707,834 research outputs found
Estimating the spatial and temporal distribution of species richness within Sequoia and Kings Canyon National Parks.
Evidence for significant losses of species richness or biodiversity, even within protected natural areas, is mounting. Managers are increasingly being asked to monitor biodiversity, yet estimating biodiversity is often prohibitively expensive. As a cost-effective option, we estimated the spatial and temporal distribution of species richness for four taxonomic groups (birds, mammals, herpetofauna (reptiles and amphibians), and plants) within Sequoia and Kings Canyon National Parks using only existing biological studies undertaken within the Parks and the Parks' long-term wildlife observation database. We used a rarefaction approach to model species richness for the four taxonomic groups and analyzed those groups by habitat type, elevation zone, and time period. We then mapped the spatial distributions of species richness values for the four taxonomic groups, as well as total species richness, for the Parks. We also estimated changes in species richness for birds, mammals, and herpetofauna since 1980. The modeled patterns of species richness either peaked at mid elevations (mammals, plants, and total species richness) or declined consistently with increasing elevation (herpetofauna and birds). Plants reached maximum species richness values at much higher elevations than did vertebrate taxa, and non-flying mammals reached maximum species richness values at higher elevations than did birds. Alpine plant communities, including sagebrush, had higher species richness values than did subalpine plant communities located below them in elevation. These results are supported by other papers published in the scientific literature. Perhaps reflecting climate change: birds and herpetofauna displayed declines in species richness since 1980 at low and middle elevations and mammals displayed declines in species richness since 1980 at all elevations
Changes in plant species richness distribution in Tibetan alpine grasslands under different precipitation scenarios
Species richness is the core of biodiversity-ecosystem functioning (BEF) research. Nevertheless, it is difficult to accurately predict changes in plant species richness under different climate scenarios, especially in alpine biomes. In this study, we surveyed plant species richness from 2009 to 2017 in 75 alpine meadows (AM), 199 alpine steppes (AS), and 71 desert steppes (DS) in the Tibetan Autonomous Region, China. Along with 20 environmental factors relevant to species settlement, development, and survival, we first simulated the spatial pattern of plant species richness under current climate conditions using random forest modelling. Our results showed that simulated species richness matched well with observed values in the field, showing an evident decrease from meadows to steppes and then to deserts. Summer precipitation, which ranked first among the 20 environmental factors, was further confirmed to be the most critical driver of species richness distribution. Next, we simulated and compared species richness patterns under four different precipitation scenarios, increasing and decreasing summer precipitation by 20% and 10%, relative to the current species richness pattern. Our findings showed that species richness in response to altered precipitation was grassland-type specific, with meadows being sensitive to decreasing precipitation, steppes being sensitive to increasing precipitation, and deserts remaining resistant. In addition, species richness at low elevations was more sensitive to decreasing precipitation than to increasing precipitation, implying that droughts might have stronger influences than wetting on species composition. In contrast, species richness at high elevations (also in deserts) changed slightly under different precipitation scenarios, likely due to harsh physical conditions and small species pools for plant recruitment and survival. Finally, we suggest that policymakers and herdsmen pay more attention to alpine grasslands in central Tibet and at low elevations where species richness is sensitive to precipitation changes
Species richness-environment relationships of European arthropods at two spatial grains : habitats and countries
We study how species richness of arthropods relates to theories concerning net primary productivity, ambient energy, water-energy dynamics and spatial environmental heterogeneity. We use two datasets of arthropod richness with similar spatial extents (Scandinavia to Mediterranean), but contrasting spatial grain (local habitat and country). Samples of ground-dwelling spiders, beetles, bugs and ants were collected from 32 paired habitats at 16 locations across Europe. Species richness of these taxonomic groups was also determined for 25 European countries based on the Fauna Europaea database. We tested effects of net primary productivity (NPP), annual mean temperature (T), annual rainfall (R) and potential evapotranspiration of the coldest month (PETmin) on species richness and turnover. Spatial environmental heterogeneity within countries was considered by including the ranges of NPP, T, R and PETmin. At the local habitat grain, relationships between species richness and environmental variables differed strongly between taxa and trophic groups. However, species turnover across locations was strongly correlated with differences in T. At the country grain, species richness was significantly correlated with environmental variables from all four theories. In particular, species richness within countries increased strongly with spatial heterogeneity in T. The importance of spatial heterogeneity in T for both species turnover across locations and for species richness within countries suggests that the temperature niche is an important determinant of arthropod diversity. We suggest that, unless climatic heterogeneity is constant across sampling units, coarse-grained studies should always account for environmental heterogeneity as a predictor of arthropod species richness, just as studies with variable area of sampling units routinely consider area
Evaluating Multiple Arthropod Taxa as Indicators of Invertebrate Diversity in Old Fields
Biodiversity, often quantified by species richness, is commonly used to evaluate and monitor the health of ecosystems and as a tool for conservation planning. The use of one or more focal taxa as surrogates or indicators of larger taxonomic diversity can greatly expedite the process of biodiversity measurement. This is especially true when studying diverse and abundant invertebrate fauna. Before indicator taxa are employed, however, research into their suitability as indicators of greater taxonomic diversity in an area is needed. We sampled invertebrate diversity in old fields in southern Michigan using pitfall trapping and morphospecies designations after identification to order or family. Correlation analysis was used to assess species richness relationships between focal arthropod taxa and general invertebrate diversity. Relationships were assessed at two fine spatial scales: within sampling patches, and locally across four sampling patches. Cumulative richness of all assessed taxa increased proportionately with cumulative invertebrate richness as sampling intensity increased within patches. At the among-patch scale, we tentatively identified Hemiptera and Coleoptera as effective indicator taxa of greater invertebrate richness. Although Hymenoptera, Araneae and Diptera exhibited high species richness, their total richness within patches was not associated with overall invertebrate richness among patches. Increased sampling throughout the active season and across a greater number of habitat patches should be conducted before adopting Hemiptera and Coleoptera as definitive indicators of general invertebrate richness in the Great Lakes region. Multiple sampling techniques, in addition to pitfall trapping, should also be added to overcome capture biases associated with each technique
Comparison of species richness of light trap-collected caddisfly assemblages (Insecta: Trichoptera) using rarefaction
ConselVation value of light trap-collected caddisfly assemblages(Insecta: Trichoptera) was evaluated on the basis of their species richness. The assemblage coming from an artificial stream showed a higher conservation value based on species richness than the natural ones. In contrast, using rarefaction, the conservation value of the assemblage in the artificial stream was lower in comparison with assemblages in natural habitats. Further examples are given to demonstrate the importance of rarefaction in comparing species richness of assemblages
Wild Bee Conservation within Urban Gardens and Nurseries: Effects of Local and Landscape Management
Across urban environments, vegetated habitats provide refuge for biodiversity. Gardens (designed for food crop production) and nurseries (designed for ornamental plant production) are both urban agricultural habitats characterized by high plant species richness but may vary in their ability to support wild pollinators, particularly bees. In gardens, pollinators are valued for crop production. In nurseries, ornamental plants rarely require pollination; thus, the potential of nurseries to support pollinators has not been examined. We asked how these habitats vary in their ability to support wild bees, and what habitat features relate to this variability. In 19 gardens and 11 nurseries in California, USA, we compared how local habitat and landscape features affected wild bee species abundance and richness. To assess local features, we estimated floral richness and measured ground cover as proxies for food and nesting resources, respectively. To assess landscape features, we measured impervious land cover surrounding each site. Our analyses showed that differences in floral richness, local habitat size, and the amount of urban land cover impacted garden wild bee species richness. In nurseries, floral richness and the proportion of native plant species impacted wild bee abundance and richness. We suggest management guidelines for supporting wild pollinators in both habitats.DFG, 414044773, Open Access Publizieren 2019 - 2020 / Technische Universität Berli
Long-term species richness-abundance dynamics in relation to species departures and arrivals in wintering urban bird assemblages
Temporal dynamics of local assemblages depend on the species richness and the total abundance of individuals as well as local departure and arrival rates of species. We used urban bird survey data collected from the same 31 study plots and methods during three winters (1991–1992; 1999–2000 and 2009–2010) to analyze the temporal relationship between bird species richness and total number of individuals (abundance). We also evaluated local departures and arrivals of species in each assemblage. In total, 13,812 individuals of 35 species were detected. The temporal variation in bird species richness followed the variation in the total number of individuals. The numbers of local departure and arrival events were similar. Also, the mean number of individuals of the recently arrived species (8.6) was almost the same as the mean number of individuals of the departed species (8.2). Risk of species departure was inversely related to number of individuals. Local species richness increased by one species when the total abundance of individuals increased by around 125 individuals and vice versa. Our results highlight the important role of local population departures and arrivals in determining the local species richness-abundance dynamics in human-dominated landscapes. Local species richness patterns depend on the total number of individuals as well as both the departure-arrival dynamics of individual species as well as the dynamics of all the species together. Our results support the more individuals hypothesis, which suggests that individual-rich assemblages have more species
Determinants of species richness patterns in the Netherlands across multiple taxonomic groups
We examined the species richness patterns of five different species groups (mosses, reptiles and amphibians, grasshoppers and crickets, dragonflies, and hoverflies) in the Netherlands (41,500 km2) using sampling units of 5 × 5 km. We compared the spatial patterns of species richness of the five groups using Spearman¿s rank correlation and used a stepwise multiple regression generalized linear modelling (GLM) approach to assess their relation with a set of 36 environmental variables, selected because they can be related to the several hypotheses on biodiversity patterns. Species richness patterns of the five groups were to a certain extent congruent. Our data suggest that environmental heterogeneity (in particular habitat heterogeneity) is one of the major determinants of variation in species richness within these five groups. We found that for taxonomic groups comprising a low number of species, our regression model explained more of the variability in species richness than for taxonomic groups with a large number of specie
Emerging patterns of species richness, diversity, population density, and distribution in the skates (Rajidae) of Alaska
Six years of bottom-trawl survey data, including over 6000 trawls covering over 200 km2 of bottom area throughout Alaska’s subarctic marine waters, were analyzed for patterns in species richness, diversity, density, and distribution of skates. The Bering Sea continental shelf and slope, Aleutian Islands, and Gulf of Alaska regions were stratified by geographic subregion and depth. Species richness and relative density of skates increased with depth to the shelf break in all regions. The Bering Sea shelf was dominated by the Alaska skate (Bathyraja parmifera), but species richness and diversity were low. On the Bering Sea slope, richness and diversity were higher in the shallow stratum, and relative density appeared higher in subregions dominated by canyons. In the Aleutian Islands and Gulf of Alaska, species richness and relative density were generally highest in the deepest depth strata. The data and distribution maps presented here are based on species-level data collected throughout the marine waters of Alaska, and this article represents the most comprehensive summary of the skate fauna of the region published to date
- …
