19 research outputs found

    Riemannian simplices and triangulations

    Get PDF
    We study a natural intrinsic definition of geometric simplices in Riemannian manifolds of arbitrary dimension nn, and exploit these simplices to obtain criteria for triangulating compact Riemannian manifolds. These geometric simplices are defined using Karcher means. Given a finite set of vertices in a convex set on the manifold, the point that minimises the weighted sum of squared distances to the vertices is the Karcher mean relative to the weights. Using barycentric coordinates as the weights, we obtain a smooth map from the standard Euclidean simplex to the manifold. A Riemannian simplex is defined as the image of this barycentric coordinate map. In this work we articulate criteria that guarantee that the barycentric coordinate map is a smooth embedding. If it is not, we say the Riemannian simplex is degenerate. Quality measures for the "thickness" or "fatness" of Euclidean simplices can be adapted to apply to these Riemannian simplices. For manifolds of dimension 2, the simplex is non-degenerate if it has a positive quality measure, as in the Euclidean case. However, when the dimension is greater than two, non-degeneracy can be guaranteed only when the quality exceeds a positive bound that depends on the size of the simplex and local bounds on the absolute values of the sectional curvatures of the manifold. An analysis of the geometry of non-degenerate Riemannian simplices leads to conditions which guarantee that a simplicial complex is homeomorphic to the manifold

    Local Criteria for Triangulation of Manifolds

    Get PDF
    We present criteria for establishing a triangulation of a manifold. Given a manifold M, a simplicial complex A, and a map H from the underlying space of A to M, our criteria are presented in local coordinate charts for M, and ensure that H is a homeomorphism. These criteria do not require a differentiable structure, or even an explicit metric on M. No Delaunay property of A is assumed. The result provides a triangulation guarantee for algorithms that construct a simplicial complex by working in local coordinate patches. Because the criteria are easily verified in such a setting, they are expected to be of general use

    A hardness of approximation result in metric geometry

    Full text link
    We show that it is NP\mathsf{NP}-hard to approximate the hyperspherical radius of a triangulated manifold up to an almost-polynomial factor.Comment: 21 pages, final version to appear in Selecta Mat

    Ambient and intrinsic triangulations and topological methods in cosmology

    Get PDF
    The thesis consist of two parts, one part concerns triangulations the other the structure of the universe. 1 Images in films such as Shrek or Frozen and in computer games are often made using small triangles. Subdividing a figure (such as Shrek) into small triangles is called triangulating. This may be done in two different ways. The first method makes use of straight triangles and is used most often. Because computer power is limited, we want to use as few triangles as possible, while maintaining the quality of the image. This means that one has to choose the triangles in a clever manner. Much is known about the choice of triangles if the surface is convex (egg-shaped). This thesis contributes to our understanding of non-convex surfaces. The second and new method uses curved triangles that follow the surface. The triangles we use are determined by the intrinsic geometry of the surface and are called intrinsic triangles. 2 Shortly after the Big Bang the universe was very hot and dense. Quantum mechanical effects introduced structure into the matter distribution in the early universe. The universe expanded according the laws of General Relativity and the matter cooled down. After the matter in the universe had cooled down, clusters of galaxies formed out of the densest regions. These clusters of galaxies are connected by stringy structures consisting of galaxies. This thesis contributes to the understanding of this intricate structure

    Ambient and intrinsic triangulations and topological methods in cosmology

    Get PDF

    Ambient and intrinsic triangulations and topological methods in cosmology

    Get PDF
    The thesis consist of two parts, one part concerns triangulations the other the structure of the universe. 1 Images in films such as Shrek or Frozen and in computer games are often made using small triangles. Subdividing a figure (such as Shrek) into small triangles is called triangulating. This may be done in two different ways. The first method makes use of straight triangles and is used most often. Because computer power is limited, we want to use as few triangles as possible, while maintaining the quality of the image. This means that one has to choose the triangles in a clever manner. Much is known about the choice of triangles if the surface is convex (egg-shaped). This thesis contributes to our understanding of non-convex surfaces. The second and new method uses curved triangles that follow the surface. The triangles we use are determined by the intrinsic geometry of the surface and are called intrinsic triangles. 2 Shortly after the Big Bang the universe was very hot and dense. Quantum mechanical effects introduced structure into the matter distribution in the early universe. The universe expanded according the laws of General Relativity and the matter cooled down. After the matter in the universe had cooled down, clusters of galaxies formed out of the densest regions. These clusters of galaxies are connected by stringy structures consisting of galaxies. This thesis contributes to the understanding of this intricate structure
    corecore