and the highest degree m = 71 is 169. The corresponding ratio

between the two times is roughly 200. The case m = 71 can achieve the desired accuracy in just one step,

that is, with 6 = 0.1. On the other hand for m = 6 a time-step of 6 = 5 x 10 -5 must be taken resulting

in a total of 2000 steps. We should point out that we are restricting ourselves to a constant time-step, but

more efficient variable time stepping procedures are likely to reduce the total number of steps needed. From

the result of Theorem 2.1 and Theorem 2.2 these observations come with no surprise. In effect, increasing

the dimension of the Krylov subspace will increase the accuracy in such a way that a much larger p (i.e., a

larger 6) can quickly be afforded.

6.2 A nonsymmetric problem with time-varying forcing term

In this section we consider the more difficult problem

0u(z, y, z, t)
Ou(x, y, z, t) = Au(x, y, z, t) + 7 + r(x, y, z, t), (33)

Ot Oz

where A stands for the three-dimensional Laplacian operator with homogeneous boundary conditions and

initial conditions:

y, 1).

The function r is defined in such a way that the exact solution oftbe above partial differential equation

is given by

= 1)y(y- 1) (34)
l+t

This yields

= z(x- 1)y(y- 1)z(z- 1) + 7(2x- l)y(y- 1)z(z- 1) .....
(1 +t) 2 1 +t

2[y(y- 1)z(z- 1)+ x(x- 1)z(z- 1)+ x(z- 1)y(y- 1)]

l+t

18



6 m Npts

0.2000E+00 40 60

0.1000E+00 40 40 410

0.1000E+00 40 30 410

0.1000E+00 35 40 360

0.1000E+00 30 40 310

0.1000E+O0 25 40 260

0.1000E+00 25 30 260

0.5000E-01 25 30 520

0.5000E-01 25 20 520

0.5000E-01 20 20 420

0.5000E-01 15 20 320

0.2500E-01 20 10 840

0.2500E-01 15 20 640

0.2500E-01 15 10 640

0.1000E-01 10 10 1100

0.1000E-01 7 10 800

Mvec's Tune (see) [IErrorl[2

205 0.2402E+01 0.6151E-05

0.3690E+01

0.3114E+01

0.3177E+01

0.2617E+01

0.2110E+01

0.1721E+01

0.3413E+01

0.2726E+01

0.2124E+01

0.1550E+01

0.2992F_,+01

0.3086E+01

0.2109E+01

0.3561E+01

0.2693E+01

0.7483E-06

0.3011E-05

0.7483E-06

0.7484E-06

0.8743E-06

0.1054E-04

0.7503E-07

0.3961E-06

0.6163E-05

0.5463E-04

0.9015E-06

0.5327E-05

0.9887E-05

0.1743E-05

0.9483E-05

Table 2: Performance of the polynomial scheme with varying accuracy on the Cray-2.

As in the previous example, we took the same number of grid points in each direction, i.e., n= =

nv = nz = 17, yielding again a matrix of dimension N = 153 = 3375. This experiment was conducted

on a Cray-2. Table 2 is the analogue of Table 1, except that we only report some representative runs with

various values of rn and 6. The parameter 7 is set equal to 10.0. The integration is carried out from t = 0.0

to t = 1.0. The second approach was used in which the integrals were calculated with 11-points composite

(closed) Newton-Cotes formulas. In most cases we had to take more than 11 points, in which case we simply

used a composite rule with a total number of points equal to 1 + k x 10. The third column reports the total

number of subintervals Npts used to advance by one time step of 6. Thus, Npt8 is a multiple of 10. The

time shown in the fifth column is the time in seconds to advance the solution from t = 0.0 to t = 1.0, on

a Cray-2. The sixth column shows the 2-norm norm of the error with respect to the exact solution of the

continuous system, that is, with respect to (34).

We observe that for larger time steps a larger number of quadrature points must be used to keep a

good level of accuracy. We show the results associated with the smallest number of points for which there

are no significant qualitative improvements in the error when we increase Npts, while keeping rn and 6

constant. Our tests indicate that the higher the order of the quadrature used, the better. This means that large

gains in speed are stir likely if we use more optimal, Gaussian quadrature formulas. A noticeable difference

with the previous simple example is that while large values of m tend to reduce the total number of matrix

by vector multiplications required, the reduction is not as substantial.

6.3 A comparison with other methods

Although an exhaustive comparison with other schemes is beyond the scope of this paper, we would like

to give an idea on how the efficiency of the Krylov subspace propagation compares with some immediate
contenders. The first of these contenders is simply the forward Euler scheme. This is an explicit scheme, and

for not-too-small space mesh sizes, should not be excluded given that the corresponding process is highly

vectorizable. However, an approach that may be far more challenging is to use an implicit scheme such as
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the Crank-Nicolson method:

(I + _A)w_,+l = (I- ._A)wn + 6r(G, + 6/2); (35)

combined with an iterative method, for example the conjugate gradient method, for solving the linear

systems. The main attraction here is that we can solve the linear systems inaccurately, making the solution

process very inexpensive. From this viewpoint, this "inexact Crank-Nicolson" method shares many of the

benefits of the Krylov method, as was alway mentioned in the introduction. Finally, a well known stiff

ODE package such as LSODE [14] is also considered.

For this comparison we took the same problem as before, but we needed to take 7 = 0.0 in order to

make the matrix A symmetric. This was necessary in order to be able to utilize the usual conjugate gradient

algorithm for the linear systems in the Crank-Nicolson scheme. The r function is defined as before, and the

number of grid points in each direction is again nz = n v = nz = 17, yielding N = 153 = 3375.

We should point out that for the Crank-Nicolson method, we do not use preconditioning, and this is

by no means a drawback. Because of time stepping, the matrix is usually very well conditioned, and as a

result, the algorithm converges in a rather small number of steps. Moreover, because there is no need to

solve the systems with high accuracy, the overhead in setting up the preconditioner would be difficult to
amortize. Finally, the good preconditioners such as the incomplete factorizations do not generally yield a

high a performance on vector machines. In our tests, the CG algorithm is stopped as soon as the residual
norm is reduced by a factor which does not exceed a tolerance c. We always take the tolerance _ that yields

the smallest (or close to the smallest) time for the Crank-Nicolson scheme to complete. In this test we used

the Chebyshev rational approximation of order (6,6) throughout, for the computation of e-6H"el. A final

point of detail is that symmetry has been taken advantage of, both in Crank-Nicolson, which is able to use
the usual conjugate gradient method, and in the Krylov method, in which we replaced the Amoldi algorithm

with the Lanczos version.

For LSODE we used the method flag MF=24, which means that a stiff method is used, and the

Jacobian is user-supplied in banded format. The Cray-optimized Linpack banded solver is called to solve
the linear systems. Table 3 shows the results. For LSODE we used a relative tolerance of rtol = 10 -14

and an absolute tolerance of ato]. = 0.0.

This comparison reveals that the K_lov scheme is superior when one considers the number of

matrix-by-vector products as the primary criterion. There are situations in which these may dominate the

cost, in which case the execution time could be proportional to the number of matrix-vector products. When

execution time is the primary criterion for comparison, then the Krylov scheme is still faster than Crank

Nicolson but not by as large am_. The Forward Euler scheme was unstable for the time step dt = 0.001

and dt = 0.00075. We also performed a set of tests with a larger version of problem corresponding to the grid

sizes nz = n v = n, = 22, leading to a problem of size N = 8000. The conclusion is essentially the same

in that Crank-Nicolson and the Krylov method are comparable, but the time for the explicit Euler scheme

becomes much higher. We should add that we have regarded the problem purely from the angle of systems

of ODEs, although we are aware that in practice a _anced accuracy between space and discrefization is

generally sought. However, this would lead to comparisons that are too complex.

6A A case with highly oscillating forcing term

We consider here an example of the same form as in the previous subsection; that is, the genera/equation is

of the form (33), and the initial and boundary conditions are identical. However, we now consider a forcing

term for which the exact solution is given by

u(z,l/,z,t)= z(z- 1)y(y- l)z(z- 1)cos(cert). (36)
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Method

used

Krylov
6 =0.2

Krylov
6 = 0.15

Krylov
6=0.1

Crank-

Nicolson

F-Euler

LSODE

Mcthod

parameters

m = 30, npts = 40

m = 40, npts = 40

m = 35, npts = 40

m = 30, npt8 = 40

m = 20, npts = 40

m = 20, npt8 = 30

m = 25, npts = 30

m = 20, npts = 30

m = 15, npts = 30

m = 20, npts = 30

m = 15, npts = 30

dt = .01, _ = .001

dt = .005, _ = .001

dt = .0005

Matrix-vce.

products
155

205

180

155

105

105

182

147

112

210

160

1053

1578

2000

TotalCray-2

time (sec.)
0.9374E+00

0.1225E+01

0.1038E+01

0.9355E+(X)

0.6615E+00

0.5229E+00

0.9530E+00

0.7828E+00

0.6151E+00

0.1044E+01

0.9086E+00

0.1192E+01

0.176713+01

0.2779E+01

Final

elTor

0.6670E-05

0.6652E-05

0.6672E-05

0.6670E-05

0.7103E-05

0.1764E-04

0.9367E-06

0.7185E-05

0.4244E-04

0.7956E-06

0.8574E-05

0.1267E-05

0.3329E-06

0.8678E-06

MF=24 1077 0.3766E+02 0.4222E-04

Table 3: Performance comparison of a few methods on Problem of Section 6.3.

In other words, r is defined by

= -ax(x- 1)y(y- 1)z(z- 1)sin(az't)

-2[y(y- 1)z(z- 1)+x(x- 1)z(z- 1)+x(x- 1)y(y- 1)

+7(2x - 1)y(y- l)z(z- 1)]cos(alrt).

If the coefficient a is chosen to be large, then the problem can be difficult to solve. We took here 3' = 0.0

and a = 20. The discrctization mesh is the same as in the previous example.

We compared the same four methods as those of the previous section, the Forward Euler scheme, the

Crank-Nicolson/CG scheme, LSODE, and the Krylov method using the second approach. In this example

LSODE failed to converge in a reasonable amount if time.

One difference with the previous tests _s _ here we varied the quadrature formulas used.Thus

npts = 4 x 8 indicates that we used a composfie/UI(/in which the interval of integration is first divided by

4 and then on each subinterval a nine-point formula is used. Apart from this, all of the details concerning

implementation arc identical with those ofSecti0n 6.3, except that this time we used the Chebyshev rational

approximation of order (8,8) il_tead of (6,6) to Compute the vectorse -6H'' el.

....... The results in Table 4 indicate that for [his ha:rder problem, the Krylov scheme performs far better

than its competitors. The Crank-Nicolson scheme nbw requires smaller time steps to achieve acceptable

accuracies. The forward Eule/scheme would require a much smaller time step that those of the other

methods to achieve comparable performance.

7 , Summary and Conclusion

The goalof thispaperwas to show how to systematicallydevelopexplicittype schemes,or to use our

terminology,polynomialscbemcs forsolvingparabolicpartialdifferentialequationsby themethod oflines.
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Method
used

Krylov

6 =0.2

Krylov
6=0.1

Method

parameters

rn = 40, npts = 3 × 10

rn = 30, npts = 2 × 10

m = 30,npts = 8 × 5

m = 25, npts = 20 x 2

m = 25, npts = 8 × 5

m = 20, npts = 2 × 10

m = 15, npts = 10 × 2

m = 15, npts = 2 × 10

m = 15,npts = 3 x 8

m = 15,npts = 4 × 8

m = 10,npts = 4 × 8

Matrix-vec.

products

205

155

155

130

130

210

160

160

160

160

110

4322

TotalCray-2

time(sex.)
0.1202E+01

0.6902E+00

0.1196E+01

0.1096E+01

0.1063E+01

0.I083E+01

0.8995E+00

0.8739E+00

0.1043E+01

0.1298E+01

0.1066E+01

Final

elTor

0.8051E-04

0.2262E-03

0.2862E-04

0.3188E-04

0.2320E-04

0.7585E-05

0.9713E-03

0.6988E-04

0.1592E-04

0.1757E-05

0.3504E-04

Crank- dt = .001,¢ = .001 0.5723E+01 0.8816E-04

Nicolson dt = .5E-03, 6 = .001 8000 0.1058E+02 0.2203E-04

F-Euler dt = .5E-03 21300 0.4780E+01 0.2358E-02

dt = .1E-03 10000 0.2364E+02 0.4712E-03

dt = .5E-05 20000 0.4861E+02 0.2356E-03

LSODE MF=24 _

Table 4: Performance comparison of a few methods for Problem of Section 6A.

We have proposedone suchprocedurethathas theadvantageofbeingverysimple.The method proposed

requiresno informationaboutthe sigcman of the spacediscretizationoperator.We have recommended

usinghighdimensionKrylovsubspaceswhenever possible.By usinga Krylovsubspaceofhighdimension

to approximate the evolution operator, we are able to use larger time-steps. At each step there is an additional

cost due to the increased dimension of the Krylov subspace which translates into an increase in the number

of matrix by vector multiplications. On the other hand, because of the larger time-step, the total number

of stepsrequiredisreducedto such an extent that thereisan appreciable net gain inperformance.We

have also proposed two approaches for handling non-constant forcing terms, with the view of extending

these methods for general ODEs and nonlinear partial differential equations. The stability analysis of these

approaches shows that the first is unconditionally stable and the second is .4o stable for a large class of

integration schemes used. This has been widely confirmed by numerical experiments which indicate that

theschemes proposedarecompetitive with standardmethods such asCrank-Nicolson.

ImprovementstotheapproachdescribedinSection4.2atepossibleby developingquadratureformulas

thataremore elaborateand specializedthan the simpleNewton-Cotes formulasused in our numerical

experiments. We believe that the method proposed here can be extended to the solution of general time

dependent nonlinear partial differential equations: the only subtlety is to isolate the action of the evolution

operator, which is then well approximated by the schemes proposed here.

A Appendix: Partial fraction coefficients

In Table 5 we list some of the coefficients of the partial fraction expansion for the Chebyshev rational

approximation to the exponential. These are the (k, k) approximations for k = 10 and k = 14. Note that

because therootsgo incomplex conjugatepairs,we onlyneed toshow thosewithnonnegativeimaginary
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Degree Coef/Root Real Part Imaginary Part

10

I4

C_O

t_2

Or3

ix4

a5

)`I

)'2

)'3

)'5

a0

t_l

t_2

or3

_4

t_5

t_6

a7

At

)`2

)`3

M
As

)`7

0.136112052334544905E-09

0.963676398167865499E+01

-0.142343302081794718E+02

0.513116990967461106E+01

-0.545173960592769901E+00
0.115698077160221179E-01

-0.402773246751880265E+01

-0.328375288323169911E+01

-0.1715406015768_8 !357E+01

0.894404701609481378E+00

0.516119127202031791E+O 1

0.183216998528140087E- I l

0.557503973136501826E+02

-0.938666838877006739E+02

0.469965415550370835E+02

-0.96142420062_ 1065E+01
0.752722063978321642E+00

-0.188781253158648576E-01

0.143086431411801849E-03

-0.562314417475317895E+01

-0.508934679728216110E+01

-0.399337136365302569E+01

-0.226978543095856366E+01

0.208756929753827868E+00

0.370327340957595652E+01

0.889777151877331107E+01

-0.421091944767815675E+02

0.176390663157379776E+02

-0.243277141223876469E+01

0.284234540632477550E-01

0.137170141788336280E-02

0.119385606645509767E+01

0.359438677235566217E+01

0.603893492548519361E+01

0.858275689861307000E+01

0.113751562519165076E+02

-0.204295038779771857E+03

0.912874896775456363E+02

-0.116167609985818103E+02

-0.264195613880262669E+01

0.670367365566377770E+00

-0.343696176445802414E-01

0.287221133228814096E-03

0.119406921611247440E+01

0.358882439228376881E+01

0.600483209099604664E+01

0.846173881758693369E+01

0.109912615662209418E+02

0.136563731924991884E+02

0.16630984283471207 IE+02

Table 5: Coefficients of the partial fraction expansion for degrees 10 and 14

parts. In fact there are exactly [k/2] such roots for the (k, k) approximation. Moreover in the case of a

complex pair the corresponding coefficient ai in the partial fraction expansion is doubled. The roots are
also distinct, and we can thus write for a real z:

°,]e -z_ao+Re --'Ai "
i=l X

(37)

B Appendix: Proof of Theorem 2.1

The following lemma provides the basis for establishing error bounds for the error of the approximation (7).

Lemma B.I Let A be any matt/x, and p be any polynomial of degree smaller than m, approximating e -z

with the remainder r,,_( z) = e -z - p( z). Then,

I1:% -/3V, ne-n"e1112</ (llrm(A)ll2 + II",,,(n,,,)l12), (38)
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Proof As a result of the relation e -_ = p(z) + r,,,(z), we have

e-Av = _(A)vl + r,n(a)vl]. (39)

Using induction and the relation (6) we can show that A j vt = Vm H_ el, for j _< m - 1 and as a consequence

we have

p( A )t_1 -" Vmp ( Hm )el. (40)

As a result of the definition of p and r,,,, we can write

p(H,n)el = e-H'el -- r,,t(Hm)el. (41)

To complete the proof, we substitute (41) in (40) and the resulting equation in (39) to get,

e-Av = BV,.e-_-el

+ _[rm(A)vl -- Vrnrrn(Hrn)el].

The result follows immediately. D

Thus, the error can be estimated by bounding each of the two remainder terms. We now use the

concept of the logarithmic norm of a matrix as defined in Section 2.2. We will specifically use the inequality

Ile_'ll_<e.<B)_.
We next prove the following lemmas:

Lemma B.2 Let

_-I (__)k
• = k!

k=:O

be the (m-1)-m pam'al Taylor sum ore - 2 and let rm (z ) be the associated remainder r_ (z ) = e - 2- s,__ l (z ).

Define

_(v) - _ : - k--oE'

wl_re r1 = p(- A ).

II,'.(A)II_<llA'_ll¢'(n)-<llA"llmax-(/e_)., (42)

Proof The remainder after m terms of the Taylor series expansion in integral form applied to exp(-A)

is given by

(-A) 'n /01 e-A(l-')C _-lrrn(A)= (m---_! dl" (43)

and therefore,

iiA_ll 1
IIr,_(A)ll _ (m- 1)!_0 Ile-A0-')ll:'-ld_'"
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Denoting r/=/t(-A) for convenience, since 0 < r < 1, we have from Eq. (8):

I[e-A(l-_') H < e_(-A)(1-_') _ e_(l-_).

from which we get

IIr,_(A)ll < ira- 1)! f0:0-%_-_dr. (44)

The value of the integral in the above expression is determined by noting that the remainder of the (m - 1)-st

Taylor expansion of e '7satisfies

lr/k r/,_ f01e '7 - en(1-r)rm-I dr
k--0_ = '('n-- 1)t

which gives

1 fo I en(l__.)rr__ldr._b(r/)--(m- I)!

Incidentally,thisexpressionshows that_b07) isnonnegative.Substitutingthisin (44)provesthe first

inequalityin(42).

To prove thesecondpartoftheinequality,we observethat

- max(l, en)r'n-ldr =_b07) = (m 1)! enO-')rm-tdr < (m 1)!
max(l, e")

m!
(45)

r3

We would like to mention _ the upper bound for _r/) used in the above lemma can be somewhat

refined. More specifically, it can be shown that:

I if_/< 0
¢,(r/) < -_T if0 < _ < "-_(m -2)!m

, e_' if "-_(m- 2)!m < r/(m-l)r/m-I

Finally, we will need the following lemma:

Lemma B.3 If A is any teal matrix and H_ is the associated m × ra upper Hessenberg matrix generated

by rn steps of the An_ldi algorithm, then:

_(-H,) < _(-A).

Proof By construction V,_ consists of m orth0normal vectors and H,_, satisfies H,n = VTAV, n. Since

the maximum eigenvalues of the symmetric parts of A and H_ can be characterized as the maximum values

taken by their Rayleigh quotients, it easily follows that

VTAVm "FvTATvm A "FA T
p(- H,n ) = max)_i(, 2 ) -< maxi _i( --2 ) = p(-A).

[]
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Proof of Theorem 2.1.

First note that as in Lemma B.2 we can show that

It_,_(n.,)l12_<p_C,(_(-n_))

where p,_ = IIH_II2 - IIV_AV,,II2. The right-hand side of the above inequality is an increasing function

of p,,_ and p,n _< p. From Lcmma B.3,/_(-H,n) < _(-A) = r/, and thus:

Ilr_(n=)ll2 _<p=*(_). (46)

Using Lemnma B. 1 the proof follows.
[]

Acknowledgments

We would like to thank Dr. Randall Bramley for his careful reading and suggestions, Professor Richard

Varga for his comments on an early version of this work, Roland Freund for several helpful discussions, and

the referees for their many helpful recommendations and for bringing to our attention the work of [7].

References

[1] A. J. CARPENI_, A. Rtn'rAN, AND R. S. VAROA, Extended numerical computations on the 1/9

conjecture in rational approximation theory, in Rational Approximation and Interpolation, P. R. Graves-

Morris, E. B. Saff, and R. S. Varga, eds., vol. 1105 of Lecture Notes in Mathematics, Springer-V¢flag,

Berlin, 1984,pp. 383-411.

[2] J. C. CAVENDISH, W. E. OJLHAM, AND R. S. VARGA,A comparison of C_.ak-Nicolson and Chebyshev

rational methods for numerically solving linear parabolic equations, J. Comput. Phys., 10 (1972),

pp. 354-368.

[3] A. R. OJRT;S, Jacobian matrix properties and their impact on the choice of software for stiff ODE

systems, IMA J. Numer. Anal., 3 (1983), pp. 397-415.

[4] K. DEKK_ AND J. G. VERWER, Stability of Runge-Kutta methods for stiff nonlinear diffcrenb'al

equations, North-Holland, Amsterdam, 1984.

[5] C. DESOER AND H. HANEDA, The measure of a matrix as a tool to analyze computer algorithms for

circuit analysis, IEEE Trans. Circuit Theory, 19 (1972), pp. 480-486.

[6] B. L. EItLE, A-stable methods and Pacl6 approxim_ons to the exponential, SIAM. J. Numer. Anal., 4

(Nov. 1973), pp. 671-680.

[7] S. W. ELLACOTr, On the Faber transformation and effcieaat numerical rational approximation, SIAM

J. Nurner. Anal., 20 (Oct. 1983), pp. 989-1000.

[8] R. A. FRIESNER,L_S. TU_CKERMAN,B, C. DORNBLASER, AND T. V. RUSSO, A method for exponential

propagationo_ largesystems ot stiff nonlineardifferentialequations,J. SCi.Comput., 4 (1989),

pp. 327-354.

[9] E. GALLOPOULOSAND Y. SAAD, Et_ciemt parallel solution of parabolic equations: implicit methods
on the Cedar multicluster, in Proc. Fourth SIAM Conf. Parallel Processing for Scientific Computing,

J. Dongana, P. Messina, D. C. Sorensen, and IL G. Voigt, eds., SIAM, 1990, pp. 251-256. Chicago,
Dec. 1989.

26



[10] --, Parallel block cyclic reduction algorithm for the fast solution of elliptic equ_'ons, Parallel

Comput., 10 (April 1989), pp. 143-160.
[11 ] , Efficient solution of parabolic equations by polynomial approximation methods, Te.ch. Rep. 969,

Center for Supcrcomputing Research and Development, Feb. 1990.

[12] --, On the parallel solution of parabolic equations, in Proc. 1989 ACM Int'l. Conference on

Suparcomputing, Herakleion, Gr¢¢,c¢, June 1989, pp. 17-28. Also CSRD Tech. Rep. 854.

[13] E. HAIRER, G. BADER, AND C. LUBICH, On the stability of semi-implicit methods for ordinary differ-

¢ntial equations, B1T, 22 (1982), pp. 211-232.

[14] A. C. HINDMARSH, ODEPACK, A systematized collection of ODE solvers, in Scientific Computing,

R. S. Stcpleman, et al., ed., North Holland, Amsterdam, 1983, pp. 55-64.

[15] E. ISAACSON AND H. B. KELLER, Analys/s of Numerical Methods, John Wiley & Sons, New York,

1966.

[16] A. ISERLES, Rational interpolation to exp(- z) with application to certain stiff systems, SIAM J. Numer.

Anal., 18 (Feb. 1981), pp. 1-12.

[17] A. ISERLES AND S. P. N¢RSETr, On the theory ofparallelRunge-Kutta methods, IMA J. Numer. Anal.,

10 (1990), pp. 463-488.

[18] A. ISl_tt.ES AND M. J. D. POWELL, On the A-acceptability of rational approximations that interpolate

the. exponential function, IMA J. Nmer. Anal., 1 (1981), pp. 241-251.

[19] O.A. KARAKASHIAN AND W. RUST, On the parallel impleanentationo£implicitRunge-Kuttamethods,

SIAM J. Sci. Stat. Comput., 9 (Nov. 1988), pp. 1085-1090.

[20] S. KEEliNG, Galerkin/Runge-Kutta discretizations for parabolic equations with time-dependent cocf-

/idents, Math. Comp., 52 (April 1989), pp. 561-586.

[21] H_T. KUNG_Ncw alg_rithms and __wcr b_unds forth_ parali__ cvaluati_n __ c_rtain rati_nal cxpressi_ns

and recurremces, J. Assoc. Comput. Mach., 23 (April 1976), pp. 252-261.

[22] E. LANDAU, Ober einem Mellinshem Satz, Arch. Math. Phys. Scr. 3, 24 (1915), pp. 97-107.

[23] I. D. LAWSON AND D. A. SWAYNE, High-order near _,st uniform approximations to the solution of

heat conduction problems, in Proc. IFIP Congress 80 - Information Processing 80, New York, 1980,

North Holland, pp. 741-746.

[24] D. LEE, Nonlinear Multistep Methods for Solving Initial Value Problems in Ordinary Differential

Equations, PhD thesis, Polytechnic Institute of New York, 1974.

[25] D. LEE AND J. S. PAPADAKIS,Numerical solutions of underwater acoustic wave propagation problems,

Tcch. Rep. NUSC TR. 5929, Naval Underwater Systems Center, New London, CT, 1979.

[26] A. NAtrrs AND R. E. WYAIT, New approach to many-state quantum dynamics: The recursive-residue-

generation method, Phys. Rcv. Lctt., 51 (1983), pp. 2238-2241.

[27] --, T/_ry of laser-module interaction: The rccursive-residue-generation method, Physical Rev.,

30 (1984), pp. 872-883.
[28] S. R N_RSETr, Restricted Pad_ approximations to the exponential function, SIAM J. Numer. Anal.,

15 (Oct. 1978), pp. 1008-1029.

[29] B. NOUR-OMID, Applications of the Lanczos algorithm, Comput. Phys. Comm., 53 (1989), pp. 153-

168.

[30] R PANDEY, C. KENNEY, AND A. J. LAUB, A parallel algorithm for the matrix sign function, Int'l. J.

High Speed Comput., 2 (June 1990), pp. 181-191.

[31] T. J. PARK AND J. C. LIGHT, Unitary quantum time evolution by iterativ¢ Lanczos reduction, J. Chem.

Phys., 85 (1986), pp. 5870-5876.

[32] B. N. PARLE'rr, The SymmetricEigemvaluePmblem, Ptr.atic_ Hall, Englewood Cliffs, 1980.

[33] G. I_LYA AND G. SZF.C_, I_roblem$ and Th¢ote_lls in Analysis I, Springer-Vedag, New York, 1972.

.+1,

27



[34] G. RODRIGUEAND D. WOIJTZ_, Preconditioned time-d/fferencing for the parallel solution of the

heat equation, in Proc. Fourth SIAM Conf. Parallel Processing for Scientific Computing, J. Dongarra,

P. Messina, D. C. Sorensen, and R. G. Voigt, eds., SIAM, 1990, pp. 268-272. Chicago, Dec. 1989.

[35] Y. SAAD, Analysis of some KJ'ylov subspacc approximations to the matrix exponential operator, tech.

rep., Research Institute for Advanced Computer Science, 1990.

[36] _, On the rates of convergence of the Lanczos and the block-Lanczos methods, SLAM J. Numer.

Anal., 17 (Oct. 1980), pp. 687-706.
[37] J. M. SANZ-SERNA AND J. G. VERWER, Stability and convergence at the PDE/stiff ODE interface,

Appl. Numer. Math., 5 (1989), pp. 117-132.

[38] M. J. SCHAEFER,A polynomial based iterative method for linear parabolic equations, Tech. Rep. 661,

Center for Supercompufing Research and Development, University of lllinois at Urbana-Champaign,

May 1987.

[39] W. L. S_'WARD, G. FAIR_, AND R. L. JOHNSTON, A survey of h/gh-order methods for the

numerical integration ofsemidiscrete parabolic problems, IMA J. Numer. Anal., 4 (1984), pp. 375-
425.

[40] Q. SHF.NG, Solving linear pattial differential equations by exponential splitting, IMA J. Numer. Anal.,

9 (1989), pp. 199-212.

[41] R. A. S_.Er, A parallel and vector cyclic reduction algorithm, SIAM I. Sci. Statist. Comput., 9 (July

I988), pp. 761-765.

[42] H. TAL-EZER, Spectra/methods in time for parabolic problems, SIAM J. Numer. Anal., 26 (Feb. 1989),

pp. 1-11.

[43] H. TAL-EZI_ AND R. KOSLOI_, An accurate and el_cient scheme for propagating the time dependent

_'gerequation, J. Chem. Phys., 81 (1984), pp. 3967-3971.

[44] I.v. NEUMANN, Eine Spektraletheorie flu"al/gemeine Operatoren eines _ Raumes, Math. Nachr.,

4 (1950/51), pp. 258-281.

[45] P. J. VAN DER HOUWEN AND B. P. SOMMF.ImR,Parallel iteraa'on oflffgh-order Runge-Kutta methods

with stepsize control, J. Comput. Appl. Math., 29 (1990), pp. 111-127.

[46] _, Parallel ODE solvers, in 1990 International Conference on Supercomputing, Amsterdam, June

1990, ACM, pp. 71-81.

[47] P. J. vAN DER HOt/WEN, B. P. SOMMEtlER, AND E W. WUBS, Analysis of smoothing operators in

the solution of partial differential equations by explicit difference schemes, Appl. Numer. Math., 6

(1989D0), pp. 501-521.

[48] H. VAN DER VORST, An iterative solution method for solving f( A)z = b using Krylov subspace

information obtained for the symme_c positive definite matrix A, J. Comput. Appl. Math., 18 (1987),

pp. 249-263.

[49] R. S. VARGA, On b./gher order stable implicit methods for solving parabolic partial differential equa-

tions, J. Math. Phys., 40 (1961), pp. 220-231.

[50] E. L. W^C_s, lterative solution o£elliptic systems, l_¢ntice-HaU, Inc., Englewood Cliffs, N.J.,

1966 ....

[51 ] G. WANNER, Order stars and stabih'ty, in _ State of the Art in Numerical Analysis, A. Isedes and

M. J. D. Powell, eds., Cl0rendon Press, Oxford, 1987,pp. 451-472.

[52] D.S. WA11ONSAND R. W. HANSONSM1TH,The numerical solution of separably stiff systems byprecis¢

partitioning, ACM Trans. Math. Softw., 9 (Sept. 1983), pp. 293-301.

[53] V. ZAKIAN, Propcm'es Of IMN and JMN appmximants and applications to numerical inversion of

Laplace transforms aad initial valueptoblems, J. Math. Anal. Applic., 50 (1975), pp. 191-222.

28


