8,423 research outputs found

    In Vitro Flow Modelling for Mitral Valve Leakage Quantification

    Get PDF
    In this study particle image velocimetry (PIV) is used to measure and visualise the blood flow through a leaking mitral heart valve. The results are compared with the results from Doppler echocardiography and computational fluid dynamics (CFD). Using CAD, five-axis milling and Rapid Prototyping Machining (RPM) technology, a hydraulic in vitro flow model was developed and constructed which is compatible with flow investigation with 2D normal speed PIV and 2D Doppler echocardiography. The same CAD model was used to conduct the CFD analysis. PIV results compared successfully with Doppler echo and CFD results, both in the upstream converging region and downstream the turbulent regurgitated jet zone. These results are expected to improve the assessment of mitral valve regurgitation severity with Doppler echocardiography in clinical practice

    Fundamental Relativistic Rotator. Hessian singularity and the issue of the minimal interaction with electromagnetic field

    Full text link
    There are two relativistic rotators with Casimir invariants of the Poincar\'{e} group being fixed parameters. The particular models of spinning particles were studied in the past both at the classical and quantum level. Recently, a minimal interaction with electromagnetic field has been considered. We show that the dynamical systems can be uniquely singled out from among other relativistic rotators by the unphysical requirement that the Hessian referring to the physical degrees of freedom should be singular. Closely related is the fact that the equations of free motion are not independent, making the evolution indeterminate. We show that the Hessian singularity cannot be removed by the minimal interaction with the electromagnetic field. By making use of a nontrivial Hessian null space, we show that a single constraint appears in the external field for consistency of the equations of motion with the Hessian singularity. The constraint imposes unphysical limitation on the initial conditions and admissible motions. We discuss the mechanism of appearance of unique solutions in external fields on an example of motion in the uniform magnetic field. We give a simple model to illustrate that similarly constrained evolution cannot be determinate in arbitrary fields.Comment: 16 pages, in v2: shortened, improved presentation, proofs moved to Appendices, in v3: further text permutations and a comment added concerning hamiltonization, in v4: language corrections, final for

    Frameworks, Symmetry and Rigidity

    Get PDF
    Symmetry equations are obtained for the rigidity matrix of a bar-joint framework in R^d. These form the basis for a short proof of the Fowler-Guest symmetry group generalisation of the Calladine-Maxwell counting rules. Similar symmetry equations are obtained for the Jacobian of diverse framework systems, including constrained point-line systems that appear in CAD, body-pin frameworks, hybrid systems of distance constrained objects and infinite bar-joint frameworks. This leads to generalised forms of the Fowler-Guest character formula together with counting rules in terms of counts of symmetry-fixed elements. Necessary conditions for isostaticity are obtained for asymmetric frameworks, both when symmetries are present in subframeworks and when symmetries occur in partition-derived frameworks.Comment: 5 Figures. Replaces Dec. 2008 version. To appear in IJCG

    The separate neural control of hand movements and contact forces

    Get PDF
    To manipulate an object, we must simultaneously control the contact forces exerted on the object and the movements of our hand. Two alternative views for manipulation have been proposed: one in which motions and contact forces are represented and controlled by separate neural processes, and one in which motions and forces are controlled jointly, by a single process. To evaluate these alternatives, we designed three tasks in which subjects maintained a specified contact force while their hand was moved by a robotic manipulandum. The prescribed contact force and hand motions were selected in each task to induce the subject to attain one of three goals: (1) exerting a regulated contact force, (2) tracking the motion of the manipulandum, and (3) attaining both force and motion goals concurrently. By comparing subjects' performances in these three tasks, we found that behavior was captured by the summed actions of two independent control systems: one applying the desired force, and the other guiding the hand along the predicted path of the manipulandum. Furthermore, the application of transcranial magnetic stimulation impulses to the posterior parietal cortex selectively disrupted the control of motion but did not affect the regulation of static contact force. Together, these findings are consistent with the view that manipulation of objects is performed by independent brain control of hand motions and interaction forces

    Cortical spatio-temporal dimensionality reduction for visual grouping

    Full text link
    The visual systems of many mammals, including humans, is able to integrate the geometric information of visual stimuli and to perform cognitive tasks already at the first stages of the cortical processing. This is thought to be the result of a combination of mechanisms, which include feature extraction at single cell level and geometric processing by means of cells connectivity. We present a geometric model of such connectivities in the space of detected features associated to spatio-temporal visual stimuli, and show how they can be used to obtain low-level object segmentation. The main idea is that of defining a spectral clustering procedure with anisotropic affinities over datasets consisting of embeddings of the visual stimuli into higher dimensional spaces. Neural plausibility of the proposed arguments will be discussed
    corecore