41 research outputs found

    Smart matching

    Full text link
    One of the most annoying aspects in the formalization of mathematics is the need of transforming notions to match a given, existing result. This kind of transformations, often based on a conspicuous background knowledge in the given scientific domain (mostly expressed in the form of equalities or isomorphisms), are usually implicit in the mathematical discourse, and it would be highly desirable to obtain a similar behavior in interactive provers. The paper describes the superposition-based implementation of this feature inside the Matita interactive theorem prover, focusing in particular on the so called smart application tactic, supporting smart matching between a goal and a given result.Comment: To appear in The 9th International Conference on Mathematical Knowledge Management: MKM 201

    Model generation style completeness proofs for constraint tableaux with superposition

    Get PDF
    We present several calculi that integrate equality handling by superposition and ordered paramodulation into a free variable tableau calculus. We prove completeness of this calculus by an adaptation of the model generation technique commonly used for completeness proofs of resolution calculi. The calculi and the completeness proof are compared to earlier results of Degtyarev and Voronkov

    Proof search without backtracking for free variable tableaux [online]

    Get PDF

    Preprints of Proceedings of GWAI-92

    No full text
    This is a preprint of the proceedings of the German Workshop on Artificial Intelligence (GWAI) 1992. The final version will appear in the Lecture Notes in Artificial Intelligence

    Progress Report : 1991 - 1994

    Get PDF

    Superposition as a logical glue

    Full text link
    The typical mathematical language systematically exploits notational and logical abuses whose resolution requires not just the knowledge of domain specific notation and conventions, but not trivial skills in the given mathematical discipline. A large part of this background knowledge is expressed in form of equalities and isomorphisms, allowing mathematicians to freely move between different incarnations of the same entity without even mentioning the transformation. Providing ITP-systems with similar capabilities seems to be a major way to improve their intelligence, and to ease the communication between the user and the machine. The present paper discusses our experience of integration of a superposition calculus within the Matita interactive prover, providing in particular a very flexible, "smart" application tactic, and a simple, innovative approach to automation.Comment: In Proceedings TYPES 2009, arXiv:1103.311
    corecore