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Abstract: Across urban environments, vegetated habitats provide refuge for biodiversity. Gardens
(designed for food crop production) and nurseries (designed for ornamental plant production) are both
urban agricultural habitats characterized by high plant species richness but may vary in their ability
to support wild pollinators, particularly bees. In gardens, pollinators are valued for crop production.
In nurseries, ornamental plants rarely require pollination; thus, the potential of nurseries to support
pollinators has not been examined. We asked how these habitats vary in their ability to support wild
bees, and what habitat features relate to this variability. In 19 gardens and 11 nurseries in California,
USA, we compared how local habitat and landscape features affected wild bee species abundance
and richness. To assess local features, we estimated floral richness and measured ground cover as
proxies for food and nesting resources, respectively. To assess landscape features, we measured
impervious land cover surrounding each site. Our analyses showed that differences in floral richness,
local habitat size, and the amount of urban land cover impacted garden wild bee species richness.
In nurseries, floral richness and the proportion of native plant species impacted wild bee abundance
and richness. We suggest management guidelines for supporting wild pollinators in both habitats.
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1. Introduction

Habitat loss due to land use change, such as urbanization, is a leading cause of population declines
of wild bees worldwide [1–3]. Urbanization leads to local- and landscape-scale changes in habitat
structure and composition through the paving of roads and changes in local climate and vegetation,
among other factors. These changes may result in the local extirpation of certain arthropod species from
urban habitats [4–6]. Wild, native bees (Hymenoptera: Anthophila) are critical pollinators of plants in
urban [7], agricultural [8], and natural [9] habitats and are thus the targets of numerous conservation
efforts. In spite of the negative impacts of urbanization on wild bee populations, urban areas can also
serve as refuges for wild bees [10]. Urban habitats can support a diversity of wild bees, but this depends
on local (e.g., food and nesting resources) and landscape features (e.g., urban surroundings) [11–17].
Therefore, it is important to identify which specific features of urban habitats, such as vegetation and
ground cover, can positively impact wild bee communities [16,18].

Urban environments are sites where humans facilitate plant communities based on cultural,
economic, social, and aesthetic preferences and conditions [19]. For example, local management
within urban gardens determines the species abundance, diversity, and spatial distribution of plants,
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and these features have been linked to wild bee species diversity and abundance [10,20–22]. However,
the species identity and characteristics of flowering plants are also important for wild bees with certain
life histories, such as oligolectic species. For example, native plant species may be more important
than just general floral availability for supporting wild bees [15,23]. Native plants are species naturally
occurring within an area and have either evolved in or migrated to that area, rather than through
introduction by humans [24]. Because they are adapted to a particular environment, native plants may,
for example, have more phenological bloom overlap with native bee activity periods and provide
higher quality or more easily accessible floral resources than some non-native, ornamental plants.
Some studies have found native plant gardens to host a more abundant [25] or compositionally
distinct [15,26] bee fauna. Many other studies suggest bees prefer to forage on native plants [27–29],
though bees in disturbed areas still extensively use exotic plants even if they are not preferred [30].
Thus, in urban habitats with a high richness of both native and exotic plants, the relationship between
native plant species richness and wild bee diversity deserves further examination [31].

In addition to food resources, suitable nesting substrates are important to wild bees for reproduction
and bee life history strategies [32]. Below- and above-ground nesting substrates are an important
environmental filter of bee communities [32]. In urban habitats, nesting resources including bare soil
and pithy wood material are critical for supporting ground-nesting and cavity-nesting species [16,33].
Changes in surface soils through urbanization and urban habitat management can impact wild
bee richness [13,34] and structure community composition [32] by impacting nesting resource
availability [32]. For example, altering soil accessibility through impervious cover or mulch cover is
common in urban and agricultural systems, and has been previously correlated with declines in urban
bee populations [16]. Although nesting resources are important for bees, they are rarely considered in
pollinator studies because bee species exhibit a wide range of specific nesting substrate requirements.

Landscape-scale features surrounding urban areas can also influence the community structure of
wild bees within urban habitats [35]. An urban matrix is characterized by the amount and distribution of
natural and semi-natural areas within a predominantly built landscape [19]. The amount of urban land
use (i.e., impervious cover) in a region generally negatively impacts wild bee abundance and diversity
within urban habitats [20], such as in community gardens [16] and dry grasslands [35]. However,
bees exhibit mixed responses to urbanization, which suggests that the impacts of urbanization on wild
bees warrants further attention [31].

Urban gardens that produce food and ornamental plants support high crop and non-crop plant
species richness, which can in turn support a wide range of wild bees with various life histories [36].
Urban gardens can contain hundreds of plant species including planted fruit and vegetable crops
and various ornamental cultivars [37] that flower throughout a season [38–40]. Gardens also host
long-standing perennial native and exotic trees and shrubs that flower consistently throughout the
year, which could provide dependable food resources for bees. It is estimated that urban gardens can
harbor up to 50 times more abundant and diverse bee communities than other urban habitats such
as parks and cemeteries [36]. Indeed, Normandin et al. [41] documented 128 species of bees within
community gardens across cities in Canada, and 110 species were documented in urban gardens in
New York City [12].

Like gardens, urban and suburban plant nurseries that grow native and exotic ornamental plants
for wholesale or retail also contain hundreds of plant taxa. These include native and exotic cultivars at
different stages of flowering in almost any given season [42]. Many of these species are attractive to
bees. Although researchers have recognized the importance of ornamental plants as forage for bees
and other beneficial insects in urban landscapes [22,25,43–49], interactions between ornamental plants
and wild bees have not been widely documented inside nurseries. We know of no studies that have
specifically investigated the ability of nurseries themselves to support wild bees. Commonly, studies on
nursery plants have instead focused on their significance as sources of exposure to systemic insecticides
for bees [50–54]. It is important to consider the role of habitat management and landscape context for
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a diversity of agricultural habitats, including nurseries, that may promote wild bee conservation in
urban and suburban regions.

In this study, we compared two datasets, one from urban community gardens and the other
from urban and suburban plant nurseries, with the goal of identifying local management practices
and landscape-scale features that may support wild bee communities in these agricultural habitats
(Figure 1). For both gardens and nurseries, we specifically examined how (1) local habitat management
(floral species richness, floral species identity, available bare soil, and habitat area) and (2) the amount
of urbanization in the surrounding landscape relate to wild bee abundance, richness, and community
composition. We compared and contrasted the results to inform recommendations for urban agricultural
habitat management.

Figure 1. Conceptual model of local- and landscape-scale features measured for each habitat type
(gardens and nurseries) as potentially important for affecting wild bee abundance, species richness and
community composition in gardens and nurseries.

2. Materials and Methods

2.1. Study Sites and Sampling Events

Study sites included 19 urban community gardens (henceforth “gardens”) and 11 urban and
suburban plant nurseries in California, USA. California is an ideal study system because it is a rapidly
urbanizing state with one of the largest populations in the USA, and is also the top state in the country
in terms of agricultural and horticultural revenue [55]. Urban regions in California, including the Los
Angeles Metropolitan Region, the greater San Francisco Bay Region, and the Monterey Bay Region,
are all experiencing population growth and building densification. Yet these regions are also located
within a biodiversity hotspot, the California Floristic Province, which harbors thousands of endemic
flora and fauna [56]. Both industrial agricultural expansion and urban area expansion are driving
habitat loss and pose various challenges for some resident plant and animal species.

Gardens were distributed across the central coast in Monterey (county centroid: 36.2400◦ N,
121.3100◦ W), Santa Clara (37.3600◦ N, 121.9700◦ W), and Santa Cruz (37.0300◦ N, 122.0100◦ W)
Counties. The nurseries were located in Los Angeles (34.05◦ N, 118.24◦ W), Orange (33.72◦ N, 117.83◦

W), San Diego (32.72◦ N, 117.16◦ W), and Riverside (33.95◦ N, 117.34◦ W) Counties. Sites were
surrounded by varying degrees of natural, agricultural, and urban landscapes, resulting in a gradient
of urbanization. Gardens were separated by two to 94 km, had been in cultivation predominantly for
vegetable and flower crop production for between five to 47 years, and were 0.04 to 1.55 ha in area.
Nurseries were separated by 1.3 to 220 km; had been established for over eight years (most over 20);
and were considerably larger than gardens, ranging from three to 30 ha in area. Our study nurseries
were primarily dominated by containerized (potted) perennial plants. Bedded annual plants were only
present at a small number of nurseries, and even then in very low quantities relative to perennials.
Therefore, we included species richness of flowering perennial plants as a variable important for
supporting wild bees in our analyses. Ornamental grasses (Poaceae) were excluded from the dataset,
as common grass cultivars in California are generally not attractive to bees even when in flower.
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Gardens were sampled five times between June to September in 2015 (17–19 June, 7–10 July,
1–3 August, 2–4 September, 22–24 September). In each garden, we established a 20 by 20 m study plot
(400 m2) at the center of the garden in which to measure local features and collect bee specimens (see
Sections 2.2 and 2.3). Nurseries were sampled from June to November in 2016 (21, 28 June; 8, 12 July;
5, 27 August; 12, 21 September; 7, 18 November) and 2017 (20–30 June; 3, 5, 11, 15, 21–28 July; 15–18
August; 15, 18, 29 September; 2, 20, 23 October). Within each nursery, we established one study
plot per hectare of nursery area (up to 12 plots per nursery) in which to measure local features each
time we sampled. Each plot was a 15 m radius circle (700 m2), separated from neighboring plots by
at least 100 m. The differences in sampling methods in each system were a limitation of our study,
but we accounted for this by using the same dataset organization and statistical analytical approach
for both datasets.

2.2. Wild Bee Sampling

In both habitat types, we actively collected foraging bees using aerial insect nets between 09:00 and
15:30 h under conditions suitable to bee activity (>13 ◦C; average of 23 ◦C across site sampling events).
In each garden, two observers collected bees on plants within the 400 m2 study plot for 15 min each.
In each nursery, one observer collected bees off of patches of blooming plants both within and outside
the 700 m2 study plots, for 30 min on each of two separate days within a 72 h period, both in summer
and autumn. In nurseries, we avoided collecting European honey bees (Apis mellifera), even though
they were present; in gardens, we collected any type of bee (including honey bees), then later excluded
honey bees from all analyses.

We identified bees to species (or morphotaxon for certain genera such as Lasioglossum (Dialictus)
where species identification is not feasible) using online resources [57], image databases (e.g., [58,59]),
published books, and dichotomous keys [60]. For garden bees, species identifications were verified
by researchers trained in bee identification and systematics according to Michener, McGinley,
and Danforth [61] (2014 Bee Course, American Museum of Natural History). For nursery bees,
species identifications and morphotaxon groupings were verified by a bee taxonomist at the University
of California, Riverside Entomology Research Museum. All bee specimens from gardens are stored
at the S. M. Philpott Laboratory at the University of California, Santa Cruz. All bee specimens from
nurseries are stored at the E. E. Wilson-Rankin Laboratory at the University of California, Riverside.

2.3. Local Habitat Features

Within all gardens and nurseries, at the same time as bee sampling, we collected data on local
habitat features. We examined features shared between both habitat types that we predicted would
affect wild bee communities. We focused on (1) vegetation, specifically the species richness of perennial
plants and the richness of native perennial plants; (2) ground cover management, specifically the
amount of bare soil; and (3) habitat size. Slightly different approaches for estimating these variables
were employed for the two habitat types due to the difference in their respective areas. For this
reason, we did not include measures of floral abundance in our models, as these were calculated
very differently between nurseries and gardens. Habitat area for each site was measured in Google
Earth [62].

In gardens, we measured habitat size as the total size of the entire garden, in acres. We established
a 20 by 20 m sampling plot at the center of the garden. We then randomly placed four 1 by 1 m
quadrats in the center plot, and in each we measured groundcover composition, including the percent
soil that was bare versus covered (i.e., by woodchips, grass, rock, etc.). This was pooled and averaged
for each sampling date for each site. Within the sampling plot, we identified and counted the number
of all native trees and shrubs and identified them, noting whether they were currently flowering.
In the lab, we confirmed whether each plant was native by cross-referencing the Calflora database
(https://www.calflora.org/, The Calflora Database, Berkeley, CA, USA). We calculated percent native
richness, a variable indicating the average percent of perennial species that are native, out of all possible

https://www.calflora.org/
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species, per sampling event at each site. We also measured species richness of flowering perennial
plants as the richness of the total species of perennials within the 20 by 20 m plot averaged across all
sampling events.

In nurseries, within each established 700 m2 sampling plot, during each sampling event,
we recorded every species of plant currently in bloom and took a panoramic photograph of the
entire plot from its center. We used this method instead of the quadrats used in gardens because of the
overall large area of the nurseries and because most flower patches in nurseries far exceeded 1 m2.
To calculate the percent of bare ground, each panoramic photograph was divided into four quadrants
and we estimated the proportion of soil in each quadrant not covered by impermeable materials (weed
barrier cloth, gravel, buildings, etc.). Estimates from quadrants were summed to yield values for a
whole plot. Species richness of flowering plants and percent native richness were calculated in the
same way as they were in gardens.

2.4. Landscape Features

We used ArcGIS [63] and QGIS 3.6.2 [64] with the LecoS (Landscape Ecology Statistics, University
of Copenhagen, Copenhagen, Denmark) plugin [65] to calculate the proportion of urban land cover
within a 2 km radius buffer around each garden and nursery. This radius encompasses the average flight
distances of most wild bees [66]. Land cover classifications were determined using the 2011 and 2016
United States Geological Survey (USGS) National Land Cover Database (NLCD) [67]. We measured
urban cover as the sum of the proportions of land cover classes 22, 23, and 24 that represent low,
medium, and high intensity impervious land cover, respectively. Although the term “suburban”
generally refers to lower levels of urbanization in a landscape compared with “urban”, we treated
urban land cover as a continuous variable, and intentionally did not establish a cut-off value for
dichotomizing landscapes as either “suburban” or “urban”.

2.5. Statistical Analysis

We tested which local and landscape features in each system predicted wild bee abundance,
richness, and community composition. Because sampling methods were slightly different between
gardens and nurseries, we analyzed the garden dataset and the nursery dataset separately. This allowed
us to test which features for each system predicted abundance, richness, and composition, and then
descriptively compared whether there are similarities and differences between habitat types.
All statistical analyses were conducted in the R statistical environment [68].

To test which features predicted wild bee species abundance and bee species richness, for both
datasets, we constructed generalized linear mixed effect models (GLMMs) using the lme4 package
in R [69]. In each model, response variables were the total number of wild bee individuals or the
total number of wild bee species per site per sampling event. Predictor variables included species
richness of flowering perennial plants, percent native perennial richness, the percent of bare ground,
habitat area, and the total proportion of land within 2 km buffers around each site that was classified
as urban according to the USGS NLCD (sum of classes 22, 23, and 24). All predictor variables were
scaled in the models, and all variance inflation factor (VIF) scores for all variables were close to one,
and always less than two to meet model assumptions of non-collinearity among variables. This was
done using the function “vif” in the car package in R [70]. All models included site and sampling
event as random effects, and all models were fit with a Poisson distribution. Overall, we constructed
four GLMMs, for both wild bee abundance and richness in both gardens and nurseries. For each
model, we performed model selection to determine which features best explained wild bee abundance
and richness. We used the “dredge” function in the MuMIn package in R [71], which uses Akaike
Information Criterion (AICc) to determine model fit (lowest AICc indicates better fit; [72]).

To determine whether community composition of wild bees was related to local and landscape
features, we pooled the species observed throughout the season for each site. We created a species
composition matrix and an environmental matrix. Species that occurred only once overall (singletons)
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were omitted from this analysis. For both gardens and nurseries, we transformed the species
composition matrix using a Hellinger transformation using the “decostand” function in the vegan
package [73]. For nurseries, we also transformed the environmental matrix due to axes greater than three.
Using these matrices, we calculated the Bray–Curtis distance, a count-based measure of compositional
dissimilarity, between communities using the “vegdist” function, and used the “metaMDS” function to
transform and visualize community structure in each garden and nursery. We then used a permutational
multivariate analysis of variance (permANOVA) using the “adonis” function to determine which local
and landscape features relate to community composition. We visualized the plots using the non-metric
multidimensional scaling (NMDS) with the “ordiplot” function in vegan, and used the “envfit” function
to overlay the local and landscape features used in the analysis to the community ordination.

3. Results

3.1. Abundance and Species Richness of Wild Bees in Gardens and Nurseries

In gardens, we collected a total of 1138 bee individuals comprising 49 species; in nurseries,
we collected a total of 242 bee individuals comprising 59 species (Appendix A, Table A1). Gardens
and nurseries shared ten species in common. The three most abundant species across all gardens
included Bombus vosnesenskii, Halictus tripartitus, and Melissodes robustior. The three most abundant
species across all nurseries included Halictus ligatus, Agapostemon texanus, and a morphospecies of
Melissodes. No rare or endangered bee species were observed in nurseries. In gardens, we observed a
nonnative species of Anthidium. In both gardens and nurseries we documented several cleptoparasitic
species, including Sphecodes spp., common cleptoparasites of Halictus, Lassioglossum, and Andrena spp.

3.2. Local- and Landscape-Scale Features in Gardens and Nurseries

Local and landscape features generally differed within gardens and nurseries and between gardens
and nurseries (Table 1). In terms of perennial floral richness, nurseries contained, on average, 1.8 times
more flowering plant species than gardens. On average, 45% ± 6% of plant species recorded in plots in
nurseries were native to California, compared to 28% of plant species recorded in gardens. Gardens
and nurseries were similar in the proportion of bare exposed soil in sampling plots (44% ± 6% bare in
gardens; 47% ± 9% bare in nurseries). Urban gardens were on average smaller (1.0 ± 0.8 acres) than
nurseries (19.3 ± 10.7 acres), and were located in more urbanized landscapes (58% ± 30% urban land
within 2 km) than nurseries (31% ± 23%).

Table 1. Summary statistics for local and landscape features of gardens (a) and nurseries (b) used as
predictor variables in statistical models to examine wild bee abundance, richness, and community
composition. Values were calculated for each sampling event (SD = standard deviation). Percent
bare ground, floral richness, and percent native richness were measured at the scale of sampling plots
within study sites, whereas habitat size and percent urban land within 2 km buffers around a site were
measured at the scale of the study site. The 0.0 for the minimum floral richness and native richness
indicates that the plants were not flowering at the time of sampling.

Habitat Type Predictor Variable Minimum Maximum Average SD

(a) Gardens % Bare ground 3.5 99.8 43.5 24.9
Floral richness 0.0 16.0 3.5 3.2

% Native richness 0.0 100.0 24.2 23.2
Habitat size (acres) 0.1 3.8 1.1 0.9

% Urban land (2 km) 7.8 94.2 58.4 29.1

(b) Nurseries % Bare ground 9.4 100.0 47.1 25.5
Floral richness 2.0 20.0 6.7 4.4

% Native richness 0.0 100.0 44.2 31.6
Habitat size (acres) 7.2 74.1 17.3 19.2

% Urban land (2 km) 0.3 73.1 26.8 23.9
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3.3. Significance of Local and Landscape Features in Gardens and Nurseries

Differences in native floral richness, ground cover, habitat size, and landscape surroundings
variably affected the abundance and richness of wild bees in gardens and nurseries (Table 2;
Figures 2 and 3). In gardens, the best model predicting abundance included habitat size and the
percent of bare ground cover. Garden wild bee abundance tended to be higher in larger gardens but
significantly decreased in gardens with more bare ground cover. The best model predicting garden
wild bee richness included perennial floral richness, habitat size, the percent of bare ground, and urban
land cover surrounding gardens. Garden bee species richness was significantly higher in larger
gardens with higher floral richness and in gardens surrounded by more urban land cover. In nurseries,
the best model predicting wild bee abundance included perennial floral richness, the percent native
perennial richness, and the amount of urban land cover surrounding sites. Nursery bee abundance
was significantly higher in nurseries with greater floral richness and native richness, and generally
higher in nurseries surrounded by more urban land cover. The best model predicting nursery bee
species richness included floral richness and the proportion of native richness, with richness higher in
nurseries with greater floral richness and a higher proportion of natives.

Figure 2. Wild bee abundance (a) and richness (b–d) in relation to local habitat variables (floral richness
and percent native richness) in community gardens. Each point (circle) represents one sampling event at
a site. Lines represent best fit models determined from generalized linear mixed effect models (GLMMs);
grey shaded areas represent 95% confidence intervals. Asterisks indicate significant relationships in the
GLMMs (Table 2; *** p < 0.001, ** p < 0.01,* p < 0.05).
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Table 2. Optimal generalized linear mixed effect models that best predicted species abundance and
richness in (a) gardens and (b) nurseries. Predictor variables were local and landscape variables
measured in each habitat type. Bolded variables were statistically significant (p < 0.05). Predictor
variables not shown (e.g., % urban in (b)) indicate that variables were not included in the best model.
(Coeff = coefficient; SE = standard error; SEAdj = adjusted standard error; z = z value; P = p-value;
AICc = Akaike information criterion).

Habitat Type Response Predictor Variable Coeff. SE SEAdj z P AICc

(a) Gardens Abundance (Intercept) 2.32 0.23 0.23 10.13 <0.001 668.10
Habitat size 0.27 0.16 0.16 1.73 0.08

% Bare ground −0.31 0.05 0.05 5.91 <0.001
Richness (Intercept) 1.53 0.11 0.11 13.63 <0.001 381.44

Floral richness 0.15 0.07 0.07 2.09 0.04
Habitat size 0.23 0.10 0.10 2.34 0.02

% Urban land (2 km) 0.27 0.11 0.11 2.58 0.01
% Bare ground −0.07 0.07 0.07 0.96 0.34

(b) Nurseries Abundance (Intercept) 1.44 0.25 0.26 5.58 <0.001 225.71
Floral richness 0.31 0.12 0.11 2.75 0.006

% Native richness 0.31 0.13 0.14 2.27 0.02
% Urban land (2 km) 0.09 0.12 0.13 0.74 0.46

Richness (Intercept) 1.20 0.24 0.25 4.88 <0.001 202.39
Floral richness 0.26 0.12 0.12 2.34 0.02

% Native richness 0.23 0.11 0.12 1.95 0.051

Figure 3. Wild bee abundance (a,b) and richness (c,d) in relation to local habitat variables (floral richness
and percent native richness) in nurseries. Each point (triangles) represents one sampling event.
Lines represent best fit models determined from GLMMs; grey shaded areas represent 95% confidence
intervals. Asterisks indicate significant relationships in the GLMMs (Table 2; *** p < 0.001, ** p < 0.01,*
p < 0.05); NS indicates non-significant relationship in the GLMMs.
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3.4. Local and Landscape Features in Relation to Community Composition

Community composition of wild bees in gardens was not related to local or landscape features
(Figure 4a), but in nurseries, community composition was significantly related to the percent of native
perennial flower richness in nurseries (PERMANOVA, F1,9 = 2.72, p = 0.001; Figure 4b).

Figure 4. Non-metric multidimensional scaling (NMDS) plots showing wild bee community
composition in relation to local and landscape features for (a) gardens and (b) nurseries. Each point on
the plot (circles, gardens; triangles, nurseries) represents the composition of species found in a study
site. Singleton species were removed from this analysis. Wild bee composition was related to the
percent native perennial richness in nurseries, but no features were related to community composition
in gardens. An asterisk (*) indicates the one significant (p < 0.05) variable in (b).

4. Discussion

Urban gardens and nurseries vary in their flowering plant composition, ground cover management,
and landscape features. These differences in local habitat and landscape features affect wild bee
populations. A continuous and diverse supply of floral rewards and ground nesting resources is
necessary for bees to persist in landscapes [32,74], and establishing such resources is a common
goal of many pollinator habitat enhancement efforts in agroecosystems [75–77]. In this study,
we opportunistically compared urban gardens and nurseries in California to ask how flowering
perennial plant richness, native perennial richness, ground cover, habitat size, and landscape
surroundings variably affected the abundance, richness, and community composition of wild bees in
both gardens and nurseries. We found that higher flowering perennial richness promoted higher bee
species richness in both habitat types. In nurseries, higher perennial richness and a higher proportion
of perennials native to California were positively related to bee abundance. In gardens, bee community
composition was not related to any measured features, whereas in nurseries, the proportion of native
plant species influenced bee community composition. We collected 49 bee species in northern California
gardens and 59 bee species in southern California nurseries. Methodological differences considered,
these species richness estimates are comparable to those from bee surveys in residential areas in
northern California (76 species, [22]) and urbanized fragments of sage scrub from southern California
(70 species; [78]). Collectively, this work shows that maintaining flowering plants, planting native
perennial plant species, and conserving large urban habitats can promote wild bee populations across
urban landscapes.

4.1. Importance of Local and Landscape Features for Wild Bees

At the local habitat scale, wild bee species richness in both gardens and nurseries was positively
related to greater flowering perennial richness. This finding adds to an increasing body of literature that
connects urban bee richness to floral resource availability and composition [12,22,36,79]. Furthermore,
native plant species within a habitat can structure bee community composition. In nurseries,
the proportion of perennial plant species native to California was positively related to wild bee
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abundance, and significantly shaped the bee communities in these habitats. Collectively, this illustrates
that native plant richness, not just overall richness, is important for supporting species-rich, abundant,
and distinct wild bee assemblages [80]. Studies have found that backyard gardens with native flowers
promote more abundant and diverse bee assemblages than gardens without natives [15]. However,
other studies have found that native flowers installed in community gardens failed to increase wild
bee diversity in gardens [31]. Indeed, in the gardens, the relatively weak relationship between floral
richness and bee richness may suggest that annual floral richness typical for many vegetable crops is
more important for garden bee species richness and abundance. We are unaware of previous studies
investigating bee communities specifically in nurseries. However, in this habitat type, the long-term
presence of flowering perennials may be able to attract and support wild bees over long periods,
rather than just temporarily. The positive relationships between wild bee abundance and native plant
richness in nurseries is similar to relationships reported in other plant species rich systems such as
residential yards [22,25]. Despite the fact that residential areas and commercial nurseries are managed
very differently, wild bees responding to native plants in both these systems suggests that this is likely
a robust strategy for promoting pollinators in urban areas.

The amount of bare ground negatively affected the abundance of garden bees; however,
this relationship was weak and suggests a more complex relationship. Many wild bee species
nest in the ground and utilize bare soil, particularly in agroecosystems [81], and we would thus
expect that greater bare soil in the habitat would increase bee abundance and richness through the
provisioning of nesting resources. Indeed, in urban gardens, the absence of bare soil has been related
to lower abundance and richness of bees [16]. Although most species of bees nest underground,
some evidence suggests urban habitat fragmentation can increase the occurrence of aboveground cavity
nesting species in local assemblages [34]. In our study, one garden with high amounts of bare soil had,
on average, only five individuals observed per sampling event. However, despite low abundance of
wild bees, this garden was relatively species rich, with those five individuals representing five different
species, most of which were twig and cavity nesting species (e.g., Hylaeus spp.). On the other end of
the spectrum, one garden with low amounts of bare soil also had a high abundance and richness of
Hylaeus, with five Hylaeus species documented in one sampling event. Thus, for these and similar
bee species, the availability of cavity nesting areas in the garden is probably more important than the
amount of bare soil. Or, it may be that other environmental variables are affecting bee abundance
and community composition so that cavity nesters are present at greater numbers. The importance
of nesting resource availability in structuring bee communities in urban systems is an important
direction of future study because bee nesting behavior in urban environments is complex. For example,
in one study, when soil and twig nesting habitat was installed within an urban habitat, it had little
effect on wild bee recruitment [82]. The heavy modification of urban soils from their natural state
via compaction and eutrophication may make gardens—which are often located in environmentally
impacted urban areas—unattractive as bee nesting sites [34]. Furthermore, in gardens, soils that would
be available are often covered with mulch, which may make them hard to access for bees, or have
synthetic amendments, which may deter bees.

At the landscape scale, the amount of urban land cover surrounding gardens had a positive
relationship with both garden bee abundance and richness. Our results support the idea [17] that
some urban areas can support wild bee species by acting as a refuge for diverse species assemblages.
In nurseries, urban land cover did not have a strong significant effects on wild bees, though it
was included in the best model for abundance. Some studies in urban gardens found no effect of
urban impervious surface on pollination services [83], whereas others found that impervious cover
negatively affected bee assemblages and pollination [84,85]. Thus, a strong relationship between
bees and urbanization is not yet generalizable, with system- and region-specific factors yet to be
identified [20,41].
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4.2. Similarities Between Gardens and Nurseries

Some of the same local and landscape features similarly impacted wild bees in both urban habitat
types. In both gardens and nurseries, greater perennial floral richness had a positive relationship
with wild bee richness, showing that this local habitat feature has a generalizable positive impact on
wild bees in urban agricultural habitats. It is interesting to note that the amount of urbanization in
the surrounding landscape did not have a negative effect in the best models for either study system,
again supporting the argument that urbanization may not have a negative impact on all fauna in all
regions, or that urbanization drives pollinators to collect in locally rich habitats. The lack of a strong
relationship in nurseries could be because landscapes were less urbanized overall around our nurseries
than they were around our gardens (Table 1). Thus, the relationship between urbanization in the
landscape and wild bee diversity may be modulated by habitat resources within the surrounding
landscape [86].

Another interesting comparison to draw between habitat types is the availability of bare soil.
Although bare soil was related to wild bee abundance in gardens, it had no effect on wild bee
communities in nurseries. This is puzzling, as many small-bodied bees (e.g., Lasioglossum (Dialictus)
spp.) were caught well inside nurseries, suggesting some of these species are nesting within nurseries,
given the large area of these sites (Table 1) and the comparatively short flight ranges of small bees [66].
We are aware of anecdotal accounts of wild bees nesting in soil within aboveground plant containers
(personal communication), which we did not search for in nurseries, nor did we include in our
measurements of nursery bare soil cover. If this is true, bees may not be nest-site limited in nurseries
due to the large quantities of aboveground soil in plant containers. However, the soil of most plant
containers are regularly saturated by irrigation, rendering it unlikely that we would observe high rates
of container nesting. Future studies could assess whether potting media or other containerized soils
serve as a suitable substrate for soil-nesting bee species in nurseries.

4.3. Study Limitations

In this study, we used two datasets to compare two types of urban agricultural habitats to ask how
local and landscape features in these systems impact wild bees. We recognize that there are limitations
in comparing separate existing datasets due to inherent differences in the experimental designs and
data collection methods. For example, garden data were collected over one year (2015) in central
California, whereas nursery data was collected over two years (2016 and 2017) in southern California.
Garden data were collected at a finer time scale (five replicate sampling events within a year) than
nursery data (four sampling events across two years). In addition, we did not collect honey bees in
nurseries, whereas honey bees were collected in gardens but then excluded before analysis, meaning
that time was spent actively collecting honey bees in gardens but not in nurseries. Our vegetation
sampling methods, particularly the area of our sampling plots, also differed substantially due to
differences in the area and spatial layout of these habitats. Because of these differences, we did not
include measures of floral abundance in our analyses, though the impacts of floral abundance on bee
communities are documented in the urban agriculture literature (e.g., [16]), and may influence wild
bees in these systems. Furthermore, we could not alternate wild bee observers between nursery and
urban garden sites due to geographic distance, which may have introduced sampler bias. Though
these issues limit the direct comparison of our datasets, we aimed to reduce this by using the same
statistical models for each habitat type and comparing only data collected within the same seasons of
the year. We emphasize that the new contributions of our study are to highlight how similar local and
landscape features may similarly or differently affect wild bee communities in different habitats across
urbanization gradients, and should be interpreted with these caveats in mind.
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4.4. Recommendations for Supporting Wild Bees in Urban Gardens and Nurseries

Urban gardens and nurseries are both agricultural systems but have different management
regimes and cultivate plants for different purposes. Urban gardens are often temporary fixtures in
cities due to urban development pressures, whereas nurseries are often more permanent systems,
though their plant community itself is highly dynamic through time. Gardens are largely intended
for the production of edible fruits and vegetables, as well as recreation for urban residents [87].
Many urban gardeners aim to promote bee conservation through planting practices grounded in
ecologically-based principles—that which may be considered “bee-friendly gardening” [88]. Nurseries
are essentially holding yards and propagation areas for ornamental plants, mostly growing native and
exotic ornamental plants that will be distributed across a geographic region and develop to maturity
elsewhere. Thus, in nurseries, the "product" of the horticultural system is the entire plant itself,
with emphasis placed on its aesthetic value. Although nurseries have potential to support wild bee
communities, they are rarely designed to attract and support pollinating insects. Despite differences in
purpose and ecology, similarities in local and landscape features between habitat types and the impact
they have on bees make opportunistic comparisons useful to produce generalizable management
information. We make three main suggestions for urban gardeners, nursery management, and urban
planners to promote and preserve pollinating insects in these habitats.

First, cultivating a greater richness of flowering vegetation can overall promote wild bees across
habitats. Second, planting and promoting native flowering vegetation that is long-standing may
be even more beneficial for wild bees. Gardeners can focus conservation efforts on increasing the
number of flowering plants in their gardens to provide food resources to bees over the season. It is
important to not only grow annuals (as annual floral richness can also influence bee communities
in other systems, e.g., [89]), but also perennials that flower throughout the year. In nurseries, as the
types of plant species grown in nurseries are additionally driven by consumer demand, increasing the
public’s awareness of the benefits of regionally native plants for wild bees and other organisms [90]
may encourage nurseries to increase their supply of native plants for sale, and subsequently support
diverse wild bee assemblages. Third, from an urban planning perspective, our results emphasize the
role of conserving large urban gardens for maintaining high species richness. The positive effect of
habitat size in urban areas has similarly been shown for organisms including parasitoid wasps [91],
hemipterans [92], amphibians [93], and ant species composition [94].

5. Conclusions

Urban agricultural areas present a conservation opportunity to promote wild bee biodiversity
within rapidly urbanizing areas through habitat management. This is especially true in urbanizing
regions that are also biodiversity hotspots. Gardens and nurseries have high potential to both support
biodiversity conservation by providing habitat for wild bees, and multiple human benefits by producing
food plants and ornamental plants for people. However, there is little understanding about how
shared habitat features and landscape features of these systems may impact wild bee diversity. Here,
we show that the local and landscape scale features of urban gardens and nurseries distributed across
an urbanization gradient in California shape wild bee communities. Managing these factors is therefore
important in the context of bee conservation in this biodiversity hotspot. Future work can investigate
functional traits of these bee communities to further understand how such factors may influence bee
community assembly and bee conservation in urban areas.
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Appendix A

Table A1. List of the 98 bee taxa collected in urban gardens and nurseries in California (N = 1380
individuals). Numbers represent the total number of individuals of that species collected in each
habitat type, summed across sampling events (a blank cell means that species was not collected in that
habitat type). Bolded names indicate the 10 species that were collected in both gardens and nurseries.
Morphotaxa (taxa with “sp.” in place of a species epithet), though not identified to species, were
determined to be taxonomically distinct units, different from one-another and from identified taxa.

Bee Species Gardens Nurseries

Agapostemon melliventris 2

Agapostemon texanus 48 26

Andrena sp. 1

Anthidium manicatum 2

Anthophora curta 1

Anthophora sp. 1

Anthophora urbana 8 6

Ashmeadiella bucconis 5 11

Ashmeadiella meliloti 1

Augochlorella pomoniella 3

Bombus californicus 3

Bombus caliginosus 96

Bombus nevadensis 1

Bombus sonorus 2

Bombus vosnesenskii 71 1

Calliopsis rhodophila 3

Calliopsis scutellaris 2

Calliopsis sp. 1

Ceratina acantha 68 5

Ceratina nanula 26 1

Coelioxys rufitarsis 2

Colletes sp. 1 1

Colletes sp. 2 1

Colletes sp. 3 3

Diadasia diminuta 5

Diadasia nitidifrons 1

Diadasia ochracea 1

Diadasia vallicola 2

Dianthidium pudicum 1

Dieunomia nevadensis 2

Eucera actuosa 4

Halictus confusus 3

Halictus ligatus 46 45

Halictus rubicundus 1
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Table A1. Cont.

Bee Species Gardens Nurseries

Halictus tripartitus 171 8

Holcopasites sp. 1

Hylaeus leptocephalus 20

Hylaeus mesillae 95 5

Hylaeus panamensis 13

Hylaeus polifolii 6

Hylaeus punctatus 33

Hylaeus rudbeckiae 69

Hylaeus sp. 1 11

Hylaeus sp. 2 6

Hylaeus sp. 3 1

Lasioglossum (Dialictus)
incompletum 1

Lasioglossum (Dialictus) sp. 01 48

Lasioglossum (Dialictus) sp. 02 1

Lasioglossum (Dialictus) sp. 03 9

Lasioglossum (Dialictus) sp. 04 4

Lasioglossum (Dialictus) sp. 05 4

Lasioglossum (Dialictus) sp. 06 1

Lasioglossum (Dialictus) sp. 07 1

Lasioglossum (Dialictus) sp. 08 3

Lasioglossum (Dialictus) sp. 09 5

Lasioglossum (Dialictus) sp. 10 7

Lasioglossum (Dialictus) sp. 11 1

Lasioglossum (Dialictus) sp. 12 1

Lasioglossum (Evylaeus) sp. 1 8

Lasioglossum (Lasioglossum)
sp. 1 20

Lasioglossum (Lasioglossum)
sp. 2 48

Megachile apicalis 1

Megachile brevis 4 1

Megachile inimica 2

Megachile latimanus 1

Megachile perihirta 30

Megachile relativa 1

Megachile rotundata 6

Megachile sp. 1 1

Megachile sp. 2 1

Megachile sp. 3 1

Megachile sp. 4 1

Megachile sp. 5 1

Megachile sp. 6 1

Megachile sp. 7 1

Megachile sp. 8 1

Megachile sp. 9 5

Melissodes robustior 97

Melissodes sp. 1 8

Melissodes sp. 2 1

Melissodes sp. 3 14

Melissodes sp. 4 4

Melissodes sp. 5 5
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Table A1. Cont.

Bee Species Gardens Nurseries

Melissodes sp. 6 8

Nomada edwardsii 2

Nomada sp. 1 4

Nomada sp. 2 2

Osmia sp. 1

Peponapis pruinosa 5

Perdita rhois 6

Sphecodes sp. 1 3

Sphecodes sp. 2 1

Svastra sabinensis 2

Triepeolus concavus 1

Triepeolus sp. 3

Unknown Unknown 1

Xylocopa tabaniformis orpifex 12

Xylocopa varipuncta 27

TOTAL INDIVIDUALS 1138 242

TOTAL SPECIES 49 59
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