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Chapter 1

Introduction

1.1 The two parts of this thesis

The research presented in this thesis has been conducted in the context of the 7th
Framework Programme for Research of the European Commission, under FET-
Open grant number 255827 (Computational Geometric Learning). The Rijks-
universiteit Groningen participated in two work packages within this project.
One focussed on the approximation of embedded surfaces and manifolds and
is represented in part one of this thesis. The other focussed on the topology of
geometric patterns in cosmology and is represented in the second part of this
thesis. This chapter provides an introduction to part one. For more information
on the European project we refer to the appendix. For an introduction to the
second part of the thesis we refer to Chapter 4.

A number of sections of this thesis have been published or have been accep-
ted for publication. For a detailed overview we refer the reader to the appendix
on publications.

1.2 The central question in part one

In part one of this thesis we consider the setting where a surface or some gen-
eralization (manifold) is given a priori and we want to subdivide this surface or
manifold. For the subdivision we will restrict ourselves to triangulations. The
central question we consider is the following: How can one triangulate a manifold
in a sensible manner? There are two different ways in which the words triangula-
tion and sensible can be interpreted that we will pursue:

• In the first interpretation we consider our surface or manifold as embed-

3



4 CHAPTER 1. INTRODUCTION

ded in Euclidean space and the triangulation is piecewise linear in Euc-
lidean (it consists of straight rigid triangles, or more generally simplices,
the d-dimensional versions of triangles). Sensible will mean that the tri-
angulation is close to the original surface or manifold (in a manner we
shall specify later) and using as small a number of triangles as possible.
This interpretation is in line with applications in computer graphics; even
though computers become more and more powerful the demands on and
expectations of graphics increase as well, leaving a question for accurate
approximations using few triangles. The triangulations in this setting are
called extrinsic triangulations.

• The second interpretation considers the manifold as an entity per se, that
is without referring to some ambient space. We also assume there is some
specific distance defined on the manifold called a metric, to be precise it is
a so-called Riemannian manifold. We define simplices on the Riemannian
manifold based only on the Riemannian metric and study triangulations
using these simplices. The triangulations in this setting are called intrinsic
triangulations.

1.3 Triangulations of manifolds in Euclidean space

We will now go into the first interpretation of our central question. Here we as-
sume that our manifold (in the two dimensional case a surface) is embedded in
Euclidean space. The triangulation we consider is piecewise linear in the ambi-
ent Euclidean space, which means that the simplices are straight or (affinely) flat.
We want our triangulation to be accurate. To specify what we mean by accur-
acy we need to introduce a distance between subsets in Euclidean space, in our
case the triangulation and the manifold we want to triangulate. We will use the
Hausdorff distance, but this choice is not unique. For example the Fréchet dis-
tance for curves is quite popular, various so-called Lp-norms are used in higher
dimensions, usually for functions, and the symmetric difference is also used for
full dimensional sets. We shall give a feel for the Hausdorff distance, but not for
the others.

The Haussdorf distance, optimal triangulations and the Approximierbarkeit

The Hausdorff distance dH is as said a distance between two embedded surfaces
or manifolds. We shall always assume that these surfaces are embedded in Eu-
clidean space. For a pictorial explanation of the Hausdorff distance we refer to
Figure 1.1.
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It will not surprise the reader that if we allow more vertices (and therefore
more simplices) in our triangulation we can achieve greater accuracy in terms of
the Hausdorff distance. For a given number of vertices we call a triangulation
that achieves the smallest Hausdorff distance possible an optimal triangulation.

If we restrict ourselves to surfaces in three dimensional Euclidean space, it
can be shown that for a sufficiently large number of vertices the Hausdorff dis-
tance of optimal triangulations is approximately inversely proportional to the
number of vertices. The coefficient of this proportionality is called the ‘Approxi-
mierbarkeit’, approximation parameter. It can be defined for arbitrary dimensions.
The ‘Approximierbarkeit’ has been introduced by Fejes Tóth in two [FT48] (im-
plicitly) and three [FT53] dimensions, mainly in the context of convex surfaces.
Convex (hyper-) surfaces are positively curved everywhere, roughly speaking
they are egg shaped.

Literature overview

The work of Fejes Tóth was later generalized by Schneider [Sch81] and Gruber
[Gru93a, Gru93b] to convex hypersurfaces of arbitrary dimension.
Ludwig [Lud94, Lud98] studied the behaviour of higher order terms (with re-
spect to the inverse number of vertices) in the asymptotic development of both
the so-called symmetric difference and the Hausdorff distance for the approx-
imation of convex curves in the plane. Higher order approximations of curves
(that is by splines, which are piecewise polynomial curves) have been explored
by Ghosh et al. [Gho10, GPV07] in two and three dimensions.

All references mentioned here, apart from [FT53] and [Gho10, GPV07], have
focussed exclusively on convex (hyper-) surfaces. Similar questions, that is
quantities like the Approximierbarkeit but based on different distances, have
been considered for (hyper-) surfaces that are the graphs of functions. Natur-
ally they still consider triangulations that are piecewise linear in the ambient
Euclidean space. Desnogues and Devillers [DD95] consider the L2-norm and
Chen, Sun and Xu [CSX07] the more general Lp-norm. Pottmann, Krasauskas,
Hamann, Joy and Seibold [PKH+00] and Atariah [Ata14] study the maximum
(supremum) of the vertical distance between the graph and the triangulation.
D’Azevedo and Simpson [DS91] do not focus on a distance between two func-
tions, but concentrate on a good approximation of the gradient of the function.

Clarkson [Cla06] has been a great source of inspiration because he studied
upper bounds on the ‘Approximierbarkeit’, for non-convex hypersurfaces. See
also De Laat [dL11], for a discussion of arbitrary co-dimension. Clarkson and
De Laat study the behaviour of the Hausdorff distance for good, but not optimal
triangulations. This gives an upper bound on the ‘Approximierbarkeit’.

Boissonnat and Oudot [BO05] study, among others, the behaviour of the
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Figure 1.1: A smooth curve (blue) and a piecewise linear approximation (red)
of the curve, with neighbourhoods of increasing size. We see that eventually
(going from top to bottom) the blue neighbourhood encloses the piecewise lin-
ear curve and the red neighbourhood of the piecewise linear curve contains the
blue curve. The Hausdorff distance is the smallest radius such that the neigh-
bourhood of this radius of the smooth curve contains the piecewise linear curve
and the neighbourhood of the same radius of the piecewise linear curve contains
the smooth curve.

Hausdorff distance for triangulations constructed using so-called Delaunay tri-
angulations. This work is also relevant for Chapter 3, see Section 3.1.4.

In the context of the triangulation of surfaces we should also mention meshes.
It is important to note that the constituents of a mesh may include not only
simplices, but more complicates objects. For an overview including explicit al-
gorithms we refer to [BCSM+06] and [CG06].
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Results on extrinsic triangulations

In Chapter 2 we discuss the following:

• The relation between the ‘Approximierbarkeit’ of convex hypersurfaces
for extrinsic triangulations whose vertices lie on the hypersurface and tri-
angulations whose vertices are unrestricted. In particular we show that he
‘Approximierbarkeit’ in the two cases differ by a factor 2.

• The dependence of the ‘Approximierbarkeit’ on the intrinsic and extrinsic
geometry of the embedded manifold.
For convex surfaces (as was shown by Fejes Tóth and others) the ‘Approx-
imierbarkeit’ can be expressed in term of the Gauss curvature. The Gauss
curvature is an intrinsic geometric quantity, which means that it refers only
to the manifold itself and not to its embedding in an ambient Euclidean
space. It is remarkable that the ‘Approximierbarkeit’ which is defined for
extrinsic triangulations can be expressed in intrinsic quantities.
We show that the intrinsic nature of the expression for the ‘Approximi-
erbarkeit’ is typical for low co-dimensions. In particular, we construct an
explicit example that implies that for a sufficiently high co-dimension of
the embedded manifold the ‘Approximierbarkeit’ is extrinsic in nature.
We give a heuristic explanation of this result based on the Nash embed-
ding theorem [Nas56].

• The extrinsic triangulation of the one-sheeted hyperboloid (with bound-
ary) suggested by Fejes Tóth. The one-sheeted hyperboloid is an example
of a negatively curved ruled surface.
Fejes Tóth claimed that in this case the Hausdorff distance is inversely
proportional to the square of the number of vertices. This would, among
others, imply that the ‘Approximierbarkeit’ would be zero. This is incor-
rect. We prove that the Hausdorff distance is inversely proportional to the
number of vertices or, to put it differently, the ‘Approximierbarkeit’ is non-
zero.
The example by Fejes Tóth begs the question: What is the ‘Approximi-
erbarkeit’ for negatively curved surfaces? We study this question and are
able to provide an answer for a large class of surfaces and discuss a method
that could be employed to find a general answer.
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1.4 Intrinsic simplices and triangulations

We will now turn our attention to the second interpretation of ‘How can one tri-
angulate a manifold in a sensible manner?’.

Barycentric coordinates and Riemannian centres of mass

Suppose that we are given two points in Euclidean space. We shall think of these
two as being ordered, that is there is an initial and a final point. We shall call
them vertices. Any point on the line segment connecting the two vertices can
be identified by the percentage of the total distance between the two points it is
removed from the initial point. This identification by percentage of the distance
can be generalized to barycentric coordinates, introduced by Möbius [Möb27].

The barycentric coordinates can be given as the point where an energy func-
tional is minimized. This energy functional is given by the weighted sum of the
squared distances to the vertices. The weights are identified as the barycentric
coordinates.

One can generalize the energy functional on Euclidean space to an energy
functional on a Riemannian manifold under conditions that will be made spe-
cific in Chapter 3. The generalized energy functional is called a Riemannian
centre of mass or Karcher mean [Kar77], see also [Car29, Fré48, Ken90].

Intrinsic simplices

Riemannian centres of mass can be used to define simplices on a Riemannian
manifold. See Figure 1.2 for an illustration. We shall call simplices defined
in such a way intrinsic simplices, because they are defined in terms of intrinsic
quantities.

It is not obvious that such an intrinsic simplex is homeomorphic to the stand-
ard (Euclidean) simplex (of the appropriate dimension). If it is we call it a non-
degenerate simplex. In Chapter 3 we study conditions that guarantee that an
intrinsic simplex is non-degenerate.

The relatively simple two dimensional case was studied by Rustamov [Rus10].
The same question has been addressed independently and simultaneously by
Von Deylen [vDar], using somewhat different methods. The conditions we present
are more explicit than Von Deylen’s.

Intrinsic simplices have also been called geodesic finite elements within the
field of numerical partial differential equations, see [San12, San13]. Degeneracy,
however, plays no role in the study of geodesic finite elements.
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Figure 1.2: An intrinsic triangle on a surface.

Quality

In three dimensional Euclidean space a simplex with four vertices is degenerate
if the vertices are coplanar. Quality measures can be used to indicate how close a
simplex is to being degenerate. One such measure for quality is the normalized
volume of a simplex, where the normalization uses the length of the longest
edge of the simplex. This discussion extends to any dimension.

Intrinsic triangulations

In Chapter 3 we also consider triangulations of manifolds using intrinsic sim-
plices.

The study of triangulations of manifolds is not new. A great deal of attention
was given to the abstract triangulation of manifolds within the field of topo-
logy in the first half of the 20th century. The efforts in this period left us with a
number of proofs that every smooth manifold admits a triangulation, see for ex-
ample [Cai34, Mun68]. These classical results were obtained by the use of charts
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and/or embeddings for many of the constructions involved. Triangulations that
are determined by the Riemannian metric are new.

The problem of constructing triangulations has been revisited in the com-
putational geometry community, where the focus is on algorithms used to con-
struct a triangulation. The one and two dimensional manifolds embedded in
two and three dimensions have been extensively studied in the last decades, see
[CDS13, Dey07] for introductions and overviews. Recently the higher dimen-
sional settings have been studied [CDR05, BDG13a, BDG13b, BG14].

Results on intrinsic simplices and triangulations

The main contributions in Chapter 3 are:

• We give a new proof for the existence and uniqueness of Riemannian centres
of mass (including negative weights).

• We give non-degeneracy criteria for intrinsic simplices. These criteria are
formulated in terms of the quality of a (Euclidean) simplex to which we
compare our intrinsic simplex. This simplex is found by taking the inverse
image of all vertices under the inverse exponential map at one of the ver-
tices.

• We formulate conditions on the density of vertices necessary to obtain a
triangulation of a manifold using intrinsic simplices. These conditions in-
volve local sectional curvatures and simplex quality. Such a triangulation
is called an intrinsic triangulation. Conditions on the density of vertices
are also known as sampling conditions in the computational geometry lit-
erature.

• Now suppose that we have constructed an intrinsic triangulation. We can
now construct a geometric simplicial complex based on this intrinsic trian-
gulation. By this we mean that for every intrinsic simplex we have a cor-
responding Euclidean simplex in the geometric simplicial complex whose
edges have the same length as the edges of the intrinsic simplex. We derive
a geometric distortion result, that is, show that the distances on the sim-
plicial complex we thus construct are close to the distances on the original
manifold.

• Finally we revisit the non-degeneracy criteria for individual simplices. We
give sharper criteria (compared to the ones mentioned above, based on
Euclidean simplices) for intrinsic simplices that lie on manifolds of which
the curvature is almost constant.
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1.5 Extrinsic triangulations versus intrinsic triangu-
lations

We can also contrast the content of the final chapter of this part of this thesis
with the content of the second. In Chapter 3 we give conditions on the density
of vertices necessary to obtain a triangulation. For a fixed manifold this can be
interpreted as an answer to the question:
What is the minimal number of vertices necessary to triangulate the manifold?
This contrasts with the setting of the second chapter where we let the number of
vertices tend to infinity.

We can interpret Chapter 2 in a way that is seemingly more compatible with
the interpretation of Chapter 3 we just gave. Namely the central question of
Chapter 2 can be seen as:
What is the minimal number of vertices necessary to triangulate the manifold with a
given accuracy?
However in a certain sense this emphasizes the difference between the two
chapters even more, because in an intrinsic setting there is no accuracy, the
concept does not make sense!



12 CHAPTER 1. INTRODUCTION



Chapter 2

Triangulations in Euclidean
space

2.1 Introduction

In the seminal book ‘Lagerungen in der Ebene, auf der Kugel und im Raum’
[FT53] Fejes Tóth introduced inscribed and circumscribed triangulations ap-
proximating convex surfaces in R3 optimally and the ‘Approximierbarkeit’ (ap-
proximation parameter A2). By a triangulation we shall in this chapter mean a
geometric realization of a simplicial complex in Euclidean space homeomorphic
to the surface, that is piecewise linear in ambient space. From now on, unless
stated otherwise we take a simplicial complex to mean the geometric realization.
All surfaces are assumed to be smooth (C∞), unless stated otherwise.

Optimal triangulations withm vertices are triangulations or polytopes1 which
minimize2 the Hausdorff distance between the surface and the polytope when
this polytope ranges over the space of triangulations with m vertices. Depend-
ing on the setting these vertices lie on the surface (here the polytope is inscribed),
the faces touch the surface (here the polytope is circumscribed), or the vertices
are in general position. The Hausdorff distance between two subsets X and Y
of the same Euclidean space is defined as:

dH(X,Y ) = max{sup
x∈X

inf
y∈Y
|x− y|, sup

y∈Y
inf
x∈X
|x− y|},

1In the inscribed convex case there is no essential difference, because the boundary of the convex
hull of the vertices is a polytope. It is clear that if more than d vertices are coplanar, where d is the
dimension of the ambient space, we can subdivide the polytopes that make up the boundary into
simplices.

2In Section 2.2.2 we shall see that this minimum is indeed attained.

13



14 CHAPTER 2. TRIANGULATIONS IN EUCLIDEAN SPACE

where |x−y| denotes the standard Euclidean distance of x and y. The one-sided
Hausdorff distance from X to Y is given by

doH(X,Y ) = sup
x∈X

inf
y∈Y
|x− y|.

The inverse of the asymptotic value of the product of the number of vertices
and the Hausdorff distance (or more generally for hypersurfaces the product of
m2/(d−1) and the Hausdorff distance, where d is the dimension of the Euclidean
space and thus d − 1 the dimension of the hypersurface) is referred to as the
approximation parameter A2 (Ad−1 in dimension d). The factor m2/(d−1) can be
understood using the following two observations:

• The distance between m equally distributed points on a d− 1 dimensional
manifold is proportional to m−1/(d−1). This in turn can be seen as follows:
Suppose that we are given a d − 1-dimensional box whose sides are of
unit length which contains m = m̃d−1 points. We can distribute the points
regularly and equally on a lattice. Let us assume that the basis vectors
of this lattice points along the sides of the box. Clearly the length of the
basis vectors of the lattice is 1/m̃ = 1/m1/(d−1). We may conclude that the
distance between points is of the order 1/m1/(d−1).

• Suppose we are given a circle whose curvature is ki. A cord on the circle
whose one-sided Hausdorff distance to the circle is η has a length propor-
tional to

√
kiη, for sufficiently small η. By one-sided Hausdorff η we mean

that for each point on the cord there is a point on the circle that lies less
than distance η from this point. This can be seen by considering the equa-
tion η − 1

2kix
2 ' 0, describing the circle up to second order. We conclude

that the Hausdorff distance is proportional to the square of the distance
between points.

We should think of the ki above as the principal curvatures of the surface. We
therefore see that the two observations also indicate why Ad−1 depends on the
curvature. We will elaborate on this observation in Sections 2.1.1 and 2.3.

2.1.1 Fejes Tóth’s bound on the approximation parameter.

Fejes Tóth gave a lower bound on the inverse of the approximation parameter
for inscribed triangulations depending on the Gaussian curvature, which we
shall now discuss. Our discussion is a slightly embellished version of the dis-
cussion in Chapter 5, Section 12 of [FT53]. The main goal is to give a lower
bound on

lim
m→∞

dH(Σ, Tm)m,
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Figure 2.1: On the left, a general convex surface with a plane in which all tri-
angles lie. The point in which the one-sided Hausdorff distance is attained, is
indicated in blue. In the middle, the cross-section of the previous figure. On the
right, a zoom-in of the first figure. In the zoom-in the ellipse is indicated in blue.
The ellipse is the intersection of the surface and the plane.

where Tm is a triangulation of Σ with m vertices. We stress that Σ is a strictly
convex surface in R3. Fejes Tóth also argued that this bound can be obtained.

As mentioned, we consider a strictly convex surface Σ, embedded in R3.
This is equivalent with the fact that for every point on the surface both of the
principal curvatures are positive. For every fixed point q of this convex surface
and sufficiently small parameter η > 0, we consider all triangles that satisfy the
following conditions:

• The vertices of the triangle lie on the surface Σ.

• The triangle has one-sided Hausdorff distance η to the surface, by which
we mean that for each point on the triangle there is a point on the surface
that lies less than distance η from the point on the triangle.

• The one-sided Hausdorff distance is attained in the point q.

These conditions imply that each triangle lies in the same plane, namely the
plane parallel to the tangent plane of Σ at q and at distance η from this tangent
plane. This is sketched in Figure 2.1.

Because the convex surface can locally be approximated by the Monge form
z = − 1

2k1x
2 − 1

2k2y
2, where ki are the principal curvatures, the intersection of
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the plane introduced above and the convex surface is approximately an ellipse.
Its semi-axes are

√
2ηR1 and

√
2ηR2, where the Ri = k−1

i are the principal radii
(see Figure 2.1).

Because we are interested in a lower bound on

lim
n→∞

dH(Σ, Tm)m,

we need to find a triangle with the greatest area that satisfies the three criteria
given above. We look for the greatest area, because roughly speaking triangles
with larger area lead to fewer vertices. Finding the triangle with the greatest area
that satisfies the three criteria given above is equivalent to finding the largest
triangle inscribed in the (approximate) ellipse. Using a linear transformation to
reduce the problem to the circle, it is not very difficult to see that the inscribed
triangle with greatest area satisfies

Area(t) =

√
27

2
η
√
R1R2 + o(η),

where Area(t) denotes the area of the triangle t, see Figure 2.2. Bringing η to the
other side this gives

doH = η &
2√
27

√
KArea(t), (2.1)

for each triangle, where doH denotes the one-sided Hausdorff distance from t to
the surface and & is used to indicate ≥ up to leading order in η and 1

R1R2
=

k1k2 = K is the Gaussian curvature. To be entirely precise

η + o(η) ≥ 2√
27

√
KArea(t)

is denoted by

η &
2√
27

√
KArea(t).

Now we can consider a triangulation T of the surface. Applying the inequal-
ity (2.1) to every triangle in a triangulation we find

dH(Σ, Tm)mT &
∑
t∈T

2√
27

√
KtArea(t),

where we specifically indicate the individual triangles in the triangulation by
t and denote the number of triangles by mT . For a triangle t, the Gaussian
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Figure 2.2: Sketch of the ellipse with semi-axis
√

2ηR1 and
√

2ηR2 and the in-
scribed triangle with the greatest possible surface area.

curvature Kt associated to t is the Gaussian curvature in the point on Σ closest
to t whose tangent plane is parallel to t. Note that as the surface is convex we
can replace the one-sided Hausdorff distance by the Hausdorff distance. As the
number of triangles tends to infinity we may replace the summation with an
integral, that is

lim
mT→∞

dH(Σ, Tm)mT ≥
2√
27

∫ √
KdA. (2.2)

Traditionally, the number of vertices is used instead of the number of triangles
in a triangulation. Following this, we rewrite this result using that for a compact
surface mT ∼ 2m, with m number of vertices. This result is based on Euler’s
formula for triangulations of two dimensional topological spheres

m−me +mT = χ = 2,

with me the number of edges and the fact that each triangle has three edges and
each edge is shared between two triangles. Because the number of vertices tends
to infinity as the Hausdorff distance tends to zero this ∼ is compatible with &.
With this notation (2.2) reads

lim
m→∞

dH(Σ, Tm)m ≥ 1√
27

∫ √
KdA. (2.3)

We have provided a sketch in Figure 2.3.

Attaining the bound

Fejes Tóth argued (somewhat heuristically) that we can cover the entire surface
with triangles for which

doH ∼
2√
27

√
KArea(t),
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Figure 2.3: Sketch of the convex surface and a triangulation. The plane associ-
ated with one triangle is indicated.

where ∼ denotes equality up to leading order in the one-sided Hausdorff dis-
tance and doH denotes the one-sided Hausdorff distance from the triangle to the
surface. Schneider [Sch81] has improved on this reasoning. He gave a construc-
tion for a sequence of triangulations for a convex surface that asymptotically
attain the bound. His construction is based on the observation that for a strictly
convex surface the second fundamental form is in fact a metric. We now choose
an optimal cover, with respect to this metric, withm points. An optimal cover of
a compact Riemannian manifold with m points consists of the smallest possible
radius and a distribution of the m points on the manifold such that the union of
the geodesic balls with this radius and centred at the m points is the entire man-
ifold. The convex hull of these points3 is a polytope. The family of polytopes,

3Here we view the manifold as embedded in Euclidean space.
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indexed by the number of vertices m, thus constructed asymptotically attains
the bound given in (2.3) in the limit as m tends to infinity. It is indeed not hard
to see that the triangles in this triangulation constructed in this manner locally
converge to the triangle depicted in Figure 2.2.

Arbitrary dimension

The construction by Schneider [Sch81] works in arbitrary dimension. He used it
to generalize the discussion of Fejes Tóth to convex hypersurfaces in Euclidean
space of arbitrary dimension. In doing so Schneider gave a solid proof of the
formula for the approximation parameterAd−1 of inscribed polytopes of convex
C3 hypersurfaces in any dimension. The formula for Ad−1 reads

1

Ad−1
= lim
m→∞

m2/(d−1)dH(Σ, Tm) =
1

2

(
θd−1

κd−1

∫
Σ

√
K(x)dVol

)2/(d−1)

, (2.4)

where κd = πd/2/Γ(1 + d/2) is the volume of the d-dimensional unit ball, θd the
covering density of the ball in d-dimensional space, dVol the volume form and
K the Gaussian curvature. The covering density is defined as the infimum of
the density over all coverings of, in this case, Euclidean space by the Euclidean
unit ball, see for example [Rog64]. The density of a cover U = {Ui} of a compact
measurable space with volume form dVol by a finite number of sets Ui is defined
as follows: Let fU be the integer valued function whose value fU (x) at a point x
is the number of sets Ui such that x ∈ Ui. The density for the covering U is∫

fU dVol∫
dVol

. (2.5)

Lower differentiability class and the circumscribed case

Gruber [Gru93a, Gru93b] then extended the work by Schneider by considering
hypersurfaces which are of lower differentiability class (C2). Furthermore he
discussed

lim
m→∞

dH(Σ, Tm)m,

for optimal circumscribing polytopes. This resulted in the same value of the
approximation parameterAd−1 as in (2.4). Circumscribing polytopes fell outside
the scope of the article by Schneider.
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2.1.2 Overview

Vertices in general position

Fejes Tóth also stated that the approximation parameter of optimal triangula-
tions whose vertices are in general position, that is the polytope is neither in-
nor circumscribed, is half of the approximation parameter in the inscribed set-
ting. None of the previously mentioned papers gave a proof of this claim, al-
though some (such as [Bro08]) mentioned it. In Section 2.2 we provide a proof
of this statement for not strictly convex C1 hypersurfaces with positive reach.
The reach of an embedded manifold is the largest distance such that if a point p
lies closer than this distance from the manifold, then there is a unique point q on
the manifold for which q lies closest to p.

The extrinsic nature of Ad−1

Formula (2.4) is intrinsic in nature, as the Gaussian curvature is intrinsic. In fact
it can be expressed in terms of the Riemann tensor, see Chapter 7 of [Spi75b].

In Section 2.3 we show that the intrinsic nature of the approximation para-
meter is particular to low co-dimension. This makes heuristically some sense
because the rigidity of a manifold disappears if the co-dimension of the em-
bedding is sufficiently high, as was noted by Nash in [Nas56]. In the setting
of Nash, rigidity concerns metric preserving perturbations of the embedding.
Nash proved that a compact n-manifold with a Ck Riemannian metric has a Ck

isometric embedding in any small volume of Euclidean (n/2)(3n + 11)-space,
provided 3 < k ≤ ∞. So roughly speaking, one can squash a manifold in a small
volume without affecting the intrinsic metric, but this would lead to wrinkles.

This is opposite to the results for surfaces in three dimensional Euclidean
space (or generally manifolds embedded in codimension one.4) In codimension
one rigidity is often interpreted in a global sense. By this we mean that we are
not satisfied with metric preserving perturbations of the embedding but focus
on uniqueness of the embedding up to Euclidean motions. Euclidean motions
are generated by rotations and translations. A number of rigidity results in this
global sense are available, see Spivak [Spi75a, Spi75c] for an overview. For us,
the most relevant result is Theorem 1 of Chapter 12 of [Spi75c]. Let ν denote the
Gauss map, dν the Weingarten map and II the second fundamental form. With
this notation Theorem 1 of Chapter 12 of [Spi75c] reads:

Theorem 2.1.1 Let M and M̄ be isometrically immersed hypersurfaces in Rn+1

and let φ : M → M̄ be an isometry. Suppose that dν : TpM → TpM has rank

4Of course a great number of results also exists on rigid embeddings of more general low codi-
mension, such as the result by Allendoerfer. This field still sees active research.
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≥ 3. Then (φ∗II)(p) = ±II(p). [This equation makes sense even though ν and ν̄
may be defined only locally and then only up to sign.]
Consequently, if M and M̄ are connected (not necessarily complete) hypersur-
faces and dν : TqM → TqM has rank ≥ 3 for all q ∈ M , then φ is the restriction
of a Euclidean motion.

Our interest was raised by the upper bounds on

lim
m→∞

dH(M,T om)mn/2,

where M is an n-dimensional manifold embedded in Euclidean space and T om
denotes an optimal triangulation of M . As before, we mean by a optimal trian-
gulation a triangulation of M with m vertices such that there is no triangulation
T̃m such that dH(M, T̃m) < dH(M,T om). These bounds have been discussed in
the Master’s thesis of David de Laat [dL11]. Similar upper bounds were the
topic of, among others5, Chen, Sun and Xu[CSX07]. These authors studied the
Lp norm of the difference between a function and a linear approximation of this
function. The bounds in [dL11] and [CSX07] are defined in terms of the Hessian
and thus extrinsic in nature. Our result, Theorem 2.3.1, gives us that the extrinsic
nature of the bounds is unavoidable.

The Fejes Tóth’s triangulation of one-sheeted hyperboloid.

Fejes Tóth claimed that the approximation of ruled surfaces embedded in three
dimensional Euclidean space would be entirely different from the approxima-
tion of convex surfaces. In Section 12 of Chapter 5 of [FT53] he states the follow-
ing:6

Let Σ be the one-sheeted hyperboloid bounded by two congruent
circlesA andB. We inscribeA andB by regularm-polygonsA1 . . . Am
and B1 . . . Bm respectively, so that A1B1, . . . , AmBm lie on the hy-
perboloid. The polyhedron-like surface T2m is best described by its
faces A1A2B1, . . . , AmA1Bm and B1B2A2, . . . , BmB1A1. The devi-
ation dH(T2m,Σ) is determined by the deviation of the m-polygon
A1 . . . Am from the circle A, this implies that the order of magnitude
of the deviation is 1/m2 and not 1/m.

Unfortunately this is incorrect, as we shall discuss in Section 2.4. In fact we shall
show that the order of magnitude of dH(Σ, Tm) is 1/m, like in the convex case.
Moreover in this particular case we can explicitly calculate dH(Σ, Tm) and show
that this triangulation is not optimal.

5The introduction of [CSX07] offers an extensive literature overview.
6Translation provided by the author. We have made the notation compatible with this introduc-

tion.
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Fejes Tóth’s triangulation and ruled surfaces

The fact that Fejes Tóth’s claims regarding the triangulation of the one-sheeted
hyperboloid with boundary are false raises the question if

lim
m→∞

dH(Σ, Tm)m

depends on whether Σ is ruled or not. In case the surface contains no straight
lines it is not difficult to prove that all edge lengths in a sequence of optimal
triangulations indexed by their increasing number of vertices go to zero. If all
lengths of the edges go to zero we can use local techniques to determine

lim
m→∞

dH(Tm,Σ)m. (2.6)

By local techniques we mean that we can do the analysis in the neighbourhood
of a point. In particular one uses:

• The normal to the surface is approximately constant in a neighbourhood
of a triangle.

• The surface is well approximated by the second order Taylor approxima-
tion of its Monge form.

If the local techniques can be applied it is not difficult to find an expression
for (2.6) using arguments similar to those used in the convex case, see Section
2.1.1. Alternatively such an expression also follows from results by Pottmann
et al. [PKH+00] and Atariah [Ata14]. These authors study triangulations of
graphs of functions, where the relevant distance is the vertical distance between
the triangulation (graph of a piecewise linear function) and the graph of the
function. In this context we also need to mention Clarkson’s roughly quadratic
surfaces [Cla06].

However, if the surface contains a segment of a ruled surface it is not at all
clear whether the local techniques still work. We have therefore not been able to
find an expression for

lim
m→∞

dH(Σ, Tm)m

if the surface contains a segment of a ruled surface. However, in Section 2.4.3
we do touch upon one possible approach to find such an expression.

The outcome of this search would not only be of theoretical interest. Let us
explain this a bit further. The results for convex surfaces were instrumental in
the development by Kamenev, see for example [Kam93], of algorithms for ap-
proximation of convex surfaces. Kamenev’s algorithms are not really optimal in
the sense that they achieve the best accuracy with a given number of vertices,
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because finding optimal covers for a finite number of points is too difficult. In-
stead it makes use of a so-called greedy algorithm. Up to a multiplicative factor
the result is satisfactory, by which we mean that using this method we find a
sequence of triangulations for which

lim
m→∞

dH(Tm,Σ)m

is finite but larger then the Approximierbarkeit.
In the non-convex case there are two possibilities: either the local techniques

work or they fail. If the local techniques work one would expect that a relatively
straightforward generalization of the work by Kamenev could be achieved, al-
though this would require a significant amount of work. If they fail one would
need to be very careful if a surface contains a segment of a ruled surface or even
a segment that is close to a ruled surface in the Hausdorff sense. We do not pur-
sue this problem in this thesis, but mention it because it indicates the practical
importance of Section 2.4.3.
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2.2 On the optimal triangulation of convex hyper-
surfaces, whose vertices lie in ambient space

Fejes Tóth also conjectured that the complexity of triangulations whose vertices
are in general position, that is neither in- nor circumscribed, is half of the com-
plexity in the inscribed setting. None of the previously mentioned papers gave a
proof of this. Below we provide a proof of this statement for not strictly convex
C1 hypersurfaces with positive reach. Using the previously mentioned results
this implies:

Theorem 2.2.1 Let Σ be a strictly convex C2 hypersurface embedded in Rd and
for every m let Sm be an optimally approximating simplicial complex with m
vertices having Hausdorff distance dH(Sm,Σ). Then we have

lim
m→∞

m2/(d−1)dH(Sm,Σ) =
1

2Ad
=

1

4

(
θd−1

κd−1

∫
Σ

√
K(x)dµ

)2/(d−1)

.

2.2.1 The sphere

To illustrate the problem we first consider the standard circle S1 in R2, with ra-
dius 1 and centred at the origin. We approximate the circle by a regular polygon
with m vertices, Pm. Due to symmetry this is the optimal manner, because the
Hausdorff distance must be attained in every edge. Suppose that for an op-
timal polygon the Hausdorff distance is not attained in one of the edges, then
we can perturb one of its vertices so that the Hausdorff distance is not attained
in this edge nor in its neighbours. Via induction we find that the polygon is not
optimal. Naturally the centre of the regular polygon is the origin. The circumra-
dius of the regular polygon will be denoted by R. A sketch is provided in figure
2.4. Clearly the points on the polygon furthest from or closest to the centre are
the vertices and the centres of the edges. These points are the only points where
the Hausdorff distance can be attained. The distance between the circle and
the vertex or the centre of the edge is given by R − 1 and 1 − R cos(π/m), re-
spectively, which yields that the Hausdorff distance between the circle and the
regular polygon is

dH(Pm, S
1) = max

{
R− 1, 1−R(1− dH(P in

m , S
1))
}

= max
{
R− 1, 1−R cos

( π
m

)}
,

where P in
m denotes the inscribed polygon, that is the polygon with R = 1.
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R

R cos(π/m)
2π/m

Figure 2.4: A polygon Pm and a circle, both with the same centre. R denotes the
circumradius of Pm. We depict the inscribed case.

We can minimize dH(Pm, S
1) with respect to R by the following choice

R =
2

1 + cos
(
π
m

) =
2

2− dH(P in
m , S

1)
.

So that

dH(Pm, S
1) =

2

1 + cos
(
π
m

) − 1 =
2

2− dH(P in
m , S

1)
− 1,

for sufficiently largem or rather sufficiently low dH(P in
m , S

1) we can develop this
expression

dH(Pm, S
1) =

2

1 + cos
(
π
m

) − 1 =
1

4

( π
m

)2

+O
(

1

m4

)
dH(Pm, S

1) =
2

2− dH(P in
m , S

1)
− 1 = 1

2dH(P in
m , S

1) +O((dH(P in
m , S

1)2).

Remark 2.2.2 One may wonder about the equivalent statement for the Banach-
Mazur distance (δBM). The Banach-Mazur distance on convex bodies which are
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symmetric in the origin (C0), have been treated extensively by Gruber [Gru93a,
Gru93b]. For two convex bodiesC,D ∈ C0 the Banach-Mazur distance is defined
[Gru93a] as

δBM(C,D) = inf{λ > 1 : C ⊂ `(D) ⊂ λC, ` : Rd → Rd linear}

In this setting it is again clear that the optimal approximating body of S1 is a reg-
ular polygon Pm (in this case with its interior). Because the definition includes
linear maps ` that work on Pm, rescaling Pm by R does not influence the result,
that is δBM(S1, Pm) = δBM(S1, RPm), with the interiors having been left implicit.

For general Sd we are not able to give an explicit description of the inscribed
polytope which approximates Sd optimally, as there are only so many Platonic
solids. However, suppose that we are given such a polytope P in

m , then by defin-
ition the vertices ({vi}) of P in

m lie on Sd and there are points ({qi}) on the faces
which attain a distance dH(P in

m , S
d) to the sphere. We can now consider the poly-

tope P in
m rescaled by a factorR, denoted byRP inm . ForRP in

m , the points vi, qi, the
vertices and the points where the maximum distance is attained in the inscribed
setting, are the points closest to and furthest from the origin. This means that in
these points the Hausdorff distance can be attained. Which in turn implies that

dH(RP inm , Sd) = max
{
R− 1, 1−R(1− dH(P in

m , S
d))
}
,

which is minimized with respect to R by

R∗ =
2

2− dH(P in
m , S

d)
.

Therefore,

dH(R∗ P inm , Sd) =
2

2− dH(P in
m , S

d)
− 1 =

1

2
dH(P in

m , S
d) +O((dH(P in

m , S
d)2).

In this manner we have constructed a simplicial complex (R∗ P inm ) such that the
Hausdorff distance of this complex is half of the Hausdorff distance in the in-
scribed case, up to leading order. On the other hand let us now assume that
we have a simplicial complex Sm with m vertices which minimizes dH(Sm, S

d),
we can now make the following construction; we take the vertices vi of Sm and
project these on the sphere along the normal π(vi). The simplicial complex with
these vertices and the simplexes corresponding to the original simplicial com-
plex Sm we will denote by P̃m. By the corresponding we mean that the convex
hull of vi1 , . . . , vil , denoted by sj , lies in Sm, if and only if the convex hull of
π(vi1), . . . , π(vil), denoted by sπj , lies in P̃m. We have for individual simplexes in
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the complex dH(si, s
π
i ) ≤ dH(Sm, S

d), which is in this case not very hard to see,
this will be proven in a general setting in lemma 2.2.6. From which we conclude
that dH(Sm, P̃m) ≤ dH(Sm, S

d). This in turn, in combination with the triangle
inequality, yields

dH(P̃m, S
d) ≤ dH(Sm, P̃m) + dH(Sm, S

d) ≤ 2dH(Sm, S
d).

This means that we have proven theorem 2.2.1 in the case of the sphere, if we
assume existence. In the next section we prove that there is indeed an inscribed
polytope P in

n which approximates Sd optimally.

2.2.2 The general case

In this section we first discuss the continuity of the Hausdorff distance and
prove some results on existence of optimal triangulations. By an optimal trian-
gulation we mean that that there is no complex with the same number of vertices
(on the surface or in general position, depending on the context) that achieves
a smaller Hausdorff distance. We then give one rather simple lemma that says
that if we have an optimally approximating simplicial complex Sm with m ver-
tices in ambient space of a hypersurface Σ, then the optimally approximating
inscribed polytope Pm satisfies dH(Pm,Σ) ≤ 2dH(Sm,Σ). Subsequently, given
an inscribed polytope P in

m , we construct a simplicial complex Sm such that

dH(Sm,Σ) ≤ 1

2
dH(P in

m ,Σ) + o(dH(P in
m ,Σ)).

The proof consists of two steps. Roughly speaking, we first push every point on
the polytope outwards by 1

2dH(P in
m ,Σ) using the normal to the surface to create a

new hypersurface. Note that this is no longer a simplicial complex. The second
step considers the Hausdorff distance between this surface and the simplicial
complex found by ‘pushing the vertices outwards’.

Suppose that we are given a combinatorial simplicial structure on the set
{1, . . . ,m} and two (possibly degenerate) geometric realizations Sm, S̃m in Rd
with (ordered) vertex sets {v1, . . . , vm} = V and {ṽ1, . . . , ṽm} = Ṽ . If we now
interpret V , Ṽ as elements in (Rd)m and assume that |V − Ṽ | ≤ δ, then for each
combinatorial simplex {i1, . . . , ik}we have

dH(CH(vi1 , . . . , vik),CH(ṽi1 , . . . , ṽik)) ≤ δ,

by linearity and, thus, dH(Sm, S̃m) ≤ δ, here CH denotes the convex hull.
Now we can prove that for a combinatorial simplicial complex and manifold

Σ

dH(·,Σ) : (Rd)m → R≥0 : V → dH(V,Σ),
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where we identify the vertices with the geometric realization of the complex, is
continuous. Let V, Ṽ ∈ (Rd)m, with ‖V − Ṽ ‖ ≤ δ, then the triangle inequality
yields

dH(V,Σ)− dH(V, Ṽ ) ≤ dH(Ṽ ,Σ) ≤ dH(V,Σ) + dH(V, Ṽ ).

|dH(V,Σ) − dH(Ṽ ,Σ)| ≤ δ, which shows continuity in the setting for a fixed
simplicial structure. We now note that there are but a finite number of simplicial
structures on a finite set. This together with the fact that the minimum of a finite
number of continuous functions is again continuous gives us that dH(·,Σ) is
continuous for any set of simplicial structures, in particular those corresponding
to topological d− 1-manifolds or topological d− 1-spheres. This means that we
have continuity in a very broad setting.

In the following we shall sometimes refer to the reach. Let X be a hyper-
surface in Rd. The reach R(X) of X is the largest distance to X such that if the
distance between a point in Rd and X is smaller than R(X), there is a unique
closest point on X . Federer [Fed59] has shown that a C2 manifold has strictly
positive reach. This result is not instrumental in the proofs of the following lem-
mas, but is used in Theorem 2.2.8.

Lemma 2.2.3 For each m there exists an inscribed polytope P in
m which approx-

imates a given compact convex hypersurface Σ optimally, where we assume that
the vertices of P in

m lie on Σ. Here we specifically allow the vertices to coincide,
so that we can use compactness arguments.

Proof It suffices to note that dH(·,Σ) is continuous if we restrict the domain to
Σm = Σ×· · ·×Σ and topological d−1 manifolds, using the same identifications
as above. Because Σ and therefore Σm is compact and a continuous function
attains its minimum on a compact set. Note that if we approximate a convex
surface by a simplicial complex which is a topological d − 1-manifold, then the
optimally approximating triangulation is itself a convex surface, because any
simplicial complex lies in the convex hull of its vertex set. This implies that
the inward normal to the hypersurface intersects the convex hull first and then
the simplicial complex, so that the Hausdorff distance to the convex surface is
smaller. So P in

m is indeed an inscribed polytope. �

A similar statement is true for triangulations whose vertices do not lie on the
hypersurface.

Lemma 2.2.4 Let Σ be a compact hypersurface. There exists a simplicial com-
plex Sm, with m vertices which approximates Σ optimally.

Proof Σ is compact, so it is bounded and thus contained in some ball B(q, ρ)
with radius ρ and centre q. Because (B(q, 2ρ))m is compact dH(·,Σ) attains its
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minimum on this set. This is also a global minimum because we have that
dH(Sm,Σ) ≤ dH(S1,Σ) ≤ ρ. �

Remark 2.2.5 In the lemma above we use the obvious statement that for two
optimal simplicial complexes (or polytopes) Sn and Sm, with n and m vertices
respectively, where n > m we have that dH(Sn,Σ) ≤ dH(Sm,Σ). However a
strict inequality does not hold in the most general setting. An example of this
is the following; consider the circle S1 and its optimal approximating simplicial
complexes for m = 1 and m = 2. These optimal approximating simplicial com-
plexes are a point in the centre and any line segment which contains the centre
and does not extend beyond twice the radius of the circle. It is easy to see that
dH(S1, S

1) = dH(S2, S
1).

We now focus on the lemmas that discuss the relation between the Haus-
dorff distance of triangulations whose vertices are restricted to a given convex
hypersurface and those that are not restricted to this hypersurface.

Lemma 2.2.6 For a given m suppose that the simplicial complex Sm (in general,
that is not necessarily inscribed) optimally approximates a compact convex hy-
persurface Σ, that is, there is no S̃m such that dH(S̃m,Σ) < dH(Sm,Σ). Then
the optimally approximating inscribed polytope Pm with m vertices satisfies
dH(Pm,Σ) ≤ 2dH(Sm,Σ).

Proof For each vertex vi of Sm choose a point von
i on Σ closest7 to vi. We define

π to be the mapping π : (v1, . . . , vm) 7→ (von
1 , . . . , von

m ). We endow {von
1 , . . . , von

m }
with the same simplicial structure as on {v1, . . . , vm}. The resulting simplicial
complex will be denoted by Son

m . So π can be viewed as a simplicial map. Due to
linearity we have that for every simplex {vi1 , . . . , vik}, we have

dH(CH(vi1 , . . . , vik),CH(von
i1 , . . . , v

on
ik

)) ≤ dH(Sm,Σ)

and therefore dH(Sm, S
on
m ) ≤ dH(Sm,Σ), which in turn, using the triangle in-

equality, yields

dH(Son
m ,Σ) ≤ dH(Son

m , Sm) + dH(Sm,Σ) ≤ 2dH(Sm,Σ).

Note that by the argument we have given in lemma 2.2.3 the optimal approx-
imating simplicial complex is indeed a polytope. So by definition of optimality
on enclosed polytopes we have that dH(Pm,Σ) ≤ dH(Son,Σ) which yields that
dH(Pm,Σ) ≤ 2dH(Sm,Σ). �

7If dh(Sm,Σ) ≤ R(Σ), with R the reach, the point is unique.
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For the following lemma we need two observations: Let Σ be a convex (but
not necessarily strictly convex) hypersurface and Sm a sequence of optimally
approximating triangulations of Σ with m vertices. Suppose that Tm(i) is a con-
vergent (sub-) sequence of simplices with Tm(i) ⊂ Sm(i) of which the lengths
of the edges does not go to zero, then the sequence converges to a subset of a
hyperplane that is also contained in Σ, because the Hausdorff distance between
Σ and Sm(i) tends to zero.

Secondly, if Σ = ∂C is a convex C1 hypersurface with C a convex body and
L a line segment that is contained in Σ then the normal to Σ is constant along
L. This can be seen by projecting the tangent spaces along L on a hyperplane
orthogonal to L: If the normal is not constant then we can pick two points (p,q)
where the normals are not the same. Let us denote by OLp, OLq the hyperplane
that contain p and q respectively and are orthogonal to L. Let us write Cp =
OLp ∩ C and Cq = OLq ∩ C. We translate OLq along L such that OLp and
OLq coincide. If the normals are not the same there is a point r in the translated
Cq that does not lie within the half space marked by the normal at p, which
contradicts convexity, because the line that connects the (untranslated version)
of that point r and p does not lie within C.

Lemma 2.2.7 Let P in
m be an optimally approximating inscribed polytope with

Hausdorff distance dH(P in
m ,Σ) to a (not necessarily strictly) convexC1 hypersur-

face with positive reach, such that dH(P in
m ,Σ) is smaller than reach of Σ. Then

we can construct a simplicial complex Sm such that

dH(Sm,Σ) ≤ 1

2
dH(P in

m ,Σ) + o(dH(P in
m ,Σ)).

Proof Let vi be the vertices of P in
m then we choose the vertices ṽi to be vi +

1
2dH(P in

m ,Σ)ν(vi), where ν denotes the normal to the hypersurface. We endow
the vertex set {ṽi} with the same simplicial structure as {vi} has. The complex
which arises will be denoted by Sm. This also corresponds to the boundary
of the convex hull of {ṽ}. We can see this as follows, P in

m is the boundary of
the convex hull of {vi}. It suffices to prove that a (d − 1)-dimensional simplex
vi1 , . . . , vid in P in

m corresponds to a simplex in ∂(CH(ṽ1, . . . , ṽm)). Suppose that
is does not, then there exists a vertex ṽj which lies outside the plane spanned by
ṽi1 , . . . ṽid , this is impossible because the vj does not lie on Pm. To see why the
mapping defined above reduces the Hausdorff distance by half, up to higher
order, we turn to the alternative definition of the Hausdorff distance, see for
example Munkres [Mun00]:

dH(X,Y ) = inf{ε|X ⊂ U(Y, ε) and Y ⊂ U(X, ε)},

where U(X, ε) denotes the ε-neighbourhood of X . Let C be the compact convex
body such that Σ = ∂C. From this we see that P in

m is contained in an inner rim
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inside the convex hypersurface Σ that is

P on
m ⊂ U(Σ, dH(P on

m ,Σ)) ∩ C.

We also have that

Σ ⊂ U(P on
m , dH(P on

m ,Σ)).

This yields that for every point x ∈ P on
m we have a unique point y ∈ Σ which is

closest to x, moreover the vector (x− y) is normal to the hypersurface. We may
now define the mapping Π by

Π : x 7→ x+
1

2
dH(P on

m ,Σ)
x− y
|x− y|

and consider Π(P on
m ). By definition we have that

Π(P on
m ) ⊂ U(Σ, 1/2dH(P on

m ,Σ)).

We shall now show that

Σ ⊂ U(Π(P on
m ),

1

2
dH(P on

m ,Σ)).

For every y ∈ Σ there is a x ∈ P on
m such that y − x is normal to Σ and |y − x| ≤

dH(P on
m ,Σ). The first intersection point of {c − λν(x)|λ ∈ R} and P on

m will do,
where by the first we mean the point with the smallest λ associated. Such an
intersection point exists because of the following; suppose there exists a y ∈ Σ
such that

{y − λν(y)|λ ∈ R} ∩ P on
m = ∅,

then the line {y − λν(y)|λ ∈ R} intersects Σ at some other point ỹ = y − λ̃ν(y),
without first intersecting P on

m . This also means that there is a point ye = y −
λ̃ν(y)/2, which has equal distance to y and ỹ so ye lies further from Σ than the
reach, but this contradicts the assumption that dH(P on

m ,Σ) ≤ R(Σ). We will now
show that |y − x| ≤ dH(P on

m ,Σ). Suppose that there is a y′ such that |y′ − x| ≤
|y−x|, then we can find a point along y−x with equal distance to two points of
Σ, namely y and y′, again contradicting the assumption that dH(P on

m ,Σ) ≤ R(Σ).
Therefore y is the point on Σ which is closest to x and thus |y − x| ≤ dH(P in

m ,Σ).
Given the special role we have thrust on the normal ν it is clear that

Σ ⊂ U(Π(P in
m),

1

2
dH(P in

m ,Σ)).
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This implies that

dH(Π(P in
m),Σ) ≤ 1

2
dH(P in

m ,Σ).

Finally we argue that dH(Π(P in
m), Sm) tends to zero as m tends to infinity, faster

than dH(P in
m ,Σ) tends to zero, that is dH(Π(P in

m), Sm) = o(dH(P in
m ,Σ)). The nor-

mals (x− y)/|x− y|, where x is an element of T and y the point of Σ closest to x,
line up with ν(vi), where vi is some vertex of T . Because the surface is continu-
ously differentiable the normal is continuous, so if T ⊂ Sm is an element of a
convergent sequence of triangles and the edge lengths tend to zero (x−y)/|x−y|
converges trivially to the normal at any vertex because of continuity, if the edge
lengths do not tend to zero we use the observation above that the normal along
a line segment contained in the hypersurface is constant to conclude that the
normals converge. This implies that (x − y)/|x − y| − ν(vi) tends to zero so
dH(P in

m ,Σ)((x− y)/|x− y| − ν(vi)) tends to zero faster than dH(P in
m ,Σ). Because

dH(P on
m ,Σ) ≤ dH(P in

m ,Σ)|(x− y/|x− y| − ν(vi)|, by definition of the mapping Π,
we have that

dH(Sm,Σ) ≤ dH(Π(P in
m), Sm) + dH(Π(P in

m),Σ) ≤ 1

2
dH(P in

m ,Σ) + o(dH(P in
m ,Σ)).

We also used the triangle inequality for the first inequality. So Sm is a simplicial
complex sufficiently close to Σ. �

We are now able by combining Lemmas 2.2.3, 2.2.4, 2.2.6 and 2.2.7 to prove
Theorem 2.2.1, which we shall display in full.

Theorem 2.2.8 Let Σ be a strictly convex C2 hypersurface in Rd. For every m let
Sm be an optimally approximating simplicial complex with m vertices having
Hausdorff distance dH(Sm,Σ) to the convex hypersurface Σ. Then we have

lim
m→∞

m2/(d−1)dH(Sm,Σ) =
1

4

(
θd−1

κd−1

∫
Σ

√
K(x)dµ

)2/(d−1)

,

where κd is the volume of the d-dimensional ball πd/2/Γ(1 + d/2), θd is the cov-
ering density of the ball in d-dimensional space and K the Gaussian curvature.

Proof By Gruber and Schneider [Gru93a, Gru93b, Sch81] we have that

lim
m→∞

m2/(d−1)dH(P in
m ,Σ) =

1

2

(
θd−1

κd−1

∫
Σ

√
K(x)dµ

)2/(d−1)

,
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where P in
m an optimally approximating inscribed polytope simplicial complex,

which is automatically also a polytope. Lemmas 2.2.6 and 2.2.7 give us

1

2
dH(Pm,Σ) ≤ dH(Sm,Σ)

and the existence of a simplicial complex S̃m, for sufficiently large m, satisfying

dH(S̃m,Σ) ≤ 1

2
dH(P in

m ,Σ) + o(dH(P in
m ,Σ)).

By optimality the latter equation implies

dH(Sm,Σ) ≤ 1

2
dH(P in

m ,Σ) + o(dH(P in
m ,Σ)).

Furthermore, lemmas 2.2.3 and 2.2.4 give us the existence of the simplicial com-
plexes involved. So that

1

2
lim
m→∞

m2/(d−1)dH(P in
m ,Σ) ≤ lim

m→∞
m2/(d−1)dH(Sm,Σ)

≤ lim
m→∞

m2/(d−1)

(
1

2
dH(P in

m ,Σ) + o(dH(P in
m ,Σ))

)
=

1

2
lim
m→∞

m2/(d−1)dH(P in
m ,Σ).

Using the result of Gruber and Schneider yields

lim
m→∞

m2/(d−1)dH(Sm,Σ) =
1

4

(
θd−1

κd−1

∫
Σ

√
K(x)dµ

)2/(d−1)

,

the desired result. �

The fact that the surface is convex is essential to our line of reasoning, be-
cause this insures that the simplices whose vertices lie on the surface do not
intersect the surface. This is the reverse of the case of negative curvature, where
in general the simplex and the surface will intersect.
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2.3 The intrinsic and extrinsic properties of triangu-
lations of Riemannian manifolds

The extrinsic nature of the asymptotic value of the product of the number of ver-
tices and the Hausdorff distance of triangulations (piecewise linear in ambient
space) of manifold embedded in Euclidean space higher codimensions is exhib-
ited, by constructing an explicit family of isometric embeddings of the flat torus
in Euclidean space.

Main result

We make the statement more precise, below we construct a family of isometric
embeddings E : S1 × S1 → Rn of the flat torus, whose members are discrimin-
ated by the index k ∈ Z≥1. We write

lim
m→∞

dH(Ek, Tm)m = cEk ,

where Ek indicates a member of the family of isometric embeddings of S1 ×
S1, Tm is an optimal triangulation with m vertices that lie on Ek, dH indicates
the Hausdorff distance. By optimal triangulation with m vertices we mean that
there is no other triangulation that attains a smaller the Hausdorff distance. cEk
is a real number depending on Ek. For the family of embeddings we construct
we have

lim
k→∞

cEk =∞.

2.3.1 Higher order example

Before starting on the proof of the statement we note that although approxim-
ating surfaces by piecewise quadratic pieces (or more general pieces of an al-
gebraic surface of higher order) is not so well understood8, the dependence on
the exact embedding is clearer than for a piecewise linear approximation. We
exhibit this dependence for compact manifolds by giving two isometric embed-
dings of the flat torus (that is, the metric induced on the surface is in both cases
that of the flat torus), namely:

E0 = {(x1, x2, x3, x4) ∈R4 | x2
1 + x2

2 = 1, x2
3 + x2

4 = 1}
E1 = {(x1, x2, x3, x4) ∈R4 | (x1/c)

2 + (x2/c)
4 = 1, (x3/c)

2 + (x4/c)
4 = 1},

8For piecewise quadratic approximations of convex surfaces satisfying some technical conditions
the limit limm→∞mdH(M,Qm)2/3 exists but to date we have not been able to find an explicit
expression of this limit in terms of geometric quantities.
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Figure 2.5: The set {(x1, x2) ∈ R2 | (x1/c)
2 + (x2/c)

4 = 1}.

where c is a constant such that the surface area of both embeddings are the same.
That this condition is sufficient is easily seen in the following analogy; let us
take a rectangular piece of paper and glue two opposite boundaries together.
We thus get a cylinder (S1 × [a, b]), which we imagine to lie along the z-axis,
so that S1 lies in the xy-plane. However we may deform the circle in the xy-
plane in whatever manner we like, so that L × [a, b] is isometric to S1 × [a, b] as
long as L is a loop without self-intersection having the same length. We depict
{(x1, x2) ∈ R2 | (x1/c)

2 + (x2/c)
4 = 1} in Figure 2.5.

The embeddingE0 results in an algebraic surface of order 2, so one piece of a
quadratic surface, namely the surface itself, suffices to approximate the surface.
This mean that we have

dH(E0, Q1) = 0,

where Qm is a piecewise quadratic surface with m patches which approximates
the surface optimally. The embedding E1 of the flat torus gives a quartic surface
so there is no finite m such that

dH(E1, Qm) = 0.

We are of course familiar with this result in three dimensions. If we again take
the example of a rectangular sheet of paper and fold and glue it into a cylinder
{(x1, x2) ∈ R2 | x2

1 + x2
2 = 1} × [a, b], with a < b. We can deform the cylinder by

deforming the circle, thus changing the algebraic properties while the intrinsic
geometry remains the same.
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2.3.2 The construction

We could try and show the effect introduced above for the following family of
embeddings of the flat torus which for the first two coordinates reads

{(1 + cos(2kθ)/20)(cos θ, sin θ)/rk | θ ∈ [0, 2π]},

where we have set the length of the topological circle to 2π by taking

rk =

∫ 2π

0

1

40
√

2π

√
801 + 4k2 + 80 cos(2kθ) + (1− 4k2) cos(4kθ)dθ.

The last two coordinates are defined in a similar manner. However since the
extrinsic curvature of a member of this family is strongly dependent on the co-
ordinate θ, which makes estimates of the Hausdorff distance very difficult and
thus the example less clear, we shall not use this family of embeddings in R4 but
focus on embeddings in R8. We shall study the family of embeddings of the flat
torus Ek parameterized by k ∈ Z≥1, with a little abuse of notation

Ek(θ, ϕ) = ( cos(θ), sin(θ), cos(kθ)/k, sin(kθ)/k,

cos(ϕ), sin(ϕ), cos(kϕ)/k, sin(kϕ)/k)

Ek = {Ek(θ, ϕ) | θ ∈ [0, 2π], ϕ ∈ [0, 2π]}.

Firstly we note that since the surface contains no straight lines, for each (fixed) k,
we have that the edge length of each edge in a triangulation Tm tends to zero as
dH(Tm, Ek) tends to zero. This we can prove as follows: Suppose that there is a
subsequence Tm(l) for which the the length of edges em(l) ∈ Tm(l) does not tend
to zero. Without loss of generality we can assume (by chosing a convergent sub-
sequence) that em(l) converges to a limit line element whose length by assump-
tion is not zero. Because we assume that the Hausdorff distance dH(Tm(l), Ek)
tends to zero, this line element lies within Ek, which contradicts the fact that
Ek contains no straight lines. Because of this we may locally approximate the
surface. Moreover the tangent plane of the surface in the neighbourhood of a
triangle is asymptotically well defined. Secondly, we may employ the natural
group action of (SO(2))4 on the ambient space R8 to shift a given point on the
torus to the origin. This means that we can approximate the surface locally by

(1− θ2/2, θ, 1− θ2/(2k), θ, 1− ϕ2/2, ϕ, 1− ϕ2/(2k), ϕ),

where (θ, ϕ) are near the origin, and thus through a translation by

Σk(θ, ϕ) ' (−θ2/2, θ,−θ2/(2k), θ,−ϕ2/2, ϕ,−ϕ2/(2k), ϕ).
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Furthermore we may assume that the vertices of a triangle are Σk(0, 0) = 0 ∈
R8, Σk(θ1, ϕ1), Σk(θ2, ϕ2). We shall employ techniques similar to the ones em-
ployed by Fejes Tóth [FT53] to find a a lower bound for

lim
m→∞

dH(Tm, Ek)m.

The approach by Fejes Tóth is dicussed in Section 2.1.1. We shall also adopt his
notation.

Because we are only interested in lower bounds it suffices to fix some lower
bound on the Hausdorff distance and some upper bound on the area of the
triangles satisfying this bound. To determine the Hausdorff distance we first
determine for a given point p = Σk(θ1, ϕ1)λ1+Σk(θ2, ϕ2)λ2 of the triangle under
consideration, where λ1 ∈ [0, 1] and λ2 ∈ [0, 1 − λ1], the point on the surface
Σk(θc, ϕc) which is closest. We optimize in the usual manner, that is we impose

∂θ|p− Σk(θ, ϕ)|2 = 0

∂ϕ|p− Σk(θ, ϕ)|2 = 0.

It is not difficult to verify that θc ' θ1λ1 + θ2λ2 and ϕc ' ϕ1λ1 + ϕ2λ2, where
' denotes equality up to leading order in (θi, ϕi). This means that the distance
between a point on the triangle and the surface is approximately given by

‖Σk(θ1, ϕ1)λ1 + Σk(θ2, ϕ2)λ2 − Σk(θ1λ1 + θ2λ2, ϕ1λ1 + ϕ2λ2)‖

=

∣∣∣∣((θ1λ1 + θ2λ2)2/2− θ2
1

2
λ1 −

θ2
2

2
λ2, 0,

k(θ1λ1 + θ2λ2)2/2− k θ
2
1

2
λ1 − k

θ2
2

2
λ2, 0,

(ϕ1λ1 + ϕ2λ2)2/2− ϕ2
1

2
λ1 −

ϕ2
2

2
λ2, 0,

k(ϕ1λ1 + ϕ2λ2)2/2− kϕ
2
1

2
λ1 − k

ϕ2
2

2
λ2

)∣∣∣∣.
For λ1 = 1/2, λ2 = 0 and λ1 = 0, λ2 = 1/2 this yields

√
1 + k2

√
θ4

1 + ϕ4
1/8 and√

1 + k2
√
θ4

2 + ϕ4
2/8 respectively, so

dH ≥ η =
1

8

√
1 + k2 max

{√
θ4

1 + ϕ4
1,
√
θ4

2 + ϕ4
2

}
.

On the other hand the area of the triangle is approximately equal to

|ϕ1θ2 − θ1ϕ2|/2.
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The area of a triangle on which a given η is attained is bounded from above
by c′η/

√
1 + k2, with c′ > 82/2 = 32 because 8η/

√
1 + k2 ≥ θ1, θ2, ϕ1, ϕ2, see

Section 2.1.1. Since furthermore the number of triangles m̃ in a triangulation is
bounded from below by

m̃ &
Area(Ek)

Area(4)
,

where Ek denotes the embedding of the surface and 4 denotes the biggest tri-
angle in the triangulation. These considerations give us

dHm & ηm & η
Area(Ek)

Area(4)
& η

(4π)2

c′η/
√

1 + k2
=

(4π)2

c′

√
1 + k2

This implies that

lim
m→∞

dH(Tm, Ek)m ≥ (4π)2

c′

√
1 + k2.

The result may be summarized in the following theorem

Theorem 2.3.1 Let M be a Riemannian surface, then there is generally no func-
tion f(g, ∂g, . . .) which depends only on the metric and all its derivatives and a
constant c̃ such that

lim
m→∞

dH(Tm, E(M))m ≤ c̃
∫
M

fdVol,

where E(M) denotes the embedding of the manifold in Euclidean space and
dVol the volume form.

In this theorem we could have absorbed c̃ in f(g). However, we have chosen
this form to mimic the traditional form of the result of Fejes Tóth [FT53] and
Schneider [Sch81]. The generalization of the above theorem to manifolds of ar-
bitrary dimension is trivial.

2.3.3 Rigidity

It is clear that if the embedding of a manifold M is rigid then

lim
m→∞

mdH(M,Tm)(n−1)/2,

where again Tm is optimal, must only depend on intrinsic quantities. What the
converse statement should be is not so clear. For example the cylinder with
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boundaries S1 × [a, b] is non-rigid, while the limit of mdH(M,Tm) is independ-
ent of embedding, albeit zero. This is why the exact relation between rigidity
and the asymptotic behavior with respect to m of dH(M,Tm) occasions further
research. Results in this direction could also provide a different perspective on
combinatorial rigidity.
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2.4 Fejes Tóth’s triangulation of the hyperboloid and
the triangulation of ruled surfaces

In 1953 Fejes Tóth [FT53] claimed that for some particular triangulation (with
vertices on the surface) of the one-sheeted hyperboloid bounded by two congru-
ent circles dH(Tm,Σ) ∼ 1/m2, where ∼ denotes proportionality to the leading
order in 1/m, here m denotes the number of vertices. This claim is false.

In Section 2.4.1 we shall prove that dH(Tm,Σ) ∼ 1/m, and moreover that the
triangulation suggested by Fejes Tóth is not optimal. By not optimal we mean
that there are triangulations with the same number of vertices, such that the
Hausdorff distance between the surface and the triangulation is smaller.

The intuition behind the claim of Fejes Tóth is clear, albeit wrong. Fejes
Tóth’s reasoning was that one could use the fact that the surface is ruled to
snugly fit ‘long’ triangles to the surface. A ruled surface is a surface swept out
by a straight line as it moves through space. The straight lines are known as rul-
ings. These ‘long’ triangles would lie along the ruling. The only thing that one
would need to worry about would be the boundary of the ruled surface, thus
arriving at dH(Tm,Σ) ∼ 1/m2.

In Section 2.4.2 we discuss the geometry of ruled surfaces. Assuming that
the Gaussian curvature of the surface is non-zero we shall come to understand
why ‘long’ triangles that lie along a ruling cannot lie close to the surface for the
entire length of triangle. Instead the surface seems to rotate away from a ‘long’
triangle as we shall see in Corollary 2.4.5.

The presence of ‘long’ triangles such as the ones suggested for the triangu-
lation of the one-sheeted hyperboloid prevent the use of local techniques to de-
termine

lim
m→∞

dH(Tm,Σ)m (2.7)

for ruled surfaces and therefore for general non-convex surfaces. By local tech-
niques we mean that we can do the analysis in the neighbourhood of a point, in
particular one uses:

• The normal to the surface is approximately constant.

• The surface is well approximated by the second order Taylor approxima-
tion of its Monge form.

If the local techniques would work, one could prove that

lim
m→∞

dH(Tm,Σ)m =
1

4
√

5

∫
Σ

√
|K|dA, (2.8)
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for negatively curved surfaces, as we shall see in Section 2.4.3. This follows from
arguments similar to those used in the convex case, see Section 2.1.1. Alternat-
ively this also follows from results by Pottmann et al. [PKH+00] and Atariah
[Ata14]. These authors study triangulations of graphs of functions, where the
relevant distance is the vertical distance between the triangulation (graph of a
piecewise linear function) and the graph of the function.

In Section 2.4.2 we also prove that local techniques do work if the surface
does not contain a segment of a ruled surface of positive measure. This means
in particular that (2.8) holds.

In Section 2.4.3 we discuss a method to confront

lim
m→∞

dH(Tm,Σ)m (2.7)

for ruled surfaces. This method should lead to either one of the following al-
ternatives:

• A proof that equation (2.8) holds for all negatively curved surfaces, that is
including ruled surfaces

• A clear indication how to construct a sequence of triangulations of a ruled
surface such that

lim
m→∞

dH(Tm,Σ)m <
1

4
√

5

∫
Σ

√
|K|dA.

We stress that if the second alternative holds, the normals of the triangles in a
triangulation in such a sequence would not align with the normals of the surface
as m tends to infinity.

The calculations involved the method to confront

lim
m→∞

dH(Tm,Σ)m

seem however to be beyond the reach of an analytic approach.

2.4.1 The hyperboloid

In this section we first prove that for the triangulation of the one-sheeted hy-
perboloid (with two circles of equal size as boundary) suggested by Fejes Tóth
we have dH(Tm,Σ) ∼ 1/m. In Section 2.4.2 we give some geometric intuition
explaining this somewhat counter-intuitive result.

We parametrize the hyperboloid by

σ(u, t) =
u√
2

 − sin t
cos t

1

+

 cos t
sin t

0

 .



42 CHAPTER 2. TRIANGULATIONS IN EUCLIDEAN SPACE

Figure 2.6: The one-sheeted hyperboloid.

This parametrization is compatible with the parametrization of ruled surfaces,
that we introduce in Section 2.4.2. Note that the parametrization exhibits the
ruling of the hyperboloid. We shall assume that u ∈ [−umax, umax], so that the
two circles that form the boundary lie at a distance umax/

√
2 above and below

the xy-plane. In our parametrization we take t ∈ [0, 2π].
The vertices of the triangulation discussed by Fejes Tóth are equally distrib-

uted along the lower and upper boundary and placed such that for every vertex
on the lower boundary there is a vertex on the upper boundary that lies on the
same ruling as the vertex on the lower boundary. By a ruling we mean a straight
line (segment) on the surface. Fejes Tóth assumes that m is even. The triangu-
lation is characterized by the fact that these rulings connecting the vertices are
edges of the triangulation.

The edges of the triangles in the triangulation fall into three different cat-
egories:

• rulings that lie on the surface

• edges of a regular m/2-gon approximating the upper or lower boundary

• edges that connect vertices ‘neighbouring’ vertices on the upper and lower
boundary.
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Figure 2.7: The one-sheeted hyperboloid with two of the triangles of the trian-
gulation inserted.

Up to a rotation around the z-axis edges from the last category can be paramet-
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rized by9

λσ(umax, 0) + (1− λ)σ(−umax, s), (2.9)

with s = 4π/m.
We now prove a lemma that refutes Fejes Tóth’s claim that dH(Tm,Σ) ∼

1/m2 for the triangulations described above:

Lemma 2.4.1 For the sequence of triangulations Tm of the one-sheeted hyper-
boloid Σ bounded by two congruent circles suggested by Fejes Tóth, as de-
scribed above, we have

lim
m→∞

dH(Σ, Tm)m =
√

2πumax.

Proof To determine dH(Σ, Tm) we first give an upper bound by considering
the distance between the triangulation and the hyperboloid as restricted to a ho-
rizontal plane. This bound is found by considering the triangulation and the sur-
face restricted to horizontal planes. The hyperboloid restricted to a horizontal
plane is a circle. The restriction of the triangulation is a (somewhat complicated)
polygon. This vertices of this polygon lie on the circle or are the restriction of
an edge like (2.9). For each horizontal plane we can determine the Hausdorff
distance between the polygon and circle. This is straightforward because it at-
tained in the restriction of an edge like (2.9). The maximum of all these ‘lower
dimensional’ Hausdorff distances bounds the Hausdorff distance between the
hyperboloid and Fejes Tóth’s triangulation. This maximum is attained for z = 0,
where the normal to the hyperboloid is horizontal so that here the ‘lower dimen-
sional’ Hausdorff distance coincides with the Hausdorff distance between the
hyperboloid and Fejes Tóth’s triangulation.

To find the Hausdorff distance between the polygon and circle, it is conveni-
ent to introduce the pseudometric10

dhor(v, w) =
√

(v1 − w1)2 + (v2 − w2)2,

where v = (v1, v2, v3) ∈ R3 and w = (w1, w2, w3) ∈ R3. We are now able to
calculate

dhor(λσ(umax, 0) + (1− λ)σ(−umax, s), o)

=

√
2 + (1− 2λ)2u2

max√
2

− 2λ(λ− 1)umax√
2 + (1− 2λ)2u2

max
s+O(s2), (2.10)

9Here we have picked a sign. We could have chosen

λσ(−umax, 0) + (1− λ)σ(umax, s).

The choice does not influence the outcome.
10The difference between a metric space and a pseudometric space is that in case of the latter

d(x, y) = 0 does not imply x = y.
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where o = (0, 0, 0). Note that s = 4π/m and we are interested in the limit of m
tending to infinity. On the other hand the z-coordinate of the edge parametrized
by (2.9) is

(2λ− 1)umax√
2

,

so the hyperboloid restricted to the plane characterized by the coordinate is a
circle with radius √

2 + (1− 2λ)2u2
max√

2
,

this radius is exactly the constant term in (2.10). This gives that the supremum
of remaining terms in (2.10) gives an upper bound on the Hausdorff distance

sup
λ∈[0,1]

∣∣∣∣∣ 2λ(λ− 1)umax√
2 + (1− 2λ)2u2

max
s

∣∣∣∣∣+O(s2) =
umax

2
√

2
s+O(s2),

because the supremum is attained for λ = 1
2 , where z = 0 and the normal to

the hyperboloid is horizontal for z = 0, this equals the Hausdorff distance. We
therefore find that

lim
m→∞

dH(Σ, Tm)m =
√

2πumax.

�

Lemma 2.4.1 contradicts the assertion of Fejes Tóth.

Figure 2.8: The one-sheeted hyperboloid with the edges of a more efficient tri-
angulation indicated.
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It is also easy to see that this triangulation is not optimal. We note that the
Hausdorff distance is attained in but one of the edges of a triangle. This means
that we can merge two such triangles as indicated in Figure 2.8 without increas-
ing the Hausdorff distance.

Note that the surface area of the triangulations do not converge to the surface
area of the surface in any case, see [HPW06] and [MT02].

2.4.2 Ruled surfaces

This section, that is Section 2.4.2, consists of three parts:

• First we discuss the parametrization of ruled surfaces and we shall see in
Lemma 2.4.2 that ruled surfaces are the only surfaces that contain dense
sets of straight lines.

• Based on the general discussion of ruled surfaces we are able to provide a
general geometric context to Lemma 2.4.1. In particular Lemma 2.4.4 and
Corollary 2.4.5 explain why a surface seems to rotate away from a long
triangle.

• In the third part of this section we introduce the concept of asymptotically
point-like and asymptotically line-like triangles. These are sequences of
triangles in triangulations of surfaces for which the Hausdorff distance
tends to zero. The lengths of the edges go to zero for asymptotically
point-like triangles, but do not for asymptotically line-like triangles. We
shall prove that if a surface contains no straight lines then all triangles are
asymptotically point-like. If the surface is a segment of a ruled surface
and has non-zero Gaussian curvature then a convergent asymptotically
line-like triangle converges to a line segment on a ruling.

The results on the asymptotically point-like triangles will be used in Section
2.4.3 to find an expression for

lim
m→∞

dH(Tm,Σ)m, (2.7)

if the surface is negatively curved but does not contain a segment of a ruled sur-
face. The results on the asymptotically line-like triangles imply that if the surface
is ruled an expression for (2.7) can be found by studying a neighbourhood of a
ruling.
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The parametrization of ruled surfaces

A C2 surface Σ embedded in R3 is called ruled11 if for every point p ∈ Σ there
exists a (straight) line (segment) Lp ⊂ Σ with p ∈ Lp. We first establish that, at
least locally, we may parametrize such a surface in the standard manner, that is

{r(t)u+ p(t)|t ∈ U1, u ∈ U2} = Σ, (2.11)

whereU1 andU2 are sufficiently small open intervals. We see this by considering
a small neighbourhood U in Σ of a given point p0 on some line (segment) L0, we
choose a C2 curve p : U1 → Σ : t 7→ p(t) through p0 whose tangent line at p0 is
not pointing in the direction of L0. For every p(t) there is a line (segment) that
intersects p(t), which lies in the surface Σ, that is we have

{r(t)u+ p(t)|t ∈ U1, u ∈ U2} ⊂ Σ,

where U1 and U2 are sufficiently small open intervals. We can further assume
that r(t) is continuous. This can be argued as follows u 7→ r(t)u + p(t) is a
line and hence an asymptotic curve, see for example [O’N06] or [Spi99] for a full
definition. This implies that r(t) points in an asymptotic direction (meaning that
the normal curvature vanishes in that direction). There are only two such direc-
tions unless the Gaussian curvature is zero in some neighbourhood. Moreover
the asymptotic directions are continuous for a C2 surface. This implies that
r(t) can be assumed to be continuous and equal to one of the asymptotic direc-
tions along the curve p, if the Gaussian curvature is non-zero. If the Gaussian
curvature is (locally) zero the surface is (locally) developable. Developable sur-
faces in three dimensions have been classified, see for example [Spi75a], and the
the fact that we can parametrize according to (2.11) is obvious.

Having established the standard parametrization, we prove that if there is a
dense subset of lines embedded in a surface then the surface is a ruled surface.
To be precise:

Lemma 2.4.2 Let Σ be a compact C2 surface in R3 with a boundary and non-
zero Gaussian curvature and let lmin be a strictly positive constant. If there is a
set of line segments Li ⊂ Σ which is dense in Σ and |Li| ≥ lmin > 0 for every Li,
then Σ is a compact subset of a ruled surface. lmin is called the minimum length.

Proof If the set Li lies dense in Σ then for every x ∈ Σ we can pick two se-
quences namely a sequence of line segmentsLn and points xn on those segments
which converge to x. Due to compactness we can find a convergent subsequence
of line segments. We shall call its limit L. Because Li is a dense subset of Σ, the

11This is an alternative definition, we shall now see that it is equivalent to more common defini-
tion, namely: A ruled surface is a surface swept out by a straight line as it moves through space.
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segment L must also lie on Σ. Furthermore because the length of each line seg-
ment is greater than the minimum length, L cannot shrink to a point, so x also
lies on a line segment. Since the choice of x was arbitrary we find that for every
point of Σ there is a line segment that lies on Σ and thus Σ is a compact subset
of a ruled surface. �

From Lemma 2.4.2 we conclude that a surface with a dense set of line seg-
ments is a ruled surface and may be parametrized as follows:

σ(u, t) = u r(t) + p(t), (2.12)

where we can consider p(t) as a parametrization of a curve on the surface. We
can reparameterize σ so that ‖r(t)‖ = 1 and r′ · p′ = 0. Trivially, one also has
r · r′ = 0. For a proof we refer to [DC76], page 190 onwards.

It is not difficult to verify that the normal ν of Σ satisfies

ν =
(ur′ + p′)× r
|(ur′ + p′)× r|

=
(ur′ + p′)× r√

u2r2(r′)2 + (p′ × r)2
=

(ur′ + p′)× r√
u2(r′)2 + (p′ × r)2

.

For the Gaussian curvature we have

K = − 〈ν, ∂u∂tσ〉2

|(ur′ + p′)× r|2
= −

(
r′ · (p′ × r)
|(ur′ + p′)× r|

)2
1

|(ur′ + p′)× r|2

= − |r′|2|p′ × r|2

(u2|r′|2 + |p′ × r|2)2
. (2.13)

We can also easily deduce that the volume element is given by√
u2|r|2|r′|2 + |r × p′|2dudt

The geometric intuition for Section 2.4.1

We now focus on the following problem; how does the normal alter along a
ruling, that is a straight line on the ruled surface. The result we derive is a
corollary of lemma 2.4.4 but may also be seen as an extension of the following
lemma (lemma 5.6.6 of [O’N06]):

Lemma 2.4.3 A ruled surface Σ has Gaussian curvature K ≤ 0. Furthermore,
K = 0 if and only if the unit normal ν is parallel along each ruling of Σ.

The following lemma uses the shape operator S. The shape operator is given
by S(v) = −∇vν with ν the normal vector field of the surface. A full discussion
of the shape operator can be found in [O’N06], [DC76] or [Spi99].



2.4. FEJES TÓTH’S TRIANGULATION OF THE HYPERBOLOID 49

Figure 2.9: The normal along a ruling.

Lemma 2.4.4 Let γ be an asymptotic curve, T its unit tangent and U the normal
to the surface. Then the shape operator satisfies S(T ) = ±

√
|K|U × T .

Proof Consider the Darboux frame T , V , U of γ, where U equals ν the normal
to the surface and V = U × T . We have the Darboux equations

T ′ = gV + kU

V ′ = −gT + tU

U ′ = −kT − tV,

where k = S(T ) · T is the normal curvature k(T ) in the T direction. g is called
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the geodesic curvature and t the geodesic torsion. Because γ is assumed to be
asymptotic k = 0. This implies that if we use the basis T , V the shape operator
is of the form

S =

(
0 ∗
t ∗

)
.

Symmetry of the shape operator yields

S =

(
0 t
t ∗

)
.

This in turn yields that K = −|K| = det(S) = −t2. So that S(T ) = ±
√
|K|V =

±
√
|K|U × T . �

Lemma 2.4.4 also features as an exercise in [O’N06], albeit with a small error.
We now immediately have

Corollary 2.4.5 Let Σ be a ruled surface, parametrized by (2.12). The derivative
of the normal along the ruling (∂uν), usually identified with the image of r under
the shape operator of Σ at p(t) (S(r)), satisfies

S(r) = ±
√
|K|n,

where n = ν × r.

Proof Apply Lemma 2.4.4 to Σ, with γ(u) = ur(t0) for some fixed t0. �

Corollary 2.4.5 explains why the triangulation suggested by Fejes Tóth does
not have the nice properties claimed by him. The normal rotates along a ruling
the triangles in the triangulation do not align with the surface but instead tend
to go inwards or outwards. This is further illustrated in Figure 2.9.

Triangles in sequences of optimal triangulations

Having discussed the geometric context of Section 2.4.1 we now aim to prove
that if a surface contains no straight lines the lengths of all edges in a family of
triangulations tend to zero as the Hausdorff distance tends to zero. If the lengths
of all edges tend to zero local analysis does suffice to find

lim
m→∞

dH(Tm,Σ)m, (2.7)

because in a neighbourhood of each triangle the surface is well approximated by
its second order Taylor series and the normal is almost constant for that neigh-
bourhood.
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As we shall see in Section 2.4.3, the quantity (2.7) is expressed in terms of
an integral. This, together with Lemma 2.4.2, implies that ruled surfaces are
the only surfaces for which the fact that local analysis does not work obstructs
the search for an expression for (2.7), because non-dense sets of straight line
segments contained in a surface can be ignored because they have measure zero.
We shall come back to this in more detail in Section 2.4.3.

We shall need the following consequence of the continuity of the Hausdorff
distance, see Section 2.2.2:

Lemma 2.4.6 Suppose that Σ is a compact connected smooth subset of a smooth
ruled surface, containing no straight lines except for rulings. Further assume
that En is a family of one dimensional simplices that satisfies

lim
n→∞

doH(En,Σ) = 0,

with doH(En,Σ) the one-sided Hausdorff distance fromEn to Σ and the simplices
En converge to some line segmentE ⊂ R3. Here we specifically allow the trivial
case where E is a point. Under these conditions a ruling R of Σ exists such that

lim
n→∞

doH(En, R) = 0.

Proof We first note that doH(E,Σ) = 0 implies that E ⊂ Σ and thus E is a
segment of a ruling R. Continuity, in the sense of Cauchy, now implies that if

lim
n→∞

doH(En,Σ) = 0,

then

lim
n→∞

doH(En, R) = 0.

�

A result similar to that of Lemma 2.4.6 is true for triangles instead of one
dimensional edges if one assumes that the ruled surface is not a subset of a
plane:

Lemma 2.4.7 Suppose that Σ is a compact connected smooth subset of a smooth
ruled surface, containing no straight lines except for rulings and that is not the
plane. Let ti be a sequence of triangles, with vertices vi1, vi2, vi3, for which

lim
i→∞

doH(ti,Σ) = 0,

then for every convergent subsequence tic there exists a ruling Rc such that

lim
i→∞

doH(tic, Rc) = 0.

Such a convergent subsequence always exists because Σ is compact.
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Proof Let us consider a convergent sequence tic. Let us denote the edge con-
necting the vertices via and vib of tic by viav

i
b. Here we have a, b ∈ {1, 2, 3}. We

can assume without loss of generality that viavib converges to some vavb, because
viav

i
b are the edges of a convergent sequence of triangles. Moreover we have

lim
i→∞

doH(viav
i
b,Σ) = 0,

because

lim
i→∞

doH(ti,Σ) = 0.

Lemma 2.4.6 yields that there is a ruling Rab such that

lim
i→∞

doH(viav
i
b, Rab) = 0.

This holds for any choice of a, b ∈ {1, 2, 3} and because we assumed that the
ruled surface is not the plane Rab should be independent of a, b. So we can
denote the ruling by Rc and we have proven the result. �

Lemmas 2.4.6 and 2.4.7 lead us to the following definition:

Definition 2.4.8 A sequence of triangles with

lim
i→∞

doH(ti,Σ) = 0

is called asymptotically point-like if the lengths of all edges tend to zero. It is
called asymptotically line-like if they do not.

The terminology asymptotically point-like has been chosen, because a conver-
gent subsequence of a asymptotically point-like triangles converges to a point.
If the ruled Σ has non-zero Gaussian curvature, then a convergent subsequence
of a asymptotically line-like triangles converges to line segment in Σ, by Lemma
2.4.7. This explains terminology in the second case.

We are now able to state the following lemma:

Lemma 2.4.9 Let Σ be a compact manifold (possibly with boundary), which
contains no (non-trivial) straight line segments and let Tm be a sequence of
optimal triangulations with m vertices. Moreover each Tm is assumed to be
homeomorphic with Σ and the vertices of Tm are assumed to lie on Σ. Then
every sequence tm of triangles, with tm a triangle in the triangulation Tm, is
asymptotically point-like.
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Proof Suppose there is a sequence tm which is not asymptotically point-like.
Then consider the edges Emi , i = 1, 2, 3, of tm and choose a convergent sub-
sequence Emi(m) that tends to E, a line segment whose length is strictly greater
than zero. This is possible because tm is assumed to be asymptotically line-like
and Σ compact. Because Tm is an optimal triangulation we have that

lim
m→∞

doH(Ei(m)
m ,Σ) = 0

and thus E ⊂ Σ. So Σ contains a straight line segment, a contradiction with the
hypothesis that it did not. �

2.4.3 Outlook on the approximation parameter for ruled sur-
faces

In the previous subsection we remarked that if a surface does not contain straight
lines every sequence of triangles whose one-sided Hausdorff distance to the sur-
face tends to zero is asymptotically point-like. This means that for a convergent
sequence of triangles whose Hausdorff distance to the surface tends to zero it
suffices to study the surface locally. This implies that a non-convex surface is
adequately described by its local Monge form:

z ' k1

2
x2 +

k2

2
y2,

where ' denotes equality up to third order in the variables x, y. In Section 2.1.1
we have seen this in the convex case, that is with the same signs for k1 and k2.
Note also that because the sequence of triangles is symptotically point-like we
can take the normal of the surface to be the normal in the origin, that is the
vertical vector.

One can prove, similar to the convex case we have discussed in Section 2.1.1,
that for any triangle t

doH(t,Σ) &

√
|k1k2|
2
√

5
Area(t), (2.14)

where Σ denotes the surface doH(t,Σ) the one-sided Hausdorff distance of the
triangle to the surface, Area(t) denotes the area of the triangle and & should
be interpreted in the same manner as in (2.1). For a proof of (2.14) we refer to
[Ata14, PKH+00].

Using arguments similar to those of Fejes Tóth, again as sketched in Section
2.1.1, we see that for any triangulation Tm with m vertices we have that

lim
m→∞

dH(Tm,Σ)m ≥
∫

Σ

√
|K|

4
√

5
dA, (2.15)
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for a triangulation with only point-like triangles.
The bound in (2.14) can in fact be attained in the limit for point-like triangles.

In general one can use reflected and translated copies of a triangle to triangulate
a plane. This has been illustrated in Section 3.5.2 of [Ata14] in the case of the
surface z = x2 − y2. As Fejes Tóth [FT53] argued in the convex case, this gives
us that the bound in (2.15) can be attained. It would be interesting to see if we
can provide a constructive proof similar to the proof by Schneider [Sch81] in the
convex case and along the lines of [Cla06].

The inequality (2.15) also holds if Σ contains a non-dense set of straight lines.
Because in this case we can remove an arbitrarily small neighbourhood of the
closure of the set of straight lines from the surface and for what remains of the
surfaces (2.15) holds. As we have seen in Lemma 2.4.2 that if set of straight lines
lies dense in a segment of a surface, this segment is ruled. We now have the
following:

Theorem 2.4.10 Let Σ be negatively curved a surface in R3 with boundary, that
does not contain a segment of a ruled surface. Then for any triangulation Tm
with m vertices

lim
m→∞

dH(Tm,Σ)m ≥
∫

Σ

√
|K|

4
√

5
dA. (2.15)

Moreover this bound can be attained.

This however leaves open the question: Can one do better then (2.15)? By
this we mean that if Σ is a segment of a ruled surface does there exist a sequence
of triangulations Tm with m vertices such that

lim
m→∞

dH(Tm,Σ)m <

∫
Σ

√
|K|

4
√

5
dA.

We therefore propose the following question: Does the following equation
also hold for ruled surfaces

1

4
√

5

∫
tΣ

√
|K|dA . 1

2
doH(t,Σ), (2.16)

with t a triangle whose vertices lie on Σ, tΣ the triangle on the surface associated
to t whose boundary consists of the geodesics12 connecting the vertices of t?13

Due to Lemma 2.4.7 we know that in this case (if the surface is not a subset of a
plane) we can further reduce our investigations to a neighbourhood of a ruling.

12Simplices like tΣ will be the topic of Chapter 3.
13Alternatively we could also consider tΣ to be the projection of t on the surface via the normal,

although in this case greater care should be taken of boundary effects.
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Ignoring the boundary of the ruled surface this would imply that

lim
m→∞

dH(Tm,Σ)m =

∫
Σ

√
|K|

4
√

5
dA, (2.17)

for an optimal triangulation of a negatively curved surface. The implication
follows by

1

4
√

5

∫
Σ

√
|K|dA ≤ 1

4
√

5

∑
t∈Tm

∫
tΣ

√
|K|dA

.
∑
t∈Tm

1

2
doH(t,Σ)

. m sup
t∈Tm

doH(t,Σ)

≤ mdH(Tm,Σ), (2.18)

with Tm the triangulation. The first line of (2.18) follows from the fact that Tm is
a triangulation, the second is the hypothesis (2.16), the third follows because the
number of triangles behaves14 like 2m as m tends to infinity, with m the number
of vertices.

14Here we use that the alternating sum of the number of simplices is the Euler characteristic and
(ignoring the boundary) every triangle has three edges and every edge is shared between between
two triangles.
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Chapter 3

Riemannian simplices and
triangulations

3.1 Introduction

3.1.1 Motivation

In this chapter we study a natural definition of geometric simplices in Rieman-
nian manifolds of arbitrary finite dimension. By a natural definition we mean
an intrinsic one; the simplex is defined by the positions of its vertices in the
manifold, which need not be embedded in an ambient space.

The construction of an intrinsic simplex is not entirely trivial. This is difficult
because the standard construction using convex hulls in Euclidean space does
not generalize to Riemannian manifolds. So-called Riemannian centres of mass
or Karcher means do allow us to map the standard simplex on a manifold in an
intrinsic manner. We shall make this more precise below.

The map from the standard simplex to the manifold is not automatically a
homeomorphism to its image. If the map is a homeomorphism the intrinsic
simplex on the manifold that is the image of the map is called non-degenerate.
Our first goal in this chapter is to give conditions that guarantee that an intrinsic
simplex is non-degenerate. The conditions are formulated in term of quality.

Having given conditions on individual triangles we want to use these tri-
angles to triangulate an entire manifold. This will involve conditions on all sim-
plices in a small neighbourhood, to be precise all simplices that have a vertex in
common a so-called star.

We stress that it is the intrinsic nature of the triangles and triangulations and
the explicit condition on the vertex set, that set this chapter apart.

57
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3.1.2 Defining simplices; from Euclidean space to Riemannian
manifolds

We will now explain how the convex hull construction we use in Euclidean
space fails on Riemannian manifolds. We shall then sketch the construction of
intrinsic simplices, using Riemannian centres of mass or Karcher means. We de-
note manifolds by M and the dimension of the manifold by n, unless explicitly
stated otherwise.

Complications using the convex hull

The standard definition of a Euclidean simplex as the convex hull of its vertices
is not useful for defining simplices in general Riemannian manifolds. A set on a
Riemannian manifold is called convex if any two points in the set are connected
by a unique minimizing geodesic contained in the set. The convex hull of a set
of points is the smallest convex set that contains these points.

There are two main obstructions to the use of convex hulls:

• Convex hulls are difficult to compute. Almost nothing is known about the
convex hull of three distinct points in a manifold of dimension three or
higher, see for example [Ber03, §6.1.3]. The standing conjecture (according
to Berger) is that the convex hull of three points is not closed in all but a
number of special cases.

• The convex hulls of a number (smaller then the dimension plus one) of
points can not be used as building blocks for triangulations. By this we
mean that they cannot be used to define geometric simplicial complexes.
This is because if two full dimensional convex simplices share a boundary
facet, that facet must itself be convex. This constrains the facet to lie on
a totally geodesic submanifold (i.e., minimising geodesics between points
on the facet must lie in the facet), and when the sectional curvature is not
constant such submanifolds cannot be expected to exist (see [Ber03, Thm
58] or [Che00, §11]). By the same reasoning we see that the convex hull of
three points in a three or higher dimensional manifold is generally not two
dimensional.

Riemannian centres of mass

Given the vertices, a geometric Euclidean simplex can also be defined as the
domain on which the barycentric coordinate functions are non-negative. This
definition does extend to general Riemannian manifolds in a natural way. The
construction is based on the fact that the barycentric coordinate functions can
be defined by a ‘centre of mass’ construction. Suppose {v0, . . . , vn} ⊂ Rn, and
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(λi)0≤i≤n is a set of non-negative weights that sum to 1. If u is the point that
minimises the function

y 7→
n∑
i=0

λidRn(y, vi)
2, (3.1)

where dRn(x, y) = |x− y| is the Euclidean distance, then u =
∑
λivi, and λi

are the barycentric coordinates of u in the simplex [v0, . . . , vn]. Here [v0, . . . , vn]
denotes the usual geometric simplex in Rn with vertices v0, . . . , vn.

We can view a given set of barycentric coordinates λ = (λ0, λ1, . . . , λn) as a
point in Rn+1. The set ∆n of all points in Rn+1 with non-negative coefficients
that sum to 1 is called the standard Euclidean n-simplex. Thus the minimisation
of the function (3.1) defines a map from the standard Euclidean simplex to the
Euclidean simplex [v0, . . . , vn] ⊂ Rn.

If instead the points v0, . . . , vn lie in a convex setW in a Riemannian manifold
M , then, by using the metric of the manifold instead of dRn in Equation (3.1), we
obtain a function Eλ : W → R that has a unique minimum x ∈ W , provided W
is sufficiently small (See Section 3.2.1). In this way we obtain a mapping λ 7→ x
from ∆n toW . We call the image of this map an intrinsic simplex, or a Riemannian
simplex.

3.1.3 Quality and non-degeneracy

Quality

When we speak about the quality of a Euclidean simplex, we are referring to
a function that parametrises how close the simplex is to being degenerate. A
common quality measure for an n-simplex is the ratio of the volume to the nth

power of the longest edge length. Another useful quality measure is the ratio of
the smallest altitude to the longest edge length. A Euclidean simplex is degen-
erate if and only if its quality measure vanishes.

Non-degeneracy

In this chapter we shed light on the relationship between the local curvature
in the manifold, and the size and quality of the simplices involved in a trian-
gulation. We articulate explicit criteria that are sufficient to guarantee that a
simplicial complex with vertices on the manifold is homeomorphic to the mani-
fold. The intrinsic simplices defined by the centre of mass construction provide
a convenient tool for this purpose.

Although the idea of Riemannian simplices defined in this way has been in
the mathematical community for some time (see Berger [Ber03, 6.1.5]), we are
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not aware of any published work exploiting the notion (of simplices in partic-
ular) prior to that of Rustamov [Rus10] and Sander [San12]. For our purposes
we need to establish a property that Sander did not consider. We need to ensure
that the map from the Euclidean simplex to the manifold is a smooth embed-
ding (i.e., the map extends to a smooth map from an open neighbourhood of
the Euclidean simplex). This ensures that the barycentric coordinates mapped
to the manifold do in fact provide a local system of coordinates. If the map is
not a smooth embedding, we call the Riemannian simplex degenerate.

A Euclidean simplex is non-degenerate if and only if its vertices are affinely
independent. We show that a Riemannian simplex is non-degenerate if and only
if for every point in the simplex the vertices are affinely independent when they
are lifted by the inverse of the exponential map to the tangent space of that point.

Surfaces and trivial quality

In a two dimensional manifold this condition is satisfied for a triangle as long as
the vertices do not lie on a common geodesic. Similar to the Euclidean case, such
a configuration can be avoided by applying an arbitrarily small perturbation to
the vertices.

Non-trivial quality in higher dimensions

However, when the dimension is greater than two, a non-trivial constraint on
simplex quality is required. In dimension two a sampling density for triangula-
tion can be specified in terms of the convexity radius [Lei99, DZM08] (maximal
radius for which a geodesic ball is convex, see Section 3.2.1), and depends only
on an upper bound on the sectional curvatures (Lemma 3.2.1).

In dimension higher than two, we require the simplex size (maximum edge
length) to also be constrained by a lower bound on the sectional curvatures (the
upper bound on the edge lengths is inversely proportional to the square root of
an upper bound on the absolute value of the sectional curvatures), so we cannot
express the sampling density requirements in terms of a convexity radius alone.

Quality of a simplex found by lifting to the tangent space

We define a quality measure for a Riemannian simplex by considering the qual-
ity of the Euclidean simplex obtained by lifting the vertices to the tangent space
at one of the vertices. For our purposes we require a lower bound on the smallest
such quality measure when each of the vertices is considered.
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Method for establishing quality bounds

The quality of the Riemannian simplex that is required to ensure that it is non-
degenerate depends on the maximum edge length, as well as on the magnitude
of the sectional curvatures in the neighbourhood. We discuss two ways to es-
tablish such a relationship:

• Using the Rauch comparison theorem, which provides an estimate on the
differences in edge lengths of Euclidean simplices obtained by lifting the
vertices of the Riemannian simplex to different tangent spaces. By exploit-
ing previously established bounds on the degradation of the quality of a
Euclidean simplex under perturbations of the edge lengths [BDG13a], we
establish conditions that guarantee that the Riemannian simplex is non-
degenerate. This method yields quality conditions in terms of the height
of a simplex.

• Using the Topogonov comparison theorem and determinant bounds by
Friedland [Fri82]. This method yields quality conditions in terms of the
volume of a simplex.

To triangulations

We use this result to establish conditions that guarantee that a simplicial com-
plex is homeomorphic to the manifold. Finding these conditions is the primary
motivation for this chapter. Given an abstract simplicial complex whose vertex
set is identified with points on the manifold, we are ensured that it triangulates
the manifold if certain conditions are met, the principal one being a relationship
between the size and quality of the Riemannian simplices.

Sampling conditions

The conditions on the density and distribution of the vertices that guarantee
that one is able to construct a triangulation of a manifold are known in the com-
putational geometry community as sampling conditions. The density alone is
referred to as sampling density in this context.

3.1.4 Previous work

The history of Riemannian centres of mass or Karcher means

The minimum of the function Equation (3.1) defines a point with given bary-
centric coordinates as a weighted centre of mass. These centres of mass have a
rich history:
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• Centres of mass were introduced in 1929 for Riemannian manifolds with
negative curvature by Cartan [Car29] for a finite number of points [Ber03,
§6.1].

• Fréchet also studied the minima of functions like Equation (3.1) for metric
spaces in 1948 [Fré48].

• Karcher [Kar77] gave an extensive treatment particular to the Riemannian
setting. Averages defined in this way on smooth Riemannian manifolds
are often referred to as ‘Karcher means’.

Riemannian centres of mass and global results

Karcher’s exposition [Kar77] is the standard reference for Karcher means. How-
ever, for our purposes a particularly good resource is the work by Buser and
Karcher [BK81, §6, §8]. This work was exploited by Peters [Pet84], where Karcher
means are used to interpolate between locally defined diffeomorphisms between
manifolds in order to construct a global diffeomorphism in a proof of Chee-
ger’s finiteness theorem. This result has particularly inspirational because it
showed the global use of Karcher means. Just as we shall use intrinsic simplices
to study global triangulations. Chavel [Cha06, Ch. IX] gives a detailed expos-
ition of Peters’s argument. Kendal [Ken90] is another important reference for
Karcher means. Riemannian simplices are not explicitly considered in any of
these works.

Intrinsic simplices

More recently, Rustamov [Rus10] introduced barycentric coordinates on a sur-
face via Karcher means. Sander [San12] used the method in arbitrary dimen-
sions to define Riemannian simplices as described above. He called them geodesic
finite elements, reflecting the application setting in numerical solutions to par-
tial differential equations involving functions which take values in a manifold.
Independently, von Deylen [vDar] has treated the question of degeneracy of
Riemannian simplices. His work, based on a method by [Kau76], includes a de-
tailed analysis of the geometry of the barycentric coordinate map, and several
applications. He does not address the problem of sampling criteria for triangu-
lation.

Sampling

This chapter is motivated by a desire to develop sampling requirements for rep-
resenting a compact smooth Riemannian manifold with a simplicial complex.
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By this we mean that we seek conditions on a finite set P ⊂ M that guarantee
that P can be the vertex set of an (abstract) simplicial complex that is homeo-
morphic to M . We are particularly interested in manifolds of dimension greater
than 2. For 2-dimensional manifolds a triangulation is guaranteed to exist when
P meets density requirements. These density requirements can be specified
either in terms of:

• extrinsic criteria (the distance to the medial axis), for surfaces embedded
in Euclidean space [BO05, ACDL00]

• in terms of intrinsic criteria [Lei99, DZM08].

In higher dimensions it is well known that a smooth manifold admits a trian-
gulation. However, to the best of our knowledge explicit sampling conditions
sufficient to guarantee the existence of a triangulation have yet to be described.

Classical results on triangulations

For arbitrary finite dimension, Cairns [Cai34] first demonstrated that a smooth
compact manifold admits a triangulation. Cairns’ proof consisted of two steps:

• He embedded Euclidean complexes into the manifold using coordinate
charts.

• He showed that if the complexes were sufficiently refined (while main-
taining a constant lower bound on the simplex quality) the embedding
maps could be perturbed so that they remain embeddings and the images
of simplices coincide where the coordinate patches overlap. This gives a
global embedding of a complex.

Whitehead [Whi40] refined the technique into a general approximation theory
which is described in detail by Munkres [Mun68] and is not restricted to com-
pact manifolds. Whitney [Whi57] used his result1 that a manifold can be em-
bedded into Euclidean space to triangulate the manifold. The triangulation was
constructed by intersecting the manifold with a fine Cartesian grid in the ambi-
ent space. Lower bounds on the quality were also essential for Whitney.

Triangulations and sampling in Computational geometry

The problem has been revisited more recently in the computational geometry
community, where the focus is on algorithms used to construct a triangula-
tion when a compact submanifold is known only through a finite set of sample
points. The computational geometry community relies heavily on Voronoi dia-
grams and Delaunay complexes for constructing triangulations.

1Now most commonly known as the Whitney embedding theorem.
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Voronoi diagrams and Delaunay complexes A Voronoi cell V (u) of a point u
in a locally finite set of points S in Rn is the set

V (u) = {x ∈ Rn | |x− u| ≤ |x− v| for all v ∈ S}.

A Voronoi diagram consists of all such cells. The cells are convex polyhedra.
When the Euclidean distances in the definition of a Voronoi cell are be replaced
by the weighted square distance function πu(x) = |x − u|2 − w2

u, we have the
weighted Voronoi diagram. The Voronoi cells defined in this way are still convex
polyhedra.

The Voronoi diagram {V (u)}u∈S is a cover of Rn. The nerve of a cover is a
simplicial complex K, where a simplex σ = {u0, . . . , uj} ⊂ S belongs to K if⋂

u∈σ
V (u) 6= ∅.

The Delaunay complex of S ⊂ Rn is the nerve of the Voronoi diagram of S.
Delaunay [Del34] showed that if the Voronoi cells are bounded (i.e., every open
half-space contains a point of S), then under a mild genericity assumption the
Delaunay complex defines a triangulation of Rn. The Delaunay complex is then
called the Delaunay triangulation.

Given a submanifold M ⊆ Rn, the restricted Voronoi diagram is the collection
of the restricted Voronoi cells VM (u) = V (u)∩M . The restricted Delaunay complex
is the nerve of the restricted Voronoi diagram.

Submanifold reconstruction algorithms Edelsbrunner and Shah [ES97] proved
that if the restricted Voronoi diagram of a submanifoldM ⊂ Rn has the so-called
closed ball property, then the restricted Delaunay complex is homeomorphic to
M , and therefore defines a triangulation. We define the restricted Voronoi face
VM (σ) associated to a resticted Delaunay simplex σ as the intersection of the
relevant restricted Voronoi cells: VM (σ) = ∩u∈σVM (u). The restricted Voronoi
diagram of a k-manifold M ⊂ Rn has the closed ball property if every Voronoi face
VM (σ) is homeomorphic to a closed ball with dimension k − dimσ ≥ 0.

Cheng et al. [CDR05] used this generic triangulation result of Edelsbrunner
and Shah to argue that a weighted Delaunay complex will triangulate a sub-
manifold of Rn. The work by Boissonnat and Ghosh [BG14] adapted Whitney’s
argument to give a construction of a triangulation by a Delaunay-based complex
whose computation does not involve the ambient dimension.

Quantifying quality conditions

Both these and the classical works used a metric on the manifold to compute
the triangulation. However, for all of these results there is no explicit expression
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to describe the sampling density sufficient to guarantee a triangulation. There
is only the assurance that if the maximum distance between adjacent vertices is
small enough, a triangulation can be obtained.

In fact, in all of these results, the required sampling density depends not
only on the geometric properties of the manifold2, but also on the geometric
properties of the simplices that are involved in the construction. By geometric
properties of the simplices we specifically mean their quality. Some measure of
simplex quality is introduced, and a lower bound on this quality measure is an
essential component of the construction. This dependence on simplex quality
is also present in our results, but we actually quantify what bound on the edge
lengths is small enough to ensure a triangulation, given a bound on the quality
of the simplices.

3.1.5 Outline and main results

We will now discuss the content of the individual sections. We present some of
the main definitions and main results. Here it may happen that we touch on the
same subjects we also discussed in the introduction above.

Section 3.2; definitions and notation

In Section 3.2 we present the framework for centre of mass constructions, and in-
troduce the barycentric coordinate map and Riemannian simplices. Riemannian
simplices are defined (Definition 3.2.4) as the image of the barycentric coordin-
ate map, so they are “filled in” geometric simplices. A Riemannian simplex σM
is defined by its vertices σ = {p0, . . . , pn} ⊂M , which are constrained to lie in a
convex neighbourhood Bρ ⊂M . For any x ∈ Bρ we define a Euclidean simplex
σ(x) ⊂ TxM by σ(x) = {v0(x), . . . , vn(x)}, where vi(x) = exp−1

x (pi). In general
we use a boldface symbol when we are referring to a simplex as a set of non-
negative barycentric coordinates, and normal type refers to the finite vertex set;
the convex hull of σ(x) is σE(x).

We give a characterisation of non-degenerate Riemannian simplices in terms
of affine independence. We show that σM is non-degenerate if and only if σ(x)
is non-degenerate for every x ∈ σM .

2Here we mean the sectional curvatures in our setting, but in the computational geometry liter-
ature often the local feature size is used. For a smooth surface in three dimensional Euclidean space
the local feature size is the distance to the medial axis. The medial axis is defined as the set of points
that have more than one closest point on the surface.



66 CHAPTER 3. RIEMANNIAN SIMPLICES AND TRIANGULATIONS

Section 3.3; the Toponogov comparison theorem

In Section 3.3 we briefly discuss the Topogonov comparison theorem, which we
shall use in sections 3.4, 3.6 and 3.10.

Section 3.4; Riemannian centres of mass

In Section 3.4 we give an alternative proof for the existence and uniqueness of
Riemannian centres of mass. As mentioned Riemannian centres of mass are used
in our definition of Riemannian simplices. The proof is based on the Toponogov
comparison theorem and Morse theoretical arguments. We also discuss condi-
tions for the existence and uniqueness of Riemannian centres of mass if we allow
negative weights.

Section 3.5; Rauch based non-degeneracy conditions

In Section 3.5 we establish criteria to ensure that a Riemannian simplex is non-
degenerate. We first review properties of Euclidean simplices, including thick-
ness, the quality measure we employ. The thickness is essentially the ratio of the
smallest altitude to the longest edge length of the simplex. If the edge lengths
in a Euclidean simplex change by a small amount, we can quantify the change
in the thickness. In particular, if F : Rn → Rn is a bi-Lipschitz map, we can
quantify a bound on the thickness, t(σ), of a simplex σ relative to the metric
distortion (i.e., the bi-Lipschitz constant) that establishes when the Euclidean
simplex F (σ) is non-degenerate.

The Rauch theorem establishes bounds on the norm of the differential of the
exponential map, relative to the sectional curvatures. Using this we obtain a
bound on the metric distortion of the transition function

exp−1
x ◦ expp : TpM → TxM (3.2)

which maps σ(p) to σ(x), and so we are able to establish conditions ensuring
that σ(x) is non-degenerate, based on quality assumptions on σ(p).

An open geodesic ball of radius r centred at x ∈ M is the set BM (x; r) of all
points in M whose geodesic distance from x is less than r. The injectivity radius
at x, denoted ι(x), is the supremum of the radii r for which expx restricts to a
diffeomorphism between the Euclidean ball of radius r centred at 0 ∈ TxM , and
BM (x; r). The injectivity radius of M is the infimum of ι(x) over all x ∈M , and
is denoted ιM .

Theorem 3.1 (Non-degeneracy criteria) Suppose M is a Riemannian manifold
with sectional curvatures K bounded by |K| ≤ Λ, and σM is a Riemannian
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simplex, with σM ⊂ Bρ ⊂ M , where Bρ is an open geodesic ball of radius ρ
with

ρ < ρ0 = min

{
ιM
2
,
π

4
√

Λ

}
. (3.3)

Then σM is non-degenerate if there is a point p ∈ Bρ such that the lifted Euc-
lidean simplex σ(p) has thickness satisfying

t(σ(p)) > 10
√

ΛL(σM ), (3.4)

where L(σM ) is the geodesic length of the longest edge in σM .

Section 3.6; Topogonov based non-degeneracy conditions

In Section 3.6 an alternate approach to non-degenerate Riemannian simplices
is presented. This approach is based on bounding angles and edge lengths in
geodesic triangles via the Toponogov comparison theorem.

Section 3.7; Intrinsic triangulations

In Section 3.7 we develop our sampling criteria for triangulating manifolds. We
establish properties of maps whose differentials are bounded close to a fixed
linear isometry, and use these properties to reveal conditions under which a
complex will be embedded into a manifold. We then exploit a refinement of the
Rauch theorem, and other estimates established by Buser and Karcher [BK81],
to bound the differential of the barycentric coordinate map in this way.

If p is a vertex in an abstract simplicial complex A, we define the star of p to
be the subcomplex St(p) of A consisting of all simplices that contain p, together
with the faces of these simplices. The underlying topological space (or carrier)
of a complex A is denoted |A|. We say that St(p) is a full star if |St(p)| is a closed
topological ball of dimension nwith p in its interior, andA contains no simplices
of dimension greater than n. We have:

Theorem 3.2 (Triangulation criteria) Suppose M is a compact n-dimensional
Riemannian manifold with sectional curvatures K bounded by |K| ≤ Λ, and A
is an abstract simplicial complex with finite vertex set P ⊂ M . Define a quality
parameter t0 > 0, and let

h = min

{
ιM
4
,

√
nt0

6
√

Λ

}
. (3.5)

If

1. For every p ∈ P , the vertices of St(p) are contained in BM (p;h), and the
balls {BM (p;h)}p∈P cover M .
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2. For every p ∈ P , the restriction of the inverse of the exponential map exp−1
p

to the vertices of St(p) ⊂ A defines a piecewise linear embedding of |St(p)|
into TpM , realising St(p) as a full star such that every simplex σ(p) has
thickness t(σ(p)) ≥ t0.

thenA triangulatesM , and the triangulation is given by the barycentric coordin-
ate map on each simplex.

The techniques employed to obtain Theorem 3.2 exploit stronger bounds on
the differential of the exponential map, and provide a slightly better bound for
non-degeneracy than the one stated in Theorem 3.1, but at the expense of a
stronger constraint on the allowed diameter of the simplex. This is the reason
Equation (3.4) appears as a stronger constraint on the thickness than the curvature
controlled part of Equation (3.5).

We refer to the criteria of Theorem 3.2 as sampling criteria, even though they
require a simplicial complex for their definition. Although there is no expli-
cit constraint on the minimal distance between points of P , one is implicitly
imposed by the quality constraint on the Riemannian simplices. The required
sampling density depends on the quality of the Riemannian simplices, which
leaves open the question of what kind of quality of simplices can we hope to
attain. Recent work [BDG13a] constructs a Delaunay complex conforming to
the requirements of Theorem 3.2 with the thickness t0 bounded by Ω(2−n

3

). It
would be interesting to see this improved.

Section 3.8; metric distortion

The complex A in Theorem 3.2 naturally admits a piecewise linear metric by
assigning edge lengths to the simplices given by the geodesic distance in M
between the endpoints. In Section 3.8 we observe that in order to ensure that this
does in fact define a piecewise-flat metric, we need to employ slightly stronger
constraints on the scale parameter h. In this case, the complexA becomes a good
geometric approximation of the original manifold, and we find:

Theorem 3.3 (Metric distortion) If the requirements of Theorem 3.2, are satis-
fied with the scale parameter (3.5) replaced by

h = min

{
ιM
4
,
t0

6
√

Λ

}
,

then A is naturally equipped with a piecewise flat metric dA defined by assign-
ing to each edge the geodesic distance in M between its endpoints.
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If H : |A| → M is the triangulation defined by the barycentric coordinate
map in this case, then the metric distortion induced by H is quantified as

|dM (H(x), H(y))− dA(x, y)| ≤ 50Λh2

t20
dA(x, y),

for all x, y ∈ |A|.

Section 3.9; comparison of quality measures

The criteria of these three theorems can also be formulated in terms of the thick-
ness of the Euclidean simplices defined by the geodesic edge lengths of the
Riemannian simplices, rather than the Euclidean simplices we find in the tan-
gent spaces. In Section 3.9 we briefly mention this alternative formulation of
our results. We also compare the thickness quality measure for simplices with a
commonly used volumetric quality measure which we call fatness.

Section 3.10; simplices modelled on spaces of constant curvature

In Section 3.10 we revisit Section 3.6 with the important distinction that now we
focus on manifolds whose sectional curvatures are nearly constant and large.
For these simplices we give conditions for non-degeneracy similar to Theorem 3.2.

To be precise we are interested in Riemannian simplices on manifolds whose
sectional curvatures are very close to constant, meaning that the sectional curvature
K satisfies Λ− ≤ K ≤ Λ+ with |Λ−−Λ+| small relative to |Λ−|. This means that
we always suppose that 0 < Λ− or Λ+ < 0. The case where Λ− and Λ+ are nearly
zero is uninteresting, or rather this has been adequately treated in Sections 3.5
and 3.6. Because the sectional curvatures are very close to constant comparing
the manifold to Euclidean space is unnatural. Instead we compare to spaces of
constant curvature Λmid, whose sectional curvature lies in the interval [Λ−,Λ+].
For these spaces of constant curvature we introduce new quality measures for
simplices on spaces of constant curvature.

The non-degeneracy conditions will be in terms of the quality of the simplex
σH(Λmid)(vr) with vertices

expH(Λmid) ◦ exp−1
vr,M

(vi),

where expvr,M denotes the exponential function of M at vr. Here H(Λmid) de-
notes a space with constant sectional curvature.



70 CHAPTER 3. RIEMANNIAN SIMPLICES AND TRIANGULATIONS

3.2 Riemannian simplices

In this section we summarise the results of the theory of Riemannian centres
of mass that we need in order to define Riemannian simplices. We then give
an explicit description of the barycentric coordinate map that is used to define
these simplices. We take the view that if the barycentric coordinate map is well
defined, then the simplex is well defined, but it may be degenerate. The geodesic
finite elements employed by Sander [San12] are Riemannian simplices without
a requirement of non-degeneracy. In Section 3.2.3 we demonstrate that non-
degeneracy of a Riemannian simplex σM is characterised by the affine inde-
pendence of the vertices when lifted to the tangent space of any point in σM .

3.2.1 Riemannian centre of mass

We work with an n-dimensional Riemannian manifold M . The centre of mass
construction developed by Karcher [Kar77] hinges on the notion of convexity in
a Riemannian manifold. A set B ⊆ M is convex if any two points x, y ∈ B are
connected by a minimising geodesic γxy that is unique in M , and contained in
B. For c ∈ M , the geodesic ball of radius r is the set BM (c; r) of points in M
whose distance from c is less than r, and we denote its closure by BM (c; r). If r
is small enough, BM (c; r) will be convex; the following lemma quantifies “small
enough”.

In order to obtain non-degeneracy criteria for Riemannian simplices we re-
quire both an upper and a lower bound on the sectional curvatures, so it is con-
venient to work with a bound Λ on the absolute value of the sectional curvatures,
|K| ≤ Λ. However, the definition of Riemannian simplices only requires an up-
per bound on the sectional curvatures. In order to emphasise this we introduce
distinct symbols for the upper and lower bounds on the sectional curvatures.
Thus Λ− ≤ K ≤ Λ+, and Λ = max{Λ+,−Λ−}.

We have [Cha06, Thm. IX.6.1]:

Lemma 3.2.1 Suppose the sectional curvatures of M are bounded by K ≤ Λ+,
and ιM is the injectivity radius. If

r < min

{
ιM
2
,

π

2
√

Λ+

}
,

then BM (x; r) is convex. (If Λ+ ≤ 0, we take 1/
√

Λ+ to be infinite.)

Remark 3.2.2 Lemma 3.2.1 is stated in terms of global bounds on the injectivity
radii and sectional curvatures (on a non-compact manifold, these may be use-
less), but really we only need these bounds in a neighbourhood of x. Let K(x)
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be an upper bound on the sectional curvatures at x, and denote the injectivity ra-
dius at x by ι(x). Now define I(x) and Λ+(x) to be the infimum and supremum
respectively of ι(y) and K(y), where y ranges over the ball BM (x;R) of radius

R = min

{
ι(x)

2
,

π

2
√
K(x)

}
.

Then Lemma 3.2.1 holds if ιM and Λ+ are replaced by I(x) and Λ+(x) respect-
ively in the bound on r. For simplicity, we will continue to refer to global
bounds, but everywhere they occur a similar remark applies.

Also, in all cases where an upper bound on the sectional curvatures is em-
ployed, this bound is only relevant when it is positive. If M has non-positive
curvature, then 1/

√
Λ+ may be assumed to be infinite.

In our context, we are interested in finding a weighted centre of mass of a
finite set {p0, . . . , pj} ⊂ B ⊂ M , where the containing set B is open, and its
closure B is convex. The centre of mass construction is based on minimising the
function Eλ : B → R defined by

Eλ(x) =
1

2

∑
i

λidM (x, pi)
2, (3.6)

where the λi ≥ 0 are non-negative weights that sum to 1, and dM is the geodesic
distance function on M . Karcher’s first simple observation is that the minima of
Eλ must lie in the interior of B, i.e., in B itself. This follows from considering the
gradient of Eλ:

grad Eλ(x) = −
∑
i

λi exp−1
x (pi). (3.7)

At any point x on the boundary of B, the gradient vector lies in a cone of out-
ward pointing vectors. It follows that the minima of Eλ lie in B. The more
difficult result that the minimum is unique, Karcher showed by demonstrating
that Eλ is convex. If B ⊆ M is a convex set, a function f : B → R is convex if
for any geodesic γ : I → B, the function f ◦ γ is convex (here I ⊆ R is an open
interval). If f has a minimum in B, it must be unique. By Equation (3.7), it is the
point x where ∑

i

λi exp−1
x (pi) = 0.

We have the following result [Kar77, Thm 1.2]:
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Lemma 3.2.3 (Unique centre of mass) If {p0, . . . , pj} ⊂ Bρ ⊂ M , and Bρ is an
open ball of radius ρ with

ρ < ρ0 = min

{
ιM
2
,

π

4
√

Λ+

}
,

then on any geodesic γ : I → Bρ, we have

d2

dt2
Eλ(γ(t)) ≥ C(Λ+, ρ) > 0, (3.8)

whereC(Λ+, ρ) is a positive constant depending only on Λ+ and ρ. In particular,
Eλ is convex and has a unique minimum in Bρ.

Karcher gives an explicit expression for C(Λ+, ρ), but we will not need to refer
to it here. Also, Karcher expresses the centre of mass concept in more generality
by using an integral over a set whose measure is 1, rather than a weighted sum
over a finite set as we have used.

3.2.2 The barycentric coordinate map

Let ∆j denote the standard Euclidean j-simplex. This can be realised as the set
of points λ ∈ Rj+1 whose components are non-negative, λi ≥ 0, and sum to one:∑
i λi = 1. We index the coordinates starting from zero: these are the barycentric

coordinates on the standard simplex.

Definition 3.2.4 (Riemannian simplex) If a finite set σj = {p0, . . . , pj} ⊂ M in
an n-manifold is contained in an open geodesic ballBρ whose radius, ρ, satisfies
Equation (3.3), then σj is the set of vertices of a geometric Riemannian simplex,
denoted σjM , and defined to be the image of the map

Bσj :∆j →M

λ 7→ argmin
x∈Bρ

Eλ(x).

We say that σjM is non-degenerate if Bσj is a smooth embedding; otherwise it is
degenerate.

Define an i-face of σjM to be the image of an i-face of ∆j . Since an i-face of
∆j may be identified with ∆i (e.g., by an order preserving map of the vertex
indices), the i-faces of σjM are themselves Riemannian i-simplices. In particular,
if τ and µ are the vertices of Riemannian simplices τM and µM , and σi = τ ∩ µ,
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then the Riemannian i-simplex σiM is a face of both τM and µM . The edges
of a Riemannian simplex are the Riemannian 1-faces. We observe that these
are geodesic segments. We will focus on full dimensional simplices, i.e., unless
otherwise specified, σM will refer to a Riemannian simplex defined by a set σ of
n+ 1 vertices in our n-dimensional manifold M .

Remarks The barycentric coordinate map Bσ is differentiable. This follows
from the implicit function theorem, as is shown by Buser and Karcher [BK81,
§8.3.3], for example. They work in local coordinates on the tangent bundle, and
use the connection to split the derivative of grad Eλ : M → TM into horizontal
and vertical components. The strict convexity condition (3.8) implies that the
vertical component of the derivative is full rank, and permits the use of the
implicit function theorem.

The argument of Buser and Karcher assumes that the map is defined on an
open domain. We observe that Bσ is well defined if we allow negative bary-
centric coordinates of small magnitude. For a sufficiently small ε > 0, Lemma
3.2.3 holds if the barycentric coordinates λi satisfy

∑
λi = 1 and λi > −ε for

all i ∈ {0, . . . , n}, albeit with C(Λ+, ρ) replaced with a smaller positive constant.
This follows from the observation that d2

dt2 Eλ is continuous in the barycentric
coordinates, thus since it is strictly positive on the boundary of ∆n, it can be ex-
tended to an open neighbourhood. This means that Bσ is smooth on the closed
domain ∆n, as defined in Section 3.7.1.

Karcher himself mentioned that his result can accommodate signed meas-
ures [Kar77, Remark 1.8], and Sander has demonstrated this in some detail
[San13]. However, for our current purposes we are only claiming that we can
accommodate arbitrarily small negative barycentric coordinates assuming the
stated bound on ρ0 (Equation (3.3)).

A Riemannian simplex is not convex in general, but as Karcher [Kar77] ob-
served, being the image of the barycentric coordinate map, it will be contained
in any convex set that contains the vertices of the simplex. Thus the Riemannian
simplex is contained in the intersection of such sets.

Equation (3.3) gives an upper bound on the size of a Riemannian simplex
that depends only on the injectivity radius and an upper bound on the sectional
curvature. For example, in a non-positively curved manifold, the size of a well
defined Riemannian simplex is constrained only by the injectivity radius. How-
ever, if the dimension n of the manifold is greater than 2, we will require also
a lower bound on the sectional curvatures in order to ensure that the simplex is
non-degenerate.

Lemma 3.2.3 demands that a Riemannian simplex be contained in a ball
whose radius is constrained by ρ0. Thus Riemannian simplices always have
edge lengths less than 2ρ0. If the longest edge length, L(σM ), of σM is less than
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ρ0, then σM must be contained in the closed ball of radius L(σM ) centred at
a vertex. Indeed, any open ball centred at a vertex whose radius is larger than
L(σM ), but smaller than ρ0, must contain the vertices and have a convex closure.
The simplex is thus contained in the intersection of these balls. If L(σM ) ≥ ρ0,
then a ball of radius L(σM ) need not be convex. In this case we claim only that
σM is contained in a ball of radius 2ρ0 centred at any vertex.

3.2.3 The affine independence criterion for non-degeneracy

In this subsection we show that a Riemannian simplex σM is non-degenerate
if, and only if, for any x ∈ σM , the lift of the vertices by the inverse exponen-
tial map yields a non-degenerate Euclidean simplex. We first introduce some
notation and terminology to better articulate this statement.

Notation

A Euclidean simplex σ of dimension k is defined by a set of k + 1 points in Euc-
lidean space σ = {v0, . . . , vk} ⊂ Rn. In general we work with abstract simplices,
even though we attribute geometric properties to the simplex, inherited from
the embedding of the vertices in the ambient space (see Section 3.5.1). When we
wish to make the dimension explicit, we write it as a superscript, thus σk is a
k-simplex. Traditional “filled in” geometric simplices are denoted by boldface
symbols; σE = conv(σ) is the convex hull of σ. If such a simplex is specified by
a vertex list, we employ square brackets: σE = [v0, . . . , vk].

The barycentric coordinate functions {λi} associated to σ are affine functions
Rn → R that satisfy λi(vj) = δij and

∑n
i=0 λi = 1. It is often convenient to

choose one of the vertices, v0 say, of σ to be the origin. We let P be the n × k
matrix whose ith column is vi − v0. Then the barycentric coordinate functions
{λi} are linear functions for i > 0, and they are dual to the basis defined by the
columns of P . This means that if we represent the function λi as a row vector,
then the matrix Q whose ith row is λi satisfies QP = Ik×k.

A full dimensional Euclidean simplex σ is non-degenerate, if and only if the
corresponding matrix P is non-degenerate. In particular, if σ is full dimensional
(i.e., k = n), then Q = P−1. Suppose σ ⊂ Rn is an n-simplex. If ξ ∈ Rn, let
λ(ξ) = (λ1(ξ), . . . , λn(ξ))

T. Then λ(ξ) is the vector of coefficients of ξ − v0 in the
basis defined by the columns of P . I.e., ξ − v0 = Pλ(ξ).

We will be interested in Euclidean simplices that are defined by the vertices
of a Riemannian simplex: If σ = {p0, . . . , pn} ⊂ Bρ ⊂ M is the set of vertices
of σM , it is convenient to introduce the notation vi(x) = exp−1

x (pi), and σ(x) =
exp−1

x (σ). Thus σ(x) = {v0(x), . . . , vn(x)} is a Euclidean simplex in TxM .
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The norm of a vector v in a Euclidean space is denoted |v|. For example, if
v ∈ TpM , then |v| = g(v, v)

1
2 , where g is the Riemannian metric tensor on M ,

and if v ∈ Rn, then |v| = (v · v)
1
2 . The differential of a map F : M → M̄ is

denoted by dF ; so dFx : TxM → TF (x)M̄ is a linear map whose operator norm
is ‖dFx‖. All differentiable maps, operators, and manifolds are assumed to be
C∞.

An expression for the differential

The expression for the differential obtained in Equation (3.10) below is obtained
as a particular case of an argument presented by Buser and Karcher [BK81,
§8.3]. The argument was later exploited by Peters [Pet84] to sharpen bounds
on Cheeger’s finiteness theorem [Che70]. A thorough exposition appears also in
Chavel [Cha06, IX.8].

We work in a domain U ⊂ Rn defined by a chart φ : M ⊃ W → U such that
Bρ ⊂ W . Let σ̃ = φ(σ) be the image of the vertices of a Riemannian n-simplex
σM ⊂ Bρ. Label the vertices of σ̃ = {v0, . . . , vn} such that vi = φ(pi), and
assume v0 is at the origin. The affine functions λi : u 7→ λi(u) are the barycentric
coordinate functions of σ̃. We consider grad Eλ, introduced in Equation (3.7),
now to be a vector field that depends on both u ∈ U and x ∈ Bρ. Specifically, we
consider the vector field ν : U ×Bρ → TM defined by

ν(u, x) = −
n∑
i=0

λi(u)vi(x). (3.9)

Let b : σ̃E → σM be defined by b = Bσ ◦ L, where L is the canonical linear
isomorphism that takes the vertices of σ̃ to those of ∆n, and Bσ is the barycentric
coordinate map introduced in Definition 3.2.4. This map is differentiable, by the
arguments presented by Buser and Karcher, and ν(u, b(u)) = 0 for all u ∈ σ̃E.
Regarded as a vector field along b, the covariant differential ∇ν(u,b(u)) = 0 may
be expanded as

∂uν +
(
∇Mν

)
db = 0,

where ∂uν denotes the differential of ν(u, x) with x fixed, i.e.,

∂uν(u,x) : TuRn → TxM(
∂uν(u,x)

)
u̇(0) =

d

dt
ν(u(t), x)

∣∣
t=0

,

with u̇(0) denoting the tangent vector at 0 to some curve t 7→ u(t) in U ⊂ Rn.
Similarly∇Mν is the covariant differential when u is fixed:

∇Mν(u,x) : TxM → TxM(
∇Mν(u,x)

)
ẋ(0) = Dtν(u, x(t))

∣∣
t=0

,
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where Dtν is the covariant derivative along the curve x(t). Finally db : TuRn →
TxM is the differential of b, our barycentric coordinate map onto the Riemannian
simplex σM .

Our objective is to exhibit conditions that ensure that db is non-degenerate.
It follows from the strict convexity conditon (3.8) of Lemma 3.2.3 that the map
∇Mν is non-degenerate. Indeed, if v ∈ TxM for some x ∈ Bρ, there is a geodesic
γ : I → Bρ with γ′(0) = v, and d2

dt2 Eλ(γ(t))
∣∣
t=0

= g(∇Mv ν, v) > 0. Therefore, we
have that

db = −
(
∇Mν

)−1
∂uν, (3.10)

and thus db has full rank if and only if ∂uν has full rank.

The differential as a matrix

Recalling Equation (3.9), notice that when x is fixed, ν is an affine map Rn ⊃
U → TxM , and so (∂uν)v = (∂uν)w for all v, w ∈ U . We see that

∂uν = −
n∑
i=0

vi(x) dλi.

Since
∑n
i=0 λi = 1, we have that

∑n
i=0 dλi = 0. We may thus write dλ0 =

−
∑n
i=1 dλi, and so for ξ ∈ TuU , we have

(∂uν) ξ = −
n∑
i=1

(
vi(x)− v0(x)

)
dλi(ξ) . (3.11)

Now, since the domain of the barycentric coordinates is U , and the origin of
U ⊂ Rn coincides with v0, the functions λi for i ∈ {1, . . . , n} are linear functions,
and we use the canonical identification of tangent spaces in Rn to conclude that
dλi(ξ) = λi(ξ), where in the right hand side we view ξ as an element of Rn,
rather than an element of TuRn. As discussed above, we have λ(ξ) = P−1ξ,
where λ(ξ) = (λ1(ξ), . . . , λn(ξ))

T, and P is the matrix whose ith column is vi.
Thus, using an arbitrary linear isometry to get a coordinate system for TxM ,
and letting P̃ be the matrix whose ith column is (vi(x)− v0(x)), we may rewrite
Equation (3.11) as

(∂uν) ξ = −P̃ λ(ξ) = −P̃P−1ξ. (3.12)

From Equation (3.12) we conclude that ∂uν is full rank if and only if P̃ is of
full rank, and this is the case if and only if σ(x) is a non-degenerate Euclidean
simplex, i.e., its vertices {vi(x)} are affinely independent.

We observe that if db is non-degenerate on σM , then b must be injective.
Indeed, if x = b(u), then {λi(u)}, the barycentric coordinates of u with respect
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to σ̃, are also the barycentric coordinates of the origin in TxM , with respect to
the simplex σ(x). Thus if b(u) = x = b(ũ), then λi(u) = λi(ũ), and we must have
ũ = u by the uniqueness of the barycentric coordinates.

In summary, we have

Proposition 3.2.5 A Riemannian simplex σM ⊂ M is non-degenerate if and
only if σ(x) ⊂ TxM is non-degenerate for every x ∈ σM .
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3.3 The Toponogov Comparison Theorem

In this section we shall introduce the Toponogov Comparison Theorem and the
definitions which go with it. This result will be intrumental for Sections 3.4, 3.6
and 3.10. Our exposition will follow Karcher [Kar89]. Then we give the cosine
rules in spaces of constant curvature.

We shall use the notation Hn(Kc) for the simply connected space of dimen-
sion n with constant sectional curvature Kc. We write Kc to emphasize that on
a space of constant sectional curvature the section curvature K is constant. If
we do not wish to emphasize the dimension we simply write H(Kc). A simply
connected space with constant sectional curvature is also called a space form.
Often when we mention a space of constant curvature we shall tacitly assume
that it is simply connected and thus a space form.

Definition 3.3.1 A geodesic triangle T in a Riemannian manifold consists of
three minimizing geodesics connecting three points, sometimes also referred to
as vertices. We stress that a geodesic triangle does not include an interior. As-
sume lower curvature bounds Λ− ≤ K (or upper bounds K ≤ Λ+). A triangle
with the same edge lengths as T in Hn(Λ−) (or Hn(Λ+)), is called an Alexan-
drov triangle TΛ− (or TΛ+

) associated with T, named after Alexandrov who used
these in his study of convex surfaces [Kar89]. Two edges of a geodesic triangle
and the enclosed angle form a hinge; a Rauch hinge in Hn(Λ−) (or Hn(Λ+)) of
a given hinge, consists of two geodesics emanating from a single point with the
same lengths and enclosed angles as the original hinge. The edge closing the
Rauch hinge in Hn(Λ−) (or Hn(Λ+)), that is the minimizing geodesic connecting
the two endpoint of the geodesics emanating from a single point with the same
lengths and enclosed angles as the hinge in a space of arbitrary curvature, will
be called the Rauch edge of the hinge.

Note that because spaces of constant curvature are homogeneous, the Al-
exandrov triangles and Rauch hinges are uniquely defined, up to isometry of
H(Λ±).

The Toponogov Comparison Theorem or Triangle Comparison Theorem reads

Theorem 3.3.2 (Toponogov Comparison Theorem) Let T be a geodesic triangle
inM that lies within every geodesic ball of radius less than the injectivity radius
centred at one of the vertices and assume that the sectional curvatures K of M
satisfy the bounds Λ− ≤ K ≤ Λ+. If Λ+ > 0, assume also that the triangle
circumference is less then 2πΛ+

−1/2. Then Alexandrov triangles TΛ− and TΛ+

exist. Moreover, any angle α of T satisfies

αΛ− ≤ α ≤ αΛ+
,
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where αΛ− and αΛ+
are the corresponding angles in TΛ− and TΛ+

respectively.
The length c of the third edge closing a hinge is bounded in length by the lengths
of the Rauch edges, cΛ− and cΛ+ , closing the Rauch hinges on H(Λ−) and H(Λ+)
respectively:

cΛ− ≥ c ≥ cΛ+
.

Figure 3.1: An ellipsoid (centre) with a hinge with closing geodesic and cor-
responding Rauch hinges with closing geodesic on the spaces of constant
curvatures (left and right), in this case both elliptic spheres.

We also give the cosine rule which is of use in explicit calculations involving
the Toponogov comparison theorem.

The cosine rule for elliptic spaces, that is positively curved spaces of constant
curvature, is given in Section 18.6 of Berger [Ber87b] and Section 12.7 of Coxeter
[Cox98] and reads

cos
a

k
= cos

b

k
cos

c

k
+ sin

b

k
sin

c

k
cosα, (3.13)

in a space of sectional curvature (or Gaussian curvature in two dimensions)
1/k2, here k > 0.

The cosine rule for hyperbolic spaces, that is negatively curved spaces of
constant curvature, is given in Section 19.3 of Berger [Ber87b] and Section 12.9
of Coxeter [Cox98] to be

cosh
a

k
= cosh

b

k
cosh

c

k
− sinh

b

k
sinh

c

k
cosα, (3.14)
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Figure 3.2: Triangle with the standard symbols for angles and lengths

in a space of sectional curvature −1/k2, here k > 0. See Figure 3.2 for a figure
with the edge lenths and angles indicated.
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3.4 Existence and uniqueness of Riemannian centres
of mass

3.4.1 Results and methods

Riemannian centres of mass, or Karcher means, generalize the concept of centres
of mass which we are familiar with in a Euclidean setting to Riemannian man-
ifolds. In this context the centre of mass in a sufficiently small convex ball is
defined to be the minimum of the average squared distance to the mass in our
distribution. It is not obvious that such a minimum exists and, assuming that
it exists, is unique. It has been proven that the Riemannian centre of mass of a
mass distribution in a sufficiently small convex ball exists and is unique for a
positive mass distribution. If we allow negative weights existence and unique-
ness has been shown under extra conditions.

Contribution

Our proof of the existence and uniqueness of Riemannian centres of mass uses
Morse theoretical arguments and the Topogonov comparison theorem. In par-
ticular we do the following:

• We use the Topogonov comparison theorem to prove that every critical
point is a local minimum.

• We use Morse theory to conclude that there is only one critical point.

Unlike the already existing proofs it requires little background in differential
geometry, apart from working knowledge of the Topogonov comparison the-
orem. The conditions we provide for the negative weight case are also more
explicit than the conditions available.

Results

We arrive at the following:

Theorem 3.4.2 Let M be a manifold whose sectional curvature K is bounded,
that is Λ− ≤ K ≤ Λ+. Let PM the function on Bρ defined by

PM (x) =
1

2

∫
dM (x, p)2dµ(p), (3.15)

where dµ is a positive measure and the support of dµ is contained in Bρ. We
now give two conditions on ρ:
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• ρ is less than half the injectivity radius,

• if Λ+ > 0 then
ρ <

π

2
√

Λ+

.

If these conditions are met then PM has a unique critical point in Bρ, which is a
minimum.

Theorem 3.4.9 Let M be a manifold whose sectional curvature K is bounded,
that is Λ− ≤ K ≤ Λ+. Let PM the function on Bρ(c), a geodesic ball of radius ρ
centred on c, defined by

PM (x) =
1

2

∫
dM (x, p)2dµ(p), (3.15)

where the support of µ is contained in Br(c) and we write R + r = ρ. Using the
notation

dµ+ = 1{µ>0}dµ, |µ+| =
∣∣∣∣∫ dµ+

∣∣∣∣
dµ− = 1{µ<0}dµ, |µ−| =

∣∣∣∣∫ dµ−

∣∣∣∣ ,
and

kl =
1√
|Λ−|

ku =
1√
|Λ+|

,

we are now able give conditions on ρ depending on the curvature bounds Λ−
and Λ+:

• ρ is less than half the injectivity radius,

• if 0 < Λ− ≤ Λ+

2ρ
kl

tan 2ρ
kl

|µ+| − |µ−| > 0,

• if Λ− ≤ 0 ≤ Λ+

2ρ
kl

tan 2ρ
kl

|µ+| −
2ρ
ku

tanh 2ρ
ku

|µ−| > 0,
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• if Λ− ≤ Λ+ ≤ 0

|µ+| −
2ρ
ku

tanh 2ρ
ku

|µ−| > 0,

•
R|µ+| − (2r +R)|µ−| > 0

If these conditions are met then PM has a unique minimum in Bρ.

Previous work

There are two proofs for the existence and uniqueness of Riemannian centres
of mass available. A first one by Karcher [Kar77] and a later one by Kendall
[Ken90]. Karcher used comparison theorems of Rauch type to prove that the
function

PM (x) =
1

2

∫
dM (x, p)2dµ(p) (3.15)

is convex on a sufficiently small convex ball, where as before, dM denotes the
distance on the manifold M and dµ denotes the mass distribution, whose sup-
port is contained in the convex ball. Below we shall make the conditions on the
convex ball and the mass distribution more precise.

Comparison theorems of Rauch type compare the behaviour of vector fields
on spaces of arbitrary curvature to the behaviour of vector fields on spaces of
constant curvature, like the Topogonov comparison theorem does for geodesic
triangles. These comparison theorems are also used in Sections 3.5.2 and 3.7.2.

The proof by Kendall [Ken90] is based on the concept of ‘convex geometry’
which arose from work by Emery on Dirichlet problems. The definition of ‘con-
vex geometry’ used in the context of Dirichlet problems is quite unlike the defin-
ition of convexity:

Definition 3.4.1 (‘convex geometry’ [Ken90]) Let B be a compact submanifold
(with boundary) of a complete Riemannian manifold M , with dimB = dimM .
The domain B is said to have convex geometry if there is a continuous non-
negative bounded convex function3

Ψ : B × B → [0,∞)

vanishing precisely on the diagonal

{(x, x)|x ∈ B}.
3The function is geodesically convex with respect to Riemannian structure.
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If a geodesic ball B has ‘convex geometry’ then one can prove the uniqueness
of the Riemannian centre of mass in B. The proof is presented in Section 7 of
[Ken90] and is relatively short. The fact that a so-called regular geodesic ball has
‘convex geometry’ is not entirely straightforward and the proof of this occupies
most of Sections 2 and 4 of [Ken90].

Karcher [Kar77] noted that his proof can be extended to mass distributions
with negative weights but positive total weight. This has been studied in detail
by Sander [San13], see also [San12]. Sander gave conditions that guarantee the
existence and uniqueness of Riemannian centres of mass for mass distributions
that allow negative weights.

Overview of our ‘Morse theoretical’ proof

We shall present alternative proofs for the existence and uniqueness of Rieman-
nian centres of mass for both the original setting (all weights are positive) and
the setting where we allow negative weights. Note that for Riemannian centres
of mass to make sense the total mass needs to be positive. In fact we shall follow
Karcher [Kar77] and Kendall [Ken90] and assume that the total mass is one.

The proof we give is inspired by Morse theory and relies heavily on the To-
pogonov comparison theorem. For a review of Morse theory we refer to Section
4.3.3. The proof of existence is straightforward for the positive weights case. The
idea of the proof of uniqueness in the same setting consists, roughly speaking,
of four steps:

• We consider two points x and y on a space of constant curvature. We
parametrize a small neighbourhood of x by vectors v in the tangent space
at x using the exponential map. We then calculate the squared distance
between a point near x parametrized by v and y on the space of constant
curvature. These squared distances can be approximated by its Taylor
series, where we take the length of v to be our small parameter. We find
that the quadratic terms in the Taylor series are positive.

• We now consider two points x and y on a manifold M . Again we para-
metrize a small neighbourhood of x by vectors v in the tangent space at x
using the exponential map. Now we use the Topogonov comparison the-
orem to conclude that the quadratic terms of the Taylor series in |v| of the
squared distance between expx(v) and y are positive.

• The previous step implies that the critical points of PM are local minima
for manifolds of arbitrary but bounded sectional curvature.

• We use the Morse inequalities to conclude that there is only one critical
point.
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In the case where we allow negative weights the steps are more or less the same
but extra conditions need to be met.

Unless mentioned otherwise we assume that every manifold is smooth (C∞)
and simply connected.

3.4.2 Reminder of definitions and (re-)introduction of notation

As we mentioned in Section 3.3 we call a space of constant negative sectional
curvature a hyperbolic space. We refer to a setting where a space of constant
negative curvature is involved as the hyperbolic case. In particular if we com-
pare a geodesic triangle on a manifold to a geodesic triangle on a space of con-
stant negative curvature, this is referred to as the hyperbolic case.

Likewise a space of positive constant curvature is called elliptic space. We
refer to a setting where a space of constant positive curvature is involved as the
elliptic case. In particular if we compare a geodesic triangle on a manifold to a
geodesic triangle on a space of constant positive curvature, this is referred to as
the elliptic case.

If the space of constant sectional curvature has zero curvature it is (locally)
Euclidean space. As for the spaces of non-zero curvature we refer to a setting
where the space is Euclidean as the Euclidean case.

We shall use the notation Hn(Kc) for the space of dimension n with con-
stant sectional curvature Kc. If we do not wish to emphasize the dimension we
simply write H(Kc). In this section we write Kc to emphasize that the sectional
curvature is constant. We specifically allowKc = 0 for H(Kc). However we shall
not write H(0) if we specifically focus on a space of zero sectional curvature4, but
emphasize that it is Euclidean space by writing E. If we concentrate on a surface
we use Gaussian curvature interchangeably with sectional curvature, for they
are the same. As before we define k = 1/

√
|Kc|, provided Kc 6= 0.

If we need to distinguish the elliptic and hyperbolic cases we write K−c
to indicate negative constant curvature and K+

c to indicate positive constant
curvature. This means that the spaces of constant curvature are denoted by
H(K+

c ), E and H(K−c ).
We shall not write H(±1/k2), because using that notation makes it unne-

cessarily difficult to accommodate Euclidean space and we specifically wish to
include this case. The notation H(±1/k2) will be used in Section 3.10.

In the Topogonov comparison theorem, Theorem 3.3.2, we used the notation
Λ− and Λ+ to indicate bounds on the sectional curvature K of a manifold M ,
that is Λ− ≤ K ≤ Λ+. Depending on the manifold M the bounds Λ− and Λ+

4Of course the flat torus also has zero sectional curvature, but this is ignored because as long as
one does not cross the injectivity radius one does not see a difference between Euclidean space and
the flat torus.
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may both be positive or negative. They should not be confused with K−c or
K+
c , the symbols for negative and positive constant curvature. In particular, by

definition we have K−c < 0 and K+
c > 0. Because Λ− and Λ+ may both be

positive or negative H(Λ−) and H(Λ+) may both be hyperbolic or elliptic. In
fact the cases where Λ− and Λ+ have the same sign are of great importance in
Section 3.4.4.

As we have seen before in Section 3.2 dN denotes the geodesic distance on the
manifold N . Here we specifically allow that N is a space of constant sectional
curvature. The length of a vector v in Euclidean space with the usual norm is
denoted by |v|.

The tangent space TxM at a point x of a Riemannian manifoldM is endowed
with an inner product. The tangent space TxM can be identified with Euclidean
space. We also write | · | to denote the norm induced by the Riemannian inner
product on the tangent space. The exponential map exp at a point x on a man-
ifold N will be denoted by expx,N . Here we again specifically allow N to be a
space of constant curvature.

As in Section 3.3, we denote the lengths of the edges of a (geodesic) triangle
by a, b and c.

3.4.3 Positive weights

In this subsection we give an alternative proof of the existence and uniqueness
of Riemannian centres of mass or Karcher means.

The function PM

Before we can prove the existence and uniqueness of Riemannian centres of
mass we first have to give some definitions. Here we follow Karcher [Kar77]:

Let dµ be a non-negative measure, whose support is contained within Bρ, a
convex ball of finite radius ρ as referred to in Lemma 3.2.1. If we want to specify
at which point we consider the measure we write dµ(p). Let us illustrate this by
an example: If f is a function from Bρ × R to R we write∫

f(p, x)dµ(p)

to make it clear that p is the variable over which we integrate. We shall further
assume that the measure dµ has volume 1, that is∫

M

dµ =

∫
Bρ

dµ = 1.
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We can make this assumption without loss of generality because we can always
normalize. We shall call dµ a ‘mass distribution’ on Bρ.

We define the function

PM :B̄ρ → R,

by

PM (x) =
1

2

∫
dM (x, p)2dµ(p). (3.15)

If the domain of an integral is not specified we shall assume that we integrate
over the support of dµ, which is equivalent to integrating over Bρ or M .

The function PM reduces to

Eλ(x) =
1

2

∑
i

λidM (x, pi)
2, (3.6)

if the support of the measure µ consists of the points pi and the weight for pi is
λi for every i.

A comparison of proof strategies

As Karcher [Kar77] also remarked, the gradient vector field of PM is given by

gradPM (x) = −
∫

exp−1
x,M (p)dµ(p). (3.16)

Note that exp−1
x,M (p) ∈ TxM and thus, roughly speaking, the measure dµ(p) in

equation (3.16) attaches weights to vectors is TxM . Because the support of dµ is
contained in a convex ball the exponential map is a diffeomorphism.

Equation (3.16) implies in particular that at boundary points x ∈ ∂Bρ the
gradient gradPM (x) is an average over outward pointing vectors. This yields
that PM has only interior minima on the compact ball B̄ρ.

Karcher then proves that

d2

dt2
PM (γ(t)) > 0, (3.17)

for any geodesic γ in B̄ρ. The inequality (3.17) proves that the minimum is
unique. The proof of (3.17) is as mentioned based on comparison theorems of
Rauch type.

We too shall prove that PM has a unique minimum. However we do not
prove (3.17) in our approach, nor do we use estimates on vector fields, as Karcher
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did. Instead we perform some straightforward calculations on spaces of con-
stant curvature. Combining these calculations with the Topogonov comparison
theorem we conclude that every critical point of PM is a local minimum. As
already noticed by Karcher, the gradient of PM is pointing inward on the bound-
ary of a convex ball, that contains the support of the measure µ. This observa-
tion follows directly from the definition of convexity. This implies that PM has
a unique minimum, by the Morse inequalities.

Main theorem

The result can be summarised in the following theorem.

Theorem 3.4.2 Let M be a manifold whose sectional curvature K is bounded,
that is Λ− ≤ K ≤ Λ+. Let PM the function on Bρ defined by

PM (x) =
1

2

∫
dM (x, p)2dµ(p), (3.15)

where dµ is a positive measure and the support of dµ is contained in Bρ. We
now give two conditions on ρ:

• ρ is less than half the injectivity radius,

• if Λ+ > 0 then

ρ <
π

2
√

Λ+

.

If these conditions are met then PM has a unique critical point in Bρ, which is a
minimum.

Spaces of constant curvature

We start with one of these straightforward calculations in spaces of constant
curvature. Our observation concerns geodesic triangles of which one of the
edges (we have chosen b) is very short compared to the other edges, see Figure
3.3. We shall compare these geodesic triangles in spaces of constant curvature to
triangles in Euclidean space.

In Lemma 3.4.4 we shall use the following notation:

Definition 3.4.3 Let N be a Riemannian manifold. Here we specifically allow
N to be a space of constant sectional curvature, in particular N is allowed to
be Euclidean space. As usual | · | denotes the norm induced by the Riemannian
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a

b

c

α

Figure 3.3: A sketch of a triangle with short edge. The depiction is made ‘using’
Riemann normal coordinates. It is supposed to be a sketch of a triangle on an
arbitrary manifold, but especially in Lemma 3.4.4 the manifold is a space of
constant curvature.

metric on TxN . Let x, y ∈ N separated by a distance smaller then the injectivity
radius. We introduce the notation

dTxN (v, exp−1
x,N (y))2 = | exp−1

x,N (y)|2 − 2| exp−1
x,N (y)|(cosα)|v|+ |v|2,

with α the angle between exp−1
x,N (y) and v in TxN , where the angle is determined

by the Riemannian metric.

We shall now prove the following regarding spaces of constant curvature:

Lemma 3.4.4 Let x, y ∈ H(K+
c ),E,H(K−c ) and v ∈ TxH(K+

c ), TxE, TxH(K−c ).
Here we useK+

c , E andK−c to distinguish the positive, zero and negative curvature
cases. For K+

c we add the condition that 2dH(K+
c )(x, y) < π√

K+
c

. The quadratic

terms in the Taylor approximation of dH(K+
c )(expx,H(K+

c )(v), y)2, dE(expx,E(v), y)2

and dH(K−
c )(expx,H(K−

c )(v), y)2 with respect to |v| are positive, moreover they are
equal up to first order, that is

dTxH(K−
c )(v, exp−1

x,H(K−
c )

(y))2 = dH(K−
c )(expx,H(K−

c )(v), y)2 +O(|v|2)

dTxE(v, exp−1
x,E(y))2 = dE(expx,E(v), y)2

dTxH(K+
c )(v, exp−1

x,H(K+
c )

(y))2 = dH(K+
c )(expx,H(K+

c )(v), y)2 +O(|v|2).

Here we emphasize that the length of v (denoted by |v|)is the length of a vector in
TxH(Kc), with respect to the inner product induced by the Riemannian metric.
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Note that we may even assume that H(K+
c ),E,H(K−c ) are two dimensional

in Lemma 3.4.4.

Proof The result of the lemma follows by approximating the cosine rule for
triangles as sketched in Figure 3.4 using Taylor’s theorem. We start with the
cosine rules in spaces of constant curvature (where a, b and c denote the lengths
of edges). As we have seen in Section 3.3, the cosine rules read

cos
a

k
= cos

b

k
cos

c

k
+ sin

b

k
sin

c

k
cosα, (elliptic)

a2 = b2 + c2 − 2bc cosα (Euclidean)

cosh
a

k
= cosh

b

k
cosh

c

k
− sinh

b

k
sinh

c

k
cosα, (hyperbolic) (3.18)

for spaces of positive, zero and negative constant curvature respectively. We
write (elliptic) to indicate that the space has positive constant curvature, (Euc-
lidean) to indicate that the space has zero curvature, and (hyperbolic) to indicate
that the space has negative constant curvature. Here we used that k = 1/

√
|Kc|,

with Kc the value of the sectional curvature K. As mentioned, we write Kc to
emphasize that the sectional curvature of a space of constant sectional curvature
is constant.

With the cosine rules we do the following:

• We take the arccos, square root and arccosh respectively, of both sides of
(3.18) that is,

• bring k where necessary (if the curvature is non-zero) to the other side,

• square all terms (on both sides),

• use Taylor’s theorem with respect to b (on the right hand side),

this yields:

a2 = c2 − 2bc cosα+

(
cos2 α+ sin2 α

c
k

tan c
k

)
b2 +O(b3) (elliptic)

a2 = c2 − 2bc cosα+ b2 (Euclidean)

a2 = c2 − 2bc cosα+

(
cos2 α+ sin2 α

c
k

tanh c
k

)
b2 +O(b3) (hyperbolic), (3.19)

where for the elliptic case we assume that we do not cross the injectivity ra-
dius, that is πk

2 > c. We note that because x/ tanx > 0, for 0 < x < π/2, and
x/ tanhx > 0 the quadratic terms are strictly positive.
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A = x

C = expx,H(Kc)(v)

B = y

a = dH(Kc)(expx,H(Kc)(v), y)

|v| = b

dH(Kc)(x, y) = | exp−1
x,H(Kc)

(y)| = c

α

Figure 3.4: A sketch of a geodesic triangle with short edge. Here we assume
that the space has constant sectional curvature. The depiction is made ‘using’
Riemann normal coordinates.

We now choose the vertices of the triangle to be given by A = x, B = y and
C = expx,H(Kc)(v), as indicated in Figure 3.4. With these choices we have

a = dH(Kc)(expx,H(Kc)(v), y), b = |v|, c = | exp−1
x,H(Kc)

(y)| = dH(Kc)(x, y),

where Kc can be either positive, zero or negative and thus H(Kc) denotes either
elliptic space (if the constant sectional curvatureKc is positive), Euclidean space
(if the constant sectional curvature Kc is zero) or hyperbolic space (if the con-
stant sectional curvature Kc is negative). We repeat that H(Kc) may be Euc-
lidean space if Kc is zero, but the notation E is used to stress this if necessary
and not in a general context.

With the vertices and therefore lengths of edges we have given in the previ-
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ous paragraph (also see the sketch in Figure 3.4) equation (3.19) now reads

dH(K+
c )(expx,H(K+

c )(v), y)2 =| exp−1

x,H(K+
c )

(y)|2 − 2| exp−1

x,H(K+
c )

(y)|(cosα)|v|

+

(
cos2(α) + sin2(α)

ϑ+

tanϑ+

)
|v|2 +O(|v|3)

dE(expx,E(v), y)2 =| exp−1
x,E(y)|2 − 2| exp−1

x,E(y)|(cosα)|v|+ |v|2

dH(K−
c )(expx,H(K−

c )(v), y)2 =| exp−1

x,H(K−
c )

(y)|2 − 2| exp−1

x,H(K−
c )

(y)|(cosα)|v|

+

(
cos2(α) + sin2(α)

ϑ−
tanhϑ−

)
|v|2 +O(|v|3),

(3.20)

with

ϑ+ =

∣∣∣exp−1

x,H(K+
c )

(y)
∣∣∣

k+

ϑ− =

∣∣∣exp−1

x,H(K−
c )

(y)
∣∣∣

k−
, (3.21)

where we use K+, E and K− to distinguish the positive, zero and negative

curvature cases, k+ = 1/
√
K+
c and k− = 1/

√
|K−c |. As we noted above the

expressions are the same up to first order in |v| , that is

dTxH(K−
c )(v, exp−1

x,H(K−
c )

(y))2 = dH(K−
c )(expx,H(K−

c )(v), y)2 +O(|v|2)

dTxE(v, exp−1
x,E(y))2 = dE(expx,E(v), y)2

dTxH(K+
c )(v, exp−1

x,H(K+
c )

(y))2 = dH(K+
c )(expx,H(K+

c )(v), y)2 +O(|v|2).

�

From spaces of constant curvature to manifolds of arbitrary sectional curvature

We can now combine Lemma 3.4.4 with the Toponogov comparison theorem,
see Section 3.3. Suppose that the sectional curvatures K of a manifold M satisfy
the bound Λ− ≤ K ≤ Λ+. Note that Λ− and Λ+ may both be positive or negat-
ive. When we use Lemma 3.4.4 we therefore may use the result for hyperbolic
of elliptic spaces twice.

To be able to use the Topogonov comparison theorem (Theorem 3.3.2) we
assume that the points x and y lie within a convex geodesic ball Bρ in M . We
shall assume that the following two conditions on ρ are satisfied:



3.4. EXISTENCE AND UNIQUENESS OF CENTRES OF MASS 93

• ρ is less than half the injectivity radius,

• should moreover Λ+ > 0 then

ρ <
π

2
√

Λ+

.

Let us identify x with a point in H(Λ−) and a point in H(Λ+). We can now
also identify the tangent spaces of the different spaces at x.5 With these defini-
tions the Topogonov comparison theorem yields

dH(Λ−)(expx,H(Λ−)(v), expx,H(Λ−) ◦ exp−1
x,M (y))2

≥ dM (expx,M (v), y)2

≥ dH(Λ+)(expx,H(Λ+)(v), expx,H(Λ+) ◦ exp−1
x,M (y))2. (3.22)

Lemma 3.4.4 then implies that the upper and lower bounds in (3.22) are the same
up to linear order in |v|, to be precise

dH(Λ−)(expx,H(Λ−)(v), expx,H(Λ−) ◦ exp−1
x,M (y))2 =

| exp−1
x,M (y)|2 − 2| exp−1

x,M (y)|(cosα)|v|+O(|v|2)

dH(Λ+)(expx,H(Λ+)(v), expx,H(Λ+) ◦ exp−1
x,M (y))2 =

| exp−1
x,M (y)|2 − 2| exp−1

x,M (y)|(cosα)|v|+O(|v|2). (3.23)

Note that these expressions do not depend on the signs of Λ− and Λ+, in par-
ticular both the upper and the lower bound may have the same sign. Because
the upper and lower bounds in (3.22) (as given in (3.23)) are the same up to first
order we can conclude

PM (expx,M (v)) =

∫
dM (expx,M (v), p)2dµ(p)

=

∫
|v − exp−1

x,M (p)|2dµ(p) +O(|v|2). (3.24)

Equation (3.24) implies that critical points x of PM are characterized by∫
exp−1

x,M (p)dµ(p) = 0, (3.25)

as we have seen in (3.16).

5Here it is crucial that all manifolds, that is including the spaces of constant curvature have the
same dimension.
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Lemma 3.4.4 also gives us that the quadratic terms in the Taylor series of

dH(Λ−)(expx,H(Λ−)(v), expx,H(Λ−) ◦ exp−1
x,M (y))2

and
dH(Λ+)(expx,H(Λ+)(v), expx,H(Λ+) ◦ exp−1

x,M (y))2

in |v| are positive. With the Topogonov comparison theorem this implies that
the quadratic terms in the Taylor series of dM (expx,M (v), y)2 are positive. From
this we may conclude that the quadratic terms in the series development of

PM (expx,M (v)) =

∫
dM (expx,M (v), y)2dµ(y)

at x are positive. This in turn implies that every critical point of PM is a local
minimum. We can further conclude that PM is Morse, because of the quadratic
nature of the critical points.

Uniqueness using Morse type arguments

To be able to conclude that every critical point is a local minimum and that the
gradient is pointing outwards on the boundary ∂B̄ρ, where B̄ρ is a convex ball,
together imply that there is a unique minimum inside B̄ρ we now prove the
following lemma

Lemma 3.4.5 Let f be a positive Morse function on the n-dimensional ball B̄n(0, 1)
of radius 1 centred at the origin in Euclidean space such that the gradient of f
is pointing outwards on ∂B̄n(0, 1). Then there exists a Morse function f̃ on
B̄n(0, 1) that has the same critical points as f and f̃ |∂B̄n(0,1) is constant.

Proof First note that because ∇f is pointing outward on ∂B̄n(0, 1) there is
some ε0 > 0 such that ∇f is pointing outward on all ∂B̄n(0, 1 − ε) for all ε ∈
[0, ε0]. This is a consequence of the fact that∇f is continuous.

Because the gradient is linear and reads

∇f(r, θ) =
∂f

∂r
er + . . . ,

where the dots indicate terms orthogonal to the radial direction, with r the radial
coordinate and θ ∈ Sn−1, it suffices to construct a smooth function g satisfying:

• g is zero on B̄n(0, 1− ε0)

• g|∂B̄n(0,1) = (C − f)|∂B̄n(0,1), where C = maxSn−1 f |∂B̄n(0,1) + 1
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• ∂rg > 0 on B̄n(0, 1) \ B̄n(0, 1− ε0)

So that we can take f̃ = f + g. We use factorization to simplify the search and
define g to be (C − f(1, θ))ψ(r) with θ ∈ Sn−1 and r the usual radial coordinate,
with ψ : R→ R any function that satisfies

• ψ(r) = 0, for r ∈ [0, 1− ε0]

• ψ(1) = 1

• ψ′(r) > 0 for r ∈ (1− ε0, 1].

It is clear that such a function exists, for example

ψ(r) =

{
e
− 1

(r−(1−ε0))2
+ 1

ε20 , if r ∈ (1− ε0, 1]

0, r ∈ [0, 1− ε0]

will do. �

Karcher already noted in [Kar77] that if Bρ is any convex geodesic ball that
contains the support of µ and µ is a positive measure, the gradient of PM is
pointing outwards on ∂B̄ρ because it is the average of outward pointing vectors.
We observed above that all critical points of PM are local minima and moreover
PM is Morse. By going to Riemann normal coordinates and rescaling we can
apply Lemma 3.4.5, to conclude that there is another Morse function P̃M with
the same critical points as PM and of the same type, but for which the boundary
of the ball is a level set. Because all critical points of PMare local minima the
Morse inequalities imply that the number of critical points equals the number of
connected components of the sublevelset. This in turn gives that there must be
a unique minimum. This concludes the proof of Theorem 3.4.2.

Remark 3.4.6 We could also use Lemma 3.4.4 and the Topogonov comparison
to give an argument like Karcher, see (3.17). However we have chosen this ap-
proach in the hope to eventually extend this method to a more general setting,
including pseudo-Riemannian manifolds.

3.4.4 Negative weights

In this subsection we shall give conditions to ensure that PM has a unique min-
imum if we allow our mass distribution µ to have negative weights, while still
imposing that

∫
dµ(p) = 1. We shall use the same approach as above, that is

with only positive weights. This means that we must address two points:

• find conditions such that every critical point is a local minimum
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• find a geodesic ball such that the gradient of PM (x) is pointing outward
on the boundary of the geodesic ball.

The distinction between the positive and negative weight parts will be very im-
portant, so we define

dµ+ = 1{µ>0}dµ, |µ+| =
∣∣∣∣∫ dµ+

∣∣∣∣
dµ− = 1{µ<0}dµ, |µ−| =

∣∣∣∣∫ dµ−

∣∣∣∣ ,
with 1B the indicator function for the set B.

Criteria such that every critical point is a local minimum

We shall start by examining conditions such that every critical point is a local
minimum. Because µ is allowed to have negative weights we shall need both
the upper and lower bounds of (3.22) and more precise bounds on (3.20) than
the observation that all quadratic parts are positive.

Further bounds on the quadratic part of the Taylor series of dH(Kc)(expx,H(kc), y)
with respect to |v|. We are now going to expand on Lemma 3.4.4. We stress
that we work in a space form (space of constant curvature). In particular we
are going to give bounds on the quadratic terms in the Taylor approximation of
dH(K+

c )(expx,H(K+
c )(v), y)2 and dH(K−

c )(expx,H(K−
c )(v), y)2 with respect to |v|. We

shall not explicitly go into the (trivial) case where the space of constant curvature
is Euclidean space, that is dE(expx,E(v), y)2.

These exact bounds are necessary because of the negative weights there is a
negative contribution to the quadratic terms in the Taylor series6 of

PM (expx,M (v)) =

∫
dM (expx,M (v), p)2dµ(p)

in |v| given by the quadratic terms in the Taylor series of

PM (expx,M (v)) =

∫
dM (expx,M (v), p)2dµ−(p).

To give bounds on the quadratic terms in the Taylor approximation of
dH(K+

c )(expx,H(K+
c )(v), y)2 and dH(K−

c )(expx,H(K−
c )(v), y)2 with respect to |v|, we

6Here we explain the role our calculations play in the formulation of conditions that guaran-
tee existence and uniqueness, M is therefore a manifold of arbitrary non-constant, but bounded
curvature.
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need to introduce an extra assumption, that was not used in Lemma 3.4.4. This
extra assumption is

dH(Kc)(x, y) = | exp−1
x,H(Kc)

(y)| < 2ρ̃.

As in Lemma 3.4.4 we add7 the condition for K+
c that 2dH(K+

c )(x, y) < π√
K+
c

.

Bounds on the quadratic parts of

dH(K+
c )(expx,H(K+

c )(v), y)2 =| exp−1

x,H(K+
c )

(y)|2 − 2| exp−1

x,H(K+
c )

(y)|(cosα)|v|

+

(
cos2(α) + sin2(α)

ϑ+

tanϑ+

)
|v|2 +O(|v|3)

dH(K−
c )(expx,H(K−

c )(v), y)2 =| exp−1

x,H(K−
c )

(y)|2 − 2| exp−1

x,H(K−
c )

(y)|(cosα)|v|

+

(
cos2(α) + sin2(α)

ϑ−
tanhϑ−

)
|v|2 +O(|v|3),

(3.20)

where

ϑ+ =

∣∣∣exp−1

x,H(K+
c )

(y)
∣∣∣

k+

ϑ− =

∣∣∣exp−1

x,H(K−
c )

(y)
∣∣∣

k−
, (3.21)

are easy to determine if one observes that x/ tan(x) and x/ tanh(x) are monotone
decreasing and increasing respectively. With this observation we see that

2ρ̃
k+

tan 2ρ̃
k+

≤ ϑ+

tanϑ+
≤ 1

1 ≤ ϑ−
tanhϑ−

≤
2ρ̃
k−

tanh 2ρ̃
k−

. (3.26)

7It turns out that we need to impose stronger conditions below so we shall not encounter this
condition explicitly in Theorem 3.4.9.
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The bounds in (3.26) give us

| exp−1

x,H(K+
c )

(y)|2 − 2| exp−1

x,H(K+
c )

(y)|(cosα)|v|+
2ρ̃
k+

tan 2ρ̃
k+

|v|2 +O(|v|3)

≤ dH(K+
c )(expx,H(K+

c )(v), y)2

= | exp−1

x,H(K+
c )

(y)|2 − 2| exp−1

x,H(K+
c )

(y)|(cosα)|v|

+

(
cos2 α+ sin2 α

ϑ+

tanϑ+

)
|v|2 +O(|v|3)

≤ | exp−1

x,H(K+
c )

(y)|2 − 2| exp−1

x,H(K+
c )

(y)|(cosα)|v|+ |v|2 +O(|v|3) (3.27)

and

| exp−1

x,H(K−
c )

(y)|2 − 2| exp−1

x,H(K−
c )

(y)|(cosα)|v|+ |v|2 +O(|v|3)

≤ dH(K−
c )(expx,H(K−

c )(v), y)2

= | exp−1

x,H(K−
c )

(y)|2 − 2| exp−1

x,H(K−
c )

(y)|(cosα)|v|

+

(
cos2 α+ sin2 α

ϑ−
tanhϑ−

)
|v|2 +O(|v|3),

≤ | exp−1

x,H(K−
c )

(y)|2 − 2| exp−1

x,H(K−
c )

(y)|(cosα)|v|+
2ρ̃
k−

tanh 2ρ̃
k−

|v|2 +O(|v|3).

(3.28)

With these expressions we can give conditions on the positive and negative
weights so that every critical point of PM is a local minimum.

The Taylor series of dH(Kc)(expx,H(Kc), y) and the Topogonov comparison the-
orem. We can now combine these new bounds with the Toponogov compar-
ison theorem, see Section 3.3. Suppose that the sectional curvaturesK of a mani-
foldM satisfy the bound Λ− ≤ K ≤ Λ+. Note that Λ− and Λ+ may both positive
or negative.

To be able to use the Topogonov comparison theorem (Theorem 3.3.2) as be-
fore we assume that the points x and y lie within a convex geodesic ball Bρ in
M . We shall assume that the following two conditions on ρ are satisfied:

• ρ is less than half the injectivity radius,

• if Λ+ > 0 then
ρ <

π

2
√

Λ+

.
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As for the positive weight case, let us identify x with a point in H(Λ−) and
a point in H(Λ+). We can now also identify the tangent spaces of the different
spaces at x.8 With these definitions the Topogonov comparison theorem yields

dH(Λ−)(expx,H(Λ−)(v), expx,H(Λ−) ◦ exp−1
x,M (y))2

≥ dM (expx,M (v), y)2

≥ dH(Λ+)(expx,H(Λ+)(v), expx,H(Λ+) ◦ exp−1
x,M (y))2. (3.22)

We are now ready to give condition that ensure that the quadratic terms in the
Taylor series of

PM (expx,M (v)) =

∫
dM (expx,M (v), p)2dµ(p)

in |v| are positive. This is equivalent to every critical point of PM is a local
minimum.

Conditions We have to distinguish several cases based on the sign of Λ− and
Λ+. To this end we introduce the notation

kl =
1√
|Λ−|

ku =
1√
|Λ+|

.

Note that critical points are characterised by (3.25), just as they were when the
weights were exclusively positive.

The conditions are as follows:

• We shall first assume that 0 < Λ− ≤ Λ+. In this case we have for every
critical point x

PM (expx,M (v)) ≥ cµ +

(
2ρ
kl

tan 2ρ
kl

|µ+| − |µ−|

)
|v|2 +O(|v|3),

where cµ = PM (x). Here we have split PM up

PM (expx,M (v)) =

∫
dM (expx,M (v), p)2dµ(p)

=

∫
dM (expx,M (v), p)2dµ+(p) +

∫
dM (expx,M (v), p)2dµ−(p)

8Here it is crucial that all manifolds, that is including the spaces of constant curvature have the
same dimension.
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and then used (3.22), (3.27) and (3.28). This means that every critical point
is a local minimum if

2ρ
kl

tan 2ρ
kl

|µ+| − |µ−| > 0.

• If Λ− ≤ 0 ≤ Λ+, we have for every critical point x

PM (expx,M (v)) ≥ cµ +

(
2ρ
kl

tan 2ρ
kl

|µ+| −
2ρ
ku

tanh 2ρ
ku

|µ−|

)
|v|2 +O(|v|3).

In this setting we have that every critical point is a local minimum if

2ρ
kl

tan 2ρ
kl

|µ+| −
2ρ
ku

tanh 2ρ
ku

|µ−| > 0.

• If Λ− ≤ Λ+ ≤ 0, we have for every critical point x

PM (expx,M (v)) ≥ cµ +

(
|µ+| −

2ρ
ku

tanh 2ρ
ku

|µ−|

)
|v|2 +O(|v|3).

This gives us the condition

|µ+| −
2ρ
ku

tanh 2ρ
ku

|µ−| > 0,

for critical points to be local minima.

Remark 3.4.7 We have used |µ+| and |µ−| in our conditions, because we want
to emphasize thee contributions of the positive and negative weights. However,
note that

|µ+| − |µ−| = 1

because of the normalization assumption on dµ.

This completes our discussion of the conditions for the critical points being
local minima in the case of negative weights.
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A geodesic ball such that the gradient ofPM is pointing outward on the bound-
ary of the geodesic ball

We are now ready to address the second point, finding conditions such that there
exists a geodesic ball containing the support of µ such that the gradient of PM is
pointing outward on the boundary of the ball. Like in the positive weights case,
we shall assume that the support of µ is contained in a convex geodesic ball
B(pc, r). We have specifically chosen r and not ρ as the radius because ρ will be
the radius for which the gradient of PM at ∂B(pc, ρ) is pointing outwards. We
find it convenient to write r + R = ρ. So let us consider the gradient of PM on
the boundary of the geodesic ball B(pc, r +R), with R > 0. We have that

gradPM (x) = −
∫

exp−1
x,M (y)dµ(y).

Because we assume that R > 0 the inward pointing part of the gradient

−
∫

exp−1
x,M (y)dµ−(y).

may be bounded in the radial direction from above by (2r+R)|µ−|, because any
given point in B(pc, r) lies at most 2r +R from a point on ∂B(pc, r +R).

The outward pointing part of the gradient

−
∫

exp−1
x,M (y)dµ+(y).

in radial direction may be bounded from below by R|µ+|. This bound is not
as easy to prove as the bound on the inward pointing part of the gradient.
Let us now assume that x ∈ ∂B(pc, r + R). Assume that z ∈ ∂B(pc, r) is the
point on ∂B(pc, r) that is closest to x. Let S = exp−1

x,M (∂B(pc, r)). We view
its tangent space Texp−1

x,M (z)S as an affine subspace of TxM . We shall prove

that exp−1
x,M (B(pc, r)) lies in a half space of TxM defined by the tangent space

Texp−1
x,M (z)S. To prove that exp−1

x,M (B(pc, r)) lies in the half space we show the
following: The only geodesic triangle with edge lengths r, r+R, b, angle θ, ver-
tices pc and x as in figure 3.5 and b ≤ R/ cos θ is the trivial triangle with θ = 0.

In our proof we shall need the following inequality

sin(as) ≤ a sin s

for a ≥ 1 and π/2 ≥ as ≥ 0, which is strict if s > 0 and a > 1. This inequality
follows from the fact that cos as ≤ cos s under the same conditions. With this
observation we have

sin as

a
=

∫ s

0

cos(at)dt ≤
∫ s

0

cos(t)dt = sin s.
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b

pc
x

z
θ

r R

r

Figure 3.5: Sketch of two geodesic balls and θ, here we have chosen Riemann
normal coordinates whose origin coincides with the centre of both geodesic
balls.

We can now focus on the geodesic triangle. By the Toponogov comparison
theorem we know that cos θ is bounded from below by cos θΛ+

, where θΛ+
de-

notes the angle corresponding to θ for the Alexandrov triangle in the space of
curvature Λ+. Without loss of generality we can assume that Λ+ is positive.9

We now consider the Alexandrov triangle with edge lengths r, r+R, b, angle
θΛ+

and b ≤ R/ cos θΛ+
. Note that because of the triangle inequality we have

that b ≥ R. The cosine rule for spaces of positive curvature now yields

cos r = cos(r +R) cos(b) + sin(r +R) sin(b) cos θΛ+

≤ cos(r +R) cos(b) + sin(r +R) sin(R/ cos θΛ+) cos θΛ+

≤ cos(r +R) cos(b) + sin(r +R) sin(R)

≤ cos(r +R) cos(R) + sin(r +R) sin(R)

= cos r, (3.29)

with strict inequalities unless θΛ+ = 0.

9Clearly if Λ+ < 0 then Λ+ < 1 and 1 can serve as Λ+.
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With the Topogonov comparison theorem this implies that there is but a
single point of exp−1

x,M (∂B(pc, r)) on Texp−1
x,M (z)(S), namely exp−1

x,M (z) itself. This
then yields that the outward pointing part of the gradient in the radial direction
may be bounded from below by R|µ+|.

We can now combine the bounds on the outward and inward pointing con-
tributions to the gradient in this lemma

Lemma 3.4.8 The gradient of PM is pointing outward on the boundary of the
geodesic ball B(pc, r +R), if

R|µ+| − (2r +R)|µ−| > 0.

Combining the results

We can now state the result of our investigations in one theorem:

Theorem 3.4.9 Let M be a manifold whose sectional curvature K is bounded,
that is Λ− ≤ K ≤ Λ+. Let PM the function on Bρ(c), a geodesic ball of radius ρ
centred on c, defined by

PM (x) =
1

2

∫
dM (x, p)2dµ(p), (3.15)

where the support of µ is contained in Br(c) and we write R + r = ρ. Using the
notation

dµ+ = 1{µ>0}dµ, |µ+| =
∣∣∣∣∫ dµ+

∣∣∣∣
dµ− = 1{µ<0}dµ, |µ−| =

∣∣∣∣∫ dµ−

∣∣∣∣ ,
we are now able give conditions on ρ depending on the curvature bounds Λ−
and Λ+:

• ρ is less than half the injectivity radius,

• if 0 < Λ− ≤ Λ+

2ρ
kl

tan 2ρ
kl

|µ+| − |µ−| > 0,

• if Λ− ≤ 0 ≤ Λ+

2ρ
kl

tan 2ρ
kl

|µ+| −
2ρ
ku

tanh 2ρ
ku

|µ−| > 0,
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• if Λ− ≤ Λ+ ≤ 0

|µ+| −
2ρ
ku

tanh 2ρ
ku

|µ−| > 0,

•
R|µ+| − (2r +R)|µ−| > 0

If these conditions are met then PM has a unique minimum in Bρ.
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3.5 Non-degeneracy criteria

In this section we exploit Proposition 3.2.5 to establish geometric criteria that
ensure that a Riemannian simplex is non-degenerate. In Section 3.2.3 we worked
in an arbitrary coordinate chart φ : M ⊃ W → Rn, where the convex ball Bρ
containing σM is contained in W . Now we will choose φ to be the inverse of
the exponential map at some point p ∈ Bρ. Specifically, we set φ = u ◦ exp−1

p :
W → Rm, where u : TpM → Rn is an arbitrary linear isometry. The coordinate
function u serves to represent a generic point in U = φ(W ). The Euclidean
simplex σ̃ in the coordinate domain can now be identified with σ(p), and we
observe that expx ◦ exp−1

p maps σ(p) to σ(x).
In Section 3.5.1 we review some properties of Euclidean simplices, includ-

ing thickness, the quality measure that we use, and recall a lemma that bounds
the difference in thickness between two simplices whose corresponding edge
lengths are almost the same. Thus given an assumed thickness of σ(p), the ques-
tion of whether or not σM is degenerate becomes a question of how much the
exponential transition function (3.2) distorts distances. In order to address this
question, we exploit the Rauch comparison theorem, which we discuss in Sec-
tion 3.5.2. We put these observations together in Section 3.5.3 to obtain explicit
bounds on the required quality of σ(p), relative to its size (longest edge length)
and the sectional curvatures in Bρ.

3.5.1 The stability of Euclidean simplex quality

A Euclidean simplex σ = {v0, . . . , vk} ⊂ Rn has a number of geometric attrib-
utes. An i-face of σ is a subset of i+ 1 vertices, and a (k − 1) face of a k-simplex
is a facet. The facet of σ that does not have vi as a vertex is denoted σvi . The
altitude of vi ∈ σ is the distance from vi to the affine hull of σvi , denoted avi(σ),
and the longest edge length is denoted L(σ). When there is no risk of confusion,
we will simply write L, and ai.

The simplex quality measure that we will use is the thickness of a k-simplex
σ, defined as

t(σ) =

{
1 if k = 0

minv∈σ
av
kL

otherwise.
(3.30)

If t(σ) = 0, then σ is degenerate. We say that σ is t0-thick, if t(σ) ≥ t0. If σ is
t0-thick, then so are all of its faces. We write t for the thickness if the simplex in
question is clear.

As discussed in Section 3.2.3, we can associate a matrix P to a Euclidean
simplex. The quality of a simplex σ is closely related to the quality of P , which
can be quantified by means of its singular values. In fact, we are only interested
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in the smallest and largest singular values. The smallest singular value, sk(P ) =
inf |x|=1 |Px|, vanishes if and only if the matrix P does not have full rank. The
largest singular value is the same as the operator norm of P , i.e., s1(P ) = ‖P‖ =
sup|x|=1 |Px|. We have the following result [BDG13b, Lem. 2.4] relating the
thickness of σ to the smallest singular value of P :

Lemma 3.5.1 (Thickness and singular value) Let σ = {v0, . . . , vk} be a non-de-
generate k-simplex in Rn, with k > 0, and let P be the n × k matrix whose ith

column is vi − v0. Then the ith row of the pseudo-inverse P−1
left = (PTP )−1PT is

given by wT
i , where wi is orthogonal to aff(σvi), and

|wi| = a−1
i .

We have the following bound on the smallest singular value of P :

sk(P ) ≥
√
ktL.

The appearance of the dimension k in the denominator in the definition of thick-
ness is a convention introduced so that t provides a clean bound on the condition
number of P : Since the columns of P have norm bounded by L, we have that
s1(P ) ≤

√
kL, and thus Lemma 3.5.1 implies s1(P )

sk(P ) ≤ t−1. Although we adhere
to definition (3.30) in this work, we acknowledge that this normalisation con-
vention may obscure the relationship between simplex quality and dimension.
We frequently make use of the fact that for a k-simplex σ, we have kt(σ) ≤ 1.

The crucial property of thickness for our purposes is its stability. If two Eu-
clidean simplicies with corresponding vertices have edge lengths that are al-
most the same, then their thicknesses will be almost the same. This allows us
to quantify a bound on the smallest singular value of the matrix associated with
one of the simplices, given a bound on the other. To be precise, we have the
following consequence of the more general Lemma 3.8.3 demonstrated in Sec-
tion 3.8.1:

Lemma 3.5.2 (Thickness under distortion) Suppose that σ = {v0, . . . , vk} and
σ̃ = {ṽ0, . . . , ṽk} are two k-simplices in Rn such that

||vi − vj | − |ṽi − ṽj || ≤ C0L(σ)

for all 0 ≤ i < j ≤ k. Let P be the matrix whose ith column is vi − v0, and define
P̃ similarly.

If

C0 =
ηt(σ)2

4
with 0 ≤ η ≤ 1,

then
sk(P̃ ) ≥ (1− η)sk(P ).
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and
t(σ̃) ≥ 4

5
√
k

(1− η)t(σ).

3.5.2 The Rauch Comparison Theorem

The Rauch comparison theorem gives us bounds on the norm of the differential
of the exponential map. This in turn implies a bound on how much the expo-
nential map can distort distances. It is called a comparison theorem because it
is implicitly comparing the exponential map on the given manifold to that on
a space of constant sectional curvatures. In this context we encounter the func-
tions

Sκ(r) =


(1/
√
κ) sin

√
κr κ > 0

r κ = 0

(1/
√
−κ) sinh

√
−κr κ < 0,

parameterised by κ, which can be thought of as representing a constant sectional
curvature.

The Rauch theorem can be found in Buser and Karcher [BK81, §6.4] or in
Chavel [Cha06, Thm. IX.2.3], for example. In the statement of the theorem we
implicitly use the identification between the tangent spaces of a tangent space
and the tangent space itself.

Lemma 3.5.3 (Rauch theorem) Radially the exponential map expp : TpM → M
is an isometry: ∣∣(d expp)vv

∣∣ = |v| .
Assume the sectional curvatures, K, are bounded by Λ− ≤ K ≤ Λ+. Taking

|v| = 1, one has for any w perpendicular to v

SΛ+
(r)

r
|w| ≤

∣∣(d expp)rvw
∣∣ ≤ SΛ−(r)

r
|w| .

The inequalities hold when r < 2ρ0 (defined in Equation (3.3)). Also, if Λ− < 0,
then the right inequality is valid for all r, and if Λ+ > 0, then the left inequality
is valid for all r.

For convenience, we will use a bound on the absolute value of the sectional
curvatures, rather than separate upper and lower bounds. Thus |K| ≤ Λ, where
Λ = max{Λ+,−Λ−}. We use Taylor’s theorem to obtain

S−Λ(r) ≤ r +
Λr3

2
when 0 ≤ r < π

2
√

Λ

SΛ(r) ≥ r − Λr3

6
for all r ≥ 0.
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We can restate the Rauch theorem in a weaker, but more convenient form:

Lemma 3.5.4 Suppose the sectional curvatures in M are bounded by |K| ≤ Λ.
If v ∈ TpM satisfies |v| = r < π

2
√

Λ
, then for any vector w ∈ Tv(TpM) ∼= TpM , we

have (
1− Λr2

6

)
|w| ≤

∣∣(d expp)vw
∣∣ ≤ (1 +

Λr2

2

)
|w| .

3.5.3 Non-degenerate Riemannian simplices

Our goal now is to estimate the metric distortion incurred when we map a sim-
plex from one tangent space to another via the exponential maps

exp−1
x ◦ expp : TpM → TxM,

and this is accomplished by the bounds on the differential. Specifically, if F :
Rn → Rn satisfies ‖dF‖ ≤ η, then the length of the image of the line segment
between x and y provides an upper bound on the distance between F (x) and
F (y):

|F (y)− F (x)| ≤
∫ 1

0

∣∣dFx+s(y−x)(y − x)
∣∣ ds ≤ η |y − x| . (3.31)

If x, p, y ∈ Bρ, with y = expp(v), then |v| < 2ρ, and
∣∣exp−1

x (y)
∣∣ < 2ρ. Then, if

ρ < ρ0 given in Equation (3.3), Lemma 3.5.4 tells us that∥∥∥d (exp−1
x ◦ expp

)
v

∥∥∥ ≤ ∥∥∥(d exp−1
x

)
y

∥∥∥ ∥∥∥(d expp
)
v

∥∥∥
≤
(

1 +
Λ(2ρ)2

3

)(
1 +

Λ(2ρ)2

2

)
≤ 1 + 5Λρ2.

Therefore (3.31) yields

|vi(x)− vj(x)| ≤ (1 + 5Λρ2) |vi(p)− vj(p)| .

We can do the same argument the other way, so

|vi(p)− vj(p)| ≤ (1 + 5Λρ2) |vi(x)− vj(x)| ,

and we find∣∣ |vi(x)− vj(x)| − |vi(p)− vj(p)|
∣∣ ≤ 5Λρ2(1 + 5Λρ2) |vi(p)− vj(p)|
≤ 21Λρ2 |vi(p)− vj(p)| when ρ < ρ0.

(3.32)
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Letting P be the matrix associated with σ(p), and using C0 = 21Λρ2, in
Lemma 3.5.2, we find that the matrix P̃ associated with σ(x) in Proposition 3.2.5
is non-degenerate if σ(p) satisfies a thickness bound of t0 > 10

√
Λρ, and we

have:

Theorem 3.1 SupposeM is a Riemannian manifold with sectional curvaturesK
bounded by |K| ≤ Λ, and σM is a Riemannian simplex, with σM ⊂ Bρ ⊂ M ,
where Bρ is an open geodesic ball of radius ρ with

ρ < ρ0 = min

{
ιM
2
,
π

4
√

Λ

}
.

Then σM is non-degenerate if there is a point p ∈ Bρ such that the lifted Euc-
lidean simplex σ(p) has thickness satisfying

t(σ(p)) > 10
√

Λρ.

The ball Bρ may be chosen so that this inequality is necessarily satisfied if

t(σ(p)) > 10
√

ΛL(σM ),

where L(σM ) is the geodesic length of the longest edge in σM .

The last assertion follows from the remark at the end of Section 3.2.2: If
L(σM ) < ρ0, then σM is contained in a closed ball of radius L(σM ) centred
at one of the vertices.

Remark 3.5.5 Using Proposition 3.7.7 and Lemma 3.7.1 of Section 3.7, we can
replace Equation (3.32) with∣∣ |vi(x)− vj(x)| − |vi(p)− vj(p)|

∣∣ ≤ 6Λρ2 |vi(p)− vj(p)| when ρ <
1

2
ρ0,

and we find, that the Riemannian simplex σM of Theorem 3.1 is non-degenerate
if

t(σ(p)) > 5
√

Λρ,

but with the caveat that ρ must now satisfy ρ ≤ 1
2ρ0.

Orientation In Euclidean space En we can define an orientation as an equival-
ence class of frames, two frames being equivalent if the linear transformation
between them has a positive determinant. We can likewise associate an orienta-
tion to a (non-degenerate) Euclidean n-simplex σ = {v0, . . . , vn}: it is the orient-
ation associated with the basis {(vi − v0)}i∈{1,...,n}. The orientation depends on
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how we have indexed the points. Any even permutation of the indices yields
the same orientation.

In a manifold, we can assign an orientation locally, in a neighbourhood U ⊂
M on which the tangent bundle admits a local trivialisation, for example. Then
we can define an orientation by defining an orientation on TpM for some p ∈ U .
If σ = {p0, . . . , pn} ⊂ U defines a non-degenerate Riemannian simplex, then we
can associate an orientation to that simplex: it is the orientation of σ(p0) ⊂ Tp0M .
Again, we will get agreement on the orientation if we perform any even per-
mutation of the vertex indices. The reason is that our non-degeneracy assump-
tion implies that the orientation of σ(pi) will agree with the orientation of σ(pj)
for any i, j ∈ {0, . . . , n}.

In the particular case discussed in this section, where φ = u ◦ exp−1
p , for

p ∈ Bρ, the barycentric map b : σE(p) → σM is orientation preserving. Since
exp−1

x ◦ expy is orientation preserving for any x, y ∈ Bρ, it is enough to consider
the case where p = p0 ∈ σ. Consider Equation (3.10):

(db)v0(p0) = − (∇xν)
−1
∂uνv0(p0).

By Equation (3.12), we have (∂uν)v0(p0) = − Id. Also, it follows from Lemma 3.2.3
that∇Mν has positive determinant. (Buser and Karcher [BK81, p.132] show that
∇Mν is bounded near the identity), and thus so must db everywhere, since it
does not vanish on its domain.
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3.6 The Toponogov point of view

In this section we discuss an approach for finding conditions that guarantee that
a Riemannian simplex is non-degenerate, that is diffeomorphic to the standard
simplex. It is based on the Toponogov comparison theorem, instead of Rauch’s
theorem (which used in Section 3.5).

The Toponogov comparison theorem, discussed in Section 3.3, says the fol-
lowing: Let M be an n-dimensional manifold, whose sectional curvature K is
bounded from above by Λ+ and from below by Λ−, that is Λ− ≤ K ≤ Λ+. We
now have to distinguish two settings:

• Suppose there is a geodesic triangle in M of which we know the lengths of
the three geodesics, then the angles of the triangle are bounded by the
angles for a geodesic triangle in a simply connected space of constant
curvature Λ− or Λ+ whose geodesics have the same lengths.

• Suppose we are given lengths of two geodesics edges and the enclosed
angle in a geodesic triangle in M , then the length of the third geodesic is
bounded by the lengths of the third geodesic in a geodesic triangle with the
same lengths for two geodesics and the same enclosed angle in a simply
connected space of constant curvature Λ− or Λ+.

Remark 3.6.1 Note that in this section we shall assume Λ+ = Λ and Λ− = −Λ,
with Λ > 0 to simplify the proof. More precise estimates that do not use this
simplification are treated in Section 3.10.

With the Toponogov comparison theorem we can prove the following state-
ment:

Theorem 3.6.6 Let v0, . . . , vn be a set of vertices lying in a Riemannian manifold
M , whose sectional curvatures are bounded in absolute value by Λ, within a
convex geodesic ball of radius D centred at any one of the vertices (vr) and such
that

√
ΛD < 1/2. If σE(vr), the convex hull of (exp−1

vr (vi))
n
i=0 = (vi(vr))

n
i=0 in

TvrM , satisfies (
n!vol(σE(vr))

(n+ 1)(2D)n

)2

> 25
24nΛD2, (3.43)

then the Riemannian simplex with vertices v0, . . . , vn is non-degenerate, that is
diffeomorphic to the standard n-simplex.

The fraction

vol(σE(vr))

(D)n
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Figure 3.6: Pictorial overview of our approach: Given any point (red) and some
vertices (black) we can first compare the angles between the geodesics at the red
point on a surface of arbitrary bounded curvature (the ellipsoid in the middle)
to the angles in the space of constant curvature. In these spaces of constant
curvature, study the simplex by lifting to the tangent space at one of the vertices
by the exponential map (bottom figure).

is also referred to as the thickness of σE(vr). The thickness is a quality measure
that indicates how close the (Euclidean) simplex σE(vr) is to degeneracy.

The proof of Theorem 3.6.6 relies the following observation: If for all xwithin
a convex geodesic ball of radius D centred at one of the vertices there are n
tangents to geodesics emanating from x to some subset of the vertices (the choice
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of subset does depend on x) that are linearly independent, then the Riemannian
simplex is non-degenerate. This statement is proven in Section 3.6.2.

The linear independence of n tangent vectors to geodesics emanating from
x is equivalent with n + 1 tangent vectors being affinely independent. This is a
direct consequence of the following; for a point x in a Riemannian simplex with
barycentric coordinates λi we have

∑
λivi(x) = 0, with

∑
λi = 1. Remember

that we write vi(x) = exp−1
x (vi).

Establishing linear independence is more involved. The steps we use we
shall outline now.

Overview of the proof of Theorem 3.6.6

As stated in Theorem 3.6.6 we assume that a set of points {v0, . . . , vn} in a convex
ball centred on vr in M is given. The sectional curvatures K of M are bounded,
that is |K| ≤ Λ. We think of the points v0, . . . , vn as vertices of the Riemannian
simplex. The point x is an arbitrary point in the convex ball that contains the
vertices. It is quality of the simplex (σE(vr)) found by taking the convex hull of
the image of v0, . . . , vn under the inverse exponential map exp−1

vr that is used in
the conditions for non-degeneracy of the Riemannian simplex.

To give the conditions in Theorem 3.6.6 we started with exp−1
vr (x), exp−1

vr (v0),
. . . , exp−1

vr (vn) and use the following steps:

1. Use the Toponogov comparison theorem to bound the difference between
the lengths of the geodesics connecting vertices vi and vj and the lengths
of the geodesics connecting vertices x and vi on the one hand and the cor-
responding (via the map expH(±Λ) ◦ exp−1

vr ) lengths of geodesics on spaces
of constant curvature H(±Λ) on the other.

2. Prove that the lengths of these geodesics are not far from what one would
expect in the Euclidean case (via the map exp−1

M ) if the vertices and x lie
close together relative to the bounds on the sectional curvature on M .

3. Given these approximate lengths of the geodesics we again use the To-
ponogov comparison theorem and explicit calculations on spaces of con-
stant curvature to give estimates on the difference between the inner products
between tangents to the geodesics from x to the vertices and the expecta-
tion in the Euclidean case.

4. n × n of these inner products between the tangents of geodesics from x
to the vertices are put into a single Gram matrix. The determinant of this
matrix is non-zero if and only if the tangents to the geodesics emanating
from x are linearly independent. A result by Friedland describes the be-
haviour of the determinant under perturbations of the entries. This means
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that the determinant of the Gram matrix is close to the determinant of the
Gram matrix one expects in the Euclidean case, to be precise the matrix
with entries (exp−1

vr (vi)−exp−1
vr (x)) ·(exp−1

vr (vl)−exp−1
vr (x)). This allows us

to give conditions that guarantee that there are n tangents to the geodesics
emanating from x that are linearly independent, based on the quality of
the simplex you would expect in the Euclidean case (σE(vr)).

5. If for every x in a sufficiently large convex neighbourhood some n tangents
to the geodesics emanating from x and going to the vertices are linearly
independent the simplex is non-degenerate.

This approach puts the emphasis on the geodesics as apposed to barycentric
coordinate functions, which provides us with a very concrete geometric picture,
as given in Figure 3.6.

3.6.1 Preliminaries

The second step described in the introduction will use the Toponogov Compar-
ison Theorem 3.3.2. In particular, we use this result and some calculations on
spaces of constant curvature to provide bounds on the inner product between
the vectors tangent to geodesics emanating from a point x ∈ σM to n (that is
all but one) of the vertices of σM . These bounds are then used to show that
the Gram matrix associated with these vectors is non-singular. Here we discuss
Gram matrices, bounds on determinants and do some calculations concerning
geodesic triangles on spaces of constant curvature.

Gram matrices

Gram matrices can be applied to general finite dimensional inner product spaces
with inner product G. We shall denote the inner product space by RnG. If the
inner product is the Euclidean inner product on the standard basis Gij = δij ,
where δij denotes the Kronecker delta, we shall write Rnδij = En. Below these
inner product space will be the tangent spaces (TxM ) of Riemannian manifolds
with inner product g(x). For a space with inner product G and with regard to
any basis we have

det(〈wi, wj〉G) = det(G) det(w1, . . . , wn)2,

wherew1, . . . , wn ∈ RnG, and (w1, . . . , wn) denotes the matrix withwi as columns.
Note that the Gram determinant in any metric is nonzero if and only if {w1, . . . , wn}
is a linearly independent system. One can already think of the vectors wi as the
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tangent vectors wi = vi(x) = exp−1
x (vi) discussed in the introduction. This can

be seen by taking the determinant of

(〈wi, wj〉G) = (w1, . . . , wn)t(G)(w1, . . . , wn).

Bounds on determinants

The following result by Friedland [Fri82], see also Bhatia and Friedland [BF81],
Ipsen and Rehman [IR08] and Bhatia [Bha97] problem I.1.6, will be essential to
some estimates below:

|det(A+ E)− det(A)| ≤ nmax{‖A‖p, ‖A+ E‖p}n−1‖E‖p (3.33)

where A and E are n× n-matrices and ‖ · ‖p is the p-norm, with 1 ≤ p ≤ ∞, for
linear operators:

‖A‖p = max
x∈Rn

|Ax|p
|x|p

,

with | · |p the p-norm on Rn. In our context A will be the reduced Gram matrix
for the Euclidean case and E the matrix with the small angle deviations from
the Euclidean case (or rather the deviations of their cosines) due to the local
geometry, of which each entry is bounded by some ε.
From (3.33) we see that in this particular context

|det(A+ E)| ≥ | detA| − n(max{‖A‖∞, ‖A+ E‖∞})n−1‖E‖∞
≥ |det(A)| − nε, (3.34)

where we use that every entry of A and A + E is bounded in absolute value by
1 because they are reduced Gram matrices, a matrices of cosines.

Geodesic triangles on spaces of constant curvature

We now prove two lemmas for geodesic triangles in a space of constant curvature.
In the following we use the notation cE to denote the length of the (Rauch) edge
closing a hinge with lengths a and b and enclosed angle γ in Euclidean space.
This means that

(cE)2 = a2 + b2 − 2ab cos γ.

In general we will use the superscript E to indicate (comparisons to) Euclidean
space.
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Lemma 3.6.2 LetM be a space of constant (sectional) curvatureK. As in Section
3.3 we write k = 1/

√
|K|. Suppose that a and b are two of the edge-lengths of a

hinge in M satisfying:

a, b ≤ dmax/2 dmax/k < 1/2. (3.35)

Here dmax is a bound on the lengths of the geodesics in the space of constant
curvature. Under these conditions the length of the (Rauch) edge of the hinge c
satisfies

c2 = (cE)2 + E′, (3.36)

with |E′| ≤ 5d4
max/(3k

2). The geometric interpretation of E′ is a measure for the
deviation from the Euclidean case. Alternatively, (3.36) with said bound on |E′|
holds if the condition (3.35) is substituted by

a, b, c ≤ dmax dmax/k < 1/2.

Proof Taylor’s theorem implies

sin(φ) = φ(1 + Ẽs(φ)) cos(φ) = 1− 1

2
φ2 + Ec(φ)

sinh(φ) = φ(1 + Ẽsh(φ)) cosh(φ) = 1 +
1

2
φ2 + Ech(φ),

here E stands for the error. The subscripts s, sh, c and ch refer to the sin, sinh,
cos and cosh functions. The ‘errors’ are bounded; if we assume that φ ≤ φm < 1
we have

|Ẽs(φ)| ≤ 1

3!
φ2
m |Ec(φ)| ≤ 1

4!
φ4
m

|Ẽsh(φ)| ≤ 1

3!

8

7
φ2
m |Ech(φ)| ≤ 1

4!

8

7
φ4
m.

Trivially these bounds can be weakened to

|Ẽs(φ)| ≤ 1

3!

8

7
φ2
m |Ec(φ)| ≤ 1

4!

8

7
φ4
m

|Ẽsh(φ)| ≤ 1

3!

8

7
φ2
m |Ech(φ)| ≤ 1

4!

8

7
φ4
m.

It is convenient to use these weaker bounds as this affords a universal approach.
We therefore drop the subscript from Ec(φ) and Ech(φ) and Ẽs(φ) and Ẽsh(φ)

and write E(φ) and Ẽ(φ) respectively. So for example E(φ) can mean either
Ec(φ) or Ech(φ), but the choice does not matter because we use the weaker
bounds.
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We define

φ1 = a/k φ2 = b/k φ3 = c/k φm = dmax/k.

Using these the cosine rules, see Section 3.3 in particular (3.13) and (3.14), read

cosφ3 = cosφ1 cosφ2 + sinφ1 sinφ2 cos γ (elliptic)
coshφ3 = coshφ1 coshφ2 − sinhφ1 sinhφ2 cos γ (hyperbolic).

We shall now bound φ3, assuming φ1, φ2 and γ given. Because φ1, φ2 ≤ φm/2 <
1/4 we have that φ3 ≤ φm by the triangle inequality. We find

1

2
φ2

3 + E(φ3) =
1

2
φ2

1 +
1

2
φ2

2 +
1

4
φ2

1φ
2
2 + E(φ1) + E(φ2) +

1

2
E(φ1)φ2

2 +
1

2
E(φ2)φ2

1

+E(φ1)E(φ2)− φ1φ2 cos γ − φ1φ2 cos γ(Ẽ(φ1) + Ẽ(φ2) + Ẽ(φ1)Ẽ(φ2))

and thus

E′(φ1, φ2, φ3) =φ2
3 −

(
φ2

1 + φ2
2 − 2φ1φ2 cos γ

)
= +

1

2
φ2

1φ
2
2 + 2E(φ1) + 2E(φ2) + E(φ1)φ2

2 + E(φ2)φ2
1

+ 2E(φ1)E(φ2)− 2φ1φ2 cos γ(Ẽ(φ1)

+ Ẽ(φ2) + Ẽ(φ1)Ẽ(φ2))− E(φ3) (3.37)

satisfies

|E′(φ1, φ2, φ3)| ≤| 12φ
2
1φ

2
2 + 2E(φ1) + 2E(φ2) + E(φ1)φ2

2 + E(φ2)φ2
1

+ 2E(φ1)E(φ2)− 2φ1φ2 cos γ(Ẽ(φ1) + Ẽ(φ2)

+ Ẽ(φ1)Ẽ(φ2))− E(φ3)|
≤| 12φ

2
1φ

2
2|+ 2|E(φ1)|+ 2|E(φ2)|+ 1

22 |E(φ1)|+ 1
22 |E(φ2)|

+ 8
7

1
4!

1
24 |E(φ1)|+ 2|φ1φ2||Ẽ(φ1)|+ 2|φ1φ2||Ẽ(φ2)|

+ 2 8
7

1
3!

1
22 |φ1φ2||Ẽ(φ2)|+ |E(φ3)|

=| 12φ
2
1φ

2
2|+

(
2 + 1

4 + 8
7

1
4!

1
24

)
|E(φ1)|+

(
2 + 1

4

)
|E(φ2)|

+ 2|φ1φ2||Ẽ(φ1)|+ 2 8
7

1
3!

1
22 |φ1φ2||Ẽ(φ2)|

+ 2|φ1φ2||Ẽ(φ2)|+ |E(φ3)|
≤ 1

2φ
4
m +

(
5 + 1

2 + 8
7

1
4!

1
24

)
8
7

1
4!φ

4
m + 8

7
1
3!

(
4 + 2 8

7
1
3!

1
22

)
φ4
m

= 1209
784 φ

4
m

≤ 5
3φ

4
m. (3.38)
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So we see that∣∣∣∣ c2k2
−
(
a2

k2
+
b2

k2
− 2

ab

k2
cos γ

)∣∣∣∣ =

∣∣∣∣ c2k2
− (cE)2

k2

∣∣∣∣ ≤ 5
3

d4
max

k4
.

�

We now study a geodesic triangle in a simply connected space of constant
curvature for which we have some estimates on the edge-lengths. To be precise
we assume that the edges of the geodesic triangle are themselves the closing
(Rauch) edges of some hinges. If we use the same notation as in Lemma 3.6.2 for
the edge lengths, that is a, b and c, then all these lengths are assumed to be close
to aE, bE and cE. We shall think of aE, bE and cE as coming from a comparison to
a Euclidean setting.

We shall also assume that the conditions of Lemma 3.6.2 are satisfied on the
geodesic triangle with edge lengths a, b and c. We now shall prove that the
angles of the geodesic triangle with edge lengths a, b and c in the space of con-
stant curvature are close to the angles of the triangle with edge lengths aE, bE

and cE in Euclidean space. To help make this precise we define for any lengths
aE, bE and cE that satisfy the triangle inequality , the angle αE by

cosαE =
(bE)2 + (cE)2 − (aE)2

2bEcE
.

Lemma 3.6.3 IfM is a space of constant sectional curvature and the edge-lengths
(a, b, c) of a geodesic triangle in M satisfy

(a/k)2 = (aE/k)2 + E1, (b/k)2 = (bE/k)2 + E2, (c/k)2 = (cE/k)2 + E3,
(3.39)

with E1, E2, E3 ≤ 5d4
max/(3k

4), and

a, b, c < dmax, (3.40)

then

|bc cosα− bEcE cosαE| ≤ 25

6

d4
max

k2
. (3.41)

Proof To avoid having to drag along the 1/k we shall write φ1 = a/k, φE1 =
aE/k et cetera. Using the Lemma 3.6.2 we see that φ1, φ2, φ3 satisfy

(φ1)2 = (φ2)2 + (φ3)2 − 2φ2φ3 cosα+ E4,
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with |E4| ≤ 5d4
max/(3k

2). Performing a calculation similar to the one in Lemma
3.6.2 we find that

|φ2φ3 cosα− φE2φE3 cosαE| = |φ2φ3 cosα− 1
2 ((φE2 )2 + (φE3 )2 − (φE1 )2)|

= 1
2 |φ

2
2 + φ2

3 − φ2
1 − (φE2 )2 − (φE3 )2 + (φE1 )2 + 2E4|

= 1
2 |E1 + E2 + E3 + 2E4|

≤ 1
2 (|E1|+ |E2|+ |E3|+ 2|E4|)

≤ 25
6 φ

4
m

So we see that ∣∣∣∣ bck2
cosα− bEcE

k2
cosαE

∣∣∣∣ ≤ 25

6

d4
max

k4
.

�

3.6.2 Relation with linear independence

A Euclidean simplex is non-degenerate if and only if for any point x in Euclidean
space we can find n vertices such that the vectors from x to the vertices are lin-
early independent. Linear independence likewise plays an important role in the
definition of a non-degenerate Riemannian simplex. We remind ourselves, see
Section 3.2.2, that a Riemannian simplex σM is non-degenerate if the barycentric
coordinate map ∆n → σM is a smooth embedding.

Lemma 3.6.4 If for any x in the image of the map given in Definition 3.2.4 (σM )
there are n tangents to geodesics connecting this point x to some subset of the
vertices v0, . . . , vj−1, vj+1, . . . , vn (this choice does depend on x) that are linearly
independent then

• The map ∆n → σM is bijective

• The inverse of ∆n → σM is smooth

In the proof we shall need the following observation: Within any ball smal-
ler than the injectivity radius containing vi, the vector field vi(x) = exp−1

x (vi)
depends smoothly on the point x for all x 6= vi. This is obvious if we consider
Riemannian normal coordinates at vi. The geodesic between x and origin (vi) is
a straight line, that depends smoothly on x. The same holds for the tangent to
the geodesic at x, this is precisely vi(x) = exp−1

x (vi).
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Proof We now prove the first of our claims by contradiction. Let us assume
that ∑

λivi(x) =
∑

λ̃ivi(x) = 0

for some λ, λ̃ ∈ ∆n, λ 6= λ̃. Because v0(x), . . . , vj−1(x), vj+1(x), . . . , vn(x) are
assumed to be linearly independent we have λj 6= 0, λ̃j 6= 0. This means that we
can solve for vj in both cases, so

λ0

λj
v0(x) + . . .+

λj−1

λj
vj−1(x) +

λj+1

λj
vj+1(x) + . . .+

λn
λj
vn(x) =

λ̃0

λ̃j
v0(x) + . . .+

λ̃j−1

λ̃j
vj−1(x) +

λ̃j+1

λ̃j
vj+1(x) + . . .+

λ̃n

λ̃j
vn(x).

This contradicts the assumption of linear independence. This establishes in-
jectivity.

We can use a similar argument to show that the inverse of ∆n → σM is
smooth. As we have seen linear independence implies that λj 6= 0, which means
that we have

λ0v0(x) + . . .+ λj−1vj−1(x) + λj+1vj+1(x) + . . .+ λnvn(x) = −λjvj(x).

We can now regard the left hand side as the product of the matrix with columns
(vi(x))i 6=j with the vector (λi)i 6=j . We can divide by −λj and bring the matrix to
the right hand side by inverting, because {vi(x)}i 6=j is a linear independent set
this is possible. We now find

(v0(x), . . . , vj−1(x), vj+1(x), . . . vn(x))−1vj(x) =
1

λj
(λ0, . . . , λj−1, λj+1, . . . , λn)t,

which is smooth because vi(x) is smooth and {vi(x)}i 6=j are linear independent
by assumption. �

In Lemma 3.6.4 we refer to points lying in σM , because σM is not so easy to
determine a priori, we will need to determine a neighbourhood that contains
σM where we can determine linear independence. To this end we observe the
following:

Remark 3.6.5 σM lies within a ball centred at any of the vertices vr of radius D,
where D = max dM (vi, vr), provided D is smaller than the injectivity radius and
the ball is convex.

Karcher [Kar77] (see also Section 3.4) noted that the centre of mass of any mass
distribution is contained in any convex set that contains the support of the mass
distribution, so in particular this ball.
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3.6.3 Determining linear independence

In the previous subsection we established that if for any point x ∈ σM there
are n tangents to geodesics connecting this point to some subset of the vertices
v0, . . . , vj−1, vj+1, . . . , vn (depending on x) are linearly independent, then the
simplex σM is well defined. In this subsection we shall formulate conditions on
the vertex set v0, . . . , vn such that we can guarantee linear independence. These
conditions are simple for surfaces. For higher dimensional manifolds we shall
need bounds on the quality of the simplex found by taking the convex hull of the
image of the inverse exponential map at one of the vertices. The quality of the
simplex is considered good if the ratio between the volume of the simplex and
the nth power of the largest edge length is large, which we shall make precise in
Theorem 3.6.6, see also [Whi57, BDG13a].

As mentioned, linear dependence for surfaces is easy to determine. Let us
suppose v0(x) = exp−1

x (v0), v1(x), v2(x) do not span TxM . Because M is a sur-
face it follows that v0(x), v1(x), v2(x) are co-linear. This is in turn equivalent to
v0, v1 and v2 lying on a geodesic. Using lemma 3.6.4 we find that σM is diffeo-
morphic to the standard simplex if all three vertices do not lie on a geodesic. In
the two dimensional setting bijection has been argued previously by Rustamov
[Rus10].

vr

v0

vj

vn

x

Figure 3.7: A schematic depiction of σE(vr), where we use red dashed lines to
indicate that these lengths of these edges are not equal to the lengths of the
corresponding edges in σM .

Returning to manifolds of arbitraty dimension, we discuss conditions such
that for any point x in a ball of radiusD centred at the vertex vr, the vectors vi(x)
in the tangent space at x form an affinely independent set. Because of Remark
3.6.5 this is the neighbourhood of interest, because it suffices to show independ-
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ence here. Assume that the sectional curvaturesK ofM are bounded in absolute
value: |K| ≤ Λ. Define σE(vr) to be the convex hull of (vi(vr))

n
i=0 in TvrM . It

will be on σE(vr) that we impose conditions to ensure that the Riemannian sim-
plex σM in non-degenerate. Note that given σE(vr) we in particular have the
lengths of all geodesics from vr to vi and the angles between their tangents.
Using the Toponogov comparison theorem, we bound dM (x, vi) for each i by
means of Rauch hinges in Hn(Λ) and Hn(−Λ) the lengths of the closing edges of
the hinges are denoted by dHn(Λ)(x

Hn(Λ), v
Hn(Λ)
i ) and dHn(−Λ)(x

Hn(−Λ), v
Hn(−Λ)
i ),

where yH
n(±Λ) is the point corresponding (via expHn(±Λ) ◦ exp−1

vr,M
) to y on the

space constant curvature. Lemma 3.6.2 implies that

(dHn(±Λ)(x
Hn(±Λ), v

Hn(±Λ)
i ))2 = |x(vr)− vi(vr)|2 + E(x,vi),±Λ,

with exp−1
vr (x) = x(vr) as usual, E(x,vi),±Λ an error term satisfying the bound

|E(x,vi),±Λ| < 5
3Λ(2D)4, provided

|vi(vr)|, |x(vr)| ≤ D and
√

ΛD <
1

2
.

Here the radius of the geodesic ball D is the maximum distance dmax in the
spaces of constant curvature Hn(±Λ), introduced in Lemmas 3.6.2 and 3.6.3.
Because |E(x,vi),±Λ| < 5

3Λ(2D)4 we conclude that

dM (x, vi)
2 = |x(vr)− vi(vr)|2 + E(x,vi).

dM (vl, vk)2 = |vl(vr)− vk(vr)|2 + E(vl,vk), (3.42)

with |E(vl,vk)|, |E(x,vi)| < 5
3Λ(2D)4.

At this point we know all the lengths of the geodesics between the points
x, v0, . . . , vn in the manifold up to a small and explicit deviation term, where
the deviation is from the Euclidean space or TvrM in which x(vr) and σE(vr)
lie. Any three points from the set {x, v0, . . . , vn} together with the geodesics
connecting them can be regarded as a geodesic triangle. For a geodesic tri-
angle of which we know all edge lengths the Toponogov comparison theorem
gives bounds on the angles in terms of the Alexandrov triangles in the spaces
Hn(Λ) and Hn(−Λ). Let us denote by θH

n(±Λ)
il the angle∠vH

n(±Λ)
i xH

n(±Λ)v
Hn(±Λ)
l

between the geodesics in Hn(±Λ) and let θEil denote the angle ∠vi(vr)x(vr)vl(vr)
in TvrM , which we may regard as Euclidean space. Lemma 3.6.3 in turn gives us
bounds on the angles or rather inner products in Hn(Λ) and Hn(−Λ) compared
to the corresponding angles or inner products in Euclidean space. To be precise
we have

|dHn(±Λ)(v
Hn(±Λ)
i , xH

n(±Λ))dHn(±Λ)(v
Hn(±Λ)
l , xH

n(±Λ)) cos θ
Hn(±Λ)
il

−|vi(vr)− x(vr)||vl(vr)− x(vr)| cos θEil| ≤ 25
6 Λd4

max.
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Figure 3.8: A symbolic sketch of the procedure: the lengths of edges and angles
between geodesics in a manifold of arbitrary curvature (symbolized by the ellip-
siod in the centre) are approximated by those in the spaces of constant curvature
(the two spheres). Here in turn the triangles are approximated by the Euclidean
simplex in ‘the tangent space’.

With the Toponogov comparison theorem we see that

dHn(−Λ)(v
Hn(−Λ)
i , xH

n(−Λ)) ≥dM (vi, x) ≥ dHn(Λ)(v
Hn(Λ)
i , xH

n(Λ))

cos θ
Hn(−Λ)
il ≥ cos θEil ≥ cos θ

Hn(Λ)
il

so that

|dM (vi, x)dM (vl, x) cos θil − |vi(vr)− x(vr)||vl(vr)− x(vr)| cos θEil| ≤ 25
6 Λd4

max.

Using Gram matrices and the estimates by Friedland we now see:

|det((2D)−2dM (vi, x)dM (vl, x) cos θil)j |
≥ |det((2D)−2|vi(vr)− x(vr)||vl(vr)− x(vr)| cos θEil)j | − 25

4·6nΛD2,

with (cos θil)j and (cos θEil)j the matrix cosines of angles between the tangents
of geodesics emanating from x to v0, . . . , vj−1, vj+1, . . . , vn and corresponding
cosines for σE(vr), which is equivalent to,

(2D)−2n|det(dM (vi, x)dM (vl, x) cos θil)j |
≥ (2D)−2n det(v0(vr)− x(vr), . . . , vj−1(vr)− x(vr),

vj+1(vr)− x(vr), . . . , vn(vr)− x(vr))
2

− 25
24nΛD2,
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Lemma 3.6.4 states that we have non-degeneracy of the simplex if for any x
in B(vr, D) we have that |det(dM (vi, x)dM (vl, x) cos θil)j | > 0 for some j, this
means that if

min
x∈B(vr,D)

max
j∈{0,...,n}

(2D)−2n det(v0(vr)− x(vr), . . . , vj−1(vr)− x(vr),

vj+1(vr)− x(vr), . . . , vn(vr)− x(vr))
2

> 25
24nΛD2,

non-degeneracy is established. This can be simplified by remarking that the
mimimum of

max
j∈{0,...,n}

det(v0(vr)− x(vr), . . . , vj−1(vr)− x(vr),

vj+1(vr)− x(vr), . . . , vn(vr)− x(vr))

is attained in the barycenter and equals n!
n+1 vol(σE(vr)).

This means that we now have the condition for non-degeneracy(
n!vol(σE(vr))

(n+ 1)(2D)n

)2

> 25
24nΛD2. (3.43)

We can now summarize

Theorem 3.6.6 Let v0, . . . , vn be a set of vertices lying in a Riemannian manifold
M , whose sectional curvatures are bounded in absolute value by Λ, within a
convex geodesic ball of radius D centred at one of the vertices (vr) and such that√

ΛD < 1/2. If σE(vr), the convex hull of (exp−1
vr (vi))

n
i=0 = (vi(vr))

n
i=0, satisfies(

n!vol(σE(vr))

(n+ 1)(2D)n

)2

> 25
24nΛD2. (3.43)

then the Riemannian simplex with vertices v0, . . . , vn is non-degenerate, that is
diffeomorphic to the standard n-simplex.
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3.7 Triangulation criteria

We are interested in the following scenario. Suppose we have a finite set of
points P ⊂ M in a compact Riemannian manifold, and an (abstract) simplicial
complexAwhose vertex set isP , and such that every simplex inA defines a non-
degenerate Riemannian simplex. When can we be sure that A triangulates M?
Consider a convex ballBρ centred at p ∈ P . We require that, when lifted to TpM ,
the simplices near p triangulate a neighbourhood of the origin. If we require that
the simplices be small relative to ρ, and triangulate a region extending to near
the boundary of the lifted ball, then Riemannian simplices outside of Bρ cannot
have points in common with the simplices near the centre of the ball, and it is
relatively easy to establish a triangulation.

Instead, we aim for finer local control of the geometry. We establish geomet-
ric conditions (Lemma 3.7.4) that ensure that the complex consisting of simplices
incident to p, (i.e., the star of p) is embedded by a given map into the manifold.
In order to achieve this result we require a strong constraint on the differential
of the map in question. Since we work locally, in a coordinate chart, we consider
maps F : Rn ⊇ U → Rn. We demand that for some linear isometry T : Rn → Rn
we have

‖dFu − T‖ ≤ η, (3.44)

for some 0 ≤ η ≤ 1, and all u ∈ U . This is stronger than the kind of bounds
found, for example, in the Rauch theorem (Lemma 3.5.4), which have the form

(1− η) |w| ≤ |dFuw| ≤ (1 + η) |w| . (3.45)

Whereas (3.45) implies that dFu is close to a linear isometry at every u ∈ U ,
Equation (3.44) means that dFu is close to the same linear isometry for all u ∈ U .

Using a local constraint of the form (3.44) to establish the embedding of ver-
tex stars, we demonstrate, in Section 3.7.1, generic criteria which ensure that a
map from a simplicial complex to a Riemannian manifold is a homeomorphism.
We then turn our attention to the specific case where the map in question is the
barycentric coordinate map on each simplex.

Using a refinement of the Rauch theorem established by Buser and Karcher [BK81]
we show, in Section 3.7.2, that transition functions arising from the exponen-
tial map (Equation (3.2)) are subject to bounds of the form (3.44). Then in Sec-
tion 3.7.3 we observe that the barycentric coordinate map is also subjected to
such bounds, and thus yield Theorem 3.2 as a particular case of the generic tri-
angulation criteria.
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3.7.1 Generic triangulation criteria

We say that a map F : Rm → Rn is smooth if it is of class C∞. If A ⊂ Rm, then
F : A → Rn is smooth on A if F can be extended to a function that is smooth in
an open neighbourhood of A, i.e., there exists an open neighbourhood U ∈ Rm
and a smooth map F̃ : U → Rn such that A ⊆ U , and F̃ |A = F . This definition
is independent of the ambient space Rm containing A. In particular, if A ⊆ Rk ⊆
Rm, then the smoothness of F does not depend on whether we consider A to be
a subset of Rk or of Rm. In the case thatA is the closure of a non-empty open set,
continuity of the partial derivatives implies that they are well defined on all of
A and independent of the chosen extension. See Munkres [Mun68, §1] for more
details.

For our purposes, we are interested in smooth maps from non-degenerate
closed Euclidean simplices of dimension n into an n-dimensional manifold M .
We will work within coordinate charts, so our primary focus will be on maps of
the form

F : σnE → Rn,
such that Equation (3.44) is satisfied for all u ∈ σnE . As an example of how
we can exploit this bound, we observe that a map satisfying Equation (3.44)
is necessarily an embedding with bounded metric distortion if its domain is
convex:

Lemma 3.7.1 SupposeA ⊂ Rn is convex, and F : A→ Rn is a smooth map such
that, for some non-negative η < 1,

‖dFu − T‖ ≤ η,

for all u ∈ A, and some linear isometry T : Rn → Rn. Then

| |F (u)− F (v)| − |u− v| | ≤ η |u− v| for all u, v ∈ A.

Proof We observe that it is sufficient to consider the case T = Id, because if
F̃ = T−1 ◦ F , then

∥∥∥dF̃ − Id
∥∥∥ = ‖dF − T‖, and

∣∣∣F̃ (u)− F̃ (v)
∣∣∣ = |F (u)− F (v)|.

Assume u 6= v. For the lower bound we consider the unit vector û = u−v
|u−v| ,

and observe that
dF (u− v) · û ≥ (1− η) |u− v| > 0,

so, by integrating along the segment [u, v], we find

|F (u)− F (v)| ≥
(
F (u)− F (v)

)
· û ≥ (1− η) |u− v| .

For the upper bound we employ the unit vector ŵ = F (u)−F (v)
|F (u)−F (v)| :(

F (u)− F (v)
)
· ŵ = |F (u)− F (v)| ≤ (1 + η)(u− v) · ŵ ≤ (1 + η) |u− v| .

�



3.7. TRIANGULATION CRITERIA 127

For our purposes we will be free to choose a coordinate system so that F
keeps a vertex fixed. We will have use for the following observation, which can
be demonstrated with an argument similar to the proof of Lemma 3.7.1:

Lemma 3.7.2 If A ⊆ Rn is a convex set and F : A→ Rn is a smooth map with a
fixed point p ∈ A and

‖dFu − Id‖ ≤ η, for all u ∈ A,

then
|F (u)− u| ≤ η|u− p| for all u ∈ A.

Embedding complexes In preparation for considering triangulations we first
consider the problem of mappings of complexes into Rn.

A simplicial complex C is a set of abstract simplices such that if σ ∈ C, then
τ ∈ C for every face τ ⊂ σ. We will only consider finite simplicial complexes.
A subcomplex of C is a subset that is also a simplicial complex. The star of
a simplex σ ∈ C is the smallest subcomplex of C consisting of all simplices that
have σ as a face, and is denoted St(σ). In particular, if p is a vertex of C, then St(p)
is the set of simplices that contain p, together with the faces of these simplices.

The carrier (“geometric realisation”) of C is denoted |C|. We are interested in
complexes endowed with a piecewise flat metric. This is a metric on |C| that can
be realised by assigning lengths to the edges in C such that each simplex σ ∈ C
is associated with a Euclidean simplex σE ⊂ |C| that has the prescribed edge
lengths. Certain constraints on the edge lengths must be met in order to define
a valid piecewise flat metric, but for our current purposes we will have a metric
inherited from an embedding in Euclidean space.

We say that C is embedded in Rn if the vertices lie in Rn and the convex hulls
of the simplices in C define a geometric simplicial complex. In other words, to
each σ, τ ∈ C we associate σE = conv(σ), τE = conv(τ), and we have σE ∩ τE =
conv(σ∩ τ). The topological boundary of a set B ⊂ Rn is denoted by ∂B, and its
topological interior by int(B). If C is embedded in Rn, and p is a vertex of C, we
say that St(p) is a full star if p ∈ int(|St(p)|).

The scale of C is an upper bound on the length of the longest edge in C, and is
denoted by h. We say that C is t0-thick if each simplex in C has thickness greater
than t0. The dimension of C is the largest dimension of the simplices in C. We call
a complex of dimension n an n-complex. If every simplex in C is the face of an
n-simplex, then C is a pure n-complex.

A map F : |C| → Rn is smooth on C if for each σ ∈ C the restriction F
∣∣
σE

is smooth. This means that d(F
∣∣
σE

) is well defined, and even though dF is not
well defined, we will use this symbol when the particular restriction employed
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is either evident or unimportant. When the underlying complex on which F is
smooth is unimportant, we simply say that F is piecewise smooth.

F is piecewise linear if its restriction to each simplex is an affine map. The
secant map of F is the piecewise linear map defined by the restriction of F to the
vertices of C.

We are interested in conditions that ensure that F : |C| → Rn is a topolo-
gical embedding. Our primary concern is with the behaviour of the boundary.
The reason for this is captured by the following variation of a lemma by Whit-
ney [Whi57, Lem AII.15a]:

Lemma 3.7.3 (Whitney) Let C be a (finite) simplicial complex embedded in Rn
such that int(|C|) is non-empty and connected, and ∂|C| is a compact (n − 1)-
manifold. Suppose F : |C| → Rn is smooth on C and such that det d(F

∣∣
σE

) > 0

for each n-simplex σ ∈ C. If the restriction of F to ∂|C| is an embedding, then F
is a topological embedding.

Proof The assumptions on int(|C|) and ∂|C| imply that C is a pure n-complex,
and that each (n− 1) simplex is either a boundary simplex, or the face of exactly
two n-simplices. Whitney showed [Whi57, Lem AII.15a] that any x ∈ int(|C|)
admits an open neighbourhood U ⊂ int(|C|) such that the restriction of F to U
is a homeomorphism. In particular, F (int(|C|)) is open.

By the Jordan-Brouwer separation theorem [OR09, §IV.7], Rn \ F (∂|C|) con-
sists of two open components, one of which is bounded. Since F (|C|) is com-
pact, F (int(|C|)) must coincide with the bounded component, and in particular
F (int(|C|)) ∩ F (∂|C|) = ∅, so F (int(|C|)) is a single connected component.

We need to show that F is injective. First we observe that the set of points in
F (int(|C|)) that have exaclty one point in the preimage is non-empty. It suffices
to look in a neigbhourhood of a point y ∈ F (∂|C|). Choose y = F (x), where x
is in the relative interior of σn−1

E ⊂ ∂|C|. Then there is a neighbourhood V of y
such that V does not intersect the image of any other simplex of dimension less
than or equal to n − 1. Let σn be the unique n-simplex that has σn−1 as a face.
Then F−1(V ∩ F (|C|) ⊂ σnE , and it follows that every point in V ∩ int(|C|) has a
unique point in its image.

Now the injectivity of F follows from the fact that the number of points in
the preimage is locally constant on F (int(|C|)) \ F (∂|C|), which in our case is
connected. This is a standard argument in degree theory [OR09, Prop. IV.1.2]: A
point a ∈ F (int(|C|)) \ F (∂|C|) has k points {x1, . . . , xk} in its preimage. There
is a neighbourood V of a and disjoint neighbourhoods Ui of xi such that F |Ui :
Ui → V is a homeomorphism for each i ∈ {1, . . . , k}. It follows that the number
of points in the preimage is k for every point in the open neighbourhood of a
defined as

W = V \ F (|C| \
⋃
i

Ui).
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Lemma 3.7.4 (Embedding a star) Suppose C = St(p) is a t0-thick, pure n-complex
embedded in Rn such that all of the n-simplices are incident to a single vertex,
p, and p ∈ int(|C|) (i.e., St(p) is a full star). If F : |C| → Rn is smooth on C, and
satisfies

‖dF − Id‖ < nt0 (3.46)

on each n-simplex of C, then F is an embedding.

Proof If |C| is convex, then the claim follows immediately from Lemma 3.7.1.
From the definition of thickness, we observe that nt0 ≤ 1, and therefore

‖dF‖ > 0. By Lemma 3.7.3, it suffices to consider points x, y ∈ ∂|C|. Rather
than integrating the differential of a direction, as we did implicitly in the proof
of Lemma 3.7.1, we will integrate the differential of an angle.

Let Q be the 2-dimensional plane defined by p, x, and y. We define the angle
function φ : Rn → R as follows: For z ∈ Rn, let ž be the orthogonal projection of
z into Q. Then φ(z) is the angle that ž − p makes with x − p, where the orient-
ation is chosen so that φ(y) < π. (We can assume that x and y are not colinear
with p, since in that case [x, y] must be contained in |C|, and the arguments of
Lemma 3.7.1 ensure that we would not have F (x) = F (y).)

Letα be the piecewise linear curve obtained by projecting the segment [x, y] ⊂
Q onto ∂|C| via the radial rays emanating from p. Parameterise α by the angle φ,
i.e., by the arc between x−p

|x−p| and y−p
|y−p| on the unit circle in Q. Then dφ(α′) = 1,

and we have

φ(F (y))− φ(F (x)) =

∫
F (α)

dφ =

∫ φ(y)

0

dφ(dFα′(s)) ds.

We will show that dφ(dFα′(s)) > 0; it follows that φ(F (y)) > φ(F (x)) and hence
F (y) 6= F (x).

We need an observation about thick simplices: Suppose that p is a vertex of
a t0-thick n-simplex σE, and τE is the facet opposite p. Then a line r through p
and τE makes an angle θ with τE that is bounded by

sin θ ≥ nt0.

Indeed, the altitude of p satisfies ap ≥ nt0L by the definition of thickness, and
the distance between p and the point of intersection of r with τE is less than L.

If α(s) is the point of intersection of r with τE, we observe that dφ(α′(s)) =
|α′(s)| sin θ, i.e., the magnitude of the component of α′(s) orthogonal to r. By the
hypothesis (3.46), the angle β between dFα′(s) and α′(s) satisfies sinβ < nt0.
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Therefore

dφ(dFα′(s)) ≥ |dFα′(s)| (sin θ − sinβ)

> 0.

�

Triangulations For our purposes a manifold is always compact and without
boundary. A simplicial complex A is a manifold simplicial complex if |A| is a
topological manifold. A triangulation of a manifold M is a homeomorphism
H : |A| →M , whereA is a simplicial complex. If M is a differentiable manifold,
then H is a smooth triangulation if it is smooth on A, i.e., the restriction of H to
any simplex in A is smooth. We are concerned with smooth triangulations of
compact Riemannian manifolds.

Our homeomorphism argument is based on the following observation:

Lemma 3.7.5 LetA be a manifold simplicial complex of dimension n with finite
vertex set P , and let M be a compact n-manifold. Suppose H : |A| → M is
such that for each p ∈ P , H

∣∣
|St(p)| : |St(p)| → M is an embedding. If for each

connected component Mi of M there is a point y ∈Mi such that h−1(y) contains
exactly one point in |A|, then H is a homeomorphism.

Proof The requirement that the star of each vertex be embedded means that
H is locally a homeomorphism, so it suffices to observe that it is bijective. It is
surjective by Brouwer’s invariance of domain; thus H is a covering map. The
requirement that each component ofM has a point with a single point in its pre-
image implies that H : |A| → M is a single-sheeted covering, and therefore a
homeomorphism. �

The following proposition generically models the situation we will work
with when we describe a triangulation by Riemannian simplices:

Proposition 3.7.6 (Triangulation) LetA be a manifold simplicial n-complex with
finite vertex setP , andM a compact Riemannian manifold with an atlas {(Wp, φp)}p∈P
indexed by P . Suppose

H : |A| →M

satisfies:

1. For each p ∈ P the secant map of φp ◦H restricted to |St(p)| is a piecewise
linear embedding Lp : |St(p)| → Rn such that each simplex σ ∈ Cp =
Lp(St(p)) is t0-thick, and |Cp| ⊂ BRn(Lp(p);h), with Lp(p) ∈ int(|Cp|). The
scale parameter h must satisfy h < ιM

4 , where ιM is the injectivity radius
of M .
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2. For each p ∈ P , φp : Wp

∼=−→ Up ⊂ Rn is such that B = BRn(Lp(p); 3
2h) ⊆

Up, and
∥∥(dφ−1

p )u
∥∥ ≤ 4

3 , for every u ∈ B.

3. The map
Fp = φp ◦H ◦ L−1

p : |Cp| → Rn

satisfies
‖(dFp)u − Id‖ ≤ nt0

2

on each n-simplex σ ∈ Cp, and every u ∈ σE.

Then H is a smooth triangulation of M .

Proof By Lemma 3.7.4, Fp is a homeomorphism onto its image. It follows then
that H

∣∣
|St(p)| is an embedding for every p ∈ P . Therefore, since |A| is compact,

H : |A| →M is a covering map.
Given x ∈ |A|, with x ∈ σE, and p a vertex of σE, let x̃ = Lp(x) ∈ |Cp|. Then

the bound on dF implies that |Fp(x̃)− Lp(p)| ≤
(
1 + nt0

2

)
h ≤ 3

2h, so Fp(x̃) ∈ B.
Since φ−1

p ◦ Fp(x̃) = H(x), and∣∣(dφ−1
p )F (u)(dFp)u

∣∣ ≤ 4

3

(
1 +

nt0
2

)
≤ 2

for any u ∈ σE ⊂ |Cp|, we have that dM (H(p), H(x)) ≤ 2h.
Suppose y ∈ |A| with H(y) = H(x). Let τ ∈ A with y ∈ τE, and q ∈ τ a ver-

tex. Then dM (H(p), H(q)) ≤ 4h < ιM . Thus there is a path γ from H(x) to H(p)
to H(q) to H(y) = H(x) that is contained in the topological ball BM (H(p); ιM ),
and is therefore null-homotopic. Since H is a covering map, this implies that
x = y. Thus H is injective, and therefore defines a smooth triangulation. �

3.7.2 The differential of exponential transitions

If there is a unique minimising geodesic from x to y, we denote the parallel
translation along this geodesic by Tyx. As a preliminary step towards exploiting
Proposition 3.7.6 in the context of Riemannian simplices, we show here that the
estimates of Buser and Karcher [BK81, §6] imply

Proposition 3.7.7 (Strong exponential transition bound) Suppose the sectional
curvatures on M satisfy |K| ≤ Λ. Let v ∈ TpM , with y = expp(v). If x, y ∈
BM (p; ρ), with

ρ <
1

2
ρ0 =

1

2
min

{
ιM
2
,
π

4
√

Λ

}
,

then ∥∥d(exp−1
x ◦ expp)v − Txp

∥∥ ≤ 6Λρ2.
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The primary technical result that we use in the demonstration of Propos-
ition 3.7.7 is a refinement of the Rauch theorem demonstrated by Buser and
Karcher [BK81, §6.4]. We make use of a simplified particular case of their general
result:

Lemma 3.7.8 (Strong Rauch theorem) Assume the sectional curvatures on M
satisfy |K| ≤ Λ, and suppose there is a unique minimising geodesic between x
and p. If v = exp−1

p (x), and

|v| = dM (p, x) = r ≤ π

2
√

Λ
,

then ∥∥(d expp)v − Txp
∥∥ ≤ Λr2

2
.

Proof Given distinct upper and lower bounds on the sectional curvatures,
Λ− ≤ K ≤ Λ+, the result of Buser and Karcher [BK81, §6.4.2] is stated as∣∣∣∣(d expp)vw − Txp

(
Sκ(r)w

r

)∣∣∣∣ ≤ |w|(Sκ−λ(r)− Sκ(r)

r

)
,

for any vector w perpendicular to v, and as long as Sκ is nonnegative. Here κ is
arbitrary, and λ = max{Λ+ − κ, κ− Λ−}.

We take Λ = max{Λ+,−Λ−}, and κ = 0. The stated bound results since now
Sκ(r) = S0(r) = r, and the constraint r ≤ π

2
√

Λ
ensures that

S−Λ(r)− r
r

≤ Λr2

2
,

as observed in Section 3.5.2. The result applies to all vectors since the exponen-
tial preserves lengths in the radial direction. �

We obtain a bound on the differential of the inverse of the exponential map
from Lemma 3.7.8 and the following observation:

Lemma 3.7.9 Suppose A : Rn → Rn is a linear operator that satisfies

‖A− T‖ ≤ η,

for some linear isometry T : Rn → Rn. If η ≤ 1
2 , then∥∥A−1 − T−1

∥∥ ≤ 2η.
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Proof We first bound
∥∥A−1

∥∥ = sn(A)−1, the inverse of the smallest singular
value. Since sn(A) = sn(T−1A), and

∥∥T−1A− Id
∥∥ ≤ η, we have |sn(A)− 1| ≤ η.

Thus sn(A)−1 ≤ (1− η)−1 ≤ 1 + 2η.
Now write A = T + ηE, where ‖E‖ ≤ 1. The trick [GVL96, p. 50] is to

observe that

A−1 = T−1 −A−1(A− T )T−1

= T−1 − ηA−1ET−1,

and the stated bound follows. �

Lemma 3.7.10 Suppose the sectional curvatures on M satisfy |K| ≤ Λ. Let v ∈
TpM , with y = expp(v). If x, y ∈ BM (p; ρ), with

ρ ≤ min

{
ιM
2
,

1

2
√

Λ

}
,

then ∥∥d(exp−1
x ◦ expp)v − TxyTyp

∥∥ ≤ 5Λρ2.

Proof By Lemma 3.2.1, BM (p; ρ) is convex. Since dM (x, y) < 2ρ, Lemma 3.7.8
yields ‖(d expx)w − Tyx‖ < 2Λρ2 ≤ 1

2 , where w = exp−1
x (y). Since Txy = T−1

yx ,
we may use Lemma 3.7.9 to write

(d exp−1
x )y = Txy +

(
4Λρ2

)
E,

where E satisfies ‖E‖ ≤ 1. We obtain the result by composing this with

(d expp)v = Typ +

(
Λρ2

2

)
Ẽ,

where
∥∥∥Ẽ∥∥∥ ≤ 1. �

In order to compare Txp with TxyTyp we exploit further estimates demon-
strated by Buser and Karcher. If α : [0, 1] → M is a curve, let Tα(t) : Tα(0)M →
Tα(t)M denote the parallel translation operator (we do not require that α be a
minimising geodesic). Buser and Karcher [BK81, §6.1, §6.2] bound the difference
in the parallel translation operators between two homotopic curves:

Lemma 3.7.11 (Parallel translation comparison) Let ci : [0, 1] → M be piece-
wise smooth curves from p to q, and let

c : [1, 2]× [0, 1]→M
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be a piecewise smooth homotopy between c1 and c2, i.e., c(1, t) = c1(t), and
c(2, t) = c2(t). Let a =

∫
det dc(s,t) dsdt be the area of the homotopy. If the

sectional curvatures are bounded by |K| ≤ Λ, then∥∥Tc2(1) − Tc1(1)

∥∥ ≤ 4

3
Λa.

In our case the two curves of interest form the edges of a geodesic triangle.
A geodesic triangle in M is a set of three points (vertices) such that each pair is
connected by a unique minimising geodesic, together with these three minim-
ising geodesics (edges). Any three points in a convex set are the vertices of a
geodesic triangle. Buser and Karcher [BK81, §6.7] demonstrate an estimate of
A. D. Aleksandrow that says that the edges of a small geodesic triangle are the
boundary of a topological disk whose area admits a natural bound:

Lemma 3.7.12 (Small triangle area) Let p, x, y ∈ M be the edges of a geodesic
triangle whose edge lengths, `px, `xy, `yp satisfy

`px + `xy + `yp ≤ min

{
ιM ,

2π√
Λ+

}
,

where Λ+ is an upper bound on the sectional curvatures of M , and ιM is the
injectivity radius. Then the edges of triangle pxy form the boundary of an im-
mersed topological disk whose area a satisfies

a ≤ aΛ+
,

where aΛ+
is the area of a triangle with the same edge lengths in the sphere of

radius 1√
Λ+

.

Consider x, y ∈ BM (p; ρ), where ρ < 1
2ρ0 and as usual Λ is a bound on

the absolute values of the sectional curvatures. In this case, Buser and Karcher
[BK81, §6.7.1] observe that the area of the triangle in the sphere of radius 1√

Λ
that

has the same edge lengths as pxy satisfies

aΛ ≤
5

8
ρ2.

It follows then, from Lemma 3.7.11, that

‖Txp − TxyTyp‖ ≤
5

6
Λρ2.

This, together with Lemma 3.7.10, yields∥∥d(exp−1
x ◦ expp)v − Txp

∥∥ ≤ 5Λρ2 +
5

6
Λρ2 ≤ 6Λρ2,

and we obtain Proposition 3.7.7.
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3.7.3 Triangulations with Riemannian simplices

We now exploit Proposition 3.7.7 to demonstrate that a bound of the form (3.44)
is satisfied by the differential (3.10) of the barycentric coordinate map defining a
Riemannian simplex σM

db = −
(
∇Mν

)−1
∂uν,

and find a bound on the scale that allows us to exploit Proposition 3.7.6.
Choose a vertex p0 of σM , and an arbitrary linear isometry u : Tp0

M → Rn
to establish a coordinate system on Tp0

M so that v0(p0) remains the origin. Let
P be the matrix whose ith column is vi(p0). For x ∈ Bρ, rather than placing an
arbitrary coordinate system on TxM , we identify Tp0M and TxM by the parallel
translation operator Tp0x, i.e., use u ◦ Tp0x for coordinates. Let P̃ be the matrix
whose ith column is vi(x)− v0(x).

Now the map
F : v 7→ exp−1

x ◦ expp0
(v)− v0(x)

can be considered as a map Rn ⊃ U → Rn, and the matrix whose ith column
is F (vi(p0)) is P̃ . It follows from Proposition 3.7.7 that if h < 1

2ρ0, then for any
u ∈ BRn(0;h), we have ‖(dF )u − Id‖ ≤ η, with η = 6Λh2.

Lemma 3.7.2 implies a bound on the difference of the column vectors of P
and P̃ :

|vi(p0)− (vi(x)− v0(x))| ≤ η |vi(p0)| ≤ ηL(σ(p0)).

It follows that
∥∥∥P − P̃∥∥∥ ≤ √nηL(σ(p0)). Assume also that t(σ(p0)) ≥ t0. Then,

recalling Equation (3.12), and recognising that Txp0 is represented by the identity
matrix in our coordinate systems, we have

‖− (∂uν)− Txp0
‖ =

∥∥∥P̃P−1 − PP−1
∥∥∥

=
∥∥∥(P̃ − P)P−1

∥∥∥
≤
√
n6Λh2L(σ(p0))

∥∥P−1
∥∥

≤
√
n6Λh2L(σ(p0))√
nt0L(σ(p0))

by Lemma 3.5.1

≤ 6Λh2

t0
.

Buser and Karcher show [BK81, §8.1.3] that for any x ∈ BM (p;h), with h <
ρ0, we have ∥∥(∇Mν)x − Id

∥∥ ≤ 2Λh2.
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When h < 1
2ρ0, we have 2Λh2 < 1

2 , and Lemma 3.7.9 yields∥∥(∇Mν)−1 − Id
∥∥ ≤ 4Λh2.

Therefore we have, when b(u) = x

‖dbu − Txp0
‖ =

∥∥∥− (∇Mν)−1
∂uν − Txp0

∥∥∥
≤ 4Λh2 +

6Λh2

t0
+ 4Λh2

(
6Λh2

t0

)
≤ 14Λh2

t0
,

(3.47)

using h < π
8
√

Λ
.

Finally, in order to employ Proposition 3.7.6 we consider the composition
exp−1

p0
◦b. From Lemma 3.7.8 and Lemma 3.7.9 we have that∥∥(d exp−1

p0
)x − Tp0x

∥∥ ≤ Λh2.

Therefore, since Tp0x = T−1
xp0

we have

∥∥d(exp−1
p0
◦b)u − Id

∥∥ ≤ Λh2 +
14Λh2

t0
+ Λh2

(
14Λh2

t0

)
≤ 18Λh2

t0
.

In order to meet the conditions of Proposition 3.7.6, we require

18Λh2

t0
≤ 1

2
nt0,

or

h ≤
√
nt0

6
√

Λ
.

We obtain

Theorem 3.2 SupposeM is a compact n-dimensional Riemannian manifold with
sectional curvaturesK bounded by |K| ≤ Λ, andA is an abstract simplicial com-
plex with finite vertex set P ⊂M . Define a quality parameter t0 > 0, and let

h = min

{
ιM
4
,

√
nt0

6
√

Λ

}
.

If
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1. For every p ∈ P , the vertices of St(p) are contained in BM (p;h), and the
balls {BM (p;h)}p∈P cover M .

2. For every p ∈ P , the restriction of the inverse of the exponential map exp−1
p

to the vertices of St(p) ⊂ A defines a piecewise linear embedding of |St(p)|
into TpM , realising St(p) as a full star such that every simplex σ(p) has
thickness t(σ(p)) ≥ t0.

thenA triangulatesM , and the triangulation is given by the barycentric coordin-
ate map on each simplex.
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3.8 The piecewise flat metric

The complexA described in Theorem 3.2 naturally inherits a piecewise flat met-
ric from the construction. The length assigned to an edge {p, q} ∈ A is the
geodesic distance in M between its endpoints: `pq = dM (p, q). We first ex-
amine, in Section 3.8.1, conditions which ensure that this assignment of edge
lengths does indeed make each σ ∈ A isometric to a Euclidean simplex. With
this piecewise flat metric on A, the barycentric coordinate map is a bi-Lipschitz
map between metric spacesH : |A| →M . In Section 3.8.2 we estimate the metric
distortion of this map.

Several of the lemmas in this section are generalisations of lemmas that ap-
peared in [BDG13a, §A.1]. The arguments are essentially the same, but we have
included the proofs here for convenience.

3.8.1 Euclidean simplices defined by edge lengths

IfG is a symmetric positive definite n×nmatrix, then it can be written as a Gram
matrix, G = PTP for some n × n matrix P . Then P describes a Euclidean sim-
plex with one vertex at the origin, and the other vertices defined by the column
vectors. The matrix P is not unique, but if G = QTQ, then Q = OP for some lin-
ear isometry O. Thus a symmetric positive definite matrix defines a Euclidean
simplex, up to isometry.

If σ = {p0, . . . , pn} ⊂ Bρ, is the vertex set of a Riemannian simplex σM , we
define the numbers `ij = dM (pi, pj). These are the edge lengths of a Euclidean
simplex σE if and only if the matrix G defined by

Gij =
1

2
(`20i + `20j − `2ij) (3.48)

is positive definite.
We would like to use the smallest eigenvalue ofG to estimate the thickness of

σE, however, an unfortunate choice of vertex labels can prevent us from doing
this easily. We make use of the following observation:

Lemma 3.8.1 Suppose σ = {v0, . . . , vk} ⊂ Rn is a Euclidean k-simplex, and let
P be the n × k matrix whose ith column is vi − v0. If for some i 6= 0, an altitude
at least as small as a0 is realised, i.e, ai ≤ a0, then

t(σ) ≥ sk(P )

kL(σ)
.

Proof We assume that σ is non-degenerate, since otherwise the bound is trivial.
If vi is a vertex of minimal altitude, then by Lemma 3.5.1, the ith row of the
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pseudo-inverse P−1
left is given by wiT, where

|wi| = a−1
i = (ktL)−1.

It follows then that s1(P−1
left ) ≥ (ktL)−1, and therefore sk(P ) ≤ ktL, yielding the

stated bound. �

If G is positive definite, then we may write G = PTP , where P is a matrix
describing σE = [v0, . . . , vk], with the edge lengths {`ij} dictating the vertex
labelling. If µk(G) = sk(P )2 is the smallest eigenvalue of G, then provided some
vertex other than v0 realises the smallest altitude in σE, Lemma 3.8.1 yields

t(σE) ≥
√
µk(G)

kL(σ)
. (3.49)

For our current purposes, we can ensure the existence, and bound the thick-
ness of σE by comparing it with a related simplex such as σ(p0). To this end we
employ the following observation (where σ̃ plays the role of σ(p0)):

Lemma 3.8.2 Suppose σ̃ = {ṽ0, . . . , ṽk} is a Euclidean k-simplex, and {`ij} is a
set of positive numbers defined for all 0 ≤ i 6= j ≤ k such that `ij = `ji, and

||ṽi − ṽj | − `ij | ≤ C0L(σ̃).

Let P̃ be the matrix whose ith column is ṽi − ṽ0, and define the matrix G by

Gij =
1

2
(`20i + `20j − `2ij).

Let E be the matrix that records the difference between G and the Gram matrix
P̃TP̃ :

G = P̃TP̃ + E.

If C0 ≤ 2
3 , then the entries of E are bounded by |Eij | ≤ 4C0L(σ̃)2, and in partic-

ular
‖E‖ ≤ 4kC0L(σ̃)2. (3.50)

Proof Let ˜̀
ij = |ṽi − ṽj |. By the cosine rule we have[

P̃TP̃
]
ij

=
1

2
(˜̀2

0i + ˜̀2
0j − ˜̀2

ij),

and we obtain a bound on the magnitude of the coefficients of E:∣∣∣∣Gij − [P̃TP̃
]
ij

∣∣∣∣ ≤ 1

2

(∣∣∣`20i − ˜̀2
0i

∣∣∣+
∣∣∣`20j − ˜̀2

0j

∣∣∣+
∣∣∣`2ij − ˜̀2

ij

∣∣∣)
≤ 3

2
(2 + C0)C0L(σ̃)2

≤ 4C0L(σ̃)2.
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This leads us to a bound on s1(E) = |E|. Indeed, the magnitude of the
column vectors of E is bounded by

√
k times a bound on the magnitude of their

coefficients, and the magnitude of s1(E) is bounded by
√
k times a bound on the

magnitude of the column vectors. We obtain Equation (3.50). �

We have the following extension of the “Thickness under distortion” Lemma 3.5.2
([BDG13a, §4.2]):

Lemma 3.8.3 (Abstract Euclidean simplex) Suppose σ̃ = {ṽ0, . . . , ṽk} ⊂ Rn,
and {`ij}0≤i,j≤k is a set of positive numbers defined for all 0 ≤ i 6= j ≤ k
such that `ij = `ji, and such that

||ṽi − ṽj | − `ij | ≤ C0L(σ̃)

for all 0 ≤ i < j ≤ k.
If

C0 =
ηt(σ̃)2

4
with 0 ≤ η ≤ 1, (3.51)

then there exists a Euclidean simplex σ = {v0, . . . , vk} whose edge lengths are
described by the numbers `ij . Let P̃ and P be matrices whose ith column is given
by ṽi − ṽ0, and vi − v0 respectively. Then

sk(P ) ≥ (1− η)sk(P̃ ),

and the thickness of σ satisfies

t(σ) ≥ 4

5
√
k

(1− η)t(σ̃).

Proof If σ̃ is degenerate, then by (3.51), {`ij} is the set of edge lengths of σ̃ and
there is nothing to prove. Therefore, assume t(σ̃) > 0.

Let G be the matrix defined by Equation (3.48), and define the matrix E by
G = P̃TP̃ + E, and let x be a unit eigenvector of G associated with the smallest
eigenvalue µk. Then

µk = xTGx = xTP̃TP̃ x+ xTEx

≥ sk(P̃ )2 − s1(E)

=

(
1− s1(E)

sk(P̃ )2

)
sk(P̃ )2.

From Lemma 3.5.1 we have sk(P̃ )2 ≥ kt(σ̃)2L(σ̃)2, and by Lemma 3.8.2 s1(E) ≤
4kC0L(σ̃)2, so by the definition (3.51) of C0, we have that

µk ≥ (1− η)sk(P̃ )2,
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and thus G is positive semi-definite, and the first inequality is satisfied because
µk = sk(P )2 and

√
1− η ≥ 1− η.

In order to obtain the thickness bound, we employ Lemma 3.8.1. Since thick-
ness is independent of the vertex labelling, we may assume that some vertex
other than v0 realises the minimal altitude in σ (if necessary, we relabel the ver-
tices of σ̃ and σ, maintaining the correspondence). Then using Lemma 3.8.1 and
Lemma 3.5.1 we have

kt(σ)L(σ) ≥ sk(P ) ≥ (1− η)sk(P̃ ) ≥ (1− η)
√
kt(σ̃)L(σ̃).

The stated thickness bound follows since L(σ̃)
L(σ) ≥

1
1+C0

≥ 4
5 . �

Now we examine whether the simplices of the complex A of Theorem 3.2
meet the requirements of Lemma 3.8.3. If σ ∈ A, with p ∈ σ, then we can
use the Rauch theorem 3.5.4 to compare σ with the Euclidean simplex σ(p) ∈
TpM . Under the assumptions of Theorem 3.2, we have

∥∥d expp
∥∥ ≤ 1 + Λh2

2 , and∥∥d exp−1
p

∥∥ ≤ 1 + Λh2

3 . Thus

`ij − |vi(p)− vj(p)| ≤
Λh2

2
|vi(p)− vj(p)| ,

and

|vi(p)− vj(p)| − `ij ≤
Λh2

3
`ij ≤

Λh2

3

(
1 +

Λh2

2

)
|vi(p)− vj(p)| ≤

Λh2

2
|vi(p)− vj(p)| ,

and we can use

C0 =
Λh2

2
(3.52)

in Lemma 3.8.3. Thus in order to guarantee that the `ij describe a non-degenerate
Euclidean simplex, we require that

Λh2 =
ηt20
2
,

for some non-negative η < 1.

Under the conditions of Theorem 3.2 we may have h2Λ =
nt20
36 , which gives

us η = n
18 . Thus when n ≥ 18 we require stronger bounds on the scale than those

imposed by Theorem 3.2 if we wish to ensure the existence of a piecewise flat
metric on A. Reducing the curvature controlled constraint on h in Theorem 3.2
by a factor of 1/

√
n gives us η = 1

18 , and Lemma 3.8.3 yields:
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Proposition 3.8.4 If the requirements of Theorem 3.2, are satisfied when the
scale parameter (3.5) is replaced with

h = min

{
ιM
4
,
t0

6
√

Λ

}
,

then the geodesic distances between the endpoints of the edges in A defines a
piecewise flat metric on A such that each simplex σ ∈ A satisfies

t(σ) >
3

4
√
n
t0.

3.8.2 Metric distortion of the barycentric coordinate map

In the context of Theorem 3.2 the barycentric coordinate map on each simplex
defines a piecewise smooth homeomorphism H : |A| → M . If the condition of
Proposition 3.8.4 is also met, then A is naturally endowed with a piecewise flat
metric. We wish to compare this metric with the Riemannian metric on M . It
suffices to consider an n-simplex σ ∈ A, and establish bounds on the singular
values of the differential dH . If p ∈ σ, then we can write H

∣∣
σE

= b ◦ Lp, where
Lp : σE → σE(p) is the linear map that sends σ ∈ A to σ(p) ∈ TpM .

A bound on the metric distortion of a linear map that sends one Euclidean
simplex to another is a consequence of the following (reformulation of [BDG13a,
Lem A.4]):

Lemma 3.8.5 (Linear distortion bound) Suppose thatP and P̃ are non-degenerate
k × k matrices such that

P̃TP̃ = PTP + E. (3.53)

Then there exists a linear isometry Φ : Rk → Rk such that∥∥∥P̃P−1 − Φ
∥∥∥ ≤ s1(E)

sk(P )2
.

Proof Multiplying by P−T := (PT)
−1 on the left, and by P−1 on the right, we

rewrite Equation (3.53) as
ATA = I + F, (3.54)

where A = P̃P−1, and F = P−TEP−1. Using the singular value decomposition
A = UAΣAV

T
A , we let Φ = UAV

T
A so that

(A− Φ) = UA(ΣA − I)V T
A . (3.55)
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From Equation (3.54) we deduce that s1(A)2 ≤ 1 + s1(F ), and also that sk(A)2 ≥
1− s1(F ). Using these two inequalities we find

max
i
|si(A)− 1| ≤ s1(F )

1 + si(A)
≤ s1(F ),

and thus

‖ΣA − I‖ ≤ s1(F ) ≤ s1(P−1)2s1(E) = sk(P )−2s1(E).

The result now follows from Equation (3.55). �

Lemma 3.8.5 implies:

Lemma 3.8.6 Suppose σ = {v0, . . . , vn} and σ̃ = {ṽ0, . . . , ṽn} are two Euclidean
simplices in Rn such that

| |ṽi − ṽj | − |vi − vj | | ≤ C0L(σ).

If A : Rn → Rn is the affine map such that A(vi) = ṽi for all i, and C0 ≤ 2
3 ,

then for all x, y ∈ Rn,

| |A(x)−A(y)| − |x− y| | ≤ η |x− y| ,

where
η =

4C0

t(σ)2
.

Proof Let P be the matrix whose ith column is vi − v0, and let P̃ be the matrix
whose ith column is ṽi − ṽ0. Then we have the matrix form A(x) = P̃P−1x +
(ṽ0 − P̃P−1v0). It follows then from Lemma 3.8.5 that η ≤ sn(P )−2s1(E), where
E = P̃TP̃ − PTP .

By Lemma 3.8.2, s1(E) ≤ 4nC0L(σ)2, and by Lemma 3.5.1, sn(P )2 ≥ nt(σ)2L(σ)2,
and the result follows. �

Observe that if A in Lemma 3.8.6 is a linear map, then the lemma states that
s1(A) ≤ 1 + η and sn(A) ≥ 1 − η. We use this to estimate the metric distortion
of H|σE = b ◦ Lp. Under the assumption of Proposition 3.8.4, specifically, given
that h ≤ t0

6
√

Λ
, we again exploit Equation (3.52), so

∥∥L−1
p

∥∥ ≤ 1 +
2Λh2

t20

and, since ‖Lp‖−1
= sn(L−1

p ) ≥ 1− 2Λh2

t20
, and the second term is less than 1

2 , we
also have

‖Lp‖ ≤ 1 +
4Λh2

t20
.
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Using Equation (3.47) we have

‖db‖ ≤ 1 +
14Λh2

t0
,

and ∥∥db−1
∥∥ ≤ 1 +

28Λh2

t0
.

Recalling that dH
∣∣
σE

= (db)Lp, and h2 ≤ t20
36Λ , we obtain

‖dH‖ ≤ 1 +
20Λh2

t20
,

and ∥∥dH−1
∥∥ ≤ 1 +

32Λh2

t20
.

The bound on the differential of H and its inverse enables us to estimate
the Riemannian metric on M using the piecewise flat metric on A. The metric
distortion bound on H is found with the same kind of calculation as exhibited
in Equation (3.32), for example. We find:

Theorem 3.3 (Metric distortion) If the requirements of Theorem 3.2, are satis-
fied with the scale parameter (3.5) replaced by

h = min

{
ιM
4
,
t0

6
√

Λ

}
,

then A is naturally equipped with a piecewise flat metric dA defined by assign-
ing to each edge the geodesic distance in M between its endpoints.

If H : |A| → M is the triangulation defined by the barycentric coordinate
map in this case, then the metric distortion induced by H is quantified as

|dM (H(x), H(y))− dA(x, y)| ≤ 50Λh2

t20
dA(x, y),

for all x, y ∈ |A|.
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3.9 Alternate criteria

We discuss alternative formulations of our results. In Section 3.9.1, we con-
sider defining the quality of Riemannian simplices in terms of Euclidean sim-
plices defined by the geodesic edge lengths of the Riemannian simplices. In
Section 3.9.2 we compare thickness with a volume-based quality measure for
simplices that we call fatness.

3.9.1 In terms of the intrinsic metric

We imposed a quality bound on a Riemannian simplex σM by imposing a qual-
ity bound on the Euclidean simplex σ(p) that is the lift of the vertices of σM to
TpM . This was convenient for our purposes, but the quality of σM could also
be characterised directly by its geodesic edge lengths.

As discussed in Section 3.8.1, we can use the smallest eigenvalue of the mat-
rix (3.48) G to characterise the quality of σM : When µn(G) ≥ 0, there is a Eu-
clidean simplex σE with the same edge lengths as σM , however we have the
inconvenience that the lower bound (3.49) on t(σE) with respect to µk(G) is not
valid for all choices of vertex labels.

This inconvenience can be avoided if a volumetric quality measure is used,
such as the fatness discussed in Section 3.9.2. Determinant-based criteria for Eu-
clidean simplex realisability are discussed by Berger [Ber87a, §9.7], for example.

In any event, we will express the alternate non-degeneracy criteria for σM in
terms of the thickness of the associated Euclidean simplex σE. Using Proposi-
tion 3.2.5, and the Rauch theorem 3.5.4, we have the following reformulation of
the non-degeneracy criteria of Theorem 3.1:

Proposition 3.9.1 (Non-degeneracy criteria) If ρ < ρ0 defined in Equation (3.3),
and the geodesic edge lengths of σM ⊂ Bρ ⊂ M define a Euclidean simplex σE
with

t(σE) ≥ 3
√

ΛL(σE) (3.56)

then σM is non-degenerate. As in Theorem 3.1, the assertion holds if ρ replaces
L(σE) in the lower bound (3.56).

Proof By Lemma 3.5.4 we have for any x ∈ Bρ

|vi(x)− vj(x)| ≤
(

1 +
Λ(2ρ)2

3

)
`ij ,

and

`ij ≤
(

1 +
Λ(2ρ)2

2

)
|vi(x)− vj(x)| .
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Therefore

| |vi(x)− vj(x)| − `ij | ≤ Λ2ρ2

(
1 +

Λ4ρ2

3

)
`ij

≤ 4Λρ2`ij .

Then using C0 = 4Λρ2 in Lemma 3.5.2, we see that σ(x) is non-degenerate if
t(σE) >

√
8
√

Λρ, and the result follows from Proposition 3.2.5, and the remarks
at the end of Section 3.2.2. �

The scale parameter h in Theorem 3.2 is in fact a strict upper bound on the
geodesic edge lengths `ij in A. A similar argument to the proof of Proposi-
tion 3.9.1 allows us to restate Theorem 3.2 by employing a thickness bound on
the Euclidean simplices with edge lengths `ij :

Proposition 3.9.2 (Triangulation criteria) SupposeM is a compact n-dimensional
Riemannian manifold with sectional curvatures K bounded by |K| ≤ Λ, and A
is an abstract simplicial complex with finite vertex set P ⊂ M . Define a quality
parameter t0 > 0, and let

h = min

{
ιM
4
,
t0

8
√

Λ

}
.

If

1. For every simplex σ = {p0, . . . , pn} ∈ A, the edge lengths `ij = dM (pi, pj)
satisfy `ij < h, and they define a Euclidean simplex σE with t(σE) ≥ t0.

2. The balls {BM (p;h)}p∈P cover M , and for each p ∈ P the secant map of
exp−1

p realises St(p) as a full star.

thenA triangulatesM , and the triangulation is given by the barycentric coordin-
ate map on each simplex.

Proof By the argument in the proof of Proposition 3.9.1, using h instead of 2ρ,
we see that for any x, y ∈ BM (p;h) we have∣∣∣∣exp−1

p (x)− exp−1
p (y)

∣∣− dM (x, y)
∣∣ ≤ Λh2dM (x, y).

Then using C0 = Λh2 =
ηt20
4 in Lemma 3.5.2, we get

η =
4Λh2

t20
≤ 1

16
.
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It follows that if σ ∈ A, with p ∈ σ, then

t(σ(p)) ≥ 4

5
√
n

(1− η)t0 ≥
3

4
√
n
t0.

The bound on h then implies that h ≤
√
nt(σ(p))

6
√

Λ
, and so the result of Theorem 3.2

applies. �

3.9.2 In terms of fatness

Many alternative quality measures for simplices have been employed in the lit-
erature. Thickness is employed by Munkres [Mun68], using a slightly different
normalisation than ours. It is also very popular to use a volume-based quality
measure such as that employed by Whitney [Whi57]. In this section we intro-
duce Whitney’s quality measure, which we call fatness, and we compare it with
thickness.

If σ is a j-simplex, then its volume, may be defined for j > 0 as

volj(σ) =
1

j!

j∏
i=1

si(P ),

where P is the m × j matrix whose ith column is pi − p0 for σ = {p0, · · · , pj} ⊂
Rm. If j = 0 we define vol0(σ) = 1. Alternatively, the volume may be defined
inductively from the formula

volj(σ) =
ap(σ) volj−1(σp)

j
. (3.57)

The fatness of a j-simplex σ is the dimensionless quantity

Θ(σ) =

{
1 if j = 0
volj(σ)
L(σ)j otherwise.

Lemma 3.9.3 (Fatness and thickness) For any j-simplex σ

t(σ)j ≤ Θ(σ) ≤
j∏

k=1

t(σk) ≤ t(σ)

(j − 1)!
,

where σ = σj ⊃ σj−1 ⊃ · · · ⊃ σ1 is any chain of faces of σ such that for each
i < j, σi has maximal volume amongst all the facets of σi+1.
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Proof It follows directly from the volume formula (3.57) that if σk−1 is a face
with maximal volume in σk = {pk} ∪ σk−1, then pk is a vertex with minimal
altitude in σk. Order the vertices of σ = {p0, . . . , pj} so that σk = {p0, . . . , pk}
for each k ≤ j. Then, inductively expanding the volume formula (3.57), we get

vol(σj) =

j∏
k=1

apk(σk)

k
.

The inequality Θ(σ) ≤
∏j
k=1 t(σ

k) then follows from the definitions of thickness
and fatness, and the observation that L(σ) ≥ L(σk) for all k ≤ j. Also from
the definition of thickness we have the trivial bound t(σk) ≤ 1

k , from which the
rightmost inequality follows.

The lower bound also follows from induction on Equation (3.57). Using the
same chain of faces and vertex labelling we get

Θ(σ) =
apj (σ)

jL(σ)

vol(σj−1)

L(σ)j−1

= t(σ)Θ(σj−1)
L(σj−1)j−1

L(σ)j−1

≥ t(σ)t(σj−1)j−1L(σj−1)j−1

L(σ)j−1
inducive hypothesis

= t(σ)

(
apj−1(σj−1)

(j − 1)L(σ)

)j−1

≥ t(σ)j .

�

Although Lemma 3.9.3 gives the impression that fatness corresponds roughly
to a power of thickness, we observe that thickness and fatness coincide for tri-
angles, as well as edges, and vertices.

Lemma 3.9.3, provides a way to express our results in terms of fatness instead
of thickness. For example, the quality bound for non-degeneracy in Theorem 3.1

t(σ(p)) > 10
√

Λρ,

is attained if

Θ(σ(p)) >
10
√

Λρ

(n− 1)!
.
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3.10 Simplices modelled on spaces of constant curvature

In this section we revisit our discussion of non-degeneracy criteria for Rieman-
nian simplices on manifoldsM whose sectional curvaturesK are bounded by Λ,
that is |K| ≤ Λ. We focus in particular on the approach based on the Topogonov
comparison theorem, see Section 3.6. In Section 3.6 we compared simplices on
the manifold to Euclidean simplices (σE(vr)) in the tangent space of the man-
ifold. This comparison is unnatural if the manifold has large, nearly constant
negative or positive curvature. One would expect that the Riemannian sim-
plices (σM ) on a manifold that is close to a space of constant curvature can have
low quality but still be non-degenerate. Because spaces of constant curvature
are totally geodesic a simplex is non-degenerate if and only if the quality is zero.
In this section we continue to denote spaces of constant curvature by H(K), re-
gardless whether the curvature K is positive or negative.

3.10.1 Overview of results

We prove the following results:
In case the manifold has positive curvature:

Theorem 3.10.10 LetM be a manifold with bounded positive sectional curvatures
K, that is 0 < Λ− ≤ K ≤ Λ+. Suppose that v0, . . . , vn are vertices on M . Let us
assume10 that all vertices lie within a geodesic ball of radius 1

2D̃ with centre vr,
where D̃ ≤ 1/(2

√
Λ+). Under these assumptions the Riemannian simplex with

vertices v0, . . . , vn on M is non-degenerate if

QH(Λmid)(σH(Λmid)(vr))

(2D̃)2n
≥ n |Λ− − Λ+| D̃2

with QH(Λmid) the simplex quality

QH(Λmid)(σH(Λmid)(vr))

= min
y∈H(Λmid)

max
j

{
det

(
1

Λmid
sin
(√

Λmid dH(Λmid)(y, vi(vr))
)
·

sin
(√

ΛmiddH(Λmid)(y, vl(vr))
)

cos θil

)
i,l 6=j

}
,

(3.58)

10This bound is stronger than necessary. In fact it suffices for the lengths of geodesics in the proof
below to be bounded by D̃.
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σH(Λmid)(vr) the simplex on H(Λmid) with vertices vi(vr) defined by vi(vr) =

expH(Λmid) ◦ exp−1
vr,M

(vi) and

Λmid =
1

2
(Λ− + Λ+).

The negative curvature case is more involved.

Theorem 3.10.11 LetM be a manifold with bounded negative sectional curvatures
K, that is Λ− ≤ K ≤ Λ+ < 0. Suppose that v0, . . . , vn are vertices on M . Let us
assume that all vertices lie within a geodesic ball of radius 1

2D̃ with centre vr.
Under these assumptions the Riemannian simplex with vertices v0, . . . , vn on M
is non-degenerate if

|ΛH
mid|nQH(ΛH

mid)(σH(ΛH
mid)(vr)) > n(sinh

√
|Λ−|D̃)2(n−1)

·

(
2 + 2 cosh

(√
|Λ−|D̃

)
+ |Λ−|2 cosh2

(√
|Λ−|D̃

) 11D̃4

4!

)

·
∣∣∣|Λ−| cosh2(

√
|Λ−|D̃)− |Λ+| cosh2(

√
|Λ+|D̃)

∣∣∣ |ΛH
mid|

11D̃4

2 · 4!
.

with σH(ΛH
mid)(vr) the simplex on H(ΛH

mid) with vertices vi(vr) = expH(ΛH
mid) ◦ exp−1

vr,M
(vi),

QH(ΛH
mid)(σH(ΛH

mid)(vr)) the simplex quality

QH(ΛH
mid) = min

x∈N
max
j

{
det

(
1

|ΛH
mid|

sinh

(√
|ΛH

mid|dHn(ΛH
mid)(x, vi(vr))

)
sinh

(√
|ΛH

mid|dHn(ΛH
mid)(x, vl(vr))

)
cos θil

)
i,l 6=j

}
,

whereN equals to any geodesic ball with radius 2D̃ centred at any of the vertices
and ΛH

mid satisfies ∣∣∣∣|ΛH
mid| cosh2

√
ΛH

midD̃ − |Λ−| cosh2
√
|Λ−|D̃

∣∣∣∣
=

∣∣∣∣|ΛH
mid| cosh2

√
ΛH

midD̃ − |Λ+| cosh2
√
|Λ+|D̃

∣∣∣∣
=

1

2

∣∣∣|Λ−| cosh2
√
|Λ−|D̃ − |Λ+| cosh2

√
|Λ+|D̃

∣∣∣ .
Quality

In Theorems 3.10.10 and 3.10.11 we have introduced qualities for simplices of
constant curvature. In the elliptic case this quality has a nice geometric inter-
pretation (the hyperbolic case is slightly more involved).
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Figure 3.9: Geometric interpretation of the quality of a simplex on a space of
positive constant curvature, top and side view.

The determinant

det

(
1

Λmid
sin
(√

Λmid dH(Λmid)(y, vi)
)

sin
(√

ΛmiddH(Λmid)(y, vl)
)

cos θil

)
i,l 6=j

,

in Theorem 3.10.10 gives the volume of a parallelepiped. This parallelepiped can
be found as follows: We embed the sphere in Euclidean space in the standard
manner, that is as a co-dimension one round sphere. We take the tangent space
at y and the vertices vi on the tangent space via the normal of the tangent space.
The parallelepiped is given by the vectors from y to the projected vertices, see
Figure 3.9.

The search for the point for which the maximum volume is minimized in
(3.58), should remind one of following: In Euclidean space the barycentre of
a simplex with vertices v0, . . . , vn is the point x for which the volumes of all
dimensional simplices with vertices x, v0, . . . , vj−1, vj+1, . . . , vn are equal. This
means that maximum volume of the simplices is minimized.

Comparing Theorem 3.6.6 and Theorem 3.10.10

Using the geometric intuition we just developed, it is easy to compare The-
orem 3.10.10 to the result of Section 3.6:
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Theorem 3.6.6 Let v0, . . . , vn be a set of vertices lying in a Riemannian manifold
M , whose sectional curvatures are bounded in absolute value by Λ, within a
convex geodesic ball of radius D centred at any one of the vertices (vr) and such
that

√
ΛD < 1/2. If σE(vr), the convex hull of (exp−1

vr (vi))
n
i=0 = (vi(vr))

n
i=0 in

TvrM , satisfies (
n!vol(σE(vr))

(n+ 1)(2D)n

)2

> 25
24nΛD2, (3.43)

then the Riemannian simplex with vertices v0, . . . , vn is non-degenerate, that is
diffeomorphic to the standard n-simplex.

For this comparison we note that

det

(
1

Λmid
sin
(√

Λmid dH(Λmid)(y, vi)
)

sin
(√

ΛmiddH(Λmid)(y, vl)
)

cos θil

)
i,l 6=j

,

tends to

det(v0(vr)− x(vr), . . . , vj−1(vr)− x(vr), vj+1(vr)− x(vr), . . . , vn(vr)− x(vr))
2

(3.59)

so that QH(Λmid)(σH(Λmid)(vr)) tends to ( n!
n+1 vol(σE(vr)))

2. This means conditions
in Theorem 3.6.6 and Theorem 3.10.10 coincide in the limit except that the pre-
factor is slightly better for Theorem 3.10.10 and Λ replaced by |Λ− − Λ+|. This
replacement by |Λ− − Λ+| is the significant step we make in this section.

Starting with the hyperbolic quality measureQH(ΛH
mid)(σH(ΛH

mid)(vr)) also tends
to ( n!

n+1 vol(σE(vr)))
2. However, due to the complicated nature of the quality

bounds in Theorem 3.10.11 it is harder to compare to Theorem 3.6.6. In Section
3.10.5 we shall see that the quality bounds are proportional to |Λ− −Λ+|. Again
it is this proportionality that sets these results apart.

3.10.2 Overview of the proof method

Recapitulation of Section 3.6

In Section 3.6 we assumed that a set of points {v0, . . . , vn} in a convex ball was
given in M . The sectional curvatures K of M were supposed to be bounded
that is |K| ≤ Λ. The points v0, . . . , vn we think of as vertices of the Riemannian
simplex. The point x is an arbitrary point in the convex ball that contains the
vertices. We choose a vertex vr from the vertex set. It is quality of the simplex
(σE(vr)) found by taking the convex hull of the image of v0, . . . , vn under the
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inverse exponential map exp−1
vr that (in the end) is used in the conditions for

non-degeneracy of the Riemannian simplex.
To provide the conditions in Section 3.6 we started with exp−1

vr (x), exp−1
vr (v0),

. . . , exp−1
vr (vn) and used the following steps:

1. Use the Toponogov comparison theorem to bound the difference between
the lengths of the geodesics connecting vertices vi and vj and the lengths
the geodesics connecting vertices x and vi on the one hand and the corres-
ponding (via the map expH(±Λ) ◦ exp−1

vr ) lengths of geodesics on spaces of
constant curvature H(±Λ) on the other.

2. Prove that the lengths of these geodesics are not far from what you would
expect in the Euclidean case (via the map exp−1

M ) if the vertices and x lie
close together relative to the bounds on the sectional curvature on M .

3. Given these approximate lengths of the geodesics we again use the To-
ponogov comparison theorem and explicit calculations on spaces of con-
stant curvature to give estimates on difference between the inner products
between tangents to the geodesics from x to the vertices and the expecta-
tion in the Euclidean case.

4. n × n of these inner products between the tangents of geodesics from x
to the vertices are put into a single Gram matrix. The determinant of this
matrix is non-zero if and only if the tangents to the geodesics emanating
from x are linearly independent. A result by Friedland describes the be-
haviour of the determinant under perturbations of the entries. This means
that the determinant of the Gram matrix is close to the determinant of the
Gram matrix one expects in the Euclidean case, to be precise the matrix
with entries (exp−1

vr (vi)−exp−1
vr (x)) ·(exp−1

vr (vl)−exp−1
vr (x)). This allows us

to give conditions that guarantee that there are n tangents to the geodesics
emanating from x that are linearly independent, based on the quality of
the simplex you would expect in the Euclidean case (σE(vr)).

5. If for every x in a sufficiently large convex neighbourhood some n tangents
to the geodesics emanating from x and going to the vertices are linearly
independent, the simplex is non-degenerate.

Overview of this section, that is Section 3.10

In this section we are interested in Riemannian simplices on manifolds whose
sectional curvatures are very close to constant, meaning that the sectional curvature
K satisfies Λ− ≤ K ≤ Λ+ with |Λ−−Λ+| small relative to |Λ−|. This means that
we always suppose that 0 < Λ− or Λ+ < 0. We have to distinguish between
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positive sectional curvature (elliptic) and negative sectional curvature (hyper-
bolic). Because the sectional curvatures are very close to constant, comparing
the manifold to Euclidean space is unnatural. Instead we compare to spaces of
constant curvature Λmid if the curvature is positive and ΛH

mid if the curvature is
negative, whose sectional curvature lies in the interval [Λ−,Λ+].

In the elliptic case we shall compare to the space with constant curvature

Λmid =
1

2
(Λ− + Λ+).

The hyperbolic case will be more involved. In particular the non-degeneracy
conditions will be in terms of the quality of the simplex σH(Λ

(H)

mid )
(vr) with vertices

expH(Λ
(H)

mid )
◦ exp−1

vr,M
(vi),

where expvr,M denotes the exponential function of M at vr. Here Λ
(H)
mid stands

for one of the alternatives, namely Λmid or ΛH
mid.Quality measures for constant

curvature spaces are not common and no such measure suited to our need exis-
ted previously. We introduce a quality measure in Section 3.10.3 that is suited.

Our steps to provide quality bounds that guarantee non-degeneracy of the
simplex shall be the following:

1. Use the Toponogov comparison theorem to bound the difference between
the lengths of the geodesics connecting vertices vi and vj and the lengths
the geodesics connecting vertices x and vi on the one hand and the cor-
responding (via the map expH(Λ+) ◦ exp−1

vr,M
and expH(Λ−) ◦ exp−1

vr,M
, re-

spectively) lengths of geodesics on spaces of constant curvature H(Λ−)
and H(Λ+).

This step is identical to first step above, except that we use the more refined
curvature bounds Λ− and Λ+ instead of ±Λ.

2. Prove that the lengths of these geodesics are not far from what you would
expect on the space H(Λ

(H)
mid) (via the map expH(Λ

(H)

mid )
◦ exp−1

vr,M
) if the ver-

tices and x lie close together relative to the bounds on the sectional curvature
on M . It is at this point where the analyses in the elliptic and hyperbolic
cases really start to differ.

Clearly this step differs from the corresponding step above because H(Λ
(H)
mid)

replaces Euclidean space.

3. Given these approximate lengths of the geodesics we can again use the To-
ponogov comparison theorem and explicit calculations on spaces of con-
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Figure 3.10: Pictorial overview (top view) of our approach in the case of positive
curvature, the negative curvature case is similar but difficult to depict:
Above we see from left to right a small sphere, an ellipsoid and a large sphere.
Below we see a sphere of mediocre size. The small sphere is the example of
H(Λ+), the large sphere of H(Λ−) and the sphere of mediocre size of H(Λmid).
The ellipsoid is the manifold M .
The vertices on M are depicted in black, as are the vertices on the spaces of
constant curvature left, right and below. The vertices on M are transplanted on
spaces of constant curvature by the maps expH(Λ+) ◦ exp−1

vr,M
, expH(Λ−) ◦ exp−1

vr,M

and expH(Λmid) ◦ exp−1
vr,M

, respectively. The same holds for the arbitrary point x
(red).
The angles between the tangents to the geodesics emanating from the red point
on M (the ellipsoid in the middle) are by the Topogonov comparison theorem
close to the corresponding angles in the spaces of constant curvature (left and
right). In turn these spaces of constant curvature are similar to the space with
curvature Λmid (middle bottom).
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Figure 3.11: Side view of Figure 3.10.

stant curvature to give estimates on difference between the following11

‘inner products’:

1

Λmid
sin
√

ΛmiddM (x, vi) sin
√

ΛmiddM (x, vj) cos θij,M (elliptic)

1

ΛH
mid

sinh
√

ΛH
middM (x, vi) sinh

√
ΛH

middM (x, vj) cos θij,M (hyperbolic),

with θij,M the angle between the geodesics from x to vi and vj , and the
expectation of these ‘inner products’ in H(Λ

(H)
mid). As before elliptic refers

to positive sectional curvature, here Λmid > 0, and hyperbolic refers to
negative sectional curvature, here ΛH

mid < 0.

This step differs from the one we used in the recapitulation of Section 3.6
because we no longer use the standard inner product.

11The inner products introduced here have a nice geometric interpretation, which is easiest to see
for the elliptic sphere: Suppose that the sphere (H(Λmid)) is embedded in Euclidean space in the
standard manner, that is as a round sphere of codimension one. In this setting these inner products
are the inner products between the vectors in TxH(Λmid) that go from x to the projection vertices
onto the tangent space TxH(Λmid), where the projection goes via the normal to TxH(Λmid). We shall
get back to this in more detail below.
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4. n×n of these ‘inner products’ are put into a pseudo Gram matrix. We shall
introduce this pseudo Gram matrix below. The determinant of this matrix
is non-zero if and only if the tangents to the geodesics emanating from x
are linearly independent. A result by Friedland describes the behaviour
of the determinant under perturbations of the entries. This means that the
determinant of the Gram matrix is close to the determinant of the Gram
matrix one expects for H(Λ

(H)
mid). This allows us to give conditions that

guarantee that there are n tangents to the geodesics emanating from x that
are linearly independent, based on the quality of the simplex you would
expect in the the constant curvature case.

This step only differs from the fourth step we mentioned in the recapitu-
lation of Section 3.6 in that ‘inner products’ are different.

5. If for every x in a sufficiently large convex neighbourhood some n tangents
to the geodesics emanating from x and going to the vertices are linearly
independent, the simplex is non-degenerate.

This step is identical to the fifth step in the overview of the approach of
Section 3.6.

The main building blocks for this approach where we model our intrinsic
simplices on simplices on spaces of constant curvature are the pseudo Gram
matrices to which we dedicate our first subsection. The calculations necessary to
compare different spaces of constant curvature are the topic of the second sub-
section. The comparison of spaces of different constant curvature will mainly
focus on the cosine rule in imitation of Lemmas 3.6.2 and 3.6.3. In the third
subsection we combine the results to Theorems 3.10.10 and 3.10.11.

3.10.3 Simplex quality on constant curvature spaces

In this subsection we shall introduce an alternative for the Gram matrix that is
specific to spaces of non-trivial constant curvature. In this section H(1/r2), the
n-sphere with radius r and therefore sectional curvature 1/r2, will be assumed
to be isometrically embedded in Euclidean space with co-dimension one. This
means that we view it as round sphere in the traditional sense. The hyperbolic
sphere H(−1/r2), the hyperbolic n-sphere with imaginary radius r and therefore
sectional curvature−1/r2, is often viewed as embedded using the Minkowski or
Hyperboloid model. This is an embedding as the ‘upper’ connected component
of a two sheeted hyperboloid, given by−x2

0 +x2
1 + · · ·+x2

n = −r2, in Minkowski
space with metric12 ds2 = −dx2

0 + dx2
1 + · · ·+ dx2

n.

12The other choice would yield a negatively definite metric.
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As in Section 3.6 we shall mostly denote distances as dM (x, y). In this section
M is often a space of constant curvature. The exception will be when we are in
Euclidean space and we want to emphasize that it is a vector space in the hope
to remind the reader of similar statements in Section 3.6. If so we shall write
|x− y|. So |x− y| is used interchangeably with dRn+1(x, y), but in the one case x
and y are thought of as vectors and the other as points in Euclidean space.

We discuss the elliptic case first, because the geometric interpretation is easier.
Our first lemma helps to establish that the alternative Gram matrices, which we
shall define below, for spaces of constant curvature are indeed a measure of
quality. By which we mean that the alternative Gram matrix is zero if and only
if a reasonable degeneracy occurs.

0

x vi

π(vi)

r

|x− vi|

dH(1/r2)(x, π(vi))

r sin(ψi)

ψi

Figure 3.12: Intersection of the sphere with x, vi and π(vi). Because of lack of
space we have introduced the notation ψi = dH(1/r2)(x, π(vi))/r.

Remark 3.10.1 We note that a space of constant sectional curvature 1/r2 is a
sphere that can be embedded as a round sphere of co-dimension one in Euc-
lidean space. The radius of this sphere is r.
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Lemma 3.10.2 Suppose that x, v0, . . . , vn−1 are the vertices of a simplex in L ⊂
Rn+1, where L is an n-dimensional linear subspace, such that dRn+1(x, vi) ≤
d. Furthermore let (H(1/r2))(y, r) be a sphere in Rn+1 with centre y, such that
x ∈ (H(1/r2))(y, r) and the tangent space Tx(H(1/r2))(y, r) coincides with L
and d < r. We emphasize that x ∈ L. Denote by π the projection from L onto
(H(1/r2))(y, r) via the normal of L. The domain of this map is BnL(x, r) the ball
in L centred at x with radius r. See Figure 3.12 for a sketch. Then

det
(
d(H(1/r2))(x, π(vi))d(H(1/r2))(x, π(vl)) cos θil

)
0≤i,l≤n−1

= 0,

where θij = ∠vixvj , if and only if

det(|x− vi||x− vl| cos θil)0≤i,l≤n−1 =

det

(
r2 sin

(
d(H(1/r2))(x, π(vi))

r

)
sin

(
d(H(1/r2))(x, π(vl))

r

)
cos θil

)
0≤i,l≤n−1

= 0.

Proof We can assume that x 6= vi for all i, because if x = vi for some i there is
nothing to prove. Due to linearity of the determinant we have

det(d(H(1/r2))(x, π(vi))dH(1/r2)(x, π(vl)) cos θil)

=

(∏
i

dH(1/r2)(x, π(vi))

)
det
(
dH(1/r2)(x, π(vl)) cos θil

)
=

(∏
i

dH(1/r2)(x, π(vi))

)(∏
l

dH(1/r2)(x, π(vl))

)
det (cos θil)

=

(∏
i

dH(1/r2)(x, π(vi))
2

)
det (cos θil)

and similarly

det(|x− vi||x− vl| cos θil)

= det

(
r sin

(
dH(1/r2)(x, π(vi))

r

)
r sin

(
dH(1/r2)(x, π(vl))

r

)
cos θil

)

=

(∏
i

r sin

(
dH(1/r2)(x, π(vi))

r

))2

det (cos θil) . (3.60)

Given that by assumption |x− vi| 6= 0 and

sin

(
d(H(1/r2))(x, π(vi))

r

)
6= 0,

for all i the claim follows. �
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We shall refer to a matrix of the form(
r2 sin

(
dH(1/r2)(x, vi)

r

)
sin

(
dH(1/r2)(x, vl)

r

)
cos θil

)
as a spherical pseudo Gram matrix.

We use the pseudo Gram matrix to introduce a quality measure QH(1/r2) for
simplices on the sphere with vertices v0, . . . , vn

QH(1/r2)(σ)

= min
x∈H(1/r2)

max
j

{
det

(
r2 sin

(
dH(1/r2)(x, vi)

r

)
sin

(
dH(1/r2)(x, vl)

r

)
cos θil

)
i,l 6=j

}
. (3.61)

By the notation i, l 6= j we mean to imply that i, j ∈ {0, . . . , j − 1, j + 1, . . . , n}.
If we view the sphere QH(1/r2) as being embedded in the Euclidean space Rn+1

this has the interpretation

QH(1/r2)(σ) = min
x∈H(1/r2)

max
j
{det (π̃xvi · π̃xvl)i,l 6=j}

= min
x∈H(1/r2)

max
j
{(det (π̃xvi)i 6=j)

2}, (3.62)

where π̃x is the projection onto the hyperplane characterized by the normal x,
that is tangent to H(1/r2). This interpretation follows from (3.60).

In our definition we have chosen specifically to let x run over the entire
sphere. In particular we include the case where all vertices are equally parsed
on the equator. In this case the quality is zero. This is in accordance with our in-
tuition because we would not know on which hemisphere to draw the simplex.

Now we shall give some lower bounds on the qualityQH(1/r2). These bounds
should strengthen our intuition. Let us consider the simplex {0, v0, . . . , vn} in
Rn+1. Suppose that B(y, ρ) is a ball that lies inside this simplex. Clearly the
choice of hyperplane onto which one projects this ball does not influence the
volume of the projected ball. Let us denote the volume of the projected ball is
vol(πx(B(y, ρ))). Equation (3.62) now implies that QH(1/r2) > vol(πx(B(y, ρ)))2.

This completes our discussion of quality in the elliptic setting and we con-
tinue to the hyperbolic case.

The direct analogue of Lemma 3.10.2 holds for the Minkowski or hyperbol-
oid model of hyperbolic spaces of constant curvature. For this setting we there-
fore we introduce the hyperbolic pseudo Gram matrix(

r2 sinh

(
dHn(−1/r2)(x, vi)

r

)
sinh

(
dHn(−1/r2)(x, vl)

r

)
cos θil

)
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as well as the quality measure for simplices on the hyperbolic sphere with ver-
tices v0, . . . , vn for some neighbourhood N

QH(−1/r2) = min
x∈N

max
j

{
det

(
r2 sinh

(
dHn(−1/r2)(x, vi)

r

)
sinh

(
dHn(−1/r2)(x, vl)

r

)
cos θil

)
i,l 6=j

}
. (3.63)

Remark 3.10.3 Unfortunately the geometric interpretation is more difficult in
this hyperbolic setting and we have not (yet) been able to provide a discussion
similar to the one for spaces of positive curvature above.

3.10.4 Approximating cosine rules

In this section we derive the analogues of Lemma 3.6.2, given in Lemmas 3.10.4
and 3.10.6, and Lemma 3.6.3, given in Lemmas 3.10.8 and 3.10.9.

In Lemmas 3.10.4 and 3.10.6 one assumes that a, b and c are the lengths of
the edges of a geodesic triangle in a space of constant curvature ±1/k2 and γ
the enclosed angle, see the sketch below. This means that a, b, c and γ satisfy
the cosine rule for a space of curvature ±1/k2, that is (3.13) or (3.14). If ±1/l2

is close to ±1/k2, then a, b, c and γ ‘nearly satisfy’ the cosine rule for a space of
curvature ±1/l2. We will quantify ‘nearly satisfy’ in Lemmas 3.10.4 and 3.10.6.
This result is essential to compare hinges.

A

C

B
c

b

a

α

β

γ

In Lemmas 3.10.8 and 3.10.9 we assume that a, b and c are given up to some
error. Once more a, b and c are the lengths of the edges of a geodesic triangle
in a space of constant curvature ±1/k2. In Lemmas 3.10.8 and 3.10.9 we derive
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some bounds on

sin
b

l
sin

c

l
cosα

and

sinh
b

l
sinh

c

l
cosα,

respectively.
We shall first discuss the elliptic and then the hyperbolic case.

Cosine rule for spaces of positive curvature

We want to compare the cosine rule in two spaces of positive curvature. To be
precise we will prove the following

Lemma 3.10.4 Let

0 < l ≤ k a, b, c ≤ 1

2
l a, b, c ≤ dmax.

If a, b, c and γ satisfy

k2 cos
c

k
− k2 cos

a

k
cos

b

k
= k2 sin

a

k
sin

b

k
cos γ (3.64)

a, b, c and γ also satisfy

l2 cos
c

l
− l2 cos

a

l
cos

b

l
= l2 sin

a

l
sin

b

l
cos γ +RT (a, b, c)

with

RT (a, b, c) ≤
∣∣∣∣ 1

l2
− 1

k2

∣∣∣∣ 11d4
max

4!
.

Here RT stands for the total remainder, because it is found by studying remain-
ders in the Taylor series of the constituents in (3.64).

The assumption k ≥ l is only used to streamline the calculations, in the sense
that it can be replaced by k > 0 and a, b, c ≤ 1

2k. We shall prove this statement
by examining the individual terms in (3.64). Our estimates are based on Taylor’s
theorem with remainder in one and multiple variables.
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We start with the first term on the left hand side of the cosine rule, we mul-
tiply by k and l respectively to ensure that the quadratic terms cancel

l2 cos
c

l
− k2 cos

c

k
= l2 − k2 −Rpc(c)

|Rpc(c)| ≤
c4

4!
sup

c∈[0,l/2]

∣∣∣l2∂4
c cos

c

l
− k2∂4

c cos
c

k

∣∣∣
=
c4

4!
sup

c∈[0,l/2]

∣∣∣∣ 1

l2
cos

c

l
− 1

k2
cos

c

k

∣∣∣∣
≤
∣∣∣∣ 1

l2
− 1

k2

∣∣∣∣ c44!
,

the notationRpc is used to remind us of the fact that it is a remainder, in the sense
of Taylor, and we consider perturbations of the cosine, hence pc. The supremum
is assumed in c = 0 because

1

ln
cos

c

l
− 1

kn
cos

c

k

is monotone in c, which can be seen by taking the derivative and noting that

kn+1

ln+1
> 1

sin c
k

sin c
l

< 1.

For the other terms we need the following estimates

Lemma 3.10.5 Provided k ≥ l > 0 and a/l, b/l < 1/2, we have that

1

l2
cos

a

l
cos

b

l
− 1

k2
cos

a

k
cos

b

k
≤ 1

l2
− 1

k2

and

1

l2
sin

a

l
sin

b

l
− 1

k2
sin

a

k
sin

b

k
≤ 1

l2
− 1

k2

Proof The first inequality is equivalent to

1

k2
− 1

k2
cos

a

k
cos

b

k
≤ 1

l2
− 1

l2
cos

a

l
cos

b

l

it therefore suffices to prove that

x2 − x2 cos ax cos bx
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is monotone increasing in x on the given domain, which can be seen by dif-
ferentiating and equating to zero and noting that there is no solution given the
conditions on a and b:

∂x(x2 − x2 cos ax cos bx)

= 2x− 2x cos ax cos bx+ x2a sin ax cos bx+ x2b cos ax sin bx = 0

2 + xa sin ax cos bx+ xb cos ax sin bx = 2 cos ax cos bx

and considering the Taylor series at x = 0. The last equality has no solutions
except x = 0 under the assumptions because 0 ≤ ax, bx ≤ 1/2 implies that

xa sin ax cos bx+ xb cos ax sin bx ≥ 0 cos ax cos bx ≤ 1

with the equality only achieved if x = 0 or trivial a, b. Similarly the second
inequality can be proven

1

l2
sin

a

l
sin

b

l
− 1

k2
sin

a

k
sin

b

k
≤ 1

l2
− 1

k2

is equivalent to

1

k2
− 1

k2
sin

a

k
sin

b

k
≤ 1

l2
− 1

l2
sin

a

l
sin

b

l

which follows from the monotonicity of x2(1− sin ax sin bx) in x, which is again
established by taking the derivative and equating to zero

∂x(x2(1− sin ax sin bx))

= 2x(1− sin ax sin bx)− x2(b sin ax cos bx+ a cos ax sin bx) = 0,

which has no solutions except x = 0 because in the given domain

2 sin ax sin bx+ bx sin ax cos bx+ ax cos ax sin bx ≤ 3

2

which completes the proof of the second inequality. Note that this is the only
place where we really use the assumption a, b, c ≤ 1

2 l. �

With this intermediate result we can return to the proof of Lemma 3.10.4,
where we apply the result of Lemma 3.10.5 almost immediately.

Using Taylor’s theorem for multiple variables we have

k2 cos
a

k
cos

b

k
− l2 cos

a

l
cos

b

l
= k2 − l2 +Rpcc(a, b)
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with

|Rpcc(a, b)| ≤
∣∣∣∣ 1

l2
− 1

k2

∣∣∣∣ 5d4
max

4!
.

This follows from the fact that

∂ia∂
j
b (k

2 cos
a

k
cos

b

k
− l2 cos

a

l
cos

b

l
− (k2 − l2)) = 0

for 0 ≤ i ≤ 3− j, 0 ≤ j ≤ 3 and

|∂ia∂
j
b (k

2 cos
a

k
cos

b

k
− l2 cos

a

l
cos

b

l
− (k2 − l2))|

=

{
| 1
k2 cos ak cos bk −

1
l2 cos al cos bl | if i+ j = 4 and i, j even,

| 1l2 sin x
l sin y

l −
1
k2 sin x

k sin y
k |, if i+ j = 4 and i, j odd,

≤
∣∣∣∣ 1

l2
− 1

k2

∣∣∣∣ ,
where in the last line we used the result of Lemma 3.10.5.

Likewise we have that

l2 sin
a

l
sin

b

l
− k2 sin

a

k
sin

b

k
= Rpss(x)

|Rpss(x)| ≤
∣∣∣∣ 1

l2
− 1

k2

∣∣∣∣ 5d4
max

4!

This follows from exactly the same reasoning

∂ia∂
j
b (l

2 sin
a

l
sin

b

l
− k2 sin

a

k
sin

b

k
) = 0

for 0 ≤ i ≤ 3− j, 0 ≤ j ≤ 3 and

|∂ia∂
j
b (l

2 sin
a

l
sin

b

l
− k2 sin

a

k
sin

b

k
)|

=

{
| 1l2 sin x

l sin y
l −

1
k2 sin x

k sin y
k | if i+ j = 4 and i, j even,

| 1
k2 cos ak cos bk −

1
l2 cos al cos bl |, if i+ j = 4 and i, j odd,

≤
∣∣∣∣ 1

l2
− 1

k2

∣∣∣∣ ,
where again in the last line we used the result of Lemma 3.10.5.
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We can now combine these estimates and apply them to the cosine rule,
which we multiply by k2 and write down in different order for convenience.
Assuming that k > l > 0, a/l, b/l, c/l ≤ 1

2 and a, b, c ≤ dmax, we see

k2 cos
c

k
− k2 cos

a

k
cos

b

k
= k2 sin

a

k
sin

b

k
cos γ

l2 cos
c

l
− l2 cos

a

l
cos

b

l
−Rpc(c) +Rpcc(a, b) = l2 sin

a

l
sin

b

l
cos γ

−Rpss(a, b) cos γ

l2 cos
c

l
− l2 cos

a

l
cos

b

l
= l2 sin

a

l
sin

b

l
cos γ

+RT (a, b, c)

with

RT (a, b, c) ≤
∣∣∣∣ 1

l2
− 1

k2

∣∣∣∣ 11d4
max

4!
.

This completes the proof of Lemma 3.10.4.

Cosine rule for spaces of negative curvature

We now want to compare the cosine rule in two spaces of negative curvature,
like we have done for spaces of positive curvature in Lemma 3.10.4. To be precise
we prove the following lemma

Lemma 3.10.6 Assuming that k ≥ l > 0, and a, b, c ≤ dmax, we have that if a, b, c
and γ satisfy

k2 cosh
c

k
− k2 cosh

a

k
cosh

b

k
= −k2 sinh

a

k
sinh

b

k
cos γ

they also satisfy

l2 cosh
c

l
− l2 cosh

a

l
cosh

b

l
= −l2 sinh

a

l
sinh

b

l
cos γ +RT (a, b, c)

with

RT (a, b, c) ≤
∣∣∣∣ 1

l2
cosh2 dmax

l
− 1

k2
cosh2 dmax

k

∣∣∣∣ 11d4
max

4!
.

Again the assumption k ≥ l is only used to streamline the calculations, in the
sense that it can be replaced by k > 0. We shall follow the same procedure as in
the elliptic case.
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By Taylor’s we see

l2 cosh
c

l
− k2 cosh

c

k
= l2 − k2 −Rpch(c),

with

|Rpch(c)| ≤ c4

4!
sup

c∈[0,dmax]

∣∣∣l2∂4
c cosh

c

l
− k2∂4

c cosh
c

k

∣∣∣
=
c4

4!
sup

c∈[0,dmax]

∣∣∣∣ 1

l2
cosh

c

l
− 1

k2
cosh

c

k

∣∣∣∣
≤
∣∣∣∣ 1

l2
cosh

dmax

l
− 1

k2
cosh

dmax

k

∣∣∣∣ c44!

The supremum is assumed in c = dmax because

1

l2
cosh

c

l
− 1

k2
cosh

c

k

is monotone in c, which can be seen by taking the derivative

1

l3
cosh

c

l
− 1

k3
cosh

c

k
.

and observing that 1
l ≥

1
k and cosh c

l ≥ cosh c
k , because the hyperbolic cosine

seen as a function from R+ to R+ is monotone.
For the remaining terms we again need a sub-lemma:

Lemma 3.10.7 Provided k ≥ l ≥ 0 and a, b, c ≤ dm, we have that

1

l2
cosh

a

l
cosh

b

l
− 1

k2
cosh

a

k
cosh

b

k
≤ 1

l2
cosh2 dmax

l
− 1

k2
cosh2 dmax

k

and

1

l2
sinh

a

l
sinh

b

l
− 1

k2
sinh

a

k
sinh

b

k
≤ 1

l2
sinh2 dmax

l
− 1

k2
sinh2 dmax

k

≤ 1

l2
cosh2 dmax

l
− 1

k2
cosh2 dmax

k

Proof The first two inequalities follow from the fact that both functions are
monotone if one leaves one of the variables fixed. Monotonicity is proven by
noting that the derivative is of the form

1

l3
cosh

y

l
sinh

z

l
− 1

k3
cosh

y

k
sinh

z

k
= 0
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which has no non-trivial solutions because cosh and sinh are monotone. The
final inequality follows from

1

k2
=

1

k2

(
cosh2 dmax

k
− sinh2 dmax

k

)
≤ 1

l2

(
cosh2 dmax

l
− sinh2 dmax

l

)
=

1

l2

�

Using Taylors theorem for multiple variables we have

k2 cosh
a

k
cosh

b

k
− l2 cosh

a

l
cosh

b

l
= k2 − l2 +Rpchch(a, b)

with

|Rpchch(a, b)| ≤
∣∣∣∣ 1

l2
cosh2 dmax

l
− 1

k2
cosh2 dmax

k

∣∣∣∣ 5d4
max

4!
.

This follows from the fact that

∂ia∂
j
b

(
k2 cosh

a

k
cosh

b

k
− l2 cosh

a

l
cosh

b

l
− (k2 − l2)

) ∣∣∣
a=b=0

= 0

for 0 ≤ i ≤ 3− j, 0 ≤ j ≤ 3 and

|∂ia∂
j
b (k

2 cosh
a

k
cosh

b

k
− l2 cosh

a

l
cosh

b

l
)|

=

{
| 1
k2 cosh a

k cosh b
k −

1
l2 cosh a

l cosh b
l | if i+ j = 4 and i, j even,

| 1l2 sinh x
l sinh y

l −
1
k2 sinh x

k sinh y
k |, if i+ j = 4 and i, j odd,

≤
∣∣∣∣ 1

l2
cosh2 dmax

l
− 1

k2
cosh2 dmax

k

∣∣∣∣ ,
where in the last line we used the result of Lemma 3.10.7.

Likewise we have that

l2 sinh
a

l
sinh

b

l
− k2 sinh

a

k
sinh

b

k
= Rpshsh(x)

|Rpshsh(x)| ≤
∣∣∣∣( 1

l2
cosh2 dmax

l
− 1

k2
cosh2 dmax

k

)
5d4

max

4!

∣∣∣∣
This follows from exactly the same reasoning

∂ia∂
j
b (l

2 sinh
a

l
sinh

b

l
− k2 sinh

a

k
sinh

b

k
) = 0
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for 0 ≤ i ≤ 3− j, 0 ≤ j ≤ 3 and

|∂ia∂
j
b (l

2 sinh
a

l
sinh

b

l
− k2 sinh

a

k
sinh

b

k
)|

=

{
| 1l2 sinh x

l sinh y
l −

1
k2 sinh x

k sinh y
k | if i+ j = 4 and i, j even,

| 1
k2 cosh a

k cosh b
k −

1
l2 cosh a

l cosh b
l |, if i+ j = 4 and i, j odd,

≤
∣∣∣∣ 1

l2
cosh2 dmax

l
− 1

k2
cosh2 dmax

k

∣∣∣∣ ,
where again in the last line we used the result of Lemma 3.10.7.

We can now combine these estimates and apply them to the hyperbolic co-
sine rule, which we multiply by k2 and write down in different order for con-
venience. Assuming that k > l > 0 and a, b, c ≤ dmax, we see

k2 cosh
c

k
− k2 cosh

a

k
cosh

b

k
=− k2 sinh

a

k
sinh

b

k
cos γ

l2 cosh
c

l
− l2 cosh

a

l
cosh

b

l
−Rpch(c) +Rpchch(a, b) =− l2 sinh

a

l
sinh

b

l
cos γ

+Rpshsh(a, b) cos γ

l2 cosh
c

l
− l2 cosh

a

l
cosh

b

l
=− l2 sin

a

l
sin

b

l
cos γ

+RTH(a, b, c)

with

RTH(a, b, c) ≤
∣∣∣∣ 1

l2
cosh2 dmax

l
− 1

k2
cosh2 dmax

k

∣∣∣∣ 11d4
max

4!

This completes the proof of Lemma 3.10.6 and therefore our discussion of the
cosine rule.

The cosine with ‘errors’ in lengths for spaces of positive constant curvature

We can now give the analogues for Lemma 3.6.3, in case we compare to spaces
of constant curvature instead of Euclidean space.

In the following lemma we start with a geodesic triangle on H(1/k2) of which
the lengths of the edges are approximately known. By approximately known we
mean that the lengths of the edges a, b and c are close to the lengths al, bl and cl,
the lengths of the edges of a geodesic triangle on H(1/l2). The edges with length
al, bl and cl will themselves be given as hinges, for example al satisfies

l2 cos
al
l

= l2 cos
a1

l
cos

a2

l
+ l2 sin

a1

l
sin

a2

l
cos γa.
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Figure 3.13: The role of Lemma 3.10.8 is the following:
Above we see from left to right a small sphere, an ellipsoid and a large sphere.
Below we see a sphere of mediocre size. The small sphere is the example of
H(Λ+), the large sphere of H(Λ−) and the sphere of mediocre size of H(Λmid).
The ellipsoid is the manifold M .
The vertices on M are depicted in black, as are the vertices on the spaces of
constant curvature left, right and below. The vertices on M are transplanted on
spaces of constant curvature by the maps expH(Λ+) ◦ exp−1

vr,M
, expH(Λ−) ◦ exp−1

vr,M

and expH(Λmid) ◦ exp−1
vr,M

, respectively. The same holds for the arbitrary point x
(red).
In vr is the point from which black geodesics emanate. Our criteria for non-
degeneracy will be in terms of the simplex with vertices expH(Λmid) ◦ exp−1

vr,M
(vi).

This means that we think of the black edges as ‘known’. The blue edges are
only ‘approximately known’. Lemma 3.10.8 gives us bounds on the ‘difference’
between the ‘inner products’ (of the form sin a

l sin b
l cos γ) of edges on H(Λ+) or

H(Λ−) and H(Λmid).
The worst case scenario are the ‘inner products’ for geodesic triangles of which
all edges are blue, that is all edge lengths are ‘approximately known’. Lemma
3.10.8 focusses on this.
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A

C

B

c

b

a

α

β

γ

Al

Cl

Bl

cl

bl

al

αl

βl

γl

Figure 3.14: Two geodesic triangles on spaces of different constant curvature
with the angles and edge lengths as used in Lemma 3.10.8 indicated.

The role of this lemma in Section 3.10.5 is to give us approximate values of
the ‘inner products’ (of the form sin a

l sin b
l cos γ), see Figure 3.13 for an overview.

These ‘inner products’ are the entries in the pseudo Gram matrix.

Lemma 3.10.8 Let H(+1/k2) and H(+1/l2) be spaces of positive constant sec-
tional curvature, where for convenience we assume that k > l > 0. Moreover let
the edge-lengths (a, b, c) of a geodesic triangle on H(+1/k2) satisfy

l2 cos
a

l
= l2 cos

al
l

+RTa ,

l2 cos
b

l
= l2 cos

bl
l

+RTb

l2 cos
c

l
= l2 cos

bl
l

+RTc

with

l2 cos
al
l

= l2 cos
a1

l
cos

a2

l
+ l2 sin

a1

l
sin

a2

l
cos γa

l2 cos
bl
l

= l2 cos
b1
l

cos
b2
l

+ l2 sin
b1
l

sin
b2
l

cos γb

l2 cos
cl
l

= l2 cos
c1
l

cos
c2
l

+ l2 sin
c1
l

sin
c2
l

cos γc

and

|RTa |, |RTb |, |RTc | ≤
∣∣∣∣ 1

l2
− 1

k2

∣∣∣∣ 11d4
max

4!
,
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and

a, a1, a2, b, b1, b2, c, c1, c2 ≤
1

2
l a, a1, a2, b, b1, b2, c, c1, c2 < dmax,

then

|l2 sin
b

l
sin

c

l
cosα− l2 sin

bl
l

sin
cl
l

cosαl| ≤ 2

∣∣∣∣ 1

l2
− 1

k2

∣∣∣∣ d4
max,

with

l2 sin
bl
l

sin
cl
l

cosαl = l2 cos
al
l
− l2 cos

bl
l

cos
cl
l
.

Here the notation for the lengths and angles of a geodesic triangle is as in Figure
3.14.

Clearly we can formulate Lemma 3.10.8 for each of the angles α, β and γ, as
in Figure 3.14. We have chosen α over γ and β. The reason for this is that
γ is used in Lemma 3.10.4 (elliptic) and Lemma 3.10.6 (hyperbolic) as a given
quantity, while in Lemma 3.10.8 the angle is (approximately) determined based
on (approximate) lengths of edges.

Proof Because a, b, c are the edge lengths of a geodesic triangle on H(+1/k2)
we have, by Lemma 3.10.4, that

l2 cos
a

l
− l2 cos

b

l
cos

c

l
= l2 sin

b

l
sin

c

l
cosα+RT (a, b, c)

with

RT (a, b, c) ≤
∣∣∣∣ 1

l2
− 1

k2

∣∣∣∣ 11d4
max

4!
.

Filling in our assumptions we see that

l2 cos
al
l

+RTa − (l2 cos
bl
l

+RTb)(cos
cl
l

+
RTc
l2

)−RT

= l2 sin
b

l
sin

c

l
cosα

l2 cos
al
l
− l2 cos

bl
l

cos
cl
l

+RTb cos
cl
l

+RTc cos
bl
l

+RTb
RTc
l2

+RTa −RT

= l2 sin
b

l
sin

c

l
cosα

l2 sin
bl
l

sin
cl
l

cosαl +RTb cos
cl
l

+RTc cos
bl
l

+RTb
RTc
l2

+RTa −RT

= l2 sin
b

l
sin

c

l
cosα.
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Because ∣∣∣∣RTcl2
∣∣∣∣ ≤ 11

4!

∣∣∣∣ 1

l4
− 1

k2l2

∣∣∣∣ d4
max

≤ 11

4!

∣∣∣∣ 1

l4
− 1

k2l2

∣∣∣∣ ( l2
)4

=
11

244!

we have that

|RTb cos
cl
l

+RTc cos
bl
l

+RTb
RTc
l2

+RTa −RT |

≤ |RTb |+ |RTc |+
11

244!
|RTb |+ |RTa |+ |RT |

≤ (4 +
11

244!
)
11

4!

∣∣∣∣ 1

l2
− 1

k2

∣∣∣∣ d4
max

≤ 2

∣∣∣∣ 1

l2
− 1

k2

∣∣∣∣ d4
max

�

The cosine with ‘errors’ in lengths for spaces of negative constant curvature

Similarly, for hyperbolic spaces we have

Lemma 3.10.9 Let H(−1/k2) and H(−1/l2) be spaces of negative constant sec-
tional curvature, where for convenience we assume that k > l > 0. Moreover let
the edge-lengths (a, b, c) of a geodesic triangle on H(−1/k2) satisfy

l2 cosh
a

l
= l2 cosh

al
l

+RTa ,

l2 cosh
b

l
= l2 cosh

bl
l

+RTb

l2 cosh
c

l
= l2 cosh

cl
l

+RTc

with

l2 cosh
al
l

= l2 cosh
a1

l
cosh

a2

l
− l2 sinh

a1

l
sinh

a2

l
cos γa

l2 cosh
bl
l

= l2 cosh
b1
l

cosh
b2
l
− l2 sinh

b1
l

sinh
b2
l

cos γb

l2 cosh
cl
l

= l2 cosh
c1
l

cosh
c2
l
− l2 sinh

c1
l

sinh
c2
l

cos γc
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and

|RTa |, |RTb |, |RTc | ≤
∣∣∣∣ 1

l2
cosh2 dmax

l
− 1

k2
cosh2 dmax

k

∣∣∣∣ 11d4
max

4!
,

and

a, a1, a2, b, b1, b2, c, c1, c2 < dmax,

then

|l2 sinh
b

l
sinh

c

l
cosα−l2 sinh

bl
l

sinh
cl
l

cosαl|

≤
(

2 + 2 cosh
dmax

l
+

1

l4
cosh2

(
dmax

l

)
11d4

max

4!

)
·
∣∣∣∣ 1

l2
cosh2 dmax

l
− 1

k2
cosh2 dmax

k

∣∣∣∣ 11d4
max

4!
,

with

l2 sinh
bl
l

sinh
cl
l

cosαl = l2 cosh
bl
l

cosh
cl
l
− l2 cosh

al
l

Note that we no longer impose bound on the lengths with respect to l or k as we
did in the elliptic case.

Proof Because a, b, c are the edge lengths of a geodesic triangle on H(−1/k2)
Lemma 3.10.6 yields

l2 cosh
c

l
− l2 cosh

a

l
cosh

b

l
= −l2 sinh

a

l
sinh

b

l
cos γ +RT (a, b, c)

with

RT (a, b, c) ≤
∣∣∣∣ 1

l2
cosh2 dmax

l
− 1

k2
cosh2 dmax

k

∣∣∣∣ 11d4
max

4!
.

Filling in our assumptions we see that

l2 cosh
al
l

+RTa − (l2 cosh
bl
l

+RTb)(cosh
cl
l

+
RTc
l2

)−RT

= −l2 sinh
b

l
sinh

c

l
cosα

l2 cosh
al
l
− l2 cosh

bl
l

cosh
cl
l

+RTb cosh
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l

+RTc cosh
bl
l

+RTb
RTc
l2

+RTa −RT

= −l2 sinh
b

l
sinh

c

l
cosα

l2 sinh
bl
l

sinh
cl
l

cosαl −RTb cosh
cl
l
−RTc cosh

bl
l
−RTb

RTc
l2
−RTa +RT

= l2 sinh
b

l
sinh

c

l
cosα.
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We now have that

| −RTb cosh
cl
l
−RTc cosh

bl
l
−RTb

RTc
l2
−RTa +RT |

≤|RTb | cosh
dmax

l
+ |RTc | cosh

dmax

l
+ |RTb |

∣∣∣∣RTcl2
∣∣∣∣+ |RTa |+ |RT |

≤
(

2 + 2 cosh
dmax

l
+

1

l4
cosh2

(
dmax

l

)
11d4

max

4!

)
·
∣∣∣∣ 1

l2
cosh2 dmax

l
− 1

k2
cosh2 dmax

k

∣∣∣∣ 11d4
max

4!
.

�

3.10.5 Determining non-degeneracy

In this section we combine the results of Sections 3.10.3 and 3.10.4 with bounds
on determinants from Section 3.6.1 to give criteria that guarantee non-degeneracy,
much in the same way as we did in Subsection 3.6.3. As before we shall first treat
the elliptic and then the hyperbolic case.

Recapitulation of the overview of the Section 3.10

In this section, that is Section 3.10, we compare to general spaces of constant
curvature instead of to Euclidean spaces. This means that our geometrical pic-
ture is slightly different from the one sketched in figure 3.6, a pictorial overview
of this section is given in Figure 3.10 and Figure 3.11, see also Figure 3.13.

We start in the same manner as we did in the Euclidean case:
We are given a manifold M whose sectional curvatures K are bounded by 0 <
Λ− ≤ K ≤ Λ+ or Λ− ≤ K ≤ Λ+ < 0, and a set of vertices v0, . . . , vn on the
manifold. We know that if σM is an intrinsic simplex with these vertices, then
σM is non-degenerate if for all x ∈ σM we can find an independent set of n
tangent vectors to geodesics to the vertices v0, . . . , vn emanating from x.

In Section 3.6 we used the Toponogov comparison theorem twice, first to
estimate all the edge lengths of geodesic triangles whose vertices are elements
of the set {x, v0, . . . , vn} in terms of the lengths of the corresponding (Rauch13)
edges in spaces of constant curvature. If the simplex on the space of constant
curvature was sufficiently small, the lengths of these edges would be close to
those in Euclidean space. To be precise we compared with the simplex lifted
to the tangent space TvrM with the inverse of the exponential map. We could
then repeat the trick to prove that for sufficiently small simplices the same holds

13See definition 3.3.1.
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for the angles between tangents from geodesics emanating from x. The angle
estimates were used to prove that: If the lifted simplex was of sufficient quality
we are able to find for each x a set of n independent tangent vectors, establishing
non-degeneracy.

In this section, that is Section 3.10, we no longer go from the spaces of con-
stant curvature, that give lower and upper bounds on the edge lengths and
angles with the Toponogov comparison theorem, to Euclidean space, but com-
pare to a space of constant curvature. Here we compare to the simplex σH(Λmid)(vr)
on a space with constant curvature Λmid such that the length of the edges eman-
ating from vr and the angles between the tangents of geodesics at vr are the same
as on M is the model we use. To put it in other words the vertices of σH(Λmid)(vr)

are expΛmid
◦ exp−1

vr,M
(vi).

Degeneracy criteria for simplices on spaces of constant positive curvature

Let us now make these statements more precise. We define

Λmid =
1

2
(Λ− + Λ+).

Note that this is the arithmetic mean of the upper and lower bounds on the sec-
tional curvature and has nothing to do with the mean curvature. Let us further
assume that all distances involved are bounded from above by 1/(2

√
Λ−) and

some maximum distance D̃. By the Toponogov comparison theorem we have
that dM (y, z) the distances between y, z ∈ {x, v0, . . . vn} in M are bounded by
those in H(Λ−) and H(Λ+). Or in other words we have that

dH(Λ+)(yΛ+
, zΛ+

) ≤ dM (y, z) ≤ dH(Λ−)(yΛ− , zΛ−)

where yK = expH(K) ◦ expvr,M (y). Because we use the exponential map at vr
regard vr as a fixed point and we shall not use the notation (vr)K , but write vr
regardless. The distances dH(Λ−)(yΛ− , zΛ−) and dH(Λ+)(yΛ+

, zΛ+
) satisfy

1

Λ−
cos
(√

Λ−dH(Λ−)(y, z)
)

=
1

Λ−
cos
(√

Λ−dM (y, vr)
)

cos
(√

Λ−dM (z, vr)
)

+
1

Λ−
sin
(√

Λ−dM (y, vr)
)

sin
(√

Λ−dM (z, vr)
)

cos θ∠Myvrz
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and

1

Λ+
cos
(√

Λ+dH(Λ+)(y, z)
)

=
1

Λ+
cos
(√

Λ+dM (y, vr)
)

cos
(√

Λ+dM (z, vr)
)

+
1

Λ+
sin
(√

Λ+dM (y, vr)
)

sin
(√

Λ+dM (z, vr)
)

cos θ∠Myvrz,

where θ∠Myvrz denotes the angle between the tangents to the geodesics on M
from vr to y and vr to z. Using Lemma 3.10.4 we see that

1

Λmid
cos
(√

ΛmiddH(Λ−)(y, z)]
)

=
1

Λmid
cos
(√

ΛmiddM (y, vr)
)

cos
(√

ΛmiddM (z, vr)
)

+
1

Λmid
sin
(√

ΛmiddM (y, vr)
)

sin
(√

ΛmiddM (z, vr)
)

cos θ∠Myvrz +RT1

and

1

Λmid
cos
(√

ΛmiddH(Λ+)(y, z)
)

=
1

Λmid
cos
(√

ΛmiddM (y, vr)
)

cos
(√

ΛmiddM (z, vr)
)

+
1

Λmid
sin
(√

ΛmiddM (y, vr)
)

sin
(√

ΛmiddM (z, vr)
)

cos θ∠Myvrz +RT2 ,

with

|RT1
|, |RT2

| ≤ 1

2
|Λ− − Λ+|

11D̃4

4!
,

so that

1

Λmid
cos
(√

ΛmiddM (y, z)
)

=
1

Λmid
cos
(√

ΛmiddM (y, vr)
)

cos
(√

ΛmiddM (z, vr)
)

+
1

Λmid
sin
(√

ΛmiddM (y, vr)
)

sin
(√

ΛmiddM (z, vr)
)

cos θ∠Myvrz +RT ,

(3.65)

with the same bound on |RT |.
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We are now going to study the sin a sin b cos γ terms we discussed in Section
3.10.3. These generalize the ab cos γ terms we use in the Gram-matrix in the
Eulcidean case, see Section 3.6.3. The point we focus on is x.

Thanks to (3.65) we have the (approximate) lengths of all geodesics. So we
can now apply the Toponogov comparison theorem for a second time. The To-
ponogov comparison theorem gives us that

dHn(Λ−)(xΛ− , yΛ−) ≥ dM (x, y) ≥ dHn(Λ+)(xΛ+
, yΛ+

)

cos θHn(Λ−) ≥ cos θM ≥ cos θHn(Λ+),

where we identify angles in the obvious manner using expH(Λ±) ◦ exp−1
M , in the

same way as we do the points. From these inequalities we infer that

1
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(√

ΛmiddHn(Λ−)(xΛ− , yΛ−)
)

sin
(√

ΛmiddHn(Λ−)(xΛ− , zΛ−)
)
·

cos θ∠Λx−
yxz

≥ 1

Λmid
sin
(√

ΛmiddM (x, y)
)

sin
(√

ΛmiddM (x, z)
)

cos θ∠Myxz

≥ 1

Λmid
sin
(√

ΛmiddHn(Λ+)(xΛ+ , yΛ+)
)

sin
(√

ΛmiddHn(Λ+)(xΛ+ , zΛ+)
)
·

cos θ∠Λx
+
yxz,

where ∠Λx±
yxz denotes the angle between the tangents of the geodesics from x

to expH(Λ±) ◦ exp−1
x,M (y) and from x to expH(Λ±) ◦ exp−1

x,M (z). We can now use the
result of Lemma 3.10.8 to see that∣∣∣∣ 1

Λmid
sin
(√

ΛmiddHn(Λ±)(xΛ± , yΛ±)
)

sin
(√

ΛmiddHn(Λ±)(xΛ± , zΛ±)
)
·

cos θ∠Λx±
yxz

− 1

Λmid
sin
(√

ΛmiddHn(Λmid)(xΛmid , yΛmid)
)

sin
(√

ΛmiddHn(Λmid)(xΛmid , zΛmid)
)
·

cos θ∠Λmidyxz

∣∣∣∣
≤ |Λ− − Λ+| D̃4,

where Λ± should be interpreted either Λ− or Λ+ and

∠Λmidyxz

is the angle between the tangents to the geodesics from expH(Λmid) ◦ exp−1
vr,M

(x) to
expH(Λmid) ◦ exp−1

vr,M
(y) and from expH(Λmid) ◦ exp−1

vr,M
(x) to expH(Λmid) ◦ exp−1

vr,M
(z).
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Here we went from angles determined by the exponential map at x to those de-
termined by the exponential map at vr, this is possible because Lemma 3.10.8
only takes lengths of geodesics as input.

This means∣∣∣∣ 1

Λmid
sin
(√

ΛmiddM (x, y)
)

sin
(√

ΛmiddM (x, z)
)

cos θ∠Myxz

− 1

Λmid
sin
(√

ΛmiddHn(Λmid)(xΛmid , yΛmid)
)

sin
(√

ΛmiddHn(Λmid)(xΛmid , zΛmid)
)
·

cos θ∠Λmidyxz

∣∣∣∣
≤ |Λ− − Λ+| D̃4. (3.66)

We can now exploit (3.66) to prove that the (rescaled) pseudo Gram matrix(
sin
(√

ΛmiddM (x, vi)
)

sin
(√

ΛmiddM (x, vl)
)

cos θil

(2D̃)2Λmid

)
i,l 6=j

, (3.67)

with θ∠Mvixvl = θil is non-degenerate. Here we use Lemma 3.10.2 which says
that the determinant of (3.67) is zero if and only if the vectors exp−1

x,M (vi) with
i 6= j are linearly independent. We use the result by Friedland, see Section
3.6.1, to give condition that guarantee that the determinant of (3.67) is non-zero.
Because of the role of max{‖A‖∞, ‖A+E‖∞}, where in this case A is (3.67) and
A+ E is the approximate Gram matrix, it is important to note that∣∣∣∣∣ sin

(√
ΛmiddM (x, vi)

)
sin
(√

ΛmiddM (x, vl)
)

cos θil

(2D̃)2Λmid

∣∣∣∣∣ ≤ 1. (3.68)

This follows from the observation that if ymax < π/2 then

sup
y∈[0,ymax]

sin(y)

ymax
≤ 1.

We are now able to conclude that∣∣∣∣∣∣det

(
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)
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·
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)

cos θ∠Λmidvixvl
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)
i,l 6=j
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− n |Λ− − Λ+| D̃2 (3.69)
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Combining Lemma 3.10.2 and Lemma 3.6.4 and using that if for all x there is a j
such that the pseudo Gram matrix above is non-degenerate then the simplex is
non-degenerate we have

Theorem 3.10.10 LetM be a manifold with bounded positive sectional curvatures
K, that is 0 < Λ− ≤ K ≤ Λ+. Suppose that v0, . . . , vn are vertices on M . Let us
assume14 that all vertices lie within a geodesic ball of radius 1

2D̃ with centre vr,
where D̃ ≤ 1/(2

√
Λ+). Under these assumptions the Riemannian simplex with

vertices v0, . . . , vn on M is non-degenerate if

QH(Λmid)(σH(Λmid)(vr))

(2D̃)2n
≥ n |Λ− − Λ+| D̃2

with QH(Λmid) the simplex quality

QH(Λmid)(σH(Λmid)(vr))

= min
y∈H(Λmid)

max
j

{
det

(
1

Λmid
sin
(√

Λmid dH(Λmid)(y, vi(vr))
)
·

sin
(√

ΛmiddH(Λmid)(y, vl(vr))
)

cos θil

)
i,l 6=j

}
,

σH(Λmid)(vr) the simplex on H(Λmid) with vertices vi(vr) defined by vi(vr) =

expH(Λmid) ◦ exp−1
vr,M

(vi) and

Λmid =
1

2
(Λ− + Λ+).

Degeneracy criteria for simplices on spaces of constant negative curvature

We can perform similar calculations for the hyperbolic case but the result is
significantly more complicated due to the fact that the hyperbolic cosine is not
bounded by one. Moreover we will not impose a bound on D̃ in the negative
curvature setting.

Let us start by defining ΛH
mid as the negative solution to the following equa-

14This bound is stronger than necessary. In fact it suffices for the lengths of geodesics in the proof
below to be bounded by D̃.
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tion: ∣∣∣∣|ΛH
mid| cosh2
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midD̃

)
− |Λ−| cosh2

(√
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We shall once more employ the bounds Friedland, see Section 3.6.1. In order to
be able to do so we need, similarly to (3.68), that
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|ΛH

mid|a
)
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(√
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)
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)
.

So that, using Lemma 3.10.9 and similarly to (3.69), we have
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11D̃4

2 · 4!
.

From which we infer that

Theorem 3.10.11 LetM be a manifold with bounded negative sectional curvatures
K, that is Λ− ≤ K ≤ Λ+ < 0. Suppose that v0, . . . , vn are vertices on M . Let us
assume that all vertices lie within a geodesic ball of radius 1

2D̃ with centre vr.
Under these assumptions the Riemannian simplex with vertices v0, . . . , vn on M
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is non-degenerate if

|ΛH
mid|nQH(ΛH

mid)(σH(ΛH
mid)(vr)) > n(sinh
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|Λ−|D̃)2(n−1)

·
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with σH(ΛH
mid)(vr) the simplex on H(ΛH

mid) with vertices vi(vr) = expH(ΛH
mid) ◦ exp−1

vr,M
(vi),

QH(ΛH
mid)(σH(ΛH

mid)(vr)) the simplex quality

QH(ΛH
mid) = min

x∈N
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j
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,

whereN equals to any geodesic ball with radius 2D̃ centred at any of the vertices
and ΛH

mid satisfies ∣∣∣∣|ΛH
mid| cosh2
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The bounds are far more complicated than the elliptic case and thus more

difficult to interpret, however if |Λ− − Λ+| tends to zero so does∣∣∣|Λ−| cosh2
(√
|Λ−|D̃

)
− |Λ+| cosh2

(√
|Λ+|D̃

)∣∣∣ .
This can be made more precise using the mean value theorem which states that
for a function f there exists a c ∈ [a, b] such that

f ′(c) =
f(b)− f(a)

b− a
.
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Applying this to x cosh2√xD̃ we see that∣∣∣|Λ−| cosh2
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with Λ̃ ∈ [Λ−,Λ+], where we used that
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+ D̃
√
x sinh
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)

cosh
(√
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)

is monotone increasing for x ≥ 0.
This implies that if one has a set of points on a manifold which is close to a

space of constant curvature, in the sense of the sectional curvature, then very
small quality is required to guarantee non-degeneracy, where we regard the
lower bound on the sectional curvature and the distance between the vertices
as fixed.
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Part II

Topological methods for the
analysis of the cosmic web
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Chapter 4

Introduction

The second part of this thesis is dedicated to questions that arose from cosmo-
logy. Section 4.1 gives a very brief introduction of cosmology. Section 4.2 defines
Gaussian random fields. Section 4.3 gives an introduction to some aspects of
topology, especially homology theory, intended for readers from outside math-
ematics. Finally Section 4.4 gives an overview of the second part of this thesis.

4.1 Cosmology

In Section 4.1.1 we discuss the evolution of the universe at large scales. Accord-
ing to the Cosmological principle the universe is approximately uniform at these
scales. By uniform we mean that it is homogeneous and isotropic. While mod-
els of a uniform universe provide a good description of the global universe. In
addition, they also provide a context for the generation of small inhomogeneit-
ies in the early universe, the seeds of all structure and objects in the universe.
These small inhomogeneities are (almost) Gaussian. By Gaussian we mean that
they are described by a Gaussian random field. The geometry and topology of
Gaussian random fields will be the main topic of this part of the thesis.

In Section 4.1.2 we discuss how the inhomogeneities evolve into the intricate
structure of the present day universe at a smaller scale.

For further reading on general relativity and cosmology we refer to Mis-
ner, Thorne and Wheeler [MTW73], Wald [Wal84], Carroll [Car03] and Weinberg
[Wei08]. For further reading on the origins and evolution of structure we refer
to Weinberg [Wei08], Peebles [Pee80], lectures by Van de Weijgaert [vdW], Van
de Weijgaert and Bond[WB08] and Brandenberger [Bra04].
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4.1.1 A history of uniform spacetime

General Relativity

In special relativity space and time are combined into a single entity, called
spacetime. Special relativity does not describe gravity.

The key idea of Einstein for the combination of special relativity and gravita-
tion was the Einstein equivalence principle. The Einstein equivalence principle
can be explained by the Einstein lift experiment. This is a thought experiment
which says that if a physicist is contained in a sufficiently small box (the lift)
he cannot distinguish the consequences of the acceleration of the box from the
consequences of the box being in a gravitational field.

The Einstein equivalence principle implies that a theory of gravity should
locally reduce to special relativity. This gave Einstein the idea that in ‘general’
spacetime should be a four dimensional pseudo-Riemannian manifold with sig-
nature1 − + ++. Locally a pseudo-Riemannian manifold is well approximated
by its tangent space, on which we can impose the rules of special relativity.
The difference in acceleration due to gravity from one point to another can be
encoded by the curvature (tensor) of the manifold. The fact that spacetime is
curved is an effect of the presence of matter.

In special relativity mass and energy are equivalent (E = mc2) and energy
and momentum are combined (into a four-vector). This means that the ‘source’
of gravity should no longer be mass as in classical mechanics, but some com-
bination of energy and momentum. This ‘source’ is the so-called energy mo-
mentum tensor Tµν . The theory of curved spacetime is called general relativity.
The physics of general relativity reduces to Newtonian gravitation in the weak
field small velocity limit.

The Einstein equations

The consideration above led to the Einstein field equations [Ein15]. The Einstein
field equations determine the geometry of spacetime. If we include the cosmo-

1The signature + − −− is also possible. We follow Misner, Thorne and Wheeler [MTW73] and
Wald [Wal84] in our choice.
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logical constant Λ, these read2

Rµν −
1

2
gµνR+ gµνΛ =

8πG

c4
Tµν , (4.1)

where Rµν denotes the Ricci curvature tensor, R the scalar curvature, gµν the
metric, G Newton’s gravitational constant, c the speed of light and Tµν the en-
ergy momentum tensor. We shall normalize the speed of light by taking c = 1.
The cosmological constant was originally introduced by Einstein to accommod-
ate a static universe. Our universe is not static, as was established in the 1920s.
This led to a temporary decrease in interest in the cosmological constant. More
recently (the 1990s) the effects of a cosmological constant have been observed.
Before we can discuss this in more detail we first need to introduce the models
for uniform space.

Friedmann and Lemaı̂tre

In 1922 Friedmann published a model [Fri22, Fri99a] of a positively curved uni-
form universe that was dynamic, that is it expanded (and in some cases col-
lapsed), followed in 1924 by a model [Fri24, Fri99b] for negatively curved space.
Lemaı̂tre [Lem27, Lem13] independently described the same model as Fried-
mann for positively curved space.

What we mean by positively and negatively curved universes is best ex-
plained by giving the Robertson-Walker metric3:

ds2 = gµνdxµdxν = −dt2 + a(t)2

(
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

)
, (4.2)

where we used the Einstein summation convention. The names of Robertson
[Rob35, Rob36a, Rob36b] and Walker [Wal37] are attached to this metric because
they were the first to prove that (4.2) is the most general expression for a met-
ric for homogeneous and isotropic (uniform) universe (in concurrence with the
cosmological principle). The coordinates we denote by xµ with µ = 0, . . . , 3 in

2We have chosen to write the Λ term on the left hand side of equation (4.1). The left hand side of
the Einstein equation is traditionally reserved for geometric terms, while the right hand side contains
the terms having a matter origin. Writing the gµνΛ term on the right hand side therefore has huge
physical and philosophical implications. If it is written on this side of the Einstein equation it is
called Dark Energy. Various models for Dark Energy having more or less the same effect as the gµνΛ
have been proposed, often under the name Quintessence, no empirical evidence for a deviation from
gµνΛ has been found to date. For those familiar with Dark energy models, Planck (together with
some earlier observations) [PAA+14b] found weff = −1.04+0.72

−0.69, while weff = −1 corresponds to a
cosmological constant.

3Also known as the Friedmann-Robertson-Walker, Friedmann-Lemaı̂tre-Robertson-Walker and
Friedmann-Lemaı̂tre metric.
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general and by t, r, θ, φ in this particular case. The function a(t) is called the scale
factor and reflects the expansion of the universe. The curvature factor is denoted
by k. The universe is called positively curved if k > 0, flat if k = 0 and negat-
ively curved if k < 0. Because the ‘space’ is a space of constant curvature this is
also called uniform spacetime. The ‘space’ part of (4.2) has sectional curvature
k. Observations indicate that k = 0. We shall discuss this in more detail below.

Evolution of the universe

The assumption that the metric is of the form (4.2) greatly simplifies the Einstein
equations. In this setting the evolution of a(t) is relatively easily determined
for various models of the energy content.4 The growth (shrinking) of the scale
factor a is referred to as expansion (collapse) of the universe. For the energy
content as determined by observations the universe has a beginning, that is a t
such that a(t) = 0. The distances on the space of constant curvature shrink to
zero as a tends to zero from above. The beginning of the universe is known as
the Big Bang.

The observation of the expansion

In the 1920s the expansion of the universe was observationally established by
Lemaı̂tre [Lem27, Lem13] and Hubble [Hub29]. The observations indicated a
roughly linear relation5 between the distance from earth to galaxies and their
‘apparent’ velocity. The ‘apparent’ velocity was measured by a redshift. Red-
shift is a shift in frequency of the light, in this case due to expansion of the
universe. The distance was derived from the observed brightness of so called
standard candles (stars of which the absolute or intrinsic brightness is precisely
known). The fact that the linear relation between the ‘apparent’ velocity is rough
is due to the so-called peculiar velocity. To be precise the ‘apparent’ velocity
is the combines the contributions of the recessional velocity and the (relatively
small) peculiar velocity. The recessional velocity is due to the expansion of the
universe. The peculiar velocity is a consequence of local mass concentrations
and deficits.

The observation of the cosmological constant and flatness of the universe

The appearance of the cosmological constant was rejected by Einstein after the
expansion of the universe had been observed. The cosmological constant how-

4The energy in the universe is determined by the dark energy (or cosmological constant), dark
matter, radiation and baryonic matter.

5In a sufficiently small galactic neighbourhood. For galaxies that are very far away one needs to
take (the details of) the evolution of the universe into account.
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ever has in the meantime been observed by studying distant supernovae [RFC+98,
PAG+99]. This has been confirmed by other observations. See [FTH08] for an
overview. Among these observations we should mention the WMAP [BHH+03]
and Planck [PAA+14a] satellites, that observed the cosmic microwave back-
ground radiation. The cosmic microwave background will play an important
role also in the rest of this story and we shall come back to it below. The obser-
vations also indicate that k in equation (4.2) is zero. We also say that the universe
is flat.

Decoupling and recombination

The ongoing expansion of the universe implies that the universe was denser
and hotter in the past. This means that there was a time when the universe was
so dense that photons (light) could not propagate freely in the hot substance
known as plasma. Because the universe was expanding it also cooled down.
Some 380,000 years6 after Big Bang the matter cooled down to some 3000 degrees
Kelvin7 and went through a phase transition so that the electrons and protons
together formed hydrogen. This is known as recombination. This meant that
photons were no longer scattered by the electrons and thus the universe became
transparent. This is known as decoupling. Decoupling means that there was
virtually no interaction between the photons and other matter from that point
onward.8 The name last scattering is also attached to the same phenomenon.

The Cosmic Microwave Background

As mentioned above the photons present in the universe effectively stopped in-
teracting with matter. This means that from decoupling onward these photons
propagate freely through the universe in every direction. These freely propagat-
ing photons are called the Cosmic Microwave Background.

The Cosmic Microwave Background has first been observed by Arno Pen-
zias and Robert Wilson [PW65] in the 1960s. Because of the expansion of the
universe these photons have redshifted and the currently observed temperature
of the Cosmic Microwave Background is 2.7255 ± 0.0006K, see [Fix09]. Later
observations by the COBE [SBK+92], WMAP [BHH+03] and Planck [PAA+14a]
satellites have shown Cosmic Microwave Background to be very isotropic and
the tiny deviations from the mean to be nearly Gaussian in nature, see Figure
4.1. By Gaussian in nature we mean that they are well described by a Gaussian
random field, which we shall introduce in Section 4.2.

6Here of course we extrapolate.
7This is not an instantaneous process. The ionization percentage drops from over 97% for T =

4200K to less than 0.5% for T = 3000K, see Section 2.3 of [Wei08].
8There is one exception called the Sunyaev-Zel’dovich effect.
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Figure 4.1: The Cosmic Microwave Background, as measured by Planck
[PAA+14a], after the removal of the foreground and artefacts. The deviations
from the average lie between −500µK (dark blue) and 500µK (dark red).

The horizon problem

The isotropic nature of the Cosmic Microwave Background poses a problem. In
general relativity information cannot be exchanged at speeds greater than the
speed of light. For a given observer the boundary of the set of all past events of
which the information may have reached the observer is called the particle ho-
rizon for that observer. The size of the horizon limits the scale at which isotropy
can exist. Precisely because when no information can be exchanged between
two regions of space you would expect their properties to be independent.

The Friedman-Lemaı̂tre-Robertson-Walker model based on the observed en-
ergy content of the universe is also called the cosmological standard model. For
the cosmological standard model the horizon for any point before or at the time
that the universe became transparent encloses a region in space that corresponds
to small parts of the observed Cosmic Microwave Background. For the cosmolo-
gical standard model the angular diameter (on the sky) for which causal contact
existed is of order 1◦, see Section 4.1 of [Wei08].9 The fact that causal contact
should be of order 1◦ while the Cosmic Microwave Background has a temperat-
ure of 2.7255± 0.0006K in every direction is known as the horizon problem.

9This corresponds to a larger volume in space than one might expect because the visible universe
is about three times as large as one would naively expect because of the expansion of the universe.
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Inflation

One solution to the horizon problem is the incorporation [Gut81, Lin82] into the
model of a period of very rapid expansion in the very early universe, called In-
flation, so that regions that could exchange information in the very early stages
of the universe are blown up to scales far beyond those that correspond to the
observed Cosmic Microwave Background. Inflation also explains why the uni-
verse is almost flat and we do not observe exotic particles, in particular magnetic
monopoles, that would be created at the very high temperatures that existed just
after the Big Bang. To be precise we do not observe these exotic particles because
after inflation there are only a few exotic particles left in a large volume.

Inflation implies that not only exotic particles, but all particles present before
or at the beginning of inflation are diluted. In quantum field theoretical terms
this can be reformulated as the fields that existed at the beginning of inflation
being greatly redshifted.

The generation of fluctuations

While explaining these global fine-tuning problems of the standard Friedmann-
Lemaı̂tre-Robertson-Walker Universe models, inflation also suggests the nature
of the origin of fluctuations in the early Universe, the seeds for the formation of
all structure in the Universe.

The generation of fluctuations in the early universe is a form of particle
creation in curved spacetime. We may understand particle creation in curved
spacetime starting with a quantum mechanical system in the ground state. To
the ground state one associates a particular wave function. Now suppose that
space expands and the wave function gets stretched, then the system is no longer
in the ground state but is the superposition of the ground state and some excited
states (as in Fourier decompositions). In quantum field theory this is interpreted
as particle creation,10 or in this case more specifically as the creation of cosmolo-
gical perturbations.

We refer to Brandenberger [Bra04] for a pedagogical introduction and [MFB92]
for an extensive overview of the quantum mechanical origins of the (tiny) fluc-
tuations in the Cosmic Microwave Background. In Section 4.2 we will see two
arguments that imply that the fluctuations are (nearly) Gaussian.

10This is because of wave-particle duality. The notion of a particle in a quantum field theory on
curved spacetime is a very subtle one. For a full discussion of quantum field theory on curved
spacetime we refer to [Wal94].
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4.1.2 The Cosmic Web

Over the past decades, ever more ambitious galaxy redshift surveys have un-
veiled the existence of an intriguing spatial organization of matter on scales
of a few up to hundreds of Megaparsecs.11 At these scales the Universe still
resides in a state of moderate dynamical evolution. From the first hints of super-
clustering in the seventies to the progressively larger and more detailed three-
dimensional maps of interconnected large scale structure that emerged in the
eighties, nineties and especially post-2000, we now have a clear paradigm. Galax-
ies, intergalactic gas and dark matter exist in a wispy weblike spatial arrange-
ment consisting of dense compact clusters, elongated filaments, and sheetlike
walls, amidst large near-empty void regions, with similar patterns existing at
higher redshift, albeit over smaller scales. The hierarchical nature of this mass
distribution, marked by substructure over a wide range of scales and densities,
has been clearly demonstrated. This complex morphological structure is known
as the Cosmic Web [Zel70, BKP96, WB08].

It was the celebrated map of the first CfA redshift slice [dGH86] that showed
the connection between the basic elements of the Cosmic Web that was going to
emerge in more extensive mapping surveys. In recent years this view has been
expanded dramatically to the present grand vistas offered by the 100,000s of
galaxies in the 2dF – two-degree field – Galaxy Redshift Survey, the 2dFGRS see
for example [CPJ+03], the SDSS [TBS+04] galaxy redshift survey, and recently
in the 2MRS survey of the Local Universe [HJS+05] and the VIPERS deep probe
of the cosmic galaxy distribution at higher redshifts, see for example [GSG+14].
These and many other redshift surveys have unequivocally established the real-
ity of the Cosmic Web and its structural components. A telling illustration of the
weblike galaxy distribution in the local Universe is the map of galaxy positions
in a thin slice through the Sloan Digital Sky Survey, shown in Figure 4.2.

Cosmic Structure Formation

The generally accepted theoretical framework for the formation of structure
is that of gravitational instability [Pee80]. The gravitational instability scen-
ario assumes the early universe to have been almost perfectly smooth, with
the exception of tiny density deviations with respect to the global cosmic back-
ground density and the accompanying tiny velocity perturbations from the gen-
eral Hubble expansion.

The minor density deviations vary from location to location. At one place
the density will be slightly higher than the average global density, while a few
Megaparsecs further the density may have a slightly smaller value than on av-

11In astronomy distance are measured in parsecs. One parsec equals about three light years.
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Figure 4.2: Slice of the galaxy distribution found by the Sloan Digital Sky Sur-
vey (third data release). The distances are given in terms of the redshift. Both
clusters and the filaments connecting the clusters stand out. Credited to M. Blan-
ton and the Sloan Digital Sky Survey.

erage. The observed fluctuations in the temperature of the cosmic microwave
background radiation are a reflection of these density perturbations, so that we
know that the primordial density perturbations have been in the order of 10−5

[SBK+92, BHH+03, PAA+14a].

Gravitational Instability

The originally minute local deviations from the average density of the Universe,
and the corresponding deviations from the global cosmic expansion velocity
(the Hubble expansion), will start to grow under the influence of the corres-
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ponding gravity perturbations. The gravitational force acting on each patch of
matter in the universe is the total sum of the gravitational attraction by all mat-
ter throughout the universe. Evidently, in a homogeneous Universe the grav-
itational force is the same everywhere. In a universe with minute density per-
turbations this will be no longer true, the density perturbations will induce local
differences in gravity.

The resulting formation and moulding of structure is fully described by three
equations, the continuity equation, expressing mass conservation, the Euler equa-
tion for accelerations driven by the gravitational force for dark matter and gas,
and pressure forces for the gas, and the Poisson-Newton equation relating the
gravitational potential to the mass density distribution in the Universe. In slightly
overdense regions around density peaks, the excess gravitational attraction slows
down the expansion relative to the mean, while underdense regions expand
more rapidly. When a positive density fluctuation becomes sufficiently over-
dense it can come to a halt, turn around and start to contract. As long as pressure
forces do not counteract the infall, the overdensity will grow without bound, as-
sembling more and more matter by accretion from the surroundings, ultimately
fully collapsing in a gravitationally bound and virialized object.

By contrast, voids emerge out of the density troughs in the primordial Gaus-
sian field of density fluctuations. As a result of their underdensity voids repres-
ent a region of weaker gravity, resulting in an effective repulsive peculiar gravit-
ational influence. Initially underdense regions therefore expand faster than the
Hubble flow, and thus expand with respect to the background Universe. As
matter streams out of the void, the density within the void decreases. Of course,
the density deficit of voids is strictly limited: they cannot become more empty
than empty. It is the prime reason why void structure will be fundamentally
different from that of the structure of clusters.

Non-linear structure growth

Once the gravitational clustering process has progressed beyond the initial lin-
ear growth phase we see the emergence of complex patterns and structures in
the density field. Highly illustrative of the intricacies of the structure forma-
tion process is that of one of state-of-the-art N-body computer simulations, the
Millennium-II simulation, see [SWJ+05, BSW+09].

Figure 4.3 shows three sets of each four time frames out of this massive 1010

particle simulation of the matter distribution in the standard ΛCDM cosmology.
The frames show thin sections through the box of 100h−1Mpc size. The time
frames correspond to redshifts z = 6.20, z = 2.07, z = 0.99 and z = 0. The
earliest time frame is close to the epoch when the first dwarf galaxies formed.
The first column of frames contains the Dark Matter particle distribution in a
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15h−1Mpc thick slice of the full 100h−1Mpc box, the second column zooms in
on the central 40h−1Mpc. The third column shows the evolution of the central
15h−1Mpc region around the emerging compact massive cluster.

Figure 4.3: The structures found by the Millennium II simulation for different
times and scales [BSW+09]. The time is indicated by the redshift parameter z,
where z = 0 corrsponds to present day universe and z = 6.2 to some 12 billion
years ago. The distances are measure in h−1Mpc which equals nearly 5 million
light years.
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The first set provides a beautiful picture of the unfolding Cosmic Web, start-
ing from a field of mildly undulating density fluctations towards that of a pro-
nounced and intricate filigree of filamentary features, dented by dense compact
clumps at the nodes of the network. The second set of frames depicts in meticu-
lous detail the formation of the filamentary network connecting into the cluster
which are the transport channels for matter to flow into the cluster. Clearly vis-
ible as well is the hierarchical nature in which not only the cluster builds up
but also the filamentary network. At first consisting of a multitude of small
scale edges, they quickly merge into a few massive elongated channels. Equally
interesting to see is the fact that the dark matter distribution is far from homo-
geneous: a myriad of tiny dense clumps indicate the presence of the dark halos
in which galaxies – or groups of galaxies – will or have formed.

Large N-body simulations like the Millennium simulation and the many oth-
ers currently available all reveal a few “universal” characteristics of the (mildly)
nonlinear cosmic matter distribution. The most prominent characteristics of the
Megaparsec universe are:

• Hierarchical clustering

• Anisotropic & Weblike spatial geometry

• Voids

Each of these aspects deserve some further discussion.

Hierarchical Structure Formation

Perhaps the most significant and characteristic property is the hierarchical nature
of the cosmic matter distribution. Over a wide range of spatial and mass scales
objects and/or structures are embedded within structures of a larger dimen-
sion and a lower density. The resulting scenario of structure formation is one
in which the first objects to form are small compact objects which subsequently
merge with their surroundings as the larger scale density excess in which they
are embedded condenses out of the cosmic background. Small scale perturba-
tions evolve substantially faster than the ones on larger scales and will emerge
first as genuine recognizable objects.

Extended features still in the process of collapsing, or collapsed objects which
have not yet fully virialized, often contain a large amount of smaller scale sub-
structure at higher density which materialized at an earlier epoch. This sub-
structure is a clear manifestation of the hierarchical development of structure
in the Universe. Observationally we can recognize traces of the hierarchical
formation process in the galaxy distribution on Megaparsec scales. The large
unrelaxed filamentary and wall-like superclusters contain various rich clusters
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of galaxies as well as a plethora of smaller galaxy groups, each of which has a
higher density than the average supercluster density. Zooming in on even smal-
ler scales, within groups large galaxies themselves are usually accompanied by
a number of smaller satellites and dwarf galaxies. The imprint of hierarchical
clustering may also be found in fully collapsed structures, such as clusters and
even the halos of galaxies.

Anisotropic Collapse

The second key characteristic of the cosmic matter distribution is that of a web-
like geometry marked by highly elongated filamentary, flattened planar structures
and dense compact clusters surrounding large near-empty void regions (see Fig-
ure 4.4). In this section we focus on the backbone - or skeleton - of the Cosmic
Web defined by these anisotropic filamentary and sheetlike patterns.

The recognition of the Cosmic Web as a key aspect in the emergence of struc-
ture in the Universe came with early analytical studies and approximations con-
cerning the emergence of structure out of a nearly featureless primordial Uni-
verse. In this respect the Zel’dovich formalism [Zel70] played a seminal role. It
led to view of structure formation in which planar pancakes form first, drain-
ing into filaments which in turn drain into clusters, with the entirety forming a
cellular network of sheets. As borne out by a large sequence of N-body com-
puter experiments of cosmic structure formation, weblike patterns in the overall
cosmic matter distribution do represent a universal but possibly transient phase
in the gravitationally driven emergence and evolution of cosmic structure. The
N-body calculations have shown that weblike patterns defined by prominent
anisotropic filamentary and planar features – and with characteristic large un-
derdense void regions – are a natural manifestation of the gravitational cosmic
structure formation process.

The existence of the Cosmic Web is a result of this tendency of matter con-
centrations to contract and evolve into anisotropic, elongated or flattened, struc-
tures. It is a manifestation of the generic anisotropic nature of gravitational col-
lapse, a reflection of the intrinsic anisotropy of the gravitational force in a ran-
dom density field.

Voids

The third major characteristic of the Megaparsec mass distribution is the exist-
ence of large underdense void regions. In terms of volume, they are the pre-
dominant features in the cosmic mass distribution [CvJF14].

Voids have been known as a feature of galaxy surveys since the first sur-
veys were compiled [CR75, GT78, EJS80]. Voids are enormous regions with sizes
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Figure 4.4: A zoom-in of the (present day) structure found by the Millennium
II simulation [BSW+09]. The zoom-in focusses on a cluster and goes from
100h−1Mpc (somewhat over 400 million lightyears) to 0.5h−1Mpc. The multi
scale nature of the cosmic web is apparent.

in the range of 20 − 50h−1 Mpc that are practically devoid of any galaxy, usu-
ally roundish in shape and occupying the major share of space in the Universe.
Forming an essential ingredient of the Cosmic Web [BKP96], they are surrounded
by elongated filaments, sheetlike walls and dense compact clusters. Following
the discovery by Ref. [KOSS81] and [KOSS87] of the most dramatic specimen,
the Boötes void, a hint of their central position within a weblike arrangement
came with the first CfA redshift slice [dGH86]. This view has been dramatically
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endorsed and expanded by the redshift maps of the 2dFGRS, SDSS, 2MRS and
VIPERS surveys [CPJ+03, TBS+04, HJS+05, GSG+14]. They have established
voids as an integral component of the Cosmic Web. The SDSS map shown in
Figure 4.2 provides a telling impression of this finding.

In a void-based description of the evolution of the cosmic matter distribu-
tion, voids mark the transition scale at which density perturbations have de-
coupled from the Hubble flow and contracted into recognizable structural fea-
tures. On the basis of theoretical models of void formation one might infer that
voids may act as the key organizing element for arranging matter concentra-
tions into an all-pervasive cosmic network [Ick84, vv93, Sv04, Ara12]. As voids
expand, matter is squeezed in between them, and sheets and filaments form the
void boundaries.

As we have already discussed above, voids emerge out of the density troughs
in the primordial Gaussian field of density fluctuations. As a result of their un-
derdensity voids represent a region of weaker gravity, resulting in an effective
repulsive peculiar gravitational influence. Initially underdense regions there-
fore expand faster than the Hubble flow, and thus expand with respect to the
background Universe. The flow in and around the void is dominated by the
outflow of matter from the void, culminating into the void’s own expansion
near the outer edge. Various studies have found strong indications for the im-
print of voids in the peculiar velocity flows of galaxies in the Local Universe, see
for example [Dek94, Rv07, TSK+08, TCHP14].

In recent years, there has been a strongly growing interest in voids as a key
constituent of the large scale Universe. A major incentive for this has been the re-
cognition that the number density, sizes and shapes of voids are sensitive probes
of global cosmological parameters, dark matter [MW90, DR94, RM96] and dark
energy [PL07a, PL07b, LW10, BvDP12, SLWW12, HSW14].
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4.2 A Gaussian random field primer

This section will give a rough introduction to Gaussian random fields. Most of
the time we shall ignore questions regarding convergence and existence. It is
almost entirely based on [Adl81, AT07, Chr92, Abr97, BBKS86, vdWB96, PUP02,
Jon97, Jon15].

4.2.1 Literature overview

‘The geometry of random fields’ by Adler [Adl81] is perhaps the classic refer-
ence of those on which we base this introduction. The book by Adler and Taylor
[AT07] is of all these sources the most general in its treatment. This makes it
somewhat abstract. The book by Christakos [Chr92] is written with applications
of general random fields in mind, although in geophysics. The emphasis on ap-
plications makes it more accessible to practitioners but it is still fairly mathem-
atically rigorous. The review of Abrahamsen [Abr97] is somewhat in line with
[Chr92]. Papoulis and Unnikrishna Pillai [PUP02] gives a classic and general
introduction to (as the title of the book says) probability, random variables and
stochastic processes. Useful lecture notes by Jones [Jon97] do much the same
but with Cosmological applications in mind and a special focus on Gaussian
random fields. The book [Jon15] by the same author should also be mentioned.
Bardeen, Bond, Kaiser and Szalay [BBKS86] apply the results on Gaussian ran-
dom fields to Cosmology. Van de Weijgaert and Bertschinger [vdWB96] also
comes from a cosmological background and focusses on constrained fields.

4.2.2 Random Fields

Before we can give the definition of a random field we first introduce a prob-
ability space. A probability space (Ω,F ,P) consists of a sample space Ω, a σ-
algebra F and a probability measure P (the σ-algebra and measure give us sets
that behave reasonable and a way to assign values to these sets compatible, in
the finite dimensional case, with the standard integration on Rn), such that the
Kolmogorov axioms hold:

• P(Ω) = 1 (the total probability of all events is 1).

• 0 ≤ P(A) ≤ 1 for all setsA ∈ F (the probability of a event is never negative
and at most one).

• if Ai ∩Aj = ∅ for all i 6= j then

P

(∞⋃
i

Ai

)
=

∞∑
i=1

P(Ai)
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(the total probability of any (countable) number of mutually exclusive
events to occur is the sum of the probability of the individual events).

A finite dimensional random variable, X(u), with u ∈ Ω as defined above, is
a nice (measurable) mapping X from (Ω,F) into Rd. The (cumulative) distribu-
tion function is defined by

P((−∞, x1]× · · · × (−∞, xd]) = F (x),

The derivative

ϕ(x) =
∂dF (x)

∂x1 · · · ∂xd
,

if it exists, is called the probability density function. We can now write

P(A) =

∫
A

ϕ(x)dx.

The conditional probability density is defined as

ϕ(xk+1, . . . , xd | x1, . . . , xk) =
ϕ(x1, . . . , xd)

ϕ̃(x1, . . . , xk)
,

with

ϕ̃ =
∂k

∂x1 · · · ∂xk
P((−∞, x1]× · · · × (−∞, xk]× Rd−k).

The conditional probability density is related to the conditional probability (con-
ditioned on lower dimensional half spaces) by

ϕ(xk+1, . . . , xd | x1, . . . , xk)

=
∂d−k

∂xk+1 · · · ∂xd
P((−∞, xk+1]× · · · × (−∞, xd] | x1, . . . , xk),

here the condition on the point should be interpreted as a limit because the con-
dition on sets of measure zero needs some justification.
The expectation value of a random variable (or its mean value) can now be
defined as

m = 〈X〉 = E(X) =

∫
R
xϕ(x)dx.

The mean is also known as the first moment. This can be generalized to the
expectation value of a function g of the random variable

〈g(x)〉 = E(g(X)) =

∫
R
g(x)ϕ(x)dx.

There are a number of such expectation values of particular interest:
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• The covariance or central second moment

cij = E((Xi −mi)(Xj −mj)) =

∫
R

(xi −mi)(xj −mj)ϕ(x)dx.

• The variance

σ2
i = cii = E((Xi −mi)

2) =

∫
R

(xi −mi)
2ϕ(x)dx.

• The second order correlation function or two point correlation function

〈XiXj〉 = E(XiXj) =

∫
R
xixjϕ(x)dx.

This is also known as the non-central second moment or non-central cov-
ariance. Note that some authors choose to normalize the correlation func-
tion by

1√
σ2
i

√
σ2
j

.

• The higher order correlation functions or n-point correlation functions

〈XiXj . . . Xk〉 = E(XiXj . . . Xk) =

∫
R
xixj . . . xkϕ(x)dx.

• The characteristic function, the Fourier transform of the probability dens-
ity function,

Φ(ω) = E(eiω·X) =

∫
R
eiω·xϕ(x)dx,

with · the usual inner product.

We can now give the definition of a random field, following [AT07]:

Definition 4.2.1 Let (Ω,F , P ) be a probability space and Rn Euclidean space.
Then a ‘nice’ (measurable) mapping f : Ω → Fun(Rn,R), where Fun(Rn,R)
denotes the space of all real-valued functions on Rn, is called an n-dimensional
random field.
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Alternatively, following to [Chr92], we can also put the emphasis on in-
dividual points (by restriction): Let s1, . . . s2, . . . be an (countable) infinite se-
quence of random points in Rn. Then the random field f(s) is a family of ran-
dom variables {x1, x2, . . .} at points s1, . . . s2, . . ., where each random variable is
defined on (Ω,F) and takes values in R.
Usually some additional conditions on the existence of various expectation val-
ues are added, which we shall ignore because they are mostly automatically
satisfied for Gaussian random fields.

4.2.3 Gaussian random fields

A real valued random variableX is said to be Gaussian or normally distributed,
with mean m, if it has the probability density function

ϕ(x) =
1√
2πσ

e−(x−m)2/(2σ2),

for some σ > 0. An Rd-valued random variable X = (X1, . . . , Xd) is called a
multivariate Gaussian if for every (α1, . . . , αd) ∈ Rd, the real-valued variable∑
αiXi is Gaussian. In this case we have a m ∈ Rd, and a d× d-matrix C whose

entries are the covariances cij (that is (C)ij = cij), such that the probability
density function reads

ϕ(x) =
1√

(2π)d det(C)
e−

1
2 (x−m)tC−1(x−m). (4.3)

This means that all correlation functions of the field are determined by the two
point correlation function. Below we shall see that the same holds for the de-
rivatives of the field. This in turn implies that a Gaussian random field is com-
pletely determined by the two point correlation function.

We are now able to give the central definition:

Definition 4.2.2 A random field φ : Ω → Fun(Rn,R) is called a Gaussian ran-
dom field if the restriction of Fun(Rn,R) to any finite number of points s1, . . . , sd ∈
Rn, denoted by fs1 , . . . fsd together form a multivariate Gaussian (fs1 , . . . fsd).

The functions

m(s) = E(fs)

C(s, t) = E((fs −ms)(ft −mt))

are called the mean and covariance functions of the Gaussian random field.
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From this point onward we assume that the mean is zero, unless stated oth-
erwise. Moreover, to emphasize that we think of f as a function we shall write
f(s), instead of fs

We emphasize that both the multivariate Gaussian and Gaussian random
field are determined completely by their mean (which we now assume to be
trivial) and covariance. These two suffice to define the probability density. Moreover,
we have that

E(f(s1)f(s2) . . . f(sk)) =
∑

pairings

∏
pairs

E(f(si)f(sj)), (4.4)

which can be written, using the 〈 〉 notation to emphasize the relation with quantum
field theory, as

〈f(s1)f(s2) . . . f(sk)〉 =
∑

pairings

∏
pairs

〈f(si)f(sj)〉.

Alternatively, one can define a Gaussian random field as a field of which the
correlation functions satisfy (4.4). This point of view is emphasized in [Wei08],
because (4.4) can be viewed as a classical analogue of Wick’s theorem (where
the fsi are replaced by quantum mechanical operators and ordering therefore
is taken into account). The density fluctuations in the early universe are be-
lieved to arise from the fluctuations of one or more nearly free quantum fields
and therefore satisfy Wick’s theorem, explaining why in the classical limit one
would expect the fields to satisfy (4.4). This definition is equivalent to Defini-
tion 4.2.2 because of a result by Kolmogorov. Kolmogorov extension theorem
says that a probability measure is uniquely determined by the correlation func-
tions. This means in particular that if all correlations are compatible with the
classical analogue of Wick’s theorem the field is Gaussian. We refer to Section
1.2 of [Sim79] for a discussion.

Having touched on the importance of Gaussian random fields in Physics we
should also mention the other argument put forward in favour of a Gaussian
random field being a good model for physical phenomena such as the Cosmic
Microwave Background, namely the central limit theorem. The central limit the-
orem in the most elementary (one dimensional) form, see Section 7.4 of [PUP02],
says the following: Suppose we have a sequence of independent random vari-
ables Xi with mean mi and covariance σ2

i and probability density φi. The mean
and variance of the sum

X = X1 + . . .+Xn

are given by

m = m1 + . . .+mn σ2 = σ2
1 + . . .+ σ2

n



4.2. A GAUSSIAN RANDOM FIELD PRIMER 207

and the density by

φ = φ1 ∗ . . . ∗ φn

where ∗ denotes convolution. If X is properly scaled we have, under fairly gen-
eral conditions, that the density φ approaches a Gaussian as n tends to infinity,
that is in the limit

φ(x) ∼ 1√
2πσ2

e−(x−m)2/2σ2

,

where ∼ denotes proportionality. For a full discussion we refer the reader to
Section 4.4 of [Chr92] and the references mentioned there.

Using a path integral-like approach one sometimes writes

e−S[f ]

for the generalized probability function, with

S[f ] =
1

2

∫∫
f(s)K(s, t)f(t)dsdt,

where ∫
K(s, t)C(t, u)dt = δD(t− u)

and where δD denotes the Dirac δ-distribution. The S above is often referred to
as the action, in direct analogy of the quantum field theory case. Note however
that in this path-integral-like approach the measures involved in the generalized
probability function now are over spaces of functions.

4.2.4 Properties of Gaussian fields

We shall be interested in geometric properties of Gaussian random fields, for
which we must introduce a notion of differentiability. This notion is based on
the usual definition of the derivative

∂f

∂si
(s) = lim

h→0

f(s+ hei)− f(s)

h
,

where ei is the ith basis vector. The stochastic derivative (in the mean square
sense) is defined as the the random field ∂f/∂si for which

lim
h→0

E

((
f(s+ hei)− f(s)

h
− ∂f

∂si
(s)

)2
)
.
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This definition can clearly be extended to include higher derivatives. Using the
correlation function we are also able to obtain expressions for the covariance of
f and its derivatives. We have the following result, see section 4.3 of [Chr92]
for a full discussion:12 The partial derivative ∂νf(s)/(∂si1 . . . ∂siν ) exists in the
sense we defined above if and only if

E
(

∂νf(s)

∂si1 . . . ∂siν

∂νf(t)

∂ti1 . . . ∂tiν

)
=

∂2νC(s, t)

∂si1 . . . ∂siν∂ti1 . . . ∂tiν

exists and is finite at all diagonal points t = s. Furthermore if both ∂νf(s)/(∂si1 . . . ∂siν )
and ∂µf(t)/(∂ti1 . . . ∂tiµ) exist, then

E
(

∂νf(s)

∂si1 . . . ∂siν

∂µf(t)

∂ti1 . . . ∂tiµ

)
=

∂ν+µC(s, t)

∂si1 . . . ∂siν∂ti1 . . . ∂tiµ
. (4.5)

Such results are generally proven using a reasoning we shall roughly sketch for
E(∂sf(s)∂tf(t)), the covariance of the derivatives of a one dimensional field:

E(∂sf(s)∂tf(t))

= lim
ε1,ε2→0

E
(
f(s+ ε1)− f(s)

ε1

f(t+ ε2)− f(t)

ε2

)
= lim
ε1,ε2→0

E (f(s+ ε1)f(t+ ε2)− f(t)f(s+ ε1)− f(s)f(t+ ε2) + f(s)f(t))

ε1ε2

= lim
ε1,ε2→0

C(s+ ε1, t+ ε2)− C(s+ ε1, t)− C(s, t+ ε2) + C(s, t)

ε1ε2

=
∂2C(s, t)

∂s∂t
.

From this sketch we can see that n-point correlation functions of derivatives of
fields can be expressed in derivatives of 2-point functions, because we can use
formula (4.4) to go from n-point to 2-point functions before taking the limits
εi → 0 (in what in our example is the second line). It follows directly that the
n-point correlation functions of derivatives of fields are completely determined
by the 2-point functions in the same manner as the n-point correlation functions
of the fields themselves and thus are Gaussian. It is therefore not unusual, see
[BBKS86], if one considers a Gaussian random field and some of its derivatives
in a small number of points to put the correlations between the fields and those
derivatives at the specified points in a single correlation matrix C, so that the
probability density function is the same as in (4.3).

12Chapter 9 of [PUP02] gives a weaker, but easier result, section 1.4.2 of [AT07] treats the same
and is more sophisticated.
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Let us now introduce some further definitions and notation. We call a Gaus-
sian random field isotropic if the correlation function only depends on the dis-
tance between the two points considered, that is

C(s, t) = C(r),

with r = |s − t|. In this case we have that for the Fourier components f̂(k) of
f(x)

f(x) =

∫
dk

(2π)n
f̂(k)e−ik·x,

satisfy

E(f̂(k)∗f̂(k′)) = (2π)3P (k)δD(k − k′),

where P (k) is referred to as the power spectrum.



210 CHAPTER 4. INTRODUCTION

4.3 Topology for Cosmologists

This section gives an overview of some aspects of algebraic topology and Morse
theory as well some differential topology. Some of the standard works on al-
gebraic topology are [Mun84, DFN90, Hat01]. Edelsbrunner and Harer [EH10]
also give an introduction to algebraic topology with a focus on computational
aspects and persistence. It is this book that we shall follow in Sections 4.3.2 and
4.3.4. Milnor [Mil73] is the classical introduction to Morse Theory. Section 4.3.3
will follow Milnor [Mil73] closely.

4.3.1 Topology and the Euler characteristic

Topology is the branch of mathematics concerned with the properties of spaces
that are preserved under continuous deformations such as stretching and bend-
ing, but not tearing.13

The Euler characteristic

One of the most useful tools of topology are so-called invariants that can be used
to distinguish for example surfaces up to these deformations. One of the oldest

13To be more precise one does not distinguish spaces for which there is a continuous, piecewise
smooth or smooth bijection whose inverse is also continuous, piecewise smooth or smooth in to-
pology. A bijection is a one to one mapping, that is every point is mapped to a unique point and
every point in the image is reached. These bijections are referred to as homeomorphisms, piece-
wise smooth homeomorphisms and diffeomorphisms. The branch of topology that concentrates
on diffeomorphisms is called differential topology. Below we shall often assume smoothness for
simplicity.

The word topology also refers to a collection of all open sets in a space. A topology on a space is
all that is necessary to define continuous mappings. A space endowed with a topology is called a
topological space.

Another branch of topology is knot theory. This branch considers the particular embedding in
a low dimensional space, traditionally of a single deformed circle but nowadays of more general
spaces. Knot theory for example distinguishes the following two embeddings of two circles (with
unit radius) in three dimensional Euclidean space: In the first embedding the circles lie in parallel
planes in three space and in the second each circle is centred on a point of the other circle, but coin-
cide nowhere. These two configurations cannot be deformed into one another in three dimensional
space, without intersections. Although the two pairs of circles are clearly diffeomorphic and can be
deformed into one another in a sufficiently high dimensional space.

The concept of continuous deformations can be formalized by homotopy and isotopy. Given two
(continuous, piecewise smooth or smooth) functions f, g : X → Y a homotopy between f and g is
a (continuous, piecewise smooth or smooth) function H : X × [0, 1] → Y such that H|0 = f and
H|1 = f . Here we usually think of [0, 1] as a time interval. For example let us choose X and Y to
be the cylinder S1 × [0, 1], f the identity and g : (x1, x2) 7→ (x1, 0), then f and g are homotopic.
An isotopy is a homotopy such that for all t ∈ [0, 1], Ht is an embedding (a homeomorphism on the
image).

There is a version of homotopy theory that focusses on space and not functions. In such a case
spaces are called homotopy equivalent or of the same homotopy type.
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topological invariants used in this field is the so called Euler characteristic. The
Euler Characteristic of a surface can be defined as the alternating sum of the
number of simplices, that is vertices (v), edges (e) and triangles (t)

χ = v − e+ t (4.6)

of a triangulation. This definition generalizes to any dimension. By triangula-
tion we mean a ‘neat’ subdivision of the surface into triangles, edges and ver-
tices, or in general into simplices. A set of simplices, together with an adjacency
relation is called a simplicial complex. Simplicial complices allow us to con-
sider the triangulation of a space or surface. We will view triangulations in two
slightly different ways, namely as being ‘painted’ on the space or surface and
as a simplicial complex per se. From the definition (4.6) it is clear that the Euler
characteristic is additive. By additive we mean that if a surface is composed of
multiple disjoint pieces the Euler characteristic of the entire surface is the sum
of the Euler characteristics of the constituent parts.

The Euler characteristic for topological spheres

We can verify that the Euler characteristic is an invariant for two triangulations
of the topological 2-sphere: the boundaries of the tetrahedron and the octahed-
ron. The boundary of tetrahedron consist of 4 vertices, 6 edges and 4 triangles,
which yields χ = 4−6+4 = 2. The boundary of the octahedron has 6 vertices, 12
edges and 8 triangles, which again gives χ = 6−12+8 = 2. From this example it
is immediately clear that the number of vertices, edges and triangles themselves
are not topological invariants.

The genus

The Euler characteristic of a single surface without boundary in Euclidean space
can be expressed in terms of the genus g

χ = 2− 2g.

The genus is defined as the maximum number of non-intersecting closed curves
(circles) such that if we cut along these curves the surface is not split into two or
more pieces. For example, the genus of the sphere is zero because if we remove
one point, say the south pole, and flatten the surface we get the plane and every
closed curve on the plane has an inside and outside so that if we cut along such
a curve we get two pieces. The boundary of a doughnut (torus) has genus one
because if it lies flat on a surface we can cut along a circle that is furthest from the
centre and end op with a surface that can be flattened into a cylinder, which in
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turn will be cut into two by cutting along any closed curve on it. Roughly speak-
ing the genus is the number of holes through which one can put ones finger to
grab hold of it.

Betti numbers

As mentioned above the number of triangles edges and vertices are not them-
selves topological invariants. However there exists an equivalent definition of
the Euler characteristic in terms of topological invariants, namely the Betti num-
bers βi,

χ = β0 − β1 + β2,

where roughly speaking β0 is the number of components, β1 is the number of
(independent) loops and β2 is the number of surfaces without a boundary. Our
next subsection will venture to make the definition of these Betti number a bit
more precise.



4.3. TOPOLOGY FOR COSMOLOGISTS 213

4.3.2 Homology

While the Euler characteristic can topologically distinguish between connec-
ted, closed surfaces (by which we mean that if the Euler characteristics of two
smooth surfaces are equal then they can be smoothly14 deformed into each other
conversely if they can be smoothly deformed into one another, then the Euler
characteristic is the same), it has no discriminative power if applied to 3-manifolds
without boundaries, which is the most direct generalization of surfaces. One can
prove that the Euler characteristic is zero for each 3−manifold.15

The Euler Poincaré formula

Above we have noted that the Euler characteristic is equal to the alternating16

sum β0 − β1 + β2, where β0 is the number of components, β1 is the number of
(independent) loops and β2 is the number of surfaces without a boundary. These
constituents of the sum do allow a generalization. In fact we can write the Euler
characteristic in any dimension as the alternating sum of Betti numbers, that is

χ = β0 − β1 + . . . .

This formula is known as the Euler-Poincaré formula. Betti numbers are topo-
logical invariants, meaning that they are the same for two manifolds if they can
be smoothly deformed into one another. The converse is not true (even in three
dimensions). That is, there are smooth manifolds that have identical Betti num-
bers but are not the same, to be precise they are not homeomorphic.17

Assigning numbers to vertices, edges, . . .

We will now introduce these Betti numbers of a space without being very rig-
orous, by which we mean that we shall often say that a space or map is nice or
well-behaved without specifying the conditions. To do so it is easiest to assume
that the space of which we want to find the Betti number is nicely triangulated,
that is, subdivided into simplices18 so that an entire neighbourhood of a triangle
is well-behaved. To define the Betti numbers mentioned before we now consider
particular subsets of the set of all simplices in the triangulation of our space (or
manifold). We take a (fixed) triangulation of the manifold (in this case our finite

14Smooth means that one can take any number of derivatives of all variables and these derivatives
are continuous with respect to all variables.

15This in fact holds in any odd dimension and is a consequence of the so-called Poincaré duality.
16By alternating sum we mean the sum with alternating signs.
17The most famous example of this is the three-dimensional Poincaré’s homology sphere.
18The higher dimensional equivalent of triangles, such as the tetrahedron in three dimensions.
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size universe) and a closed 19 subcomplex, that is a closed subset of the triangu-
lation. To each simplex (vertex, edge, . . .) we formally assign a number 0 or 1
depending on whether we include the simplex in the complex or set, see figure
4.5.
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Figure 4.5: Example of a 2-chain.

Adding and subtracting numbers assigned to simplices

We can formally add and subtract these triangulations with numbers assigned to
the simplices by adding and subtracting the values for the individual simplices,
modulo 2. Modulo 2 calculus only20 uses 0 and 1 and 0±0 = 0, 0±1 = 1±0 = 1
and 1 ± 1 = 0. To put it in other words, we are only interested in the first digit
if we write the number in binary. The set {0, 1} with the modulo 2 calculus is
denoted by Z2, Z/2Z or F2. We will perform all our calculations using Z2.

19By closed we mean that the boundary is included in the set, for example a triangle is part of the
set then so are its edges and vertices.

20Formally, we identify {. . .− 4,−2, 0, 2, 4, 6, 8, . . .} with 0̄, which is also written as 0 for simpli-
city, and {. . .− 3,−1, 1, 3, 5, 7, . . .}with 1̄, which is also written as 1.
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Chains

A set, such as our simplices with numbers attached, with addition and sub-
traction operations is called a group. A set of closed d-dimensional simplices
(d−simplices) or the corresponding member in the group is called a d−chain.

The boundary of chains

For a d-dimensional chain we may consider its boundary, which has a very spe-
cific meaning. For example, the boundary of a triangle consists of its three edges
(without regard to the dimension of the space in which the triangle lies). An-
other important example is an (ordered) set of n edges where the endpoint of
an edge is the starting point of the next edge (of course the end of the last edge
is the beginning of the first, possibly with further self-intersection in the ver-
tices21), has no boundary. A d-chain that has no boundary is called a d-cycle.

Calculating the boundary

To be entirely precise we give a method to calculate the boundary of a d-chain:
For each d-dimensional simplex in the chain we take the (d − 1)-dimensional
boundary (for a tetrahedron these are the faces). The formal sum of these bound-
ary elements (using the Z2 calculus) for all d-simplices in the d-chain is the
boundary of the d-chain. The boundary of a chain has itself no boundary, it
is a cycle. This is obvious in the example of the triangle, where the boundary is
a topological circle (which means that it can be deformed in the standard circle
in a nice manner). In the Euclidean plane every loop of edges is the boundary
of a number of patches that can be deformed to disks, see figure 4.6. 22

The example of the torus

For the torus this is not the case, as we shall explain. For our explanation we
shall think of the torus as a surface of revolution around the z-axis, see figure
4.7. The way we see the torus does not matter but this description makes the
discussion of our examples much easier, because we can refer to specific circles
on the torus. With this description of the torus in mind, we see that either one
of the two circles that form the intersection of the torus and xz-plane can not be
written as the boundary of a disk-like region. In this example we do not want

21There is a topological theory which considers only nice loops and surfaces,this is called the the-
ory of homotopy groups. However computations in this theory are very hard, especially in higher
dimensions. This is one of the reasons why the famous Poicaré conjecture was so hard to prove.
Because of our need of concrete results this theory is not of much use to us.

22If the loop does not have self intersections and lies in two dimensions, this is true in a very nice
manner, this result is known as the Schönflies theorem.
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Figure 4.6: In Euclidean space every 1-cycle (blue) is the boundary of a 2-chain
(green).

to distinguish between any of the circles we find by intersecting the torus with
any plane which contains the z−axis. The reason for this is that in topology
we do not distinguish between two objects that can be smoothly deformed into
one another and two such circles can be deformed into one another by rotation
around the z-axis.

Identification

In general it can be very difficult to see if two objects can be deformed into one
another. We therefore need a criterion which is easier to verify. Thus we do
not distinguish the two circles on the torus if they form the boundary of a two-
dimensional piece of the torus. In the case of the circles mentioned before there
clearly is a cylindrical piece of the torus which has both as boundary, see figure
4.7. We will use the word identify to indicate that we do not distinguish between
two objects (in this case circles).
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Figure 4.7: Two 1-cycles on the torus can be identified, for together they are the
boundary of a 2-chain. Individually neither of these 1-cycles are the boundary
of a 2-chain.

Equivalence classes and cosets

Identification will be used very often so we discuss it in some detail. We start
with a set of objects (circles in our example) and give some ground on which to
distinguish them. This ground needs to be compatible in the sense that if we
cannot distinguish a and b from each other nor b and c then we cannot distin-
guish a and c. Now we can collect all elements that cannot be distinguished in
a set. This set is called an equivalence class. In homological context it is usually
called a coset, we shall come back to this later.

Betti numbers

The Betti numbers formalize and generalize the identification of circles on the
torus if they are the boundary of a cylindrical piece.

Cycles

The generalization of the circles in our example will be d-cycles, d-chains that do
not have a boundary. Cycles generalizes the circle in our example greatly. For
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example if our space is R3, a torus (correctly triangulated in a nicely triangulated
space) is such a cycle.

The homology group: identifying cycles

d-cycles can be formally added and subtracted because they are chains. We now
identify two d-cycles if they form the boundary of a (d + 1)-chain. A family of
cycles that can be identified with one another in this manner is called a coset.
These cosets can be added and subtracted similarly to individual chains. We
add or subtract cosets A and B, by choosing elements a ∈ A and b ∈ B (called
representatives of the cosets) and add or subtract these to find a new element
a± b. The element we thus find is an element of some coset. Let us call this coset
C. We say that C is the outcome of the sum and write A±B = C. One can show
that the choice of a ∈ A and b ∈ B does not influence the outcome. These cosets
form a group that is known as the dth homology group and is denoted by Hd.

The homology group as linear space

We now revert to the description of a set of simplices as a formal sum of all
simplices in the triangulation with ones as coefficient if an element of the set
and zeros otherwise. We can identify this set with an element in a linear space,
where every simplex corresponds to a coordinate with a coefficient modulo 2. To
such a linear space we can associate a dimension. This dimension is the number
of linearly independent vectors. The dimension of the homology group Hd is
referred to as the dth Betti number (βd). The number of elements in the linear
space is 2βd , because for each base vector of the linear space, we may chose a
coefficient to be 0 or 1. The number of ‘base vectors’ in a group is called the
rank. We stress that we regard Hd as a linear space.

The ‘universe’

The ‘universe’ in most cosmological simulations, is a three-dimensional box
(cube) of finite size, where we identify opposite faces of the box. This space
is also called a flat 3-torus (T3). We wish to introduce some specific termino-
logy and discuss heuristics for the 3-torus. In this setting only β0, β1, β2 and β3

may be non-zero. Moreover, β3 equals 0 unless the subset is T3 itself in which
case β3 = 1. The first three Betti numbers have intuitive interpretations: β0 is the
number of components, β1 is the number of loops, and β2 is the number of shells
in the subset. Often, it is convenient to consider the complement of the subset,
for which β0 − 1 is the number of gaps between the components, β1 the number
of tunnels going through the loops, and β2 the number of voids enclosed by the
shells.
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4.3.3 Morse Theory

In the previous section we have developed homology theory and arrived at to-
pological invariants, among others Betti numbers, that help us to distinguish
two different objects (often manifolds) topologically. In this section we are go-
ing to decompose manifolds into building blocks, using fairly general functions
on the manifolds, so called Morse functions. We refer to Milnor [Mil73] for fur-
ther reading. The discussion in this section will not be focused on a specific
dimension. For example we shall often speak of manifolds, the reader is of
course free to think of embedded surfaces. The functions we consider will be
smooth, meaning that a sufficient number of derivatives exist and are continu-
ous. We shall not specify the exact number of derivatives that need to exist for
the statements to hold.

The two pillars of Morse theory

Morse theory is based on two observations concerning smooth functions (f ) on
a smooth manifold M :

• Suppose that the gradient grad(f) is non-zero along the level set Mf=c =
{x ∈ M | f(x) = c}. Then for sufficiently small23 ε the sublevel set
Mf≤c+ε = {x ∈ M | f(x) ≤ c + ε} can be smoothly deformed24 into
the sublevel set Mf≤c = {x ∈M | f(x) ≤ c}.

Figure 4.8: The sublevel sets can be deformed into one another (by diffeomorph-
isms) if grad(f) is non-zero. In this example f is a hyperbolic paraboloid.

23We think of ε as positive, but the statement also holds for negative ε.
24Using the flow of grad(f).
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• Suppose that the gradient grad(f) is zero at a single isolated point x on
M for which f(x) = c and the second order derivatives are well behaved
in x. Then for sufficiently small25 ε the sublevel set Mf≤c+ε = {x ∈ M |
f(x) ≤ c + ε} can be smoothly moulded from the sublevel set Mf≤c−ε =
{x ∈M | f(x) ≤ c− ε} to which an extra object is attached. Moreover this
extra object, sometimes called a handle, can be shrunk26 to a k-cell (a topo-
logical k dimensional ball). The dimension of the k-cell can be determined
studying the second order Taylor approximation of f in the point x.

Figure 4.9: Here we see the example of the attachment of a 1-cell if f goes
through a value where grad(f) is zero. We have depicted the critical sublevel
set, as well sublevel sets for values above and below the critical value. A cell is
attached to the sublevel set for a value of the function below the critical level.

We shall now make the statements above more precise, before we consider an
example. The example will be the classical one namely the torus of revolution.

Cells and CW-complexes

A k-cell can be defined as

Ck = {x ∈ Rk : |x| ≤ 1}.

An well behaved object consisting of such cells (of various dimension) is called
a CW-complex. These CW-complexes serve as some kind of ‘skeleton’ for the
manifold.

25Here ε > 0.
26Often is said that they have the same homotopy type.
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Attaching cells to CW-complexes

In the context of Morse theory CW-complex are build by consecutively attaching
cells. The attaching of a k-cell 27 means we glue Ck on the boundary of Ck to
the pre-existing topological space Y (the ‘previous’ CW-complex). Formally we
identify the points on ∂Ck with points in the pre-existing topological space Y
using a continuous map from the boundary ∂Ck to Y , we refer the reader to
Section I.1 of [Mil73] for more details.

Morse functions

Let f be a smooth real valued function on a manifoldM . A point p ∈M is called
a critical point of f , if in local coordinates

∂f

∂xi
(p) = 0,

for all i. The value at which this occurs is called a critical value. A critical point
is called non-degenerate if and only if the matrix(

∂2f

∂xi∂xj
(p)

)
(4.7)

is non-singular, that is if its determinant is non-zero. The matrix given in equa-
tion (4.7) is called the Hessian in local coordinates or simply the Hessian. A
function is called a Morse function, or just Morse, if all critical points are non-
degenerate. We shall always assume that f is smooth so the Hessian is a sym-
metric matrix. The number of negative eigenvalues of this matrix is called the
index of f .

The lemma of Morse

Roughly speaking the index of f determines the f completely in a small neigh-
bourhood. More precisely, we have the following lemma of Morse:

Lemma 4.3.1 Let p be a non-degenerate critical point for f . Then there is a local
coordinate system (x1, . . . xn) centred at p such that

f = f(p)− x2
1 − . . .− x2

λ + x2
λ+1 + . . .+ x2

n,

where λ is the index of f at p.
27There also exists so called handle decompositions of manifolds, where the manifold itself and

not the CW-complex is decomposed. These handles can be thought of as thickened versions of the
cells. We refer to [RS72] for a full discussion.
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Once more, the two pillars of Morse theory

We are now able to give precise versions of the two observations we started
with:

Theorem 4.3.2 Let f be a smooth real valued function on a manifold M . Let
a < b and suppose that the set f−1([a, b]), consisting of all points p ∈ M with
a ≤ f(p) ≤ b, is compact and contains no critical points of f . Then Mf≤a is
diffeomorphic to Mf≤b.

Theorem 4.3.3 Let f be a smooth real function on M and p a non-degenerate
critical point with index λ. Setting f(p) = c, suppose that f−1([c − ε, c + ε]) is
compact and contains no critical point of f other than p for some ε > 0. Then,
for all sufficiently small ε the set Mf≤c+ε has the homotopy type of Mf≤c−ε with
a λ-cell attached.

If two manifolds have the same homotopy type we mean that using homotopy
theory they can not be distinguished. As we have seen in Section 4.3.2 this
roughly means that they can be deformed into one another, but with certain
degeneracies. For example a cylinder and a circle are homotopic. Theorem 4.3.3
in particular implies that the Betti numbers of Mf≤c+ε and Mf≤c−ε with a λ-cell
attached (in the correct manner) are the same. We refer the reader to Section I.3
of [Mil73] for the proofs.

Approximating functions by Morse functions

Morse functions (functions all of whose critical points are non-degenerate) are
dense28 in the set of all smooth functions, meaning that any given smooth func-
tion can be approximated arbitrarily well by Morse functions.

28This statement should be interpreted using the appropriate topology on the space of functions,
see Chapter 6 of [Hir76].
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A Morse function on the torus

We shall now illustrate the theory we have just developed in a specific example.
In our example M is the torus of revolution embedded in R3 such that the sym-
metry axis of the torus is horizontal and f is induced by the height (vertical or
z-direction), see figures 4.10-4.16. We shall review the development of the to-
pology of the sublevel set from the empty set to the full torus, as the value of f
increases.

From the empty set to a single point

For sufficiently low value of c we have that Mf≤c is empty. The transition to a
non-empty set occurs when the horizontal plane is tangent to the torus for the
first time, see figure 4.10. We shall refer to a specific height as the level. Let us
call this level c0. Because the horizontal plane indicating the value of f is tangent
to the surface the gradient grad(f) restricted to the surface is zero. This means
that there is a so called critical point and c0 is a critical value. The second order
Taylor series of f restricted to the surface gives a paraboloid, which means that
f has local (or in this case global) minimum here. This means that the critical
point is of index 0. The sublevel set Mc0consists of a single point and thus can
be shrunk (trivially) to a single point. The CW-complex therefore also consists
of a single point, which is also called a 0-cell in this context. One says that by
crossing the singular value a 0-cell is added to the complex.

Figure 4.10: The plane indicating the level of f is tangent to the torus (left), the
sublevel set (middle) consists of a single point as does the CW-complex (right).
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The topological disk

Between the critical value we have seen above and next, that is with respect to
the increasing value of f , the topology does not change. This means that all sub-
level sets in this range can be smoothly deformed into one another. The sublevel
sets can be shrunk to a single point, so that the CW-complex still consists of a
single point. We have illustrated this in Figure 4.11.

Figure 4.11: The plane indicating the level of f and the torus intersect in a regu-
lar manner (left), the sublevel set (middle), can still can shrunk to a single point
(right) without tearing.

From a disk to a disk with two points on the boundary identified

Once the horizontal plane is again tangent to the surface the topology changes,
see figure 4.12. The second order Taylor approximation of f gives a saddle. So
the critical point has index 1. The sublevel set can no longer be shrunk to a
point but to a circle. A 1-cell, that is a curve, beginning and ending at the point
previously present is attached to the CW-complex.
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Figure 4.12: The plane indicating the level of f is again tangent to the torus (left).
The boundary of the sublevel set (middle) is therefore non-smooth. A 1-cell is
attached to the CW-complex (right).

The cylinder

Between successive critical points, see figure 4.13, the sublevel set is a topolo-
gical cylinder with smooth boundary.

Figure 4.13: The plane indicating the level of f and the torus intersect in a regu-
lar manner (left). The sublevel set (middle) can still can shrunk to a circle (right).

The cylinder with two points on the boundary identified

Again we see, in figure 4.14, that the topology of the sublevel set changes when
the horizontal plane is once again tangent to the surface. Just as for the previ-
ous critical value the critical point is a saddle point, that is it has index 1. The
sublevel set can be shrunk to two intersecting closed curves (topological circles).
This is equivalent to saying that a 1-cell is attached to the CW-complex.
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Figure 4.14: The plane indicating the level of f is once more tangent to the torus
(left). This implies that the boundary of the sublevel set (middle) is non-smooth.
Another 1-cell is added to the CW-complex (right).

The torus with a point left out

Between critical values the topology of the sublevel set (without boundary) is
that of a torus with a point left out, see figure 4.15.

Figure 4.15: The plane indicating the level of f and the torus intersect in a regu-
lar manner (left), the sublevelset (middle), can still can shrunk to two intersect-
ing circles (right).

Completing the torus

The final change (figure 4.16) in topology takes place as the horizontal plane
coincides with the tangent plane to the highest point of the torus. The Taylor
series up to second order of f , the restricted to the surface gives a paraboloid
with negative coefficients, which means that f has local (or in this case global)
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maximum here. This is equivalent to saying that f has a critical point of index 2.
A 2-cell, roughly speaking an object that can be made by continuously stretching
a disk, is attached to the CW-complex, to create a topological torus.

Figure 4.16: The plane indicating the level of f is once more tangent to the torus
(left) and the torus is complete (middle). A 2-cell is added to the CW-complex
(right).

This concludes our discussion of the example of the torus of revolution.
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4.3.4 Persistence

Having discussed Morse theory and homology we are now ready to combine
both into persistent homology or Persistence for short. For further reading on
this we refer to [EH10]. Again this section is anything but mathematically rigid.

From Morse theory to Homology

In the section on Morse theory we have argued that the topology of a sublevel
set does not change unless the Morse function f attains a critical value. If it
encounters a critical value with index d we are able to create the sublevel set
found below the critical value from the one above the critical value, by glueing
in a piece that can be moulded from an d-dimensional disk. This object moulded
from a d-dimensional disk we have called a handle and the d-dimensional disk
a d-cell. An object consisting of cells we named a CW-complex. The glueing
procedure at the crossing of critical point is echoed in a very nice manner by the
Betti numbers.

Example merger connected components: two dimensions

For example let us assume the sublevel sets consists of two disjoint parts before
the critical value of index one that are connected by a curve at the crossing of
the value, see figure 4.17. Then the number of connected components (β0) drops
by one, as illustrated in two dimensions by figure 4.17.

(a) A connected component (β0) is born as we cross the first
singular value. Once more we depict the surface and the level
on the left, the sublevelset in the middle and the CW-complex
on the right.
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(b) Between critical points the topology is stable.

(c) At the crossing of the second critical point another 0-cycle is born.
β0 increases by one.

(d) The two connected components persist for a short while.
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(e) At the encounter of a critical point of index 1 the two connected
components merge into a single connected component. The 0-cycle
that was created last is killed due to the so called elder rule.

(f) After the final critical point the topology of the sublevel set is again
that of a topological disk.

Figure 4.17: An example of the creation of a connected component that persists
and one that is merged into the other connected component.

Example merger connected components: arbitrary dimensions

In any dimension this still holds because if two points (0-cycles) belong to the
same connected component we can draw a curve (which we regard in this con-
text as a 1-chain) connecting these two points. This means that the two points
belong to the same coset, as defined above. Which in turn implies that in this
case after crossing the critical value the dimension of H0, β0 is one smaller than
before, the other homology groups (Hd) are unaffected. This decrease of the di-
mension by one will be associated to a death, alternatively we shall say that one
connected component has died. A full definition of death will follow.
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Example creation of loop that does not persist

As we have seen there is another scenario possible for the evolution of the to-
pology at the crossing of a critical value of index 1. Again we start with two
connected components. However in this case one of the connected components
remains unaffected by the crossing of the critical value while the other under-
goes a change by the attachment of a curve γ0 (1-cell).

The evolution of the homology groups

Let us assume that γ0 is attached to q1 and q2, two points both on one of the con-
nected components. Because the curve is attached to a single connected com-
ponent we can find a curve connecting q1 and q2 inside this connected compon-
ent (γ1). These curves γ0 and γ1 together form a loop (1-cycle). This 1-cycle was
not present before the critical point was crossed, nor can it be the boundary of
any two-dimensional chain because γ0 is completely isolated. This means that
in this case by crossing the critical value the dimension of H1 (β1) increases by
one, while the other homology groups remain unaffected. The fact that the other
homology groups are unaffected can be understood in the following manner: As
the added handle can be shrunk to a one-dimensional disk it does not contribute
to higher dimensional objects such as 2-cycles.

Birth

The increase of the dimension of the homology group will be associated to the
birth of the cycle consisting of γ0 and γ1. We use this terminology: the cycle
consisting of γ0 and γ1 is born. The birth and death of a non-persistent 1-cycle
is illustrated in figure 4.18.

(a) For sufficiently low values of f the sublevel set and the CW-complex
is empty. Trivially all Betti numbers of the sublevel set are zero.
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(b) Once we reach the first critical point a connected component is born,
here both the sublevel set (middle) and CW-complex (right) consist of a
single point. β0 increases by one.

(c) In between critical points the sublevel set (middle) is a topological disk
and its CW-complex (right) is a point.

(d) As we go through a critical point of index 1 a loop is created, to be
precise the 1-cycles in one coset are no longer the boundary of a co-chain.
This is reflected by the CW-complex. We say that a 1-cycle is born.
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(e) The topology is stable between critical points.

(f) This critical point is a local minimum, the 1-cycle was born in (d) dies.
This can be seen because the 1-cycles that are in the same coset as what is in
this figure the boundary of the sublevel set, now clearly are the boundary
of topological disk. This topology is well reflected by the CW-complex.

(g) After the final critical point the topology is that of a topological disk.
One connected component persists.

Figure 4.18: An example of the creation of a persistent connected component
and a loop that dies after a small increase of the level.
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The general evolution of the Betti numbers

One can argue that in general βm (the dimension of Hm) increases by one or
βm−1 (the dimension ofHm−1) decreases by one if we go through a critical point
of index m and attach the corresponding m-cell to the super level set. Note that
the boundary of the m-cell is a cycle both before and after the attachment of the
cell itself. We can now distinguish two cases. The boundary of the m-cell after
attachment was either the boundary of anm-chain in the space before the critical
point or it was not.

• If it was, then the m-cell and this m-chain together form a m-chain that
has no boundary. This new m-chain can not be the boundary of some
other chain because the m-cell is isolated. This implies that we have a new
(family of) m-cycle. This means that the dimension βm of HM increases by
one.

• If it was not, then the boundary of the m-cell was a cycle that defined a
non-trivial element in Hm−1 before the crossing of the critical value. This
is because by definition cycles are identified if they are the boundary of
chain. After crossing of the critical value the boundary of the m-cell is the
boundary of a chain, namely the m-cell we just attached. So the boundary
of them-cell is now after attachment identified with the trivial element 0 in
Hm−1, while before it spanned (was the basis vector of) a one dimensional
subspace. This means that the dimension βm−1 of Hm−1 drops by one.

Evolution in terms of linear spaces

Because the spaces Hd are linear spaces we can think of the linear map (think
of matrices) between29 H0 ×H1 × . . . ×Ht = H̃before and H0 ×H1 × . . . ×Ht =
H̃after. This mapping will be denoted by H̃before → H̃after. Before and after refers
to before and after the passage of a critical value. We use t to denote the top
dimension in the equations above.

For n-dimensional manifolds we have that t = n. To understand this we
have to go back to the definition of chains we have seen in Section 4.3.2. If the
manifold is n-dimensional there are no simplices of dimension greater than n in
its triangulation. This implies that the homology groups above this dimension
are also trivial.

29Here × denotes the Cartesian product, we are familiar with this concept in Euclidean space
where we write R × R = R2 and R × R2 = R3. Here R, R2 and R3 denote one-, two- and three-
dimensional space, respectively.
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Evolution for complicated Morse functions

We now consider the setting where we have a very complicated Morse function
f with a great number of critical values. In this case we want to keep track of
the changes to the homology of the super levelset after crossing of each critical
value. This means that we require a complete picture of the so-called sequence
of linear maps30

H̃r0 → H̃r1 → . . .→ H̃rn , (4.8)

with r0 > ν0 > r1 > . . . > νn > rn, where the νi denote the critical values
of the density function and the ri denote the regular values of the function. To
relate this notation to the one used before we note that every H̃ri → H̃ri+1 in the
sequence should be interpreted as H̃before → H̃after for the critical point νi+1. We
note that for sufficiently large values there are no points for which the density
function attains this (or greater) value, therefore the super level set is empty,
which means H̃r0 = 0. The sequence (4.8) contains a great deal of information
on the topology. We shall encode this information so that it is easy to represent
in pictures. 31

Filtrations

Note that we have

Mf>r0 ⊆Mf>r1 ⊆ . . . ⊆Mf>rn ,

where we used the notation of Section 4.3.3. Such a sequence of sets that of
which the elements lie in one another as indicated here is called a filtration.

Defining birth and death

For each base vector v in the linear space H̃ri we can check if it is the image of
some (base) vector w in H̃ri−1 under the linear map H̃ri−1

→ H̃ri . If this is not
the case we say that v is born at H̃ri . Let us assume that v is indeed born at H̃ri .
We can now follow v as it is mapped by composition of linear maps (think of
products of matrices) to H̃ri+1 , H̃ri+2

, . . .. Typically there are spaces H̃rj−1
and

H̃rj so that the image of v is non-zero in H̃rj−1
but is mapped to zero under the

map H̃rj−1 → H̃rj . That is, v is not in the kernel or null space of the mapping

H̃ri → . . .→ H̃rj−1 ,

30This is NOT an example of an exact sequence.
31The representation we choose does not throw away information; we shall be able to reconstruct

the entire sequence of linear maps from our representation.
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but it is in the kernel or null space of

H̃ri → . . .→ H̃rj .

In this case we say that v dies at hj . We define the associated birth-death pair to
be (νi, νj), the pair of critical points associated to H̃ri and H̃rj respectively. Here
one must bear in mind that here a choice is involved.

The elder rule

The choice we mentioned above is best illustrated by our example of two con-
nected components that merge into one, see figure 4.17. We have to chose which
of the two connected components dies. By agreement the oldest survives, that
is the connected component that arose at the smallest value for f . This is called
the elder rule. We call the difference of both values between the two elements of
the pair the persistence or ‘the time for which v survives’.

Persistence diagrams and barcodes

As we mentioned above the information on birth-death pairs can be represented
in diagrams. Suppose that for each d-cycle we have its birth death pair (νi, νj).
A persistence diagram represents all these points in a two dimensional graph.
A bar code represents the birth death pair (νi, νj) by drawing a line from νi to
νj . All these lines are then depicted underneath each other.

The Morse inequalities

We conclude our discussion with the Morse inequalities: Above we have seen
that a critical point of index 1 of a Morse can have two effects on the Betti num-
bers of the sublevel sets, either β0 decreases by one or β1 increases by one. Equi-
valent statements hold for critical points of index i, with the exception of index
0, because there is no β−1. This observation gives us

• The Euler characteristic is also equal to the alternating sum of the number
of critical points with index i

• The weak Morse inequalities, which bound the ith Betti number from above
by the number of critical points with index i.

The latter can be strengthened to the Morse inequalities

C#
λ − C

#
λ−1 + . . .± C#

0 ≥ βλ − βλ−1 + . . .± β0,

where C#
i denotes the number of critical points of index i. For a proof of the

Morse inequalities we refer the reader to Section I.5 of [Mil73].
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4.3.5 Lipschitz-Killing curvatures

In our discussion of the Lipschitz-Killing curvatures, we shall focus on the so-
called tube results. These relate geometric quantities of a manifold to the volume
of a tubular neighbourhood. We shall also discuss the Hadwiger’s formula,
a formula that gives the Lipschitz-Killing curvatures in terms of topological
quantities. As before we shall not go into specific conditions on differentiab-
ility but assume that every function or map is sufficiently smooth.

Literature review

For an extensive treatment of the volume of tubes we refer the reader to Berger
and Gostiaux [BG88], Adler and Taylor [AT07] and Morvan [Mor08]. Berger
and Gostiaux [BG88] treat tubes in a purely differential geometric setting. Adler
and Taylor [AT07] focusses specifically on Gaussian random fields. We shall
follow Adler and Taylor [AT07] as much as possible. Morvan [Mor08] gives an
overview, which is less detailed than the other two books.

Gauss curvature and the shape operator

The shape operator S(v) is defined as −∇vν with ν the normal vector field,
roughly speaking the normal of the surface translated to the origin. The space
operator can be seen as a linear operator (matrix) from the tangent space to it-
self. The shape operator is related to the Gaussian curvature by K = detS. The
shape operator (seen as matrix) is in the right coordinate system equal to(

k1 0
0 k2

)
.

The principal curvatures k1, k2, the inverses of the maximum and minimum
radii of the osculating circles. This means that K = k1k2. The mean curvature
is given by k1 + k2. The Gaussian curvature in two dimensions is also given by
Rabcd = K(gacgbd − gadgbc), with Rabcd the Riemann tensor and gab the metric.

The three dimensional tube formula

The tubular neighbourhood of a manifold are all points in the ambient space
that lie within a given radius from the manifold. The tubular neighbourhood
of a curve in two dimensional Euclidean space is depicted in Figure 4.19. In
Appendix 4.A.1 we will prove that the volume of the tubular neighbourhood of
a two dimensional manifold M is given by

Vol(tube(M, ε)) = 2A(M)ε+
2

3
ε3
∫
M

KdA. (4.9)
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We have denoted the tubular neighbourhood of M with radius ε by tube(M, ε)
This formula is remarkable because of two things:

• Both terms in (4.9) are intrinsic, meaning that they refer to the manifold
M (or the Riemannian structure with which it is endowed) and not to its
embedding in Euclidean space.

• The second term on the right hand side of (4.9) is in fact topological in
nature, because of the Gauss-Bonnet theorem:∫

KdA = 2πχ(M). (4.10)

Figure 4.19: Tubular neighbourhood of a smooth closed curve in two dimen-
sions.

The Gauss-Bonnet formula

The Gauss-Bonnet theorem is of great importance both here and in the follow-
ing chapters. Although the full proof of the (two dimensional) Gauss-Bonnet
theorem is somewhat subtle, we have given a rough sketch in Appendix 4.A.2.
The Gauss-Bonnet theorem can be generalized to arbitrary (even) dimension, for
which we refer the reader to [Spi75c] or [Che44]. The Gauss-Bonnet theorem is
however in some sense quite unique. This will be the topic of chapter 5.

The tube formula in arbitrary dimension

The tube formula (4.9) also generalizes to higher dimensions, see [BG88] page
235:
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Theorem 4.3.4 Let M be a d-dimensional submanifold of an n dimensional Eu-
clidean space. The volume of the ε-neighbourhood of M , also called the ε-tube
of M , is a polynomial in ε:

Vol(tube(M, ε)) =

bd/2c∑
i=0

a2iε
n−d+2i, (4.11)

where

a2i =
1

n− d+ 2i

∫
M

K2idµ,

with dµ the volume form on M and K2i the Weyl curvatures.

The Weyl curvatures are intrinsic in nature, in particular they can be expressed
in terms of the Riemann tensor, see [Wey39].

From the tube formula to the Lipschitz-Killing curvatures

There is a reformulation of (4.11) for which roughly speakin the js in aj do not
run over 2i, but the odd cases, which are zero, are included. If one includes these
and normalizes, using the volume of the j-dimensional unit ball ωj , the elements
of the extended sequence of aj are referred to as Lipschitz-Killing curvatures. To
be precise

Vol(tube(M, ε)) =

n∑
j=0

ωn−jLj(M)εn−j

defines the Lipschitz-Killing curvatures Lj(M). Sometimes the intrinsic nature
of the Lipschitz-Killing curvatures is used to define them directly using the
Riemann tensor. These expressions can be found in Section 7.6 of [AT07], or by
comparing to [Wey39]. It must be noted that this point of view is not propagated
in [AT07].

From the Lipschitz-Killing curvatures to the Minkowski functionals

Reversing the order and altering the normalization of the Lipschitz-Killing curvatures
gives the Minkowski functionals

Mj(M) = (j!ωj)Ln−j(M).
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Using the Minkowski functionals the tube formula reads

Vol(tube(M, ε)) =

n∑
j=0

Mj(M)
εj

j!
.

The Minkowski functionals for two dimensional surfaces in three dimensional
Euclidean can now be read of from (4.9). In case of convex bodies, one also en-
counters the terms Quermass intergrals and Steiner functionals, for various ver-
sions of what are basically Lipschitz-Killing curvatures/Minkowski functionals.
To add to the confusion all of these are referred to as intrinsic volumes.

Crofton’s formula

Interestingly enough the Lipschitz-Killing curvatures can also be expressed in
terms of topological quantities. The simplest example of such a formula is
Crofton’s formula, see Section 1.7.C of [DC76]. Let γ be a regular curve of length
l in the plane. A straight line Ls(θ, rol) in the plane shall be given by

Ls(θ, rol) = {(x, y) ∈ R2 | x cos θ + y sin θ = rol}

Any straight line in the plane define the multiplicity ni(θ, rol) to be the number
of intersection points of the curve γ and Ls(θ, rol). With these definitions we can
give Crofton’s formula:

1

2

∫∫
ni(θ, rol)droldθ = l.

Santaló’s formula

More generally the Lipschitz-Killing curvatures can be expressed in terms of
an integral over the Euler characteristic of the intersection between planes of a
certain dimension and the manifold. To be precise

Lj =

(
n
j

)
ωn

ωn−j − ωj

∫
Eucl(n)

χ(M ∩ hEuclEn−j)dhEucl,

with Eucl(n) the Euclidean group, the symmetry group of n-dimensional Euc-
lidean space, hEucl ∈ Eucl(n) and dhEucl the standard measure32 on Eucl(n). This
formula is called Hadwiger’s formula, although Hadwiger is only associated
to the convex case, or Santaló’s formula who treated the general case, see also
[San76]. For a proof of Hadwiger’s formula we refer the reader to Section 17.5 of
[Mor08] which gives a proof based on a more general result by Chern [Che52].

32the Haar measure normalized to be the Lesbesgue measure on the translations and the invariant
probability measure on the rotations.
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Further generalizations

We remark that a far reaching generalization has been discovered by Schapira
[Sch91, Sch95] within the field of sheaf theory. This generalization has been
propagated by Ghrist, see for example [BG09]. The generalization by Schapira
states that under certain conditions a manifold in Euclidean space is completely
reconstructible once all the Euler characteristics of the intersections of linear sub-
spaces of appropriate dimension and the manifold are known. Schapira gives
the following example: One can reconstruct a body in R3 from the knowledge
of the number of connected components and holes of all its intersections by two
dimensional affine slices.
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4.4 Overview

Understanding the properties of the Cosmic Microwave Background and the
large scale structure to which it gave rise, is one of the main objectives of mod-
ern cosmology, as discussed in Section 4.1. We have argued that the density
perturbations in the early universe are well approximated by Gaussian random
fields.

The Euler characteristic in cosmology

As early as the 1980s [BBKS86, HGIW86] it was realized that the density of Euler
characteristic of super- or sublevel sets was important for the study of Gaussian
random fields. The significance of the Euler characteristic follows, among oth-
ers, from the following:

• For sufficiently high levels the Euler Characteristic equals the number of
peaks, see [Adl81, BBKS86].

• The Euler Characteristic is independent from the two point function or
Power spectrum and three point function, giving another way to measure
deviations from the Gaussian random field.

The interest of the Euler characteristic is enhanced by the fact that its density can
be expressed as an integral using the Gauss-Bonnet theorem or by using the fact
that the Euler characteristic is the alternating sum of critical points of a Morse
function. These integrals can in fact be evaluated [Adl81, HGIW86, AT07].

Other topological invariants in topology

Recently, see for example van de Weijgaert et al. [vdWPJ+11] or van de Weijgaert
et al. [vdWVE+11], the importance of other topological invariants such as Betti
number for the study of the large scale structure of the universe was realised.
The topology of both so called alpha shapes and sub- or superlevel sets now
sees active research.

Morse Functions and alpha shapes

Our explanation of persistence, Section 4.3.4, focussed on sub- or superlevel sets.
The existence of a continuous function, in a cosmological context this is the dens-
ity, is necessary for level sets to be defined. For a study of the Betti numbers (not
persistence) of Gaussian random fields, we refer the reader to [PPC+13] and
(for semi-analytic results in two dimensions) to [FvEvdW+15]. Alpha shapes
are used in the study of discrete point sets. Roughly speaking alpha shapes of
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a point set in Euclidean space associated with radius r is the union of the balls
of radius r centred on the points in the point set. These are beginning to be
used, among others, in the study of the galaxy distribution in the present day
universe. This thesis focusses on the topology of superlevel sets or level sets.

Interest from cosmologists in persistence

The interest from cosmologists in persistence, see Section 4.3.4, is a natural con-
sequence of the studies mentioned before [vdWPJ+11, vdWVE+11, PPC+13].
Persistence is currently being applied to, among others, cosmological models
[PEvdW+15], Gaussian random fields, and simulations of the universe for dif-
ferent dark energy models, see [Nev13].

Interest from mathematics

The efforts to understand the topology of the universe coincide with interest by
Alder et al. [ABN+10] in the persistence of Gaussian random fields, as well as
renewed interest in Euler integration from applied mathematics, see for example
[BG09]. Critical points of two and three dimensions Gaussian random fields in
the meantime have gained renewed interest from the Cosmological community
[GPP12].

Contribution

The studies of the topology of Gaussian random fields and models for the uni-
verse are all numerical in nature. The exceptions are the Euler characteristic and
the critical points of the Gaussian random field. The contributions of this part of
the thesis are the following:

• In chapter 5 we prove that other topological invariants, such as Betti num-
bers, can not be found using straightforward integration technique, such
as those used to determine the Euler characteristic. This means that the
numerical methods used in the study of the topology of the universe are
necessary.

• In chapter 6 we show that the positive part of the Gauss curvature of the
isodensity sets of a Gaussian random field does not provide reasonable
bounds on the number of connected components of of the superlevel sets.

As a corollary of these results we have that the topological quantities such as the
persistence of a Gaussian random field are not encoded in the Lipschitz-Killing
curvatures, discussed in Section 4.3.5.
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4.A Appendix

In these appendices we give a some proofs that were omitted from Section 4.3.5.
Here we shall discuss the the tube formula in the setting of a surface embed-
ded in three dimensions. The main reason why we include this is because the
relatively straightforward proof collected here is scattered over the literature. A
sketch of the proof of the Gauss-Bonnet theorem is included because the ideas
of the proof are relatively easy to understand and because the Gauss-Bonnet
theorem plays an essential role in Chapters 5 and 6.

4.A.1 The tube formula in three dimensions

In this appendix we will prove the tube formula for surfaces in three dimen-
sional Euclidean space

Vol(tube(M, ε)) = 2A(M)ε+
2

3
ε3
∫
M

KdA. (4.9)

Our approach is based on exercises 3.12 in [Spi75a] and 5.3.7 in [O’N06] as well
as bibliography point A.II.b of [Spi75c].

We will use the shape operator S(v) = −∇vν with ν the normal vector field.
Let M ⊂ R3 be a compact surface with normal ν. Then

Mε = {p+ εν(p) : p ∈M}

is called the parallel surface of M . We have the following map

F : M →Mε : p 7→ p+ εν(p). (4.12)

For any tangent vector v we write v̄ = F∗(v). Let α : (−δ, δ) → M be a curve
such that α(0) = p and α′(p) = v. Let ᾱ = F ◦ α, now we have that

v̄ = ᾱ′(0) =
d

ds

∣∣∣∣
s=0

(α(s) + εν(α(s)) = v + εν′(p+ sv)|s=0 = v − εS(v).

Or directly

v̄ = F∗(v) = ∇v(p+ εν(p)) = v + ε∇vν = v − εS(v),

where we identify tangent vectors with elements in R3. Note that this im-
plies that 0 6= v̄ if v 6= εS(v), so that Mε is an immersed surface for all |ε| <
|k1|−1, |k2|−1, with k1, k2 the principal curvatures. The principal curvatures are
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the eigenvalues of the shape operator S, seen as linear operator from the tangent
space to itself. Using the identities

S(v)× S(w) = K(p)v × w
S(v)× w + v × S(w) = 2H(p)v × w,

see for example lemma 5.3.4 of [O’N06], we now have

v̄ × w̄ = v × w − ε(v × S(w) + S(v)× w) + ε2S(v)× S(w)

= v × w − 2εHv × w + ε2Kv × w.

This implies that the volume element dĀε ofMε is related to the volume element
dA of M by

F ∗(dĀε) = (1− 2εH + ε2K)dA.

Integration then yields

A(Mε) = A(M)− 2ε

∫
M

HdA+ ε2
∫
M

KdA,

By integrating over ε we can find the volume33 enclosed between M and Mε,
that is

V (M,Mε) = A(M)ε− ε2
∫
M

HdA+
1

3
ε3
∫
M

KdA. (4.13)

Here we ignore any possible issues regarding self-intersections, due to the fact
that beyond a distance called the reach from a surface there is no longer a unique
closest point on the manifold, see [Fed59] and [Fed96] for a discussion. From
(4.13) we conclude that the volume enclosed by M−ε and Mε, that is the tube, is

Vol(tube(M, ε)) = V (M−ε,Mε) = 2A(M)ε+
2

3
ε3
∫
M

KdA. (4.9)

This concludes our discussion.

33This is straightforward because the normal on corresponding points on parallel surfaces is equal.
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4.A.2 Sketch of the proof of the Gauss-Bonnet theorem

In this appendix we give a rough sketch of the idea of the proof of the Gauss-
Bonnet theorem.

By straightforward calculation, see theorem 3.9 of [Spi99], one can prove that
for a triangle whose edges are geodesics with vertices v1, v2, v3 on a surface we
have that ∫

4v1v2v3

KdA = ϕ1 + ϕ2 + ϕ3 − π, (4.14)

with ϕi = ∠vi. Now suppose that we have triangulated (subdivided into tri-
angles) the surface such that all edges are geodesics, then

∑
triangles

( 3∑
i=1

ϕi − π
)

=
∑

triangles

∫
triangle

KdA.

We can now reorder the summation and use that the angles adjacent to a single
vertex sum to 2π, to see that∫

M

KdA =
∑

vertices

2π −
∑

triangles

π = 2πv − πt,

with v the number of vertices and t the number of triangles. Every triangle has
three edges, but every edge is shared by two triangles so that 2e = 3t, with e the
number of edges. Rewriting this as −t = 2t− 2e, we find that∫

KdA = 2π(v − e+ t) = 2πχ(M).



Chapter 5

A geometrical take on
invariants of low-dimensional
manifolds found by
integration

5.1 Introduction

The Gauss-Bonnet theorem relates the integral of some intrinsic quantity whose
origins lie in the field of differential geometry, namely the Gaussian curvature,
to some topological invariant, the Euler characteristic. For higher dimensional
manifolds the Gauss-Bonnet theorem can be generalized, using the theory of
characteristic classes. For a very elegant exposition we refer to Milnor and
Stasheff [MS74] or alternatively Spivak [Spi75c]. Abrahamov [Abr51] proved
that the invariants thus produced are unique, up to some equivalence. See
Gilkey [Gil84] for a modern (and more extensive) treatment. Below we provide
a proof of a similar statement for two and three dimensional manifolds, based
solely on geometrical arguments, in contrast to the more algebraic approach
taken in the literature.
The formulation of the main result will be along the lines of the following ques-
tion proposed by I.M. Singer: ‘Suppose that f is a scalar valued invariant of the
metric such that t(M) =

∫
fdVol is independent of the metric. Then is there

some universal constant c so that t(M) = cχ(M)?’ This question has reportedly
([Gil84]) been answered in the affirmative by E. Miller.

The proof as discussed by Gilkey is somewhat algebraic in nature and fo-
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cusses on the invariance of f = F (g, ∂g, . . .) under coordinate transformations.
Fortunately the functions which are well behaved can be easily found and be lis-
ted, using a theorem by Weyl on the invariants of the orthogonal group. The in-
variant functions thus found are linear combinations of contractions of Riemann
tensors and their derivatives. The functions can be further distinguished based
on their behaviour under rescaling of the metric. If the product of the function
and the volume form is invariant under this rescaling it is a candidate for a to-
pological invariant.1 For example in two dimensions the Gaussian curvature is
the only such function (up to some remainder whose integral is zero). It can be
shown that all such functions yields topological invariants.

Our geometrical proof relies heavily on the classification of two dimensional
closed surfaces and on Heegaard splitting. A discussion of the classification can
be found in [Hir76] or [Mas77], for the latter we refer to [Fom87] or [Sti93].

We complete our discussion by some remarks on generalizations.

1A line of reasoning one also encounters in the work by Abrahamov.
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5.2 Surfaces

Theorem 5.2.1 Let f be a function on two dimensional real Riemannian com-
pact manifolds, which is completely determined by the metric, in the sense that
f locally can be written as f(x) = F (g(x), ∂g(x), . . .) where g denotes the metric,
independent of the topology of the base manifold. Suppose the integration

If (M) ≡
∫
M

f dVol,

where dVol indicates the volume form, of f over an orientable2 manifold M
yields a topological invariant tf (M) for all surfaces. We write tf (M) to emphas-
ize the dependence on f . Then there exists a real number cf , depending only on
f , such that tf (M) = cf χ(M), where χ denotes the Euler characteristic.

Proof First we note that the space of Riemannian metrics on a manifold is
connected. This is obvious because if g and g̃ are metrics then so is λg+ (1−λ)g̃
for all λ ∈ [0, 1]. This means that we can assume without loss of generality that
M is isometrically embedded in R3, because we can choose g̃ to be the standard
metric of M . Now let f be a function as described in the theorem, such that∫

M

f dVol = t

is a topological invariant. Suppose that for the two sphere S2 we have∫
S2

f dVol = 2c,

where c is some constant. From this we can conclude that for the sphere t =
cχ(M).

We can now deform the two-sphere as follows. A small region is pushed
outwards and bent -in a sufficiently smooth manner- such that this region con-
tains three equally spaced parallel cylinders pieces all of the same radius. We
can now cut in the cylindrical part along the plane orthogonal to the cylinder
and reassemble the parts so that we recover a topological sphere but also get a
torus. The integral is not altered because integrals are additive. The procedure
is illustrated in figure 5.1. Because the integral is clearly additive for unions this
implies that ∫

C1

fdVol = 0,

2Clearly the integral over a non-orientable manifold does not make sense.
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Figure 5.1: From left to right, top to bottom we have depicted: the sphere, the
deformation (in two steps), the deformed surface with cutting lines indicated by
the yellow glass plane and the reassembled surfaces (with and without cutting
lines).

where C1 is a surface of genus 1. Generally we shall denote a surface of genus g
by Cg .

The rest of the proof is inductive in nature. We begin with a topological
genus-g torus and two spheres. We deform these surfaces so that the spheres
contain a piece of a cylinder, both of the same radius, and the n-torus such that
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it contains two pieces of the cylinder, again of the same radius, so that if these
pieces are deleted one of the remaining surfaces is itself a topological cylinder.
We again cut the cylindrical pieces in half and reassemble the part so that we
have a genus-g − 1 torus and a sphere. As sketched in figure 5.2.

Figure 5.2: From left to right, top to bottom we have depicted: An n-holed torus
and two spheres, the same surfaces deformed, the deformed surfaces with the
lines along which we cut indicated by yellow glass plane and the reassembled
surfaces.

We can now conclude that∫
Cg

fdVol + 2

∫
S2

fdVol =

∫
Cg−1

fdVol +

∫
S2

fdVol

and thus by induction that∫
Cg

fdVol = c(2− 2g) = c χ(Cg).

By the classification of all 2-manifolds we have proven the theorem for all two
dimensional real manifolds embedded in R3. �
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Remark 5.2.2 In theorem 5.2.1 we assumed that f gives us a topological invari-
ant for all surfaces, in fact the conclusion can be drawn for a given manifold M ,
if
∫
fdVol is an invariant for S2, S1 × S1 and M .

The proof of this statement differs from that above in that instead of the induc-
tion step illustrated in figure 5.2, we consider a genus g surface and 2g balls and
perform the cut and paste operation for each hole simultaneously.
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5.3 Three dimensions

We will now focus on the three dimensional case. The intuition for the following
proof is much strengthened by the remark that a Morse function h on some
manifold M can always be interpreted as height function. This can be easily
seen as follows: Let M be isometrically embedded in Rn, possibly using the
Nash embedding theorem. Then we can add the value of the Morse function as
another coordinate to a point p ∈M ⊂ Rn, so that the manifold M is embedded
in Rn+1 and the last coordinate is the height.

Theorem 5.3.1 Let f be a function on three dimensional real Riemannian com-
pact manifolds, which is completely determined by the metric, in the sense that
f locally can be written as f(x) = F (g(x), ∂g(x), . . .) where g denotes the metric,
independent of the topology of the base manifold. If the integration

If (M) ≡
∫
M

f dVol

of f over a manifold M yields a topological invariant tf (M), for all 3-manifolds.
Then we have t(M) = 0.

Proof The first step in our proof will consist of showing that if M = Cg × S1

we have that ∫
M

f dVol = 0.

To show this we shall consider a manifold N , that admits a Heegaard splitting
of genus g. This means that the manifold N can be represented as the attach-
ment of two three-dimensional manifolds, which are both homeomorphic to a
three-dimensional ball with g handles, with respect to a diffeomorphism of their
boundaries. We further have that there exists a Morse function h on N with one
minimum and one maximum and all critical points of index 1, 2 correspond to
the critical values c1 and c2 respectively with c1 < c2, see [Fom87]. This has been
schematically represented in the leftmost picture in figure 5.3. 3

We now define for every surface Cg of genus g, some metric induced by an
embedding in R3, exhibiting Z2 symmetry. We shall refer to this Riemannian

3Note that conversely a Heegaard splitting also gives a Morse function in a natural manner.
Namely we start with Morse functions on both g-handled balls, by simply taking a Morse function
on the standard g-handled ball and pulling back via the diffeomorphisms to the g-handled balls in
question. Now theorem 1.4 and lemma 3.7 of [Mil65a], give a differentiable structure on the union
with a smooth structure compatible with the given differentiable structure on the different parts,
moreover such that the Morse functions on both parts piece together to a smooth function.
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Figure 5.3: From left to right we have sketched: A manifold admitting a Hee-
gaard splitting; the critical points of the Morse function are indicated as dots
and the attachment by a blue dashed line, the same manifold with a small part
of it brought to a standard Cg× [−δ, δ] metric, the deformed surface with cutting
lines (red) indicated and the reassembled surfaces.

manifold as the standard surface of genus g. In the following we view N as
embedded in Rk. Let f be as in theorem 5.2.1 such that∫

N

f dVol,

is a topological invariant t. For some sufficiently small [a1, b1] ⊂ R, with c1 <
a1 < α1 < β1 < b1 < c2, we smoothly and isotopically deform h−1([a1, b1]) ∩
M ∼ Cg × [a1, b1], so that h−1([α1, β1]) ∩M becomes isometric to the standard
Cg × [α1, β1] ⊂ R4 ⊂ Rk given by the standard Cg and the ordinary Cartesian
product. We shall now deform this part of the manifold so that it consists of
a straight piece and two pieces which are straight at the beginning and the end
but are bent in the middle so that if we cut along the the boundaries of the pieces
and reassemble we recover the original manifold and Cg × S1. The procedure is
sketched in figure 5.3. From this we conclude that∫

N

f dVol =

∫
N

f dVol +

∫
Cg×S1

f dVol,

where we again used local isotopy and the additivity of integration. Therefore,∫
Cg×S1

f dVol = 0.
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Figure 5.4: A Heegaard splitting, then the same manifold with two small parts
brought to a standard metric both on another side of the ‘attachment line’, cut-
ting lines (red) are also indicated, and finally the reassembled surface (two con-
nected components).
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The next part of the proof relies on the fact that the sphere (S3) allows a
Heegaard splitting of every genus g, see [Fom87]. Let M be a manifold which
allows a Heegaard splitting of genus g. We now deform two pieces of the man-
ifold into parts isometric to Cg × [α1, β1] and Cg × [α2, β2], with α1 < β1 <
α2 < β2, so that for all p1 ∈ (α1, β1) and p2 ∈ (α2, β2) both h−1((−∞, p1)) ∩M
and h−1(p2,∞) ∩ M are topological spheres with g handles whose boundary
is isometric to the standard genus g surface, as discussed above. We can now
smoothly deform h−1((p1, q1)) ∩M and h−1((q2, p2)) ∩M , with p1 < q1 < β1

and α2 < q2 < p2 (see figure 5.4), such that if we cut along the pi and qi lines
and reassemble (possibly using Z2 symmetry) we recover two topological mani-
folds, with given topology. One of the manifolds we thus construct is a manifold
admitting a Heegaard splitting of genus g. The attachment diffeomorphism, of
the latter, on the boundary of the sphere with g handles is the identity. This man-
ifold shall be denoted by MS(3D)

g . The other manifold TCg is a mapping torus,
found by taking Cg × I , where I denotes the interval, and glueing the ends to-
gether by a glueing homeomorphism. The entire procedure is sketched in figure
5.4.

For a mapping torus we again have that∫
TCg

fdVol = 0,

with f locally defined in terms of the metric. This can be seen as follows: con-
sider TCg and deform part of it such that it is isometric to [a, b] × Cg . Now
introduce a second copy of TCgand cut in the parts isometric to [a, b] × Cg . The
two disjoint parts are now both diffeomorphic to [c, d]×Cg . We can now deform
the parts isometric to [a, b] × Cg and glue them together such that we get the
trivial mapping torus Cg×S1. See figure 5.5 for a sketch. From this construction
we can conclude that

2

∫
TCg

fdVol =

∫
Cg×S1

fdVol = 0.

This means that by deforming, cutting and pasting a manifold M , which
allows a Heegaard splitting of genus g, we find the following equalities∫

M

f dVol =

∫
M
S(3D)
g

f dVol +

∫
Cg×S1

f dVol =

∫
M
S(3D)
g

f dVol + 0,

where f is as defined in the theorem. If we now use that the sphere (S3) allows
a Heegaard splitting of every genus g we find that∫

M

f dVol =

∫
M
S(3D)
g

f dVol =

∫
S3

f dVol. (5.1)
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Figure 5.5: Two non-trivial mapping tori that are reassembled into a trivial map-
ping torus. We use arrows to indicate the direction in which we traverse, this
makes the difference between a glueing homeomorphism and its inverse.

Following this observation, we are able to use the result of the first part of the
proof, ∫

Cg×S1

f dVol = 0.

This immediately translates into∫
S2×S1

f dVol = 0.

We notice that both S3 and S2×S1 allow a Heegaard splitting of genus 1, so that∫
S3

f dVol =

∫
M
S(3D)
1

f dVol =

∫
S2×S1

f dVol = 0. (5.2)

Combining equations (5.1) and (5.2) yields∫
M

f dVol = 0,

for any manifold M and f = f(g, ∂g, . . .) a function determined by the metric
and all its derivatives. �
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Remark 5.3.2 In theorem 5.3.1 we assumed that f gives us a topological invari-
ant for all 3-manifolds, in fact the conclusion can be drawn for a given manifold
M allowing a Heegaard splitting of genus g, if

∫
fdVol is an invariant for S3,

S1 ×Cg , mapping tori TCg , MS(3D)
1 and M , where Cg is a surface of genus g and

M
S(3D)
1 as defined above.

This is clear from inspection of the proof of theorem 5.3.1.
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5.4 Higher dimensions

One can wonder about generalizations of the methods stated above to manifolds
of general dimension. Some of these generalizations are immediately obvious,
for example the procedure sketched in figure 5.3 can be used in any dimension
so see that for f and t as in the theorem∫

Md−1×S1

f dVol = t

implies that t = 0, where Md−1 is any manifold of dimension d− 1 occurring as
level set.

Using a sophisticated result given in [KKNO73], we can use cut and paste
techniques to provide results equivalent to those of theorems 5.2.1 and 5.3.1 in
higher dimensions. To explain this, we briefly recall some notions from [KKNO73].
Let M be a closed manifold and N ⊂M a closed submanifold of codimension 1
with trivial normal bundle. If one cuts M open along N one obtains a manifold
M ′ with boundary ∂M ′ = N + N . Pasting the boundary together in a different
manner gives a new closed manifold M̃ . M̃ is said to have been obtained by
cutting and pasting M (Schneiden und Kleben in German or SK for short).

We shall assume that a topological invariant t ∈ R for n-dimensional man-
ifolds is compatible with disjoint unions, that is if M = M1 + M2 then t(M) =
t(M1) + t(M2). Such t is called an SK-invariant if whenever M1 and M2 are
compact n-manifolds with diffeomorphic boundaries and φ, ψ : ∂M1 → ∂M2

orientation preserving diffeomorphisms, then

t(M1 ∪φ −M2) = t(M1 ∪ψ −M2).

Here −M2 means M2 with reversed orientation and M1 ∪φ −M2 means M1

pasted to M2 along the boundary by φ and smoothed.4

Corollary 1.4 of [KKNO73] now states that any SK-invariant for smooth man-
ifolds is a linear combination of the Euler characteristic and the signature in the
oriented case.

By the generalisation of the constructions in Sections 5.2 and 5.3 the invari-
ants found by integration are SK-invariants and thus linear combinations of the
Euler characteristic and the signature.

4There is an analogous definition in the non-oriented case.
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Chapter 6

Bounds on Betti numbers in
three dimensions

In the previous chapter we have seen that it is impossible to find expressions for
any topological invariant except the Euler characteristic, using only local geo-
metric information. In this chapter we broaden our interest and include prac-
tical bounds on topological invariants of the level or super level sets of Gaussian
random fields in our considerations. In the particular case of a co-dimension
one submanifold in Euclidean space, one bound (apart from the Morse inequal-
ities) comes to mind: For an even1 dimensional closed compact hypersurfaces
without boundary embedded in a Euclidean space of one dimension greater, one
always finds parts of this surface with positive curvature.

This can be used to give bounds on the number of connected components
(β0), and somewhat indirectly on the other Betti numbers. To be precise in Sec-
tion 6.1.2 of the Preliminaries we shall see that for two dimensional surfaces∫

Σ

K Θ(K)dA ≥ 4πβ0(Σ), (6.1)

where K denotes the Gaussian curvature and Θ the Heaviside function. The
Heaviside function is the distribution which is one for a positive and zero for a
negative argument, that is

Θ(x) =

{
1 if x ≥ 0

0 if x < 0.

1The even dimensionality is essential, see Chapters 4 and 5 or [MS74].
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In the same section we shall also touch upon the indirect bounds on the other
Betti numbers. In Section 6.2 we discuss in great detail the density expectation
value of the left hand side of equation (6.1) for the case of a two dimensional
isosurface of a Gaussian random field on R3 . We provide an integral expression
for this expectation value and numerically evaluate this integral. As in the pre-
vious chapter the result we achieve is negative in nature, that is the expectation
value of the positive part of the Gaussian curvature does not yield practicable
bounds on the number of connected components.

The Euler characteristic in the Gaussian random field literature

In our efforts to give the expectation value for the positive part of the Gaus-
sian curvature, we shall also give an expression for the Euler Characteristic of
an isosurface of a Gaussian random field in integral form. Our derivation is
based on the Gauss-Bonnet theorem. In this sense it is unlike Adler [Adl81]
(quoted in [BBKS86]), which uses that the Euler characteristic is the alternat-
ing sum of the number of critical points with a given index. The latter formula
for the Euler characteristic arises from Morse theory and has been discussed in
section 4.3.4. For a mainly numerical study of the density of critical points for
two and three dimensional Gaussian random fields we refer to Gay, Pichon and
Pogosyan [GPP12].

The approach used in [HGIW86] to calculate the expectation value of the
Euler characteristic is also based on the Gauss-Bonnet theorem. In [HGIW86]
space is subdivided using a body centred cubic tessellation, with a length scale
that for now we shall consider fixed.

Figure 6.1: The body centred cubic (BCC) lattice (segment) with a single and all
truncated octahedra indicated.
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Truncated octahedra are the constituents of the tessellation. These trun-
cated octahedrons are included in piecewise linear superlevel sets depending
on whether the values of the Gaussian random fields at the centres are above
some threshold.2 Those truncated octahedra that are included are called posit-
ive, those that are not are called negative.

Figure 6.2: Those trucated octahedra for which the value of the Gaussian ran-
dom fields at its centre lies above the threshold are indicated in red, the others
in blue.

Each vertex on a truncated octahedron is shared between 4 octahedra in the
tessellation. One can calculate the expectation for each of these octahedra to be
positive or negative. This gives 6 different configurations classified as follows:

2 Hamilton et al. [HGIW86] denotes the Gaussian random field by δ and the threshold by δc.
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• All four are positive or negative.

Figure 6.3: Here we indicate an arbitrary vertex on an arbitrary truncated poly-
hedron in the tessellation in black. All truncated octahedra that are adjacent
to this vertex are above the threshold. We have not depicted the complement-
ary configuration where all are below the threshold as it is identical. The angle
deficit is zero.

• One is positive and the others negative or vice versa.

Figure 6.4: One truncated octahedra that is adjacent to this vertex is above the
threshold. The angle deficit is 30◦. We have not depicted complementary con-
figuration.

• Two are positive and two negative in two different configurations.
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Figure 6.5: If two truncated octahedra are above the threshold there are two
possibilities: the ones above the threshold share a hexagon (above) or a square
(below). The angle deficits are −60◦ and −120◦, respectively. For both cases we
have depicted the configuration including and excluding the octahedra below
the threshold (blue if included).

For the latter two configurations one sees that there is an angle deficit on the
‘isodensity surface’ at the vertex. For the second point in our classification this
deficit is positive. For the third point in our classification it is negative.

We can calculate the expectation value for each of the configurations and
therefore the expectation value for the various positive and negative angle de-
ficits. The angle deficit plays the role of the Gaussian curvature on a piecewise
linear surface. Because of this it is possible to determine the Euler Characteristic
of the ‘isodensity surface’, using a piecewise linear version of the Gauss-Bonnet
theorem.

Let us assume that M is a surface in Euclidean space consisting of straight
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triangles. The discrete or piecewise linear version of the Gauss-Bonnet theorem
for M reads:

2πχ(M) =
∑

vertices

Kvertex, (6.2)

where the sum is over all vertices and Kvertex denote the Gaussian curvature at
a vertex. Gaussian curvature at a vertex equals the angle deficit at the vertex

Kvertex = 2π −
∑

adjacent

φadjacent,

where the sum indicates the sum over all angle adjacent to the vertex.
The discrete Gauss-Bonnet theorem (6.2) is not difficult to prove. In the proof

one uses:

• The sum of the angles of a triangle is π.

• The Euler characteristic χ satisfies χ = v − e + t, with v the number of
vertices, e the number of edges and t the number of triangles.

• Each triangle has three edges and each edge is shared between two tri-
angles so that 3t = 2e.

We now have ∑
vertices

Kvertex =
∑

vertices

2π −
∑

adjacent

φadjacent

= 2πv −
∑

triangles

∑
angle

φangle

= 2πv − πt
= 2πv − 3πt+ 2πt

= 2πv − 2πe+ 2πt

= 2πχ.

To approximate the isodensity surface of the tessellation needs to become
finer, this means that we decrease the length scale which we assumed fixed.
All contributions of positive and negative angle deficits diverge as the scale de-
creases, because of the choice of a tessellation. These divergences cancel if ad-
ded to give the Euler Characteristic. The cancellation is a consequence of the
Gauss-Bonnet theorem. Hamilton et al. [HGIW86] argues heuristically that this
is natural. The approach presented in this chapter does not need to introduce
divergent functions, but treats the smooth case.
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The philosophy of Chapters 12 and 13 of [AT07] has also influenced this
chapter. In Chapters 12 and 13 a sufficiently smooth manifold is endowed with
the metric:

gt(Xt, Yt) = E((Xtf) · (Ytf))

with f a Gaussian random field. The metric induced by the Gaussian random
field can be used to give expressions for the mean Euler characteristic in terms
of Lipschitz-Killing curvatures of this metric. This is the topic of Section 12.4 of
[AT07]. In Chapter 13 [AT07] of an ingenious version of Hadwiger’s formula
is developed in the context of a manifold with a metric induced by a Gaussian
random field. For a discussion of Hadwiger’s formula we refer to Section 4.3.5.

Summary and contribution

To summarise; many expressions for the mean value of the Euler character-
istic are available in various contexts, using either Morse theoretical arguments
[Adl81, BBKS86], the Gauss-Bonnet theorem [HGIW86] or a combination of both
and the Lipschitz-Killing curvature [AT07]. The use of the positive part of the
Gaussian curvature as a bound on the number of connected components on the
super level sets of a Gaussian Random field is new.

The main result is given in Figure 6.7. In this figure we give both our result
for the Euler characteristic of the level set as well as the expectation value for the
positive part of the Gaussian curvature. From which we are able to conclude the
expectation value of the positive part of the Gaussian curvature does not yield
practicable bounds on the number of connected components.



268 CHAPTER 6. BOUNDS ON BETTI NUMBERS IN THREE DIMENSIONS

6.1 Preliminaries

In this section we discuss a number of results from the differential geometry
of implicit surfaces, differential topology and some probability density function
the last of which plays a central role in the astrophysical literature on Gaussian
random fields.

6.1.1 Curvature of implicit surfaces

We shall give some classical formulae for the Gaussian and Mean curvatures of
an implicit surface. We shall assume both the surfaces and the function to be
smooth. These results can be found in the survey in the beginning of Chapter 3
of Spivak [Spi75a], Section 4 of Goldman [Gol05] and section 29 of [Kno13].

We consider an implicit surface defined by the equation f(r1, r2, r3) = c,
with c a constant. To begin, following [Gol05], we define the gradient grad(f),
Hessian H(f) and the adjoint of the Hessian Had(f) explicitly:

grad(f) =

 f1

f2

f3


H(f) =

 f11 f12 f13

f12 f22 f23

f13 f23 f33


Had(f) =

 f22f33 − f2
23 f23f13 − f12f33 f12f23 − f22f13

f13f23 − f12f33 f11f33 − f2
13 f12f13 − f11f23

f12f23 − f13f22 f21f13 − f11f23 f11f22 − f2
12

 ,

with fi = ∂rif and fij = ∂ri∂rjf . We used the smoothness of f to interchange
the order of differentiation. With these definitions the Gauss curvature reads

K =
grad(f)tHad(f) grad(f)

| grad(f)|4

and the Mean curvature

KM =
grad(f)tH(f) grad(f)− | grad(f)|2 Tr(H(f))

2| grad(f)|3
.

The principal curvatures k1, k2, the inverses of the maximum and minimum
radii of the osculating circles, can be found using the mean and Gauss curvature

k1, k2 = K ±
√
K2
M −K.
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6.1.2 Convex hulls and Gauss-Bonnet

In this section we review some results from convex geometry.
In the following we consider a smooth positively oriented surface Σ with

a single connected component embedded in R3. The convex hull of the surface
CH(Σ) is by definition convex and therefore its boundary is a topological sphere.
We have given examples of convex hulls in two and three dimensions in figure
6.6. The boundary ∂CH(Σ) is also smooth. This can be seen as follows if x ∈
∂CH(Σ) then there are two possibilities. Either x ∈ Σ or there are at least two
points y1, y2 ∈ Σ so that x lies on the line connecting y1 and y2. If there are
three points such that x lies in the interior of the convex hull of these points the
point x is a planar point in ∂CH(Σ) and the proof would be complete. Should
there be only two points then we consider a neighbourhood of x and see that
∂CH(Σ) is not smooth in a neighbourhood of x the surface Σ is not smooth in a
neighbourhood of y1 or y2. This contradicts our assumption that Σ is smooth.

Figure 6.6: Examples of convex hulls. We have given a two and three dimen-
sional example. We only depict the boundary of the convex hulls. The three
dimensional example was made using the ‘Stanford bunny’ from the Wolfram
example database.
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Due to the Gauss-Bonnet theorem we have∫
∂CH(Σ)

KdA = 4π.

For a discussion of the Gauss-Bonnet theorem we refer to Section 4.3.5. On the
other hand, if for any x ∈ ∂CH(Σ) the Gaussian curvature at x as an element of
CH(Σ) is positive definite, then x ∈ Σ. The proof is straightforward. Suppose
that x does not lie on Σ, then there must be at least two points y1, y2 ∈ Σ so that
x lies on the line connecting y1 and y2. This line is an asymptotic curve3 on the
surface ∂CH(Σ) and therefore has non-positive curvature. Because CH(Σ) is by
definition convex it follows that the curvature should be zero.

We can now combine this observation with the Gauss-Bonnet theorem to
conclude that for each surface Σ of a single connected component∫

Σ

K Θ(K)dAΣ ≥
∫
∂CH(Σ)

KdA∂CH(Σ) = 4π,

where Θ denotes the Heaviside function and dAΣ and dA∂CH(Σ) denote the re-
spective area forms. This immediately implies that if we allow Σ to have mul-
tiple connected components, that then∫

Σ

K Θ(K)dAΣ ≥
∫
∂CH(Σ)

KdA∂CH(Σ) = 4πβ0(Σ).

In this expression β0 denotes the zeroth Betti number, which is the number of
connected components. For a discussion of Betti numbers we refer to Section
4.3. This result can even be strengthened to∫

Σ

K Θ(k1)Θ(k2)dA ≥ 4πβ0(Σ), (6.3)

with k1, k2 the principal curvatures. This result holds because for a convex sur-
face all sectional curvatures are non-negative.

We can take this one step further: Suppose that Σ is itself the boundary of
a full dimensional set S, inducing the orientation on Σ. In this case we are also
able to infer topological bounds from those parts of the Gaussian curvature, for
which the principal curvatures are negative. Let us consider the complement
comp(S) of S. If Sc is a connected component of comp(S) then we can apply
the same reasoning as above except that the normal of Σ is pointing inward into
comp(S). This implies that∫

∂Sc
KΘ(−k1)Θ(−k2)dA ≥ 4π.

3A discussion of asymptotic curves can be found in example [O’N06], [DC76] or [Spi99].
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6.1.3 Expectation values of derivatives for Gaussian random fields

In the following section we give a probability density function that has been
made completely explicit by [BBKS86]. It requires the introduction of a signific-
ant amount of notation in line with that article.

As mentioned in Section 4.2.3, one can combine probability distributions
for the values of a Gaussian random field and its derivatives at a given fixed
location into a single probability density distribution function. This probabil-
ity distribution function is determined by a single correlation matrix. This has
been done explicitly in Appendix A of [BBKS86] for an isotropic field for the
field value and the values of the derivatives of the field up to second order at a
given location. For more extensive probability functions including higher order
terms relating physically to gravity we refer the reader to [vdWB96]. In these
approaches the correlation matrix is even diagonalized and SO(3) symmetry is
used to get rid of the off diagonal terms of the Hessian (the matrix of second
order derivatives), so that the eigenvalues of the Hessian are the relevant vari-
ables.

We follow the so called Rice notation:

ηi = ∂rif ζij = ∂ri∂rjf.

We suppress the coordinate from the notation, that is we write for example ηi
instead of ηi(r), because the field is isotropic, as in Appendix A of [BBKS86].
The value of the field is indicated by ν. We are now able to define σ0, σ1 and σ2

in terms of the correlation functions

〈ff〉 = σ2
0 〈ηiηj〉 =

σ2
1

3
δij

〈fζij〉 =
σ2

1

3
δij 〈ζijζkl〉 =

σ2
2

15
(δijδkl + δikδjl + δilδjk))

〈fηi〉 = 0 〈ηiζjk〉 = 0.

Here we used the 〈 〉 notation instead of E, as discussed in Section 4.2.3. In the
same section we have seen (4.5) that these expectation values can be expressed
in terms of covariance function, and thus the powerspectrum. With σ0, σ1 and
σ2 we may define

γ =
σ2

1

σ2σ0
.

In addition, we assume that the eigenvalues of minus the Hessian (−ζij) are ζ1,
ζ2 and ζ3. The variables that allow diagonalization of the covariance matrix are

σ2x = −(ζ1 + ζ2 + ζ3) σ2y = −1

2
(ζ1 − ζ3) σ2z = −1

2
(ζ1 − 2ζ2 + ζ3) (6.4)
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The joint distribution functions of the variables we have now introduced is

φ(ν, η, x, y, z)dνd3ηdxdydz

=
(15)5/2

32π3

σ3
0

σ3
1(1− γ2)1/2

|2y(y2 − z2)|e−Qdνdxdydz
d3η

σ3
0

, (6.5)

with

Q =
ν2

2
+

(x− γν)2

2(1− γ2)
+

5

2
(3y2 + z2) + 3

η2
1 + η2

2 + η2
3

2σ2
1

,

η a shorthand for the variables η1 η2 and η3 and d3η = dη1dη2dη3. Here we
follow the notation of Appendix A of [BBKS86], where the diagonalization is
discussed in detail.
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6.2 The expectation of the positive part of the Gaus-
sian curvature

For the derivation of the mean value of the Euler characteristic and the mean
value of the positive part of the Gaussian curvature we combine the results dis-
cussed above, in Section 6.1. As discussed in Section 6.1.2, the positive part of
the Gaussian curvature provides bounds on the number of connected compon-
ents in a three dimensional setting. These results are based on a theorem from
distribution theory, Theorem 6.1.5 of [Hör90]:

Theorem 6.2.1 If f is a real valued C∞ function on a subset of Rn and if

| grad(f)| =

∑
j

|∂jf |2
1/2

6= 0,

when f = 0, then

f∗δD = dVolΣ/| grad(f)|,

where dVolΣ is the Euclidean surface measure on the hypersurface

Σ = {x | f(x) = 0},

δD denotes the Dirac delta distribution and f∗ denotes the pullback, which
roughly speaking can interpreted by f∗δD(x) = δD(f(x)).

With this result and the Gauss-Bonnet theorem (4.10) we can write

〈χ{f=0|C}〉 =

〈
1

2π

∫
f−1(0)|C

KdA

〉
+ t(∂C)

=

〈
1

2π

∫
C

| grad(f)|K(f)f∗δDdVol
〉

+ t(∂C)

=
1

2π

∫
C

〈| grad(f)|K(f)f∗δD〉dVol + t(∂C).

Here we have denoted the surface defined by f = 0 restricted to a compact set
C as explicitly as possible. The t(∂C) refers to terms involving the boundary of
C.

We are interested in the expectation value of the Euler characteristic χ per
unit volume, so we may ignore the boundary terms, because their contribution
is proportional to the area. This deserves a little explanation, if one wants to
understand it at a non-heuristic level. For the explanation we need three results:
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• The Gauss-Bonnet theorem for surfaces with boundary4∫
Σ

KdA+

∫
∂Σ

kgds = 2πχ(M), (6.6)

where kg denotes the geodesic curvature of a curve.5

• The Euler characteristic obeys the inclusion-exclusion principle:

χ(M ∪N) = χ(M) + χ(N)− χ(M ∩N),

with M and N two surfaces. This statement is true more generally, but we
do not need this here.

• The circle and real line are the only one-dimensional topological manifolds
of which the first is compact and the second not.

Using the same arguments as in the fully two dimensional case one can find
an expectation value for kg . To find an expectation value for the second term
in (6.6) we need to integrate over the boundary ∂C, so that the contribution is
proportional to the area, that is ∝ r2, instead of proportional to the volume,
that is ∝ r3, with r the typical scale. If the total absolute Gaussian curvature of
∂C ⊂ R3 is constant with respect to the typical scale r, we can even see that up
to leading order in r

1

2π

∫
C

〈| grad(f)|K(f)f∗δD〉dVol

gives

〈χ(∂{x ∈ C|f(x) ≥ 0})〉.

We have that

∂{x ∈ C|f(x) ≥ 0} = f−1(0)|C ∪ {x ∈ ∂C|f(x) ≥ 0}.

Using the inclusion-exclusion principle we see that

χ(∂{x ∈ C|f(x) ≥ 0}) = χ(f−1(0)|C) + χ({x ∈ ∂C|f(x) ≥ 0})
− χ(f−1(0)|C ∩ {x ∈ ∂C|f(x) ≥ 0}).

4The Gauss-Bonnet theorem for surfaces with boundary can be found in for example [O’N06] as
Theorem 7.5.

5The proof is a little more complicated than the one discussed in Section 4.3.5, because we need
to prove the local Gauss-Bonnet formula (4.14) with non-geodesic boundaries.
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Because f−1(0)|C ∩{x ∈ ∂C|f(x) ≥ 0} is assumed to be a smooth 1-dimensional
manifold, see also Remark 6.2.3 below, and the only 1-dimensional compact
manifolds are circles whose Euler characteristic is zero we in fact have:

χ(∂{x ∈ C|f(x) ≥ 0}) = χ(f−1(0)|C) + χ({x ∈ ∂C|f(x) ≥ 0}).

Applying the Gauss-Bonnet theorem with boundary on both terms yields

χ(∂{x ∈ C|f(x) ≥ 0}) =
1

2π

∫
f−1(0)|C

KdAf−1(0)|C

+
1

2π

∫
∂(f−1(0)|C)

kgdsf−1(0)|C

+
1

2π

∫
{x∈∂C|f(x)≥0}

KdA{x∈∂C|f(x)≥0}

+
1

2π

∫
{x∈∂C|f(x)=0}

kgds{x∈∂C|f(x)≥0}, (6.7)

where we have made the different domains and forms as explicit as possible.
Note that although the domains of integration for the second and fourth term
in equation (6.7) are equal, they differ because the geodesic curvature is taken
with respect to f−1(0) and ∂C respectively. However, both of these terms can
be argued to be proportional to the area of ∂C, as we did for one of them above.
The third term is bounded from above by the total absolute Gaussian curvature
of ∂C ⊂ R3. If C is a ball it is even bounded by 2. This means that the first term
in (6.7) gives the leading contribution.

A discussion tackling the boundary from a Morse theoretical perspective can
be found in Section 6.2 of [AT07].

Having discussed the boundary terms, which we shall ignore, we can now
focus on

KE = 〈| grad(f)|K(f)f∗δD〉, (6.8)

we shall not go into the normalization.6 As a result of the bounds on the number
of connected components, see Section 6.1.2, we are also interested in

KE
+ = 〈| grad(f)|Θ(K(f))K(f)f∗δD〉, (6.9)

where Θ denotes the Heaviside function. Using the probability density function
we reviewed in Section 6.1.3 and the formulae for the Gaussian curvature from
Section 6.1.1 we can make KE and KE

+ explicit. Note that because the Hessian

6 We avoid this issue because in [HGIW86] there is a different normalization from that of [Adl81,
BBKS86, AT07].
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is diagonalized in Section 6.1.3, or to be more precise the probability density
function is given in terms of the eigenvalues ζi of minus the Hessian (−ζij), the
expressions for the Gaussian curvature simplify significantly:

K(η1, η2, η3, ζ1, ζ2, ζ3) =
ζ1ζ2η

2
3 + ζ1ζ3η

2
2 + ζ2ζ3η

2
1

(η2
1 + η2

2 + η2
3)

2 .

If written in terms of the variables x, y and z, see (6.4), the Gaussian curvature
reads

K(η1, η2, η3, x, y, z) =
(
9(η2

1 + η2
2 + η2

3)2
)−1 ·

(σ2
2(x2(η2

1 + η2
2 + η2

3)

− x(3y(η2
1 − η2

3) + z(η2
1 − 2η2

2 + η2
3))

− 9η2
2y

2 + 6yz(η2
1 − η2

3) + z2(−2η2
1 + η2

2 − 2η2
3))).

The mean of the Gaussian curvature KE, see (6.8), now can be expressed as

KE =

∫
R6

√
η2

1 + η2
2 + η2

3K(η1, η2, η3, x, y, z)φ(ν, η, x, y, z)dη1dη2dη3dxdydz,

(6.10)

with φ(ν, η, x, y, z) as defined in (6.5). This naturally also implies that the mean
of the positive part of the Gaussian curvature KE

+, see(6.9) can be expressed as

KE
+ =

∫
R6

√
η2

1 + η2
2 + η2

3K(η1, η2, η3, x, y, z)Θ(K(η1, η2, η3, x, y, z))·

φ(ν, η, x, y, z)dη1dη2dη3dxdydz, (6.11)

We have evaluated both integrals numerically using Mathematica with σ1 =
σ2 = 1 and σ0 = 2, the result of which is depicted in Figure 6.7. Mathematica
reported error estimates of the order 10−6, for both. In Figure 6.7 we have also
added the normalized7 version of the analytic expression for the mean Euler
characteristic, that is

χ ∼ (ν2 − 1)e−ν
2/2,

see [Adl81, BBKS86]. By comparing the analytic expression and the numerical
results we find good agreement.

From figure 6.7 we are able to conclude that the bounds on the number of
components arising from (6.9) do not contribute to our understanding. This can

7To avoid dependence on any convention6 we have normalized using the ν = 0 value.
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-4 -2 2 4

-0.01
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0.02

0.03

Figure 6.7: The numerical values for expectation value of Euler characteristic
(6.10) (blue dots) and the positive part of the Gaussian curvature (6.9) (red dots)
as functions of the threshold ν. The normalized version of the analytic predic-
tion for the Euler characteristic χ, is added as a blue solid line.

be seen in two different ways. The first is numerical in nature; the bounds do not
compare well to the numerical result for the number of connected component,
see [PPC+13], inside the interval [−3, 3]. One at first glance may think that out-
side the interval [−3, 3] information is gained, but the Morse inequalities already
sufficed to conclude that the Euler Characteristic is dominated by the number of
connected components. Which leads us to our second more theoretical point, the
bounds from KE

+ are in fact comparable to the bounds from the Morse inequal-
ities. For an extensive discussion and numerical results on the critical points of
a Gaussian random field in three dimensions we refer the reader to Gay, Pichon
and Pogosyan [GPP12].

Tighter bounds, see (6.3), could be found using

〈| grad(f)|Θ(k1(f))Θ(k2(f))K(f)f∗δD〉, (6.12)

with k1 and k2 the principal curvatures. However preliminary numerical results
indicate that little will be gained by this.

We conclude our discussion with a number of remarks:
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Remark 6.2.2 It would be interesting to see whether it would be possible to gain
tighter results after smoothing. By smoothing we mean a convolution with some
function, for example a Gaussian function, so that the values of the Gaussian
random field are ‘averaged’ in a small neighbourhood. It is possible that a sig-
nificant part of the contributions to the positive part of the Gaussian curvature
are very local in nature and thus would be easily removed by such a smoothing.

Remark 6.2.3 We have not provided regularity results and simply assume that
the isosurfaces of a Gaussian random field are sufficiently smooth (with probab-
ility one). By Sard’s lemma8 and the implicit function theorem it would suffice
for f to be a smooth Morse function to have the isosurfaces are smooth for al-
most all levels. For informative discussions of Sard’s Lemma and the implicit
function theorem we refer to [Mil65b] and [DK04] respectively. Conditions for a
realisation of a Gaussian random field to be smooth9 and Morse with probabil-
ity one are discussed in Sections 1.4.2 and 11.3 of [AT07] respectively. It would
be interesting to know if the conditions given in the two sections are in fact ne-
cessary for the level sets to be smooth.

Remark 6.2.4 Note that under such regularity assumptions one could also de-
rive expectation values of a whole range of geometric quantities on isodensity
surfaces. These geometric quantities need to behave reasonably on the bound-
ary of compact sets.

8This result is also formulated in terms of a measure, that is for all values of f except a set of
measure zero f does not contain a critical point. This measure theoretical result should not be
confused with the probability that a realisation is smooth.

9We also touched upon differentiability in Section 4.2. However necessary and sufficient condi-
tions are given in [AT07] for a realisation to be Ck on a compactum with probability one.
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Summary

This summary and the thesis is subdivided into two parts namely:

• Extrinsic and intrinsic triangulations

• Topology and the structure in the universe

The two parts reflect the nature of the project that gave rise to this thesis.

Extrinsic and intrinsic triangulations

To be able to sketch the context in which this research took place we introduce
manifolds, triangulations and embeddings.

Surfaces

The reader will be familiar with surfaces that lie in three dimensional Euclidean
space. The (boundary of) any every day object can be thought of as a surface. An
interesting example of this is the surface of the Earth. It is interesting because we
are familiar with two ways of picturing it. The first one is as lying in Euclidean
space, here we think of a picture from space. The second way is by means of
an atlas,1 see Figure 1. A chart in an atlas is the result of a mapping from the
surface of the earth to a flat piece of paper.

Let us now think of a more general surface. If a surface is not flat, which
the surface of the Earth for example is not, some of the geometry gets lost as
one maps a piece of the earth’s surface to a flat piece of paper. The geometry of
the original surface can be ‘stored’ in an abstract method using what is called a
Riemannian metric.

If you have a chart with a Riemannian metric, then we can put our finger
at an arbitrary point on the chart. We can then move our finger a bit in an

1For the younger reader; an atlas is like a printed version of Google Earth.

281



282 SUMMARY

Figure 1: Left: The Earth as seen from space. Image reconstructed from data
from NASA’s Terra and GOES satellites by Reto Stöckli, Nazmi El Saleous, and
Marit Jentoft-Nilsen.
Right: an image from the Blaeu atlas.

arbitrary direction on the chart. The Riemannian metric tells us what distance
on the surface corresponds to the movement of our finger, see Figure 2. The
Riemannian metric also ‘stores’ angles. One can use charts and the Riemannian
metric to define surfaces, without the a priori need for a surfaces in Euclidean
space.

It is important to note that any chart distorts the geometry. The Mercator pro-
jection for example preserves angles, but distorts area and length, while Peters
projection preserves area, but distorts angles and lengths. The Riemannian met-
ric’s ‘memory’ is however perfect in that the geometry of the surface is com-
pletely encapsulated by it.

The Riemannian metric does not give us a unique way to reconstruct the
way a surface is embedded in the Euclidean space. Let us make this clear by an
example. Suppose we take a sheet of paper, lay it in front of us and draw a 5
centimetre long line on a sheet of paper and another 5 centimetre long line that
intersects the former in the middle at an angle of 45◦. We can pick the sheet of
paper up and bend it as if rolling it into a cylinder. This does not change the
length of the lines nor the angle they make.

Both the flat sheet of paper in front of us and the bended version are ‘em-
beddings’ of the sheet of paper. To put it more abstractly the sheet of paper in
front of us serves as a chart of both the bended piece we are holding and the
piece itself, with the Riemannian metric given by the usual distances on a sheet
of paper.

Because the Riemannian metric does not ‘care’ about the embedding it is
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Figure 2: Above: a surface in Euclidean space. Below: A chart of the surface
(found by vertical projection) with distances along the grid lines indicated.
A Riemannian metric can be thought of as an infinitely fine grid on such a map,
with distances indicated, as well as information on the angles.
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called intrinsic.
We have now described the two ways in which we view surfaces namely:

• Lying in Euclidean space. This is called an embedded surface. The space
that surrounds the surface is called the ambient space.

• As given by a number of charts in an atlas, with a Riemannian metric.

Manifolds

Surfaces can be generalized to higher dimensional objects called manifolds, us-
ing the concept of charts in an atlas. The charts are in this setting segments of
higher dimensional (Euclidean) space. The atlas of a three dimensional mani-
fold, for example, would consist of a number of three dimensional ‘boxes’ that
we would also call charts.

We can also generalize surfaces to manifolds by considering higher dimen-
sional objects in large dimensional Euclidean space. For example, the two unit
dimensional sphere in Euclidean space is given by the equation

x2 + y2 + z2 = 1.

We can define a three dimensional unit sphere in four dimensions by the equa-
tion

x2 + y2 + z2 + w2 = 1. (1)

Thanks to a result by Nash2 the two ways to generalize a surface to a mani-
fold are equivalent.

Triangles

Triangles are some of the elementary building blocks used in geometry. These
building blocks can be generalized to higher dimensional simplices. A three
dimensional simplex, for example, is a tetrahedron, see Figure 3.

The corners of a simplex are called vertices, lines connecting the vertices
edges and the higher dimensional constituents faces.

We are interested in breaking up surfaces and manifolds into these element-
ary building blocks. This is called triangulating. We have considered two differ-
ent ways in which we can triangulate:

2The recently diseased mathematician, known to the general audience because of the biographic
film ‘A beautiful mind’.
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Figure 3: An elementary building block in three dimensions: a tetrahedron.

• We can view the surface as embedded in Euclidean space. In this setting
the simplices are straight in the ambient space. We call it an extrinsic trian-
gulation.

• We can view the surface as an abstract Riemannian manifold, that is without
embedding. In this setting simplices are ‘painted’ on the surface and de-
termined by the Riemannian metric. This is what we call an intrinsic trian-
gulation.

Extrinsic triangulations

Most people that have been to the cinema in recent years, or own a television or
a computer are familiar with extrinsic triangulations, because many computer
images are build up from tiny (straight) triangles.

Figure 4: Left: an ellipsoid. Right: an extrinsic triangulation of the ellipsoid.
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In our setting we shall assume that the surface to be captured on a screen is
known and we want to approximate this surface by an extrinsic triangulation.
One naturally would like to have realistic images. This means that the triangu-
lation needs to be close to the given surface. The closeness of two surfaces will
be given in term of the so-called Hausdorff distance dH . The Hausdorff distance
is a ‘worst case scenario’ distance between surfaces; it equals the maximum dis-
tance between the surface and the triangulation.

On the other hand we want to be efficient, by which we mean that we want
to use as few vertices as possible. An optimal triangulation with m vertices is
an extrinsic triangulation with m vertices such that dH is as small as possible. It
is clear that if we allow for more vertices we can achieve greater accuracy. We
would like to think of the number of vertices as large. In the 1950s Fejes Tóth
therefore suggested to look at

1

A
= lim
m→∞

dHm, (2)

here m denotes the number of vertices, dH is the Haussdorff distance (the meas-
ure for the accuracy of our approximation) andA is called the Approximierbarkeit
or approximation parameter.

Expressions for the limit (2) and higher dimensional generalization of it are
by now well understood if the surface (or manifold) is what we call convex. A
surface is (locally) convex, if it is (locally) egg shaped, see Figure 5. A surface is
(locally) non-convex if it is (locally) saddle shaped, see Figure 5.

Figure 5: Left: An egg shaped convex surface. Right: A non-convex saddle.

The vertices of the triangulation can:

• lie on the surface (the triangulation of a convex surface is in this case called
an inscribed polytope)

• be distributed such that the triangles touch the surface somewhere in the
middle of the triangle (This is only possible if the surface is convex, the
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triangulation of the convex surface is in this case called an circumscribed
polytope)

• in general position, that is no constraint is given on the position of the
vertices.

Our main results on extrinsic triangulations are as follows:

• We compare limm→∞ dHm for optimal triangulations of convex surfaces
with the vertices on the surface to limm→∞ dHm for optimal triangulations
of convex surfaces whose vertices are in general position. We find that they
differ by a factor 2.

• We show that generally limm→∞ dHm depends on the embedding of the
surface. To be precise we construct a sequence of embeddingsEk such that
limm→∞ dHm for these embeddings increases roughly linearly with k. By
a sequence of embeddings we mean that for each k we give a way for this
Riemannian surface to be embedded in Euclidean space. Let us give a two
dimensional example of such a sequence of embeddings. Suppose that we
draw a number of loops, where each of the loops has the same length but
are more and more curly. We have given an example in Figure 6. Our
drawings are embeddings of the circle.

Figure 6: Elements in a sequence of embeddings of the circle in the plane.

• We study limm→∞ dHm for non-convex surfaces. This study involves the
falsification of a claim by Fejes Tóth that limm→∞ dHm is zero for the
one-sheeted hyperboloid. We find an expression for a lower bound on
limm→∞ dHm for a large class of surfaces in three dimensional space, that
can be attained. Finally we give an outline for a method to determine
limm→∞ dHm for all surfaces in three dimensional space.

Intrinsic triangulations

For extrinsic triangulations we mainly focused on two dimensional surfaces.
Our discussion of intrinsic triangles will consider arbitrary dimension. The fig-
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Figure 7: An intrinsic triangle on a
surface.

Figure 8: The two dimensional
standard simplex.

ures we draw are however necessarily two dimensional, see for example Figure
7.

In Chapter 3 we introduce intrinsic simplices (triangles) and intrinsic trian-
gulations. An intrinsic simplex is completely determined by the Riemannian
structure on the manifold. The construction is based on so called Karcher means
or Riemannian centres of mass. An intrinsic simplex is called non-degenerate if
there is a ‘nice’ mapping from the standard simplex in Euclidean space to the
intrinsic simplex. The two dimensional standard simplex is depicted in Figure
8. By ‘nice’ we mean that the map is one-to-one and the map is continuous in
both directions. A mapping between a set A and a set B is called one-to-one if
every point inA is mapped to a unique point inB and for every point inB there
is a point in A that maps to it. A map is continuous if it has no sudden jumps.

The construction of intrinsic simplices has been studied before. We are the
first to have treated the question of non-degeneracy in more than two dimen-
sions, where the question is non-trivial.

We have also studied how one can subdivide a manifold into such intrinsic
triangles, that is triangulate the manifold. Triangulations of manifolds were a
topic of intense study from 1930 to 1960. The results gained in this period were
based on the use of charts or embeddings. Because there is a freedom of choice
in embeddings and charts, these classical results are not intrinsic.

The triangulations we consider are intrinsic, moreover we give explicit con-
ditions on the shape and size of the triangles for these triangulations to exist.
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Topology and the structure in the universe

The history of the universe

The history of our universe started with the big bang. In the beginning the uni-
verse was very hot and dense. After the big bang the universe immediately
started to expand. As the universe expanded it also cooled down. This is com-
parable to bottle of deodorant that cools down if you empty it. However unlike
a bottle of deodorant the universe does not have a nozzle, instead the volume
increases as the universe evolves by the laws of General Relativity. Eventually
the universe cooled down enough for it to become transparent.

The Cosmic Microwave Background

Before the universe became transparent is was very hot and glowed. Saying
that the universe becomes transparent means (at quantum scale) that the light
particles (photons) start to travel freely through the universe. Today we can still
see the afterglow of the universe before it became transparent. This afterglow
is called the Cosmic Microwave Background and has been measured, most re-
cently by the Planck satellite, see Figure 9.

Figure 9: The Cosmic Microwave Background, as measured by Planck, after the
removal of the foreground and artefacts. The deviations from the average lie
between −500µK (dark blue) and 500µK (dark red).

The temperature in the entire universe was almost the same when the uni-
verse became transparent. The deviation from the average temperature in the
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Cosmic Microwave Background are well approximated by a so-called Gaussian
random field. Cosmologists and theoretical physicists are interested in finding
small aberrations from the predictions by Gaussian random fields in the Cosmic
Microwave Background. These aberrations would be a unique source of inform-
ation on the very early universe and could give insight in fundamental theories
of nature.

Topology

Topology gives us tools that can help to detect these aberrations. Topology is
the branch of mathematics concerned with the properties of spaces that are pre-
served under continuous deformations such as stretching and bending, but not
tearing.

The tools require some explanation. We shall concentrate on the surface of
equal temperature in the universe, at the time when the universe became trans-
parent. This can be compared with lines of equal pressure studied by meteor-
ologists and featured in almost every weather report, see for example Figure
10.

Figure 10: The weather map for D-Day, with isobars indicated. Courtesy of the
Meteorological office, Air ministry, United Kingdom.
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The surface of equal temperature can have multiple connected components.
Just like there may be several high pressure areas each enclosed by lines of equal
pressure. The number of connected components is a topological invariant, be-
cause it is preserved under continuous deformations.

Another topological invariant is the Euler characteristic χ. The Euler charac-
teristic of a surface with a single connected component is given by

χ = 2− 2g,

with g the number of holes. See Figure 11 for an illustration. The Euler charac-
teristic of a surface with multiple connected components is the sum of the Euler
characteristic for the individual parts.

The Euler characteristic can be found by using the Gauss-Bonnet theorem.
The Gauss-Bonnet theorem says that the integral of a local geometric property
called the Gauss curvature equals the Euler characteristic. This is remarkable
because it relates local geometry to the global topological properties of the sur-
face.

Figure 11: Surfaces with zero, one, two, three and four holes and therefore Euler
characteristic 2, 0, −2, −4 and −6.

Numerical studies

The topological invariants of the surfaces of equal temperature in the universe
help to characterize the deviations from the average and thus detect the aberra-
tions from the Gaussian random field. These studies are at the moment being
carried out by (among others) cosmologists, using numerical methods.
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Numerical studies are absolutely necessary

In this thesis we prove that the result of the Gauss-Bonnet theorem is unique.
By this we mean that the Euler characteristic is the only topological invariant
that can be found by integrating a local geometric quantity. This implies that
we really need numerical methods to study the topological invariants of sur-
faces of equal temperature in the universe. Even stronger, we can in general not
even hope to find an estimate (based on the local geometry) for the number of
connected components of the surfaces of equal temperature in the universe.



Samenvatting

Zowel dit proefschrift als deze samenvatting vallen uiteen in twee delen, name-
lijk:

• Extrinsieke en intrinsieke triangulaties

• Topologie en de structuur in het heelal.

Deze onderverdeling is het gevolg van de aard van het project waarbinnen het
onderzoek heeft plaatsgevonden.

Extrinsieke en intrinsieke triangulaties

Om ons onderzoek te kunnen beschrijven introduceren wij variëteiten, triangu-
laties en inbeddingen.

Oppervlakken

De lezer is ongetwijfeld bekend met oppervlakken die in de drie dimensionale
Euclidische ruimte liggen. De (randen van) alledaagse oppervlakken kunnen als
dusdanig beschouwd worden. Een voorbeeld van zo’n oppervlak is het aardop-
pervlak. Dit oppervlak neemt een bijzondere plaats in omdat wij gewend zijn
het op twee verschillende manieren te beschouwen: Ten eerste kunnen wij de
aarde zien als oppervlak in de Euclidische ruimte, denk aan een foto van de
aarde genomen vanuit de ruimte. Ten tweede bestuderen wij de aarde door
middel van een atlas1, zie Figuur 1. Een kaart is een afbeelding van het aardop-
pervlak op een vlak stuk papier.

Laat ons nu een willekeurig oppervlak beschouwen. Als een oppervlak niet
plat is, zoals het aardoppervlak dat ook niet is, dan gaat meetkundige informa-
tie verloren in de afbeelding van het oppervlak naar het platte stuk papier, de

1Voor de jongere lezer; een atlas is grof gezegd een geprinte versie van Google Earth.
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Figuur 1: Links: De aarde zoals gezien vanuit de ruimte. Beeld samengesteld uit
data van NASA’s Terra en GOES satellieten door Reto Stöckli, Nazmi El Saleous,
en Marit Jentoft-Nilsen.
Rechts: een kaart uit de Blaeu atlas.

kaart. De meetkunde van het oorspronkelijke oppervlak kan echter opgeslagen
worden met behulp van de Riemannse metriek.

Als je een vinger op een kaart plaatst waarop een Riemannse metriek gede-
finieerd is en vervolgens je vinger in willekeurige richting beweegt, dan vertelt
de Riemannse metriek met welke afstand op het oppervlak de beweging van je
vinger overeenkomt, zie Figuur 2. De Riemannse metriek ‘onthoudt’ ook hoe-
ken.

Je kunt oppervlakken definiëren met behulp van kaarten en de Riemannse
metriek zonder uit te gaan van een oppervlak in Euclidische ruimte.

Zoals bekend verstoort iedere platte kaart van een stuk aaroppervlak de
meetkunde van de aardbol. De Mercator projectie, bijvoorbeeld, behoudt hoe-
ken, maar oppervlakten en lengten worden niet correct weergegeven. Dit in
tegenstelling tot de Peters projectie, die oppervlak behoudend is, maar hoeken
en afstanden verstoort. Het ‘geheugen’ van de Riemannse metriek is echter per-
fect, waarmee wij bedoelen dat alle meetkunde hiermee wordt vastgelegd, zij
het op een abstracte manier.

De Riemannse metriek geeft ons echter geen unieke methode waarmee wij
een oppervlak in de Euclidische ruimte kunnen construeren die door deze me-
triek beschreven wordt. Wij willen dit illustreren met behulp van een voorbeeld.
Stel wij nemen een vel papier en tekenen hierop twee lijnen van 5 centimeter
ieder, die elkaar in het midden snijden onder een hoek van 45◦. Wij kunnen
nu het vel oppakken en buigen alsof wij het tot een cilinder willen rollen. Dit
beı̈nvloedt de afstanden en de hoeken op het papier niet.
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Figuur 2: Boven: Een oppervlak in de Euclidische ruimte. Beneden: Een kaart
van het oppervlak (zoals gevonden door verticale projectie) met daarin afstan-
den langs de rasterlijnen aangegeven.
Een Riemannse metriek kan beschouwd worden als een oneindig fijne versie
van zo’n raster, waarbij de afstanden zijn aangegeven, in combinatie met infor-
matie over de hoeken.
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Zowel het platte vel papier als de gebogen versie zijn inbeddingen van het
vel papier in de ruimte. Anders gezegd het vlakke vel papier dient als kaart
voor zowel zichzelf als de gebogen versie, met de gebruikelijke afstanden.

Omdat de Riemannse metriek onafhankelijk is van de inbedding wordt hij
intrinsiek genoemd.

Samenvattend beschouwen wij oppervlakken dus op twee verschillende wij-
zen:

• Liggend in de Euclidische ruimte. Dit wordt een ingebed oppervlak ge-
noemd. De ruimte, die het oppervlak bevat, heet de omgevingsruimte.

• Gegeven door middel van kaarten en een Riemannse metriek.

Variëteiten

Oppervlakken kunnen met behulp van kaarten gegeneraliseerd worden tot ho-
ger dimensionale objecten die variëteiten worden genoemd. De kaarten in dit
voorbeeld zijn stukken uit hoger dimensionale ruimte. De atlas van een drie di-
mensionale variëteit bestaat bijvoorbeeld uit drie-dimensionale ‘dozen’ die wij
ook kaarten noemen.

Tevens kunnen zij oppervlakken generaliseren door hoger dimensionale ob-
jecten in Euclidische ruimte van nog hogere dimensie te beschouwen. Bijvoor-
beeld, de twee dimensionale sfeer in drie dimensionale Euclidische ruimte wordt
beschreven door de vergelijking

x2 + y2 + z2 = 1.

Op dezelfde wijze kunnen wij een drie dimensionale sfeer in vier dimensionale
Euclidische ruimte beschrijven:

x2 + y2 + z2 + w2 = 1. (1)

Dankzij een resultaat van Nash2 weten wij dat beide veralgemeniseringen
van oppervlakken naar variëteiten equivalent zijn.

Driehoeken

Driehoeken zijn enkele van de elementaire bouwstenen die in de meetkunde
worden gebruikt. Deze bouwstenen kunnen gegeneraliseerd worden naar sim-
plices. Een drie dimensionale simplex, bijvoorbeeld, is een tetraëder zie Figuur
3.

2De recentelijk overleden wiskundige, bekend bij het grote publiek dankzij de film ‘A beautiful
mind’.
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Figuur 3: Een drie-dimensionale elementaire bouwsteen: een tetraëder.

De hoekpunten van een simplex worden vertices genoemd, de lijnen die de
vertices verbinden zijden en de hoger dimensionale onderdelen facetten.

Wij zijn geı̈nteresseerd in het opdelen van oppervlakken en variëteiten in
deze elementaire bouwstenen. Dit opdelen wordt trianguleren genoemd. Wij
hebben triangulaties op twee verschillende manieren opgevat:

• In het eerste geval gaan wij uit van een oppervlak ingebed in de Eucli-
dische ruimte. In deze context zijn de simplices recht in de Euclidische
omgevingsruimte. Wij noemen dit een extrinsieke triangulatie.

• In het tweede geval beschouwen wij een oppervlak als een abstracte Rie-
mannse variëteit, dat wil zeggen zonder omliggende ruimte. In deze con-
text zijn de simplices op het oppervlak ‘geschilderd’ op een wijze bepaald
door de Riemannse metriek. Dit is wat wij een intrinsieke triangulatie noe-
men.

Extrinsieke triangulaties

Diegenen die de afgelopen jaren in een bioscoop zijn geweest, of een werkende
televisie of een computer hebben gezien, zijn bekend met extrinsieke triangula-
ties. Dit komt omdat veel van de beelden die met behulp van een computer zijn
gegenereerd zijn opgebouwd uit kleine (rechte platte) driehoeken.

Wij zullen in deze context aannemen dat het oppervlak gegeven is en dat
wij dit oppervlak door een extrinsieke triangulatie benaderen. Wij willen graag
nauwkeurige computeranimaties hebben. Dit betekent dat de triangulatie dicht-
bij het oppervlak moet liggen. Dichtbij wordt hier geı̈nterpreteerd in termen van
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Figuur 4: Links: een ellipsoı̈de. Rechts: Een extrinsieke triangulatie van deze
ellipsoı̈de

de Hausdorff afstand dH . De Hausdorff afstand gaat uit van de slechtst moge-
lijke optie, het is de grootst mogelijke afstand tussen punten op het oppervlak
en de triangulatie.

Tevens willen wij efficiënt zijn, waarmee wij bedoelen dat wij zo min mo-
gelijk vertices gebruiken. Een optimale triangulatie met m vertices is een ex-
trinsieke triangulatie met m vertices zodanig dat dH zo klein mogelijk is. Het
is duidelijk dat als wij meer vertices toelaten, dat dan de benadering preciezer
kan. Wij zullen er ook vanuit gaan dat het aantal vertices groot is. In de jaren
vijftig van de vorige eeuw heeft Fejes Tóth daarom voorgesteld om

1

A
= lim
m→∞

dHm, (2)

te beschouwen, hier ism het aantal vertices. Awordt de Approximierbarkeit of de
approximatie parameter genoemd.

Uitdrukkingen voor de limiet (2) en zijn hoger dimensionale generalisaties
zijn bekend als het oppervlak (of de variëteit) convex is. Een oppervlak is (lo-
kaal) convex, als het (lokaal) eivormig is, zie Figuur 5.

Verder willen wij een onderscheid aanbrengen gebaseerd op de posities van
de vertices die wij toestaan. De vertices van een triangulatie kunnen:

• op het oppervlak liggen (indien het oppervlak convex is wordt er hier vaak
gesproken van een ingeschreven polytoop)

• zo verdeeld zijn dat de simplices aan het oppervlak raken (Dit is alleen
mogelijk als het oppervlak convex is, in dit geval wordt er gesproken van
een omgeschreven polytoop)
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Figuur 5: Links: een eivormig (convex) oppervlak. Rechts: een (niet-convex)
zadel.

• in algemene positie innemen, dat wil zeggen dat er geen eisen worden
opgelegd.

De voornaamste resultaten die wij hebben geboekt aangaande extrinsieke
resultaten zijn:

• Wij vergelijken limm→∞ dHm voor optimale triangulaties van convexe op-
pervlakken waarbij wij eisen dat de vertices op het oppervlak liggen met
limm→∞ dHm voor optimale triangulaties van convexe oppervlakken waar-
bij wij geen eis opleggen aan de positie van de vertices. Het verschil blijkt
een factor 2 te zijn.

• Wij tonen aan dat in het algemeen limm→∞ dHm afhankelijk is van de in-
bedding van het oppervlak. Om precies te zijn, construeren wij een serie
van inbeddingen Ek zodat limm→∞ dHm grofweg lineair is met k. Met
een serie van inbeddingen bedoelen wij dat voor elke k een inbedding ge-
ven van het Riemannse oppervlak in een hoger dimensionale Euclidische
ruimte.

Figuur 6: De elementen in een serie inbeddingen van de cirkel in het twee di-
mensionale vlak.
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Laat ons een twee dimensionaal voorbeeld geven van zo’n serie van in-
beddingen. Stel dat wij een aantal lussen tekenen, die zichzelf niet door-
snijden, allen de zelfde lengte hebben, maar steeds golvender worden, zie
Figuur 6. Deze tekeningen zijn inbeddingen van de cirkel.

• Wij bestuderen limm→∞ dHm voor niet convexe oppervlakken. In het bij-
zonder falsificeren wij een claim van Fejes Tóth die zegt dat limm→∞ dHm
nul is voor de hyperboloı̈de met een samenhangs component. Tevens
vinden wij een uitdrukking voor een ondergrens voor limm→∞ dHm voor
een grote klasse oppervlakken in de drie dimensionale Euclidische ruimte.
Tenslotte geven wij een methode om limm→∞ dHm voor alle oppervlakken
in de drie dimensionale Euclidische ruimte te bepalen.

Intrinsieke triangulaties

Wat betreft extrinsieke triangulaties hebben wij ons voornamelijk gericht op
twee dimensionale oppervlakken, terwijl wij ons in the geval van intrinsieke
triangulaties willekeurige dimensie toestaan. Noodzakelijkerwijs moeten wij
ons beperken tot het tekenen van twee dimensionale figuren, zie bijvoorbeeld
Figuur 7.

Figuur 7: Een intrinsieke driehoek
op een oppervlak.

Figuur 8: De twee dimensionale
standaard-simplex.

In Hoofdstuk 3 bespreken wij intrinsieke simplices (de veralgemeniseerde
driehoeken) en intrinsieke triangulaties. Een intrinsieke simplex is een sim-
plex die volledig door de Riemannse structuur op de variëteit is bepaald. De
constructie is gebaseerd op Karcher gemiddelden of Riemannse massa middel-
punten. Een intrinsieke simplex wordt niet-gedegenereerd genoemd als er een
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‘fraaie’ afbeelding bestaat van de standaard-simplex in Euclidische ruimte naar
de intrinsieke simplex. De twee dimensionale standaard-simplex is afgebeeld in
Figuur 8. Met een ‘fraaie’ bedoelen wij een een-op-een afbeelding die continu is
in beide richtingen. Een afbeelding van de verzameling A naar de verzameling
B is een-op-een als er ieder punt inA op een uniek punt inB wordt afgebeeld en
er voor ieder punt in B een orgineel in A te vinden is. Een afbeelding is continu
als er geen sprongen zijn.

De constructie van intrinsieke simplices is bekend. Wij zijn echter de eersten
die niet-gedegenereerdheid behandelen in meer dan twee dimensies, waar dit
een niet triviaal vraagstuk is.

Wij bestuderen ook het opdelen van variëteiten in zulke intrinsieke simpli-
ces, dat wil zeggen het trianguleren van een variëteit. Triangulaties van variëteiten
zijn in het verleden uitgebreid bestudeerd, met name van 1930 tot 1960. In de
studies die toen zijn uitgevoerd gebruikte men echter altijd inbeddingen of ex-
pliciete kaarten, dit betekent dat er sprake was van keuzevrijheid, wat weer
betekent dat de triangulaties niet intrinsiek waren. De triangulaties die wij on-
derzoeken zijn dat wel, bovendien geven wij expliciete voorwaarden waar de
individuele driehoeken qua vorm en grootte aan moeten voldoen.
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Topologie en de structuur van het universum

De geschiedenis van het universum

Het universum is begonnen met de Oerknal. Het vroege universum was heet en
dicht. Direct na de Oerknal begon het universum uit te dijen. Door de uitdijing
koelde de materie in het universum af. Dit werkt volgens hetzelfde principe als
de afkoeling van een fles deodorant door deze leeg te spuiten. Het universum
heeft in tegenstelling tot de fles deodorant geen spuitstuk. Het volume van het
universum neemt toe omdat het evalueert volgens de wetten van de algemene
relativiteitstheorie. Door de uitdijing van het universum werd de materie in
het universum uiteindelijk voldoende verdund en afgekoeld om doorzichtig te
worden.

De kosmische achtergrond straling

Voordat de materie in het universum transparant werd was de materie erg heet
en gloeide. De transparantie van het universum betekent op zeer kleine schaal
dat de licht deeltjes (fotonen) vrij door het universum begonnen de bewegen.
Hieruit volgt dat wij op dit moment de nagloed van het nog niet transparante
universum kunnen zien. Deze nagloed wordt de kosmische achtergrond stra-
ling genoemd en is geobserveerd, meest recentelijk door de Planck satelliet, zie
Figuur 9.

Figuur 9: De kosmische achtergrond straling, zoals gemeten door de Planck
satelliet, na verwijdering van objecten op de voorgrond en artefacten. De afwij-
kingen van het gemiddelde liggen tussen de−500µK (donker blauw) en 500µK
(donker rood).
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De temperatuur was nagenoeg constant in het vroege universum. De kleine
variaties in de temperatuur van de kosmische achtergrond straling kunnen goed
beschreven worden met behulp van een zogenaamd Gaussisch stochastisch veld.
Cosmologen en theoretisch natuurkundigen zijn geı̈ntereseerd in afwijkingen
van deze variaties in de temperatuur van de kosmische achtergrond straling
van de voorspelling door een Gaussisch stochastisch veld. Deze afwijkingen
zouden een unieke bron van informatie over het vroege universum zijn en ge-
ven mogelijk inzicht in de fundamentele natuurwetten.

Topologie

Topologie geeft ons methoden om de afwijkingen te detecteren. Topologie is de
tak van wiskunde die gaat over de eigenschappen van ruimten die behouden
blijven onder continue deformaties, zoals buigen en strekken, maar niet scheu-
ren.

Figuur 10: De weerkaart voor D-Day met isobaren. Met dank aan the Meteoro-
logical office, Air ministry, Verenigd Koninkrijk .

Dit vergt enige uitleg. Wij zullen ons concentreren op oppervlakten van ge-
lijke temperatuur in het vroege universum. Deze oppervlakken kunnen verge-
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leken worden met de isobaren, waarmee we bekend zijn vanwege het weerbe-
richt.

Een oppervlak van gelijke temperatuur kan meerdere samenhangscompo-
nenten hebben. Dit is te vergelijken met het bestaan van meerdere hogedrukge-
bieden, elk omgeven door lijnen van gelijke druk. Het aantal samenhangscom-
ponenten is een topologische invariant, omdat deze behouden is onder continue
deformaties.

Een andere topologische invariant is de Euler karakteristiek χ. De Euler ka-
rakteristiek van een oppervlak met een enkele samenhangscomponent wordt
gegeven door

χ = 2− 2g,

waar g het aantal gaten is. Wij hebben de Euler karakteristiek geı̈llustreerd in
Figuur 11. De Euler karakteristiek van een oppervlak met meerdere samen-
hangscomponenten is de som van de Euler karateristieken van de individuele
samenhangscomponenten.

De Euler karakteristiek kan berekend worden door gebruik te maken van
de stelling van Gauss-Bonnet. De stelling van Gauss-Bonnet vertelt ons dat de
integraal van de Gauss kromming, een lokale meetkundige grootheid, de Euler
karakteristiek geeft. Deze stelling is opmerkelijk omdat het een relatie geeft tus-
sen een lokale (meetkundige) grootheid en een globale (topologische) grootheid.

Figuur 11: Oppervlakken met nul, een, twee, drie en vier gaten en daarom Euler
karakteristiek 2, 0, −2, −4 en −6., respectievelijk.
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Numerieke resultaten

De topologische invarianten van oppervlakken van gelijke temperatuur in het
universum helpen de kleine variaties in de temperatuur te karakteriseren. Hier-
door is het in de nabij toekomst wellicht mogelijk om afwijkingen van de voor-
spellingen gedaan door een Gaussisch stochastisch veld te detecteren.

De noodzaak van numerieke methoden

In dit proefschrift bewijzen wij dat de stelling van Gauss-Bonnet uniek is. Hier-
mee bedoelen wij dat de Euler karakteristiek de enige topologische invariant is
die gevonden kan worden door lokale meetkundige grootheden te integreren.
Dit betekent dat de numerieke studies echt noodzakelijk zijn om inzicht te ver-
schaffen in de topologie van een Gaussisch stochastisch veld, en dus in de tem-
peratuurverdeling in het vroege universum. Sterker nog, wij laten zien dat er
zelfs geen nauwkeurige afschattingen van het aantal samenhangscomponenten
mogelijk zijn.
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Appendix: Computational
Geometric Learning

The European Union-project: Computational Geometric Learning

The research presented in this thesis has been conducted in the context of the
7th Framework Programme for Research of the European Commission, under
FET-Open grant number 255827.

FET-Open grant number 255827 was awarded to a project named Computa-
tional Geometric Learning. The main motivation given in the proposal was:
‘At the heart of this project is the insight that most data are structured, although
this intrinsic geometric structure is often not easy to capture. The long-term
vision is to have efficient and reliable methods for geometric data analysis that
find and exploit hidden structure and by that lead to fast and robust geometric
data processing in high dimensions. In this project, we aim at laying the found-
ations of a new field computational geometric learning that provides efficient
and reliable methods for geometric data analysis.’

Partners

The partners of the Computational Geometric Learning project were:

• Friedrich-Schiller-Universität Jena

• Eidgenössische Technische Hochschule Zürich

• Freie Universität Berlin

• Technische Universität Dortmund

• Institut national de recherche en informatique et en automatique

• National and Kapodistrian University of Athens
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• Tel Aviv University

• Rijksuniversiteit Groningen

Work Packages

The project was subdivided into several work packages:

1. Geometric inference and approximation

2. Fundamental data structures and algorithms for high-dimensions

3. Modelling high-dimensional geometric structures in science and engineer-
ing

The Rijksuniversiteit Groningen participated in work packages 1 and 3.
Our focus within work package 1 was the approximation of embedded sur-

faces and manifolds. This is the topic of the first part of this thesis. Chapter 2
considers surfaces and Chapter 3 treats triangulations of manifolds.

Within work package 3 the Rijksuniversiteit Groningen focussed on the to-
pology of geometric patterns in the large scale structure of the universe. The
study of these patterns is almost exclusively numerical in nature. In the second
part of this thesis we show that analytic results cannot be expected and thus
these numerical results are necessary.



Appendix: Publications

The following parts of this thesis have been published or have been accepted for
publication in journals or conference proceedings:

Section 2.2 is published as:
M.H.M.J.Wintraecken and G.Vegter. On the Optimal Triangulation of Convex
Hypersurfaces, Whose Vertices Lie in Ambient Space. Mathematics in Computer
Science, Online, 2014

Sections 3.1- 3.3 and 3.5- 3.9 have been accepted for publication at Geo-
metriae Dedicata, a conference version has been accepted for SOCG2015, both
as:
R.H. Dyer, G.Vegter and M.H.M.J.Wintraecken. Riemannian Simplices and Tri-
angulations.

Chapter 5 has appeared as:
M.H.M.J.Wintraecken and G.Vegter. A geometrical take on invariants of low-
dimensional manifolds found by integration. Topology and its Applications, 160:
2175 - 2182, 2013

Workshop contributions have been given at EUROCG13 and EUROCG14.
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enne. Journal Mathématiques Pures et Appliquées, 8:1–33, 1929. 8,
62



318 BIBLIOGRAPHY

[Car03] S.M. Carroll. Spacetime and Geometry. Addison Wesley, 2003. 187

[CDR05] S.-W. Cheng, T. K. Dey, and E. A. Ramos. Manifold reconstruc-
tion from point samples. In SODA, pages 1018–1027, 2005. 10,
64

[CDS13] S.-W. Cheng, T.K. Dey, and J.R. Shewchuk. Delaunay Mesh Gener-
ation. Computer and information science series. CRC Press, 2013.
10

[CG06] Frédéric Cazals and Joachim Giesen. Delaunay triangulation
based surface reconstruction. In Jean-Daniel Boissonnat and
Monique Teillaud, editors, Effective Computational Geometry for
Curves and Surfaces, pages 231–276. Springer-Verlag, Mathemat-
ics and Visualization, 2006. 6

[Cha06] I. Chavel. Riemannian Geometry: A Modern Introduction. Num-
ber 98 in Cambridge studies in advanced mathematics. Cam-
bridge University Press, 2006. 62, 70, 75, 107

[Che44] S.S. Chern. A simple intrinsic proof of the gaussbonnet for-
mula for closed riemannian manifolds. Annals of Mathematics,
45(4):747–752, 1944. 238

[Che52] S.S. Chern. On the kinematic formula in the euclidean space of
n dimensions. American Journal of Mathematics, 74:227–236, 1952.
240

[Che70] J. Cheeger. Finiteness theorems for Riemannian manifolds. Am.
J. Math, 92(1):61–74, 1970. 75

[Che00] B-Y Chen. Riemannian submanifolds. In Handbook of differen-
tial geometry, Vol. I, pages 187–418. North-Holland, Amsterdam,
2000. 58

[Chr92] G. Christakos. Random Field models in Earth sciences. Academic
Press, 1992. 202, 205, 207, 208

[Cla06] K.L. Clarkson. Building triangulations using ε-nets. Proceedings
of the thirty-eighth annual ACM symposium on Theory of computing,
2006. 5, 22, 54

[Cox98] H.S.M. Coxeter. Non-Euclidean geometry. The mathematical asso-
ciation of America, 6 edition, 1998. 79



BIBLIOGRAPHY 319

[CPJ+03] M. Colless, B. A. Peterson, C. Jackson, J. A. Peacock, S. Cole,
P. Norberg, I. K. Baldry, C. M. Baugh, J. Bland-Hawthorn,
T. Bridges, R. Cannon, C. Collins, W. Couch, N. Cross, G. Dalton,
R. De Propris, S. P. Driver, G. Efstathiou, R. S. Ellis, C. S. Frenk,
K. Glazebrook, O. Lahav, I. Lewis, S. Lumsden, S. Maddox,
D. Madgwick, W. Sutherland, and K. Taylor. The 2dF Galaxy
Redshift Survey: Final Data Release. ArXiv Astrophysics e-prints,
June 2003. 194, 201

[CR75] G. Chincarini and H. J. Rood. Size of the Coma cluster. Nature,
257:294, September 1975. 199

[CSX07] L. Chen, P. Sun, and J. Xu. Optimal anisotropic meshes for min-
imizing interpolation errors in lp-norm. Mathematics of computa-
tion, 76(257):179–204, 2007. 5, 21

[CvJF14] M. Cautun, R. van de Weygaert, B. J. T. Jones, and C. S. Frenk.
Evolution of the cosmic web. Monthly Notices of the Royal Astro-
nomical Society, 441:2923–2973, July 2014. 199

[DC76] M.P. Do Carmo. Differential Geometry of Curves and Surfaces.
Prentice-Hall, 1976. 48, 240, 270

[DD95] P. Desnogues and O. Devillers. A locally optimal triangulation
of the hyperbolic paraboloid. In Canadian Conference on Computa-
tional Geometry, Quebec, Canada, pages 49–54, Aug 1995. 5

[Dek94] A. Dekel. Dynamics of Cosmic Flows. Annual Review of Astro-
nomy and Astrophysics, 32:371–418, 1994. 201

[Del34] B. Delaunay. Sur la sphère vide. Izv. Akad. Nauk SSSR, Otdelenie
Matematicheskii i Estestvennyka Nauk, 7:793–800, 1934. 64

[Dey07] T.K. Dey. Curve and Surface Reconstruction: Algorithms with Math-
ematical Analysis. Number 23 in Cambridge monographs on
applied and computational mathematics. Cambridge University
Press, 2007. 10

[DFN90] B.A. Dubrovin, A.T. Fomenko, and S.P. Novikov. Modern Geo-
metry methods and Applications: Part III Introduction to Homology
Theory. Graduate texts in Mathematics. Springer, 1990. 210

[dGH86] V. de Lapparent, M. J. Geller, and J. P. Huchra. A slice of the uni-
verse. Astrophysical Journal, Part 2 - Letters to the Editor, 302:L1–L5,
March 1986. 194, 200



320 BIBLIOGRAPHY

[DK04] J.J. Duistermaat and J.A.C. Kolk. Multidimensional Real Analysis
I: Differentiation. Number 86 in Cambridge Studies in Advanced
Mathematics. Cambridge University Press, 2004. 278

[dL11] D. de Laat. Upper bounds on the optimal meshing error of man-
ifolds in higher codimension. Master’s thesis, Rijksuniversiteit
Groningen, 2011. 5, 21

[DR94] A. Dekel and M. J. Rees. Omega from velocities in voids. Astro-
physical Journal, Part 2 - Letters, 422:L1–L4, February 1994. 201

[DS91] E.F. D’Azevedo and R.B. Simpson. On optimal triangular
meshes for minimizing the gradient error. Numerische Mathem-
atik, 59:321–348, 1991. 5, 312

[DZM08] R. Dyer, H. Zhang, and T. Möller. Surface sampling and the in-
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[Möb27] A.F. Möbius. Der barycentrische Calcul, ein neues Hülfsmittel zur
analytischen Behandlung der Geometrie: dargestelltt und insbeson-
dere auf die Bildung neuer Classen von Aufgaben und die Entwicklung
mehrerer Eigenschaften der Kegelschnitte angewendet. Leipzig, Ver-
lag von Johann Ambrosius Barth, 1827. 8

[Mor08] J.-M. Morvan. Generalized Curvatures. Number 2 in Geometry
and Computing. Springer-Verlag, 2008. 237, 240



326 BIBLIOGRAPHY

[MS74] J.W. Milnor and J.D. Stasheff. Characteristic Classes. Number 76 in
Annals of Mathematics Studies. Princeton University Press and
University of Tokyo Press, Princeton, New Jersey, 1974. 247, 261

[MT02] J. M. Morvan and B. Thibert. On the approximation of a smooth
surface with a triangulated mesh. Comput. Geom. Theory Appl.,
23(3):337–352, November 2002. 46

[MTW73] C.W. Misner, K.S. Thorne, and J.A. Wheeler. Gravitation. W.H.
Freeman and company, 1973. 187, 188

[Mun68] J. R. Munkres. Elementary differential topology. Princton Univer-
sity press, second edition, 1968. 9, 63, 126, 147

[Mun84] J.R. Munkres. Elements of Algebraic Topology. Addison-Wesley
Publishing Company, 1984. 210

[Mun00] J.R. Munkres. Topology. Prentice-Hall, 2000. 30

[MW90] H. Martel and I. Wasserman. Simulation of cosmological voids in
Lambda greater than 0 Friedmann models. Astrophysical Journal,
348:1–25, January 1990. 201

[Nas56] John Nash. The imbedding problem for riemannian manifolds.
The Annals of Mathematics, 63(1):pp. 20–63, 1956. 7, 20

[Nev13] K. Nevenzeel. Triangulating the darkness; topological dark en-
ergy differentiation. Master’s thesis, Kapteyn Astronomical In-
stitute, 2013. 243

[O’N06] B O’Neill. Elementary Differential Geometry. Elsevier, 2006. 47, 48,
50, 244, 245, 270, 274

[OR09] E. Outerelo and J. M. Ruiz. Mapping degree theory, volume 108.
American Mathematical Soc., 2009. 128

[PAA+14a] Planck Collaboration, P. A. R. Ade, N. Aghanim, M. I. R.
Alves, C. Armitage-Caplan, M. Arnaud, M. Ashdown, F. Atrio-
Barandela, J. Aumont, H. Aussel, and et al. Planck 2013 results.
I. Overview of products and scientific results. Astronomy and As-
trophysics, 571:A1, November 2014. 191, 192, 195

[PAA+14b] Planck Collaboration, P. A. R. Ade, N. Aghanim, C. Armitage-
Caplan, M. Arnaud, M. Ashdown, F. Atrio-Barandela,
J. Aumont, C. Baccigalupi, A. J. Banday, and et al. Planck
2013 results. XVI. Cosmological parameters. Astronomy and
Astrophysics, 571:A16, November 2014. 189



BIBLIOGRAPHY 327

[PAG+99] S. Perlmutter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent,
P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, I. M.
Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes, R. Pain, C. R.
Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin, R. G.
McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle,
A. V. Filippenko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M.
Newberg, W. J. Couch, and T. S. C. Project. Measurements of
Ω and Λ from 42 High-Redshift Supernovae. The Astrophysical
Journal, 517:565–586, June 1999. 191

[Pee80] P. J. E. Peebles. The large-scale structure of the universe. Princeton
Series in Physics. Princeton, N.J., Princeton University Press,
1980. 187, 194

[Pet84] S. Peters. Cheeger’s finiteness theorem for diffeomorphism
classes of Riemannian manifolds. J. Reine Angew. Math., 394:77–
82, 1984. 62, 75

[PEvdW+15] P. Pranav, H. Edelsbrunner, M.A.M. van de Weijgaert, M. Kerber,
B.J.T. Jones, G. Vegter, and M.H.M.J. Wintraecken. On the betti
of the universe and her persistence. To be submitted, 2015. 243

[PKH+00] H. Pottmann, R. Krasauskas, B. Hamann, K. Joy, and W. Seibold.
On piecewise linear approximation of quadratic functions.
Journal for Geometry and Graphics, 4(1):9–31, 2000. 5, 22, 41, 53

[PL07a] D. Park and J. Lee. Void Ellipticity Distribution as a Probe of
Cosmology. Physical Review Letters, 98(8):081301, February 2007.
201

[PL07b] D. Park and J. Lee. Void-Supercluster Alignments. Astrophysical
Journal, 665:96–101, August 2007. 201

[PPC+13] C. Park, P. Pranav, P. Chingangbam, R. van de Weygaert,
B. Jones, G. Vegter, I. Kim, J. Hidding, and W. A. Hellwing. Betti
Numbers of Gaussian Fields. Journal of Korean Astronomical Soci-
ety, 46:125–131, June 2013. 242, 243, 277

[PUP02] A. Papoulis and S. Unnikrishna Pillai. Probability Random Variable
and Stochastic Processes. McGraw-Hill Series In Systems Science.
McGraw-Hill, 2002. 202, 206, 208

[PW65] A. A. Penzias and R. W. Wilson. A Measurement of Excess An-
tenna Temperature at 4080 Mc/s. Astrophysical Journal, 142:419–
421, July 1965. 191



328 BIBLIOGRAPHY

[RFC+98] A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiatti, A. Dier-
cks, P. M. Garnavich, R. L. Gilliland, C. J. Hogan, S. Jha, R. P.
Kirshner, B. Leibundgut, M. M. Phillips, D. Reiss, B. P. Schmidt,
R. A. Schommer, R. C. Smith, J. Spyromilio, C. Stubbs, N. B.
Suntzeff, and J. Tonry. Observational Evidence from Supernovae
for an Accelerating Universe and a Cosmological Constant. The
Astronomical Journal, 116:1009–1038, September 1998. 191

[RM96] B. S. Ryden and A. L. Melott. Voids in Real Space and in Redshift
Space. Astrophysical Journal, 470:160, October 1996. 201

[Rob35] H. P. Robertson. Kinematics and World-Structure. Astrophysical
Journal, 82:284, November 1935. 189

[Rob36a] H. P. Robertson. Kinematics and World-Structure II. Astrophysical
Journal, 83:187, April 1936. 189

[Rob36b] H. P. Robertson. Kinematics and World-Structure III. Astrophys-
ical Journal, 83:257, May 1936. 189

[Rog64] C.A. Rogers. Packing and Covering. Cambridge: University Press,
1964. 19

[RS72] C.P. Rourke and B.J. Sanderson. Introduction to piecewise-linear
topology. Number 69 in Ergebnisse der mathematik und ihrer
grenzgebiete. Springer-Verlag, 1972. 221

[Rus10] R.M. Rustamov. Barycentric coordinates on surfaces. Eurograph-
ics Symposium on Geometry Processing, 29(5), 2010. 8, 60, 62, 121

[Rv07] E. Romano-Dı́az and R. van de Weygaert. Delaunay Tessellation
Field Estimator analysis of the PSCz local Universe: density field
and cosmic flow. Monthly Notices of the Royal Astronomical Society,
382:2–28, November 2007. 201
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