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a b s t r a c t

Species richness is the core of biodiversity-ecosystem functioning (BEF) research. Never-
theless, it is difficult to accurately predict changes in plant species richness under different
climate scenarios, especially in alpine biomes. In this study, we surveyed plant species
richness from 2009 to 2017 in 75 alpine meadows (AM), 199 alpine steppes (AS), and 71
desert steppes (DS) in the Tibetan Autonomous Region, China. Along with 20 environ-
mental factors relevant to species settlement, development, and survival, we first simu-
lated the spatial pattern of plant species richness under current climate conditions using
random forest modelling. Our results showed that simulated species richness matched
well with observed values in the field, showing an evident decrease from meadows to
steppes and then to deserts. Summer precipitation, which ranked first among the 20
environmental factors, was further confirmed to be the most critical driver of species
richness distribution. Next, we simulated and compared species richness patterns under
four different precipitation scenarios, increasing and decreasing summer precipitation by
20% and 10%, relative to the current species richness pattern. Our findings showed that
species richness in response to altered precipitation was grassland-type specific, with
meadows being sensitive to decreasing precipitation, steppes being sensitive to increasing
precipitation, and deserts remaining resistant. In addition, species richness at low eleva-
tions was more sensitive to decreasing precipitation than to increasing precipitation,
implying that droughts might have stronger influences than wetting on species compo-
sition. In contrast, species richness at high elevations (also in deserts) changed slightly
under different precipitation scenarios, likely due to harsh physical conditions and small
species pools for plant recruitment and survival. Finally, we suggest that policymakers and
herdsmen pay more attention to alpine grasslands in central Tibet and at low elevations
where species richness is sensitive to precipitation changes.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC
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1. Introduction

Biodiversity is the key to maintaining ecosystem service and functionality (Le Bagousse-Pinguet et al., 2019; Pires et al.,
2018). Ecosystems structured with more species are thought to be more resistant and stable than those with fewer species
in response to external disturbances that are caused by nature or humans, and this is always attributed to niche differen-
tiation and functional compensation among species (Conti et al., 2018; Kohler et al., 2017). Climate change and irrational
human activity are primarily responsible for the losses of ecosystem biodiversity and functioning, and this topic is now
receiving close attention, from both scientists and the public (De Boeck et al., 2018; Pires et al., 2018; Titeux et al., 2016).
However, it remains a significant challenge to accurately predict biodiversity change under different climate change scenarios
(Fordham et al., 2016; Fournier et al., 2017).

In biodiversity research, species richness is one of the most critical indices for quantifying ecosystem responses to changes
in climatic and anthropogenic drivers (Maestre et al., 2012; Sandau et al., 2017). Previously, scientists conductedmanipulative
greenhouse experiments and in situ field observations to examine the influences of climate change and land-use shifts on
species richness change, either over time at a small scale or across space for a short duration (Kreyling et al., 2017; Lü et al.,
2019). Such studies have greatly improved our understanding of ecosystem sensitivity to global environmental change and
have highlighted the importance of biodiversity conservation for sustainable use of ecosystems with ongoing climate
warming. Limited by either the local scales or short time periods, such findings are rarely applicable to large-scale biodiversity
scenarios, although these are essential in policy denominations and practical solutions (Bellard et al., 2012; Fleishman et al.,
2000; Thuiller et al., 2008).

Environmental filtering theory recently provided a comprehensive view to better untangle these environmental controls
over species richness and assembly in natural ecosystems under global change (Castellanos et al., 2019; Le Bagousse-Pinguet
et al., 2017; Lozada-Gobilard et al., 2019). As predicted, environmental heterogeneity is the main reason for variations in
species composition across taxa and biomes (Stein et al., 2014). With remote sensing data and environmental variables
together, Leutner et al. (2012) simulated both species richness and floristic composition in a temperate montane forest in
Germany. However, it is still difficult to assess the relative importance of climatic, edaphic, and topographical factors for
spatial species distribution, especially in alpine biomes where plants survive various physical stresses, i.e., droughts (Leitinger
et al., 2015; Rosbakh et al., 2017), freezing (Neuner, 2014), intense UV radiation (Salter et al., 2017), and poor soils (K€orner,
2003b; Monson et al., 2006; Xu et al., 2014). Such a global scientific question can be solved well with deep learning algo-
rithms. For example, random forest algorithms are recommended in machine learning due to their excellent capability in
dealing with collinearity and nonlinearity problems between response and effect variables (Li et al., 2017; Schmitt et al., 2017;
Shiferaw et al., 2019).

The Hindu-Kush-Himalayan area is one of the global hotspots of biodiversity conservation (Myers et al., 2000), where
alpine ecosystems are critical for the livelihoods of residents and wildlife (Xu et al., 2019). The Tibetan alpine grasslands are
sensitive and fragile to climate change and human disturbance, but they play a vital role in safeguarding environments
downstream of both mainland China and South Asia (Miehe et al., 2019; Wang and Wesche, 2016). Unfortunately, approxi-
mately 20% of alpine grasslands have degraded due to warming, population expansion, and overgrazing on this plateau
(Harris, 2010). To protect alpine grasslands on the Tibetan Plateau, the government has implemented a number of policies and
programmes in the past decade (Dong et al., 2020). In many studies, precipitation is confirmed to be the principal driver of
both species richness and grassland productivity on the Tibetan Plateau (Ma et al., 2010; Niu et al., 2015; Wang et al., 2013).
Zhao et al. (2011) predicted that alpine meadows and steppes will shrink due to the expansion of alpine shrubs with ongoing
climate warming on the Tibetan Plateau. However, we know little about changes in species richness under climate changes,
especially shifted precipitation, at a broad scale over different alpine grassland types on this plateau.

Therefore, with this study we aim to determine the following: (1) the plant species richness pattern across typical
grassland communities under current climatic conditions; (2) the relative contributions of climatic, edaphic, and geographic
factors in driving such a spatial pattern of plant species richness and ascertain whether precipitation overrides other envi-
ronmental factors to be the most critical driver as reported in previous studies; (3) the change in the spatial pattern of plant
species richness when seasonal or annual precipitation decreases or increases, compared to current species richness dis-
tribution. Using relevant analyses, we also hope to examine (1) whether there is an evident difference in the sensitivity of
species richness distribution to precipitation among different typical grasslands, meadows, steppes, and deserts and (2)
whether species richness response to precipitation change is elevation specific and different between high- and low-
elevations. Finally, we hope these findings will contribute to the theory and practice of biodiversity conservation, not only
in Tibet, but also in other alpine biomes globally.

2. Materials and methods

2.1. Study region

Our study sites for simulation and validation are in the northern area of the Tibetan Autonomous Region, China (Fig. 1a),
which covers approximately 1.23 million km2 with an average elevation of above 4000 m a.s.l. There are three most widely
distributed grassland communities, Kobresia dominant alpine meadows (AM), Stipa dominant alpine steppes (AS), and desert
steppes (DS), which are co-dominated by Ceratoides and Stipa species. Vegetation distribution coincides with zonal climate



Fig. 1. Vegetation and climate of the Tibetan Autonomous Region, China. Panels, (a) sampling sites and vegetation map; (b) grassland composition (percent, %)
along a precipitation gradient at the pixel scale; (c) mean annual temperature (MAT) from 2000 to 2017; and (d) mean annual precipitation (MAP) from 2000 to
2017. AM, alpine meadows; AS, alpine steppes; DS, desert steppes.
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across space (Fig. 1 b‒d), especially with precipitation decreasing westwards (Fig. 1 b & d). Specifically, meadows dominate
where mean annual precipitation (MAP) is higher than 450 mm, both steppes and meadows mosaic in places with MAP
ranging from 150 mm to 450 mm, and desert-steppes are mainly scattered in the most northwestern area where MAP is less
than 100 mm (Fig. 1 a & b). Grazing is the main human disturbance to alpine grasslands on the Tibetan Plateau, which has
resulted in the degradation of 17.2% alpine grasslands there in the 1990s (Yu et al., 2012). With the implementation of the
ecological restoration projects by fencing in degraded pastures and economic compensatory payment policies to local pas-
toralists, livestock grazing was found to have little influence on species richness and composition between fenced and grazed
alpine grasslands on this plateau (Wu et al., 2014b, 2016). For more detailed information on climate, vegetation, and soil in
this study area, please refer to our previous publications (Li et al., 2011; Wu et al., 2014a, 2019).

2.2. Data collection and preprocessing

We carried out field campaigns annually from 2009 to 2017 at sites that covered 75 meadows, 199 steppes, and 71 desert-
steppes (Fig. 1 and Table 1). Species richness was measured at each site from late July to mid-August each year when most
plants were flowering or fruiting. Thus, we could identify the rare tiny species besides dominant tall ones and avoid
underestimating species richness. For species identification, we had five 1 m � 1 m quadrats, which were laid out at 20-m or
50-m intervals within a relatively homogeneous area of 200 m � 200 m at each site. However, at a few sites, the weather was
so harsh that we had to use a smaller quadrat of 0.5 m � 0.5 m for measurements to avoid getting sick at high elevations.
Species richness at these sites was finally standardized to one square metre using the species-area relationship specified for
each grassland type (Wu et al., 2014a; Zhou et al., 2016). Therefore, species richness refers to the number of species identified
per square metre (no. m�2) for both sampling and simulation in this study.

In this study, we collected climate data for simulating species richness distribution across typical alpine grasslands in the
Tibetan Autonomous Region, China. We first downloaded daily values of temperature, precipitation, and radiation for the
Table 1
Location, climate, and vegetation information for sites sampled from 2009 to 2017 across the Tibetan Autonomous Region, China.MAP, mean annual
precipitation; ANPP, aboveground net primary productivity; SR, plant species richness.

Type Sites Longitude Latitude Altitude MAP MAT ANPP SR

(�E) (�N) (m) (mm) (�C) (g m�2) (no. m�2)

All 345 81.8e92.3 31.4e33.2 4448e4995 32.8e656.3 �5.0 e þ4.2 3.0e176.3 2e28
AM 75 91.5e92.3 31.6e32.3 4618e4715 361.7e656.3 �2.5 e þ4.2 25.8e176.3 4e26
AS 199 86.7e91.0 31.4e33.2 4542e4995 153.5e567.8 �5.0 e þ3.9 3.1e101.5 2e28
DS 71 81.8e85.1 32.0e32.3 4448e4607 32.8e352.8 �3.5 e þ3.6 3.0e32.1 2e11
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2000e2017 period from the China Meteorological Data Service Centre (CMDC) (http://data.cma.cn/en) for all stations in both
Qinghai Province and the Tibetan Autonomous Region of China. Then, we calculated theweather data as monthly averages for
temperature and monthly sums for precipitation and radiation. Next, we followed the instruction of Chen et al. (2014) and
interpolated the monthly weather data into raster surfaces with a spatial resolution of 1 km � 1 km with ANUSPLIN 4.3
(Hutchinson, 2004). Such interpolated climate data agreed well with weather records autonomously logged by micro-
weather stations in the field (Chen et al., 2014; Li et al., 2019). Seasonal weather conditions have specific influences on
different stages of the plant’s life cycle, sprouting, growth, reproduction, and survival. For example, freezing temperatures in
late springmight be harmful to seeding. Finally, we calculated the averages of temperature and sums of both precipitation and
radiation by season for the next simulation and allocated them to winter (Decemberenext February), spring (MarcheMay),
summer (JuneeAugust), and autumn (SeptembereNovember).

Topographic factors, including elevation, aspect, and slope, are also seriously considered in species distribution modelling
because they can affect the combination of available water, light, and heat and indirectly limit plant settlement, growth,
reproduction, and survival in the mountains. In alpine communities, altitude and topography affect not only the species
richness of vascular plants but also that of bryophytes and lichens (Bruun et al., 2006). For alpine grasslands on the Qinghai-
Tibetan Plateau, species richness and community productivity are highly dependent on elevations in response to climate
change (Qiong et al., 2010; Sa et al., 2012; Tao et al., 2015). In this study, we calculated the slope and aspect information in
ArcGIS10.0 (Environmental Systems Research Institute, Inc., ESRI) with the digital elevation model (DEM) data with a 90-m
spatial resolution obtained from the USGS website (http://earthexplorer.usgs.gov/). In addition, we downloaded spatial data
of soil texture and the sand, clay, and silt contents (%) from the Resource and Environment Data Cloud Platform (http://www.
resdc.cn/data.aspx). Soil organic matter (SOM) and pH were available from the Land-Atmosphere Interaction Research Group
(http://globalchange.bnu.edu.cn/research/soil2). Before topographical analyses, both DEM and edaphic data were resampled
to the same spatial resolution of 1 km � 1 km as for seasonal climate variables.

Thus, we finally prepared raster surfaces of 20 environmental variables for simulating species richness distribution under
different climate scenarios. Climatic variables were seasonal temperature (�C), precipitation (mm), and radiation (MJ/m2).
Topographic regimes included elevation (m), slope (�), and aspect (�). Edaphic data were soil texture (sand, silt, and clay
contents), pH values, and SOM content (g/kg). Before modelling, we extracted all environmental variables to each site ac-
cording to its coordinates with grassland type referring to the 1:1 000 000 vegetation map of the whole Qinghai-Tibetan
Plateau, Chinese Academy of Sciences, 2001. Detailed information on the response and effect variables at each site is avail-
able online (Site data in Supplementary file).
2.3. Model selection and validation

A pre-analysis for model selection and comparison was first conducted because generalized linear models (GLM) (Wood,
2012), partial least square (PLS) regressions (Carrascal et al., 2009; Feilhauer and Schmidtlein, 2009), and random forest
modelling (RF) (Schmitt et al., 2017) have been used for simulating species richness change under different climate scenarios.
In this step, we randomly selected the data of 80% of sites for model building and training while the data of the remaining 20%
sites were used for validation. This procedure was iterated 300 times. After each iteration, we extracted simulated species
richness and plotted this against the corresponding values measured in the field (see details in Table S1 for model perfor-
mance comparison and Fig. S1 for the relationships between simulated and observed species richness). This pre-analysis
finally confirmed that random forest modelling was capable of processing datasets with mutually correlated variables as
recommended by Breiman (2001).
2.4. Scenario simulation and analysis

In the following simulations, we used the R package randomForest in R 3.5.2 (http://www.r-project.org/), which requires
two parameters for model optimization: (1) mtry, the number of splits per node in each tree, and (2) ntree, the number of
decision trees or the number of bootstrap samples. Random forest modelling uses a given number of bootstraps repeatedly
and randomly to extract subsamples from the original dataset, constructs a multitude of decision trees at the training time,
and outputs the classification or mean prediction of individual trees (Lopatin et al., 2016). Here, ntree was fixed to 500, and
the optimized mtry value was set to five, as recommended in previous studies (Lopatin et al., 2016). After 300 iterations as
described above, the importance of each predictor, whichwas defined as the total decrease in node impurity average over that
of all trees of the ensembles, was calculated with the Gini importance function in the package (Louppe et al., 2013).

By the end of the 21st century, summer precipitation over the Tibetan Plateau will change by 0e10% relative to current
conditions, with 80% probability, and by 10%e20%, with 40%e60% probability (Chen et al., 2011). Under such climate changes,
Zhao et al. (2011) predicted that alpine meadows and steppes would shrink due to alpine shrub-meadow expansion. Based on
our pre-analysis in the first step, we also confirmed that summer precipitation overrode the other 19 predictors to be themost
critical driver for the current species richness distribution (see details in the Result and Discussion section). Therefore, we set
up four different scenarios of summer precipitation, increasing and decreasing by 10% and 20%, compared to the current
summer precipitation. Thus, the plant species richness pattern under each precipitation scenario was simulated with a
random forest model that was structured in the same way as that in the pre-analysis.

http://data.cma.cn/en
http://earthexplorer.usgs.gov/
http://www.resdc.cn/data.aspx
http://www.resdc.cn/data.aspx
http://globalchange.bnu.edu.cn/research/soil2
http://www.r-project.org/
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We calculated and mapped the difference in species richness between current and changed precipitation scenarios for
alpine grasslands in the whole Tibetan Autonomous Region, China. Here, we calculated the areas of alpine grasslands with
species richness increased or decreased slightly by 0e0.5 species, moderately by 0.5e1.0 species, and evidently by more than
one species, compared to the current species richness distribution (Table 2). Next, we examined changes in species richness
under each scenario, compared to that under current summer precipitation, at the alpine grassland type level, by referring to
the vegetation map (Fig. 1a). With these analyses, we could determine (1) where alpine grasslands are sensitive to summer
precipitation change and what type communities they are and (2) howmany alpine grasslands would have evident variation
in species richness when responding to different scenarios of summer precipitation.

In this study, we also aimed to test the hypothesis that the species richness of alpine grasslands at low elevations is more
sensitive than that at high elevations. Here, we divided the area of alpine grasslandsmainly distributed from 3400m to higher
than 5600 m into 22 100-m elevation belts. For each belt, we calculated the means of the species richness difference between
current and changed summer precipitation scenarios and plotted them along an increasing elevation gradient. Finally, the
segmented package (Muggeo, 2008) was used for searching elevation breakpoints. Segmented regressions were performed to
examine the trends of species richness change with increasing elevations above and below the breakpoint for each summer
precipitation scenario. All scatter/bar graphs were plotted in R3.5.2 (http://www.r-project.org/), and all maps were produced
in ArcGIS 10.2 (http://www.esri.com/).

3. Results

3.1. Importance of environmental variables in simulating spatial species richness distribution

Species richness simulated with random forest modelling matched well with the data measured in the fields (R2 ¼ 0.72,
P < 0.001) (Fig. 2a). Climate factors dominantly controlled the species richness of alpine grasslands on the Tibetan Plateau,
with a sum of climatic importance of approximately 73%. As expected, summer precipitationwas themost critical driver, with
an importance value of about 10%, followed by summer radiation (7.5%) and spring temperature (6.4%) (Fig. 2b). The
importance of temperature over all seasons summed to be 23.7%, being lower than that of precipitation (25.7%) in controlling
the species richness of the Tibetan alpine grasslands (Fig. 2b). Soil texture, in terms of the sand, clay, and silt contents, ranked
lowest in species richness modelling, with their importance values being around 2% (Fig. 2b).

3.2. Current species richness distribution across alpine grasslands in the Tibetan Autonomous Region

Species richness of alpine grasslands on the Tibetan Plateau decreases from alpine meadows in the east to desert steppes
in the northwest (Fig. 3a), with the observed vs. simulated means being highest in meadows (15.9 vs. 15.5), moderate in
steppes (10.6 vs. 10.5), and lowest in deserts (5.3 vs. 5.6) (Fig. 3b). Overall, the species richness pattern simulated with random
forest modelling was reliable for all three grassland types, which showed slight changes, less than one species per square
metre, compared to field measurements (Fig. 3b).

3.3. Species richness change under different summer precipitation scenarios at the grassland type level

Species richness will remain stable in 56%e82% of alpine grasslands with changing summer precipitation (Table 2), mostly
in alpine steppes and deserts in the northwest area (Fig. 4, and vegetation referring to Fig. 1a). When summer precipitation
declines by 20%, species richness will decrease bymore than one species per squaremetre in 29.5% of alpine grasslands (Table
2), mainly in alpine meadows or in the ecozone between meadows and steppes in central Tibet (Fig. 4a). When summer
precipitation declines by 10%, species richness will decrease by more than one species per square metre in 9.6% of alpine
grasslands in the central area (Table 2, Fig. 4b). In contrast, when summer precipitation increases by 10% and 20%, species
richness will increase by more than one species per square metres in 7.4% and 20.4% of alpine grasslands in the central area
(Table 2, Fig. 4c&d).

Decreasing summer precipitation will decrease species richness moderately, by 0.6e0.8 species per square meters, while
increasing precipitation by 10e20% will increase species richness slightly, by 0.2e0.4 species per square meters for all three
Table 2
The area percentage (%) of alpine grasslands with changes in species richness under the four scenarios of changed summer precipitation on the Tibetan
Plateau.

Changes in species richness (no. m�2) Scenarios of precipitation summer changed by

�20% �10% þ10% þ20%

< �1 29.51 9.64 0.22 0.46
�1e�0.5 8.52 10.04 0.80 1.68
�0.5e0.5 56.41 78.42 82.04 69.90
0.5e1 4.26 1.72 9.58 7.57
>1 1.30 0.18 7.35 20.38

http://www.r-project.org/
http://www.esri.com/


Fig. 2. Model performance and predictor importance in simulating species richness across the Tibetan alpine grasslands under current climate condi-
tions. Panel (a), the relationship between observed and simulated values; Panel (b), the relative importance ranking of climatic, edaphic, and topologic variables
used for random forest modelling.
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grassland types in the study area (Fig. 5a). However, the species richness response to changing summer precipitation is
grassland-type specific. In particular, alpine deserts are resistant to changes in summer precipitation, with species richness
being unchanged (Fig. 5b). Species richness of alpine meadows and steppes will decline under decreasing summer precip-
itation and will increase under increasing summer precipitation. However, alpine steppes might be more sensitive than
meadows in response to increasing summer precipitation by 10e20% and decreasing summer precipitation by 10%, with
considerable changes in species richness (Fig. 5b). Alpinemeadowswill experience a higher reduction in species than steppes
under changes in summer precipitation of 20% (Fig. 5b).
3.4. Species richness at low-vs. high elevations in response to changes in summer precipitation

The species richness response to changes in summer precipitation differs between low- and high-elevation grasslands
(Fig. 6 and Table S2). The elevation breakpoints are also different under different precipitation scenarios. Therewas no evident
trend in species richness change along the elevation gradient where the elevationwas above the breakpoint. Notably, species
richness will decrease by 0.5e2.0 species per square meters in alpine grasslands with elevations lower than 5500 m under a
summer precipitation decrease of 20%. Species richness will decrease by 0.4e0.8 species per square metres in alpine
grasslands with elevations lower than 3700 m, where precipitation decreases by 10%. Under summer precipitation increases
of 10 and 20%, the species richness of alpine grasslands with elevations lower than 4200m and 4700mwill increase by 0e0.4
species per square metres.
4. Discussion

In this study, based on multi-year observations in the field, we first simulated the current spatial pattern of plant species
richness for alpine grasslands in Tibet with random forest modelling. Summer precipitation was further confirmed as the
primary driver of species richness change across space. Next, we simulated species richness patterns under different summer



Fig. 3. Species richness of alpine grasslands on the Tibetan Plateau under current climatic conditions. Panel (a), simulated species richness distribution;
Panel (b), comparison between simulated and observed species richness (mean with standard error bar) at the grassland type level.

Fig. 4. Mapping species richness changes under different summer precipitation scenarios compared to current climatic conditions (see Fig. 3a) in the
Tibetan Autonomous Region, China. Non-grassland areas (see Fig. 1a) were masked out during modelling and are shown in white.
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precipitation scenarios, with current precipitation increasing and decreasing by 10% and 20%. We calculated and mapped the
difference in simulated species richness patterns from that under current precipitation conditions. Finally, the sensitivity of
species richness response to summer precipitation was specified at the grassland type level and from an elevation gradient
perspective. More details on the relative importance of the environmental drivers and potential mechanisms will be dis-
cussed below.



Fig. 5. Changes in species richness under different summer precipitation scenarios compared to current climatic conditions. Panel (a), mean species
richness of all alpine grassland types; Panel (b), the difference in species richness between current and changed summer precipitation scenarios at the grassland
type level. AM, alpine meadows; AS, alpine steppes; DS, desert steppes.

Fig. 6. Breakpoint analysis of species richness changes along the elevation gradient under different scenarios of changed summer precipitation compared to
current climate conditions.

M. Li et al. / Global Ecology and Conservation 21 (2020) e008488
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4.1. Importance of environmental variables in driving current species richness patterns

First, summer precipitation was most critical driver of the current species richness pattern compared with the other 19
environmental variables used in random forest modelling (Fig. 2b). This is consistent with studies in semi-arid grasslands at
regional and global scales (Duffy et al., 2017; Grossiord et al., 2017; Siepielski et al., 2017), agrees with studies in temperate
grasslands on the Inner Mongolian Plateau (Bai et al., 2008; Hu et al., 2010), and coincides with previous findings in alpine
grasslands on the Qinghai-Tibetan Plateau (Shi et al., 2014; Yang et al., 2010). A potential explanation is that plants in such
semi-arid habitats have been environmentally selected (Griffin-Nolan et al., 2018; P�erez-Camacho et al., 2012) to evolve
specific functional traits to adapt to limited precipitation and soil moisture. For example, Wu et al. (2016) found that plant
functional trait diversity indices and the community-weighted mean and divergence of water-use related traits were as
reliable as precipitation in regulating the spatial variation of community productivity across diverse alpine grassland types in
northern Tibet.

Second, our finding partly agrees with K€orner (2003a) that low temperature is a critical limiting factor for plants in high-
elevation ecosystems. In this study, we found that temperature was less critical than precipitation in summer in simulating
species richness distribution with random forest modelling (Fig. 2b). This might be caused by the distance from the oceans.
The Alps in Europe are relatively close to the Mediterranean, and thus abundant precipitation might be less critical than
temperature for alpine plants at high elevations (K€orner, 2003a). However, surrounded by the Himalayan Ranges in the south
and HengduanMountains in the east, the South Asian Monsoon from the Indian and Pacific Oceans is blocked and weakened.
Consequently, precipitation decreases from southeast to northwest across the Tibetan Plateau (Fig. 1d) and becomes the most
critical factor limiting alpine grassland plant survival in this region (Tada et al., 2016). This might be the reason why pre-
cipitation overrides temperature and other environmental factors with respect to both the spatial pattern of species richness
and alpine plants’ physiological process and function within this plateau. For example, Fu et al. (2018) found that increasing
precipitation had much stronger influences than experimental warming on alpine meadow productivity in the central Ti-
betan Autonomous Region where alpine plants are able to capture the arrival signal of summer monsoon precipitation to
prepare for leaf unfolding (Li et al., 2016).

Third, we found that the effects of soil properties and topographical regimes were not as crucial as expected in simulating
species richness distribution (Fig. 2b). One explanation is that soil texture and nutrient availability are controlled by both
climate and vegetation, especially under such a robust control of precipitation over space. For example, Ji et al. (2014) found
that soil pH correlated negatively with soil moisture and the silt content decreased with increasing temperature and
decreasing precipitation westwards on the Tibetan Plateau. Foliar nitrogen and carbon isotopic compositions (d15N and d13C)
are functional traits that represent plants’ water-use efficiency and nitrogen up-take preference (Peri et al., 2012; Wang and
Schjoerring, 2012). However, across alpine grasslands in northern Tibet, Wu et al. (2019) found that due to the robust control
of precipitation, soil nitrogen and phosphorus contents had no significant influences on the d15N differentiation among alpine
grassland plants. Moreover, the weak importance of topographical regimes can be attributed to spatial scales. In a mountain
valley, species richness distributes differently along different slopes, aspects, and elevations (Hofer et al., 2008; Moeslund
et al., 2013). However, at a broader scale, such topographic effects might be less critical than climatic and edaphic factors,
although biotic and abiotic factors together regulate plant species richness and distribution (L�opez-Angulo et al., 2018; Moura
et al., 2016).

4.2. The sensitivity of species richness in alpine grasslands to changed summer precipitation

Species richness is the key to predicting ecosystem service and function responses to future climate change (Koerner et al.,
2018). With respect to this topic in alpine grasslands on the Tibetan Plateau, scientists have addressed the importance of
species richness (Ma et al., 2010; Wang et al., 2013; Wu et al., 2014a) and other diversity indices (Niu et al., 2015; Wu et al.,
2016) derived from species composition in regulating ecosystemmultifunctionality to climate change along environmental or
spatial gradients. Climate is forecasted to be warmer and wetter with shifting precipitation spatiotemporally in the near
future on the Qinghai-Tibetan Plateau (Li et al., 2010; Yang et al., 2014; Zhang, 2015). Therefore, it becomes urgent to analyse
the sensitivity of species richness response to precipitation change and thereby formulate sustainable and adaptive policies
on ecosystem management (Weltzin et al., 2003).

Our study confirmed that such a sensitivity of species richness response to precipitation change is grassland specific.
Species richness of desert steppes where annual precipitation is generally less than 100 mm (Fig. 1a &d) is resistant under
different scenarios of changed summer precipitation (Figs. 4 and 5b). This is consistent with Wu et al. (2017), i.e., that no
significant change in vegetation coverage was found in alpine deserts after ten years of fencing. Species pool size and soil
nutrient availability might be the reasons for the stability of species richness in desert steppes. Only 2e11 species per square
metres were found in desert steppes on the Tibetan Plateau (Table 1). Such a small species pool limits individual plant
recruitment (Arvid Grytnes and Birks, 2002; Grace, 2001), and alien species can rarely survive in poor desert soils (Wu et al.,
2014a).

In contrast, alpine meadows and steppes have more species than deserts (Table 1 and Fig. 3b). Considerable changes in
species richness with changing precipitationwill occur only in alpine meadows and steppes in the central area (Figs. 4 and 5).
In addition, we also found that alpine steppes aremore sensitive thanmeadows to precipitation changes except for the case of
severe drought, with summer precipitation reduced by 20% (Fig. 5b). This might be partly due to the difference in community
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composition of plant functional groups with different water-use-related traits and the role of dominant species in shaping
community assembly (Gellesch et al., 2015; Mason et al., 2011; Zhu et al., 2015). For example, mesophytic plants in alpine
steppes are able to grow in both semi-arid and humid habitats, while the hygrophytes dominant in alpine meadows cannot
survive in semi-arid steppes and arid deserts. This is similar to Chelli et al. (2016), who reported that plant functional groups
differ in response to precipitation change, with forbs benefiting more than grasses from increased water availability. On the
other hand, the competitive advantages of dominant Kobresia species in alpine meadows might be obstacles for the settle-
ment and survival of other less competitive species. However, in the sparely structured alpine steppes dominated by Stipa
species (Zhu et al., 2015), there is available niche space for other species recruited from either alpine meadows or deserts.

In addition, we found that the species richness of alpine grasslands at low elevations is sensitive to precipitation change
while that at high elevations remains resistant and unchangeable, although the elevation breakpoints are different under
different precipitation change scenarios (Fig. 6 and Table S2). This is similar to that observed in alpine deserts: species set-
tlement and survival at high elevations are also limited by both harsh physical conditions and a small local species pool.
Notably, under droughts with summer precipitation reduced by 20%, species richness at 3500e5000mwill decrease by 0.5e2
species per square metres (Fig. 6a and Table S2), implying that species richness will decrease less at higher elevations than at
lower elevations. Overall, we found that alpine grasslands on the Tibetan Plateau are likely to be more sensitive to drought
than to wetting, partly consistent with Byrne et al. (2017), who found a higher number of considerable changes in species
richness under drought treatment than under water addition in a manipulative experiment at a sub-humid grassland site.

It is known that climatic, edaphic, and topographic drivers jointly control community assembly and ecosystem functioning
across different scales (L�opez-Angulo et al., 2018; Pires et al., 2018). However, there are still some uncertainties in simulating
species richness change under increasing and decreasing precipitation. The interactions between changing precipitation and
other predictors should be specified prior to modelling in further studies. In addition, plants adapt and respond to climate
change differently among species and life-forms (Byrne et al., 2017). Limited by data availability, it is a considerable challenge
to simulate plant species distribution at the species level.

5. Conclusions

Species richness of alpine grasslands in the Tibetan Autonomous Region, China, is mainly controlled by climate, especially
summer precipitation, which overrode the 19 other environmental factors, andwas further confirmed to play themost critical
role in shaping current species richness distribution across alpine meadows, steppes, and deserts on the Tibetan Plateau.
Species richness in response to changed summer precipitation is grassland-type specific, with alpine deserts being resistant
and alpine meadows and steppes being sensitive. Alpine meadows are sensitive to severe droughts, with a reduction in
species richness, while alpine steppes are sensitive to wetting through increased species richness. In addition, species
richness at low elevations, even though the elevation breakpoints might be different under different summer precipitation
scenarios, is likely to change considerably. Therefore, we suggest that policymakers and herdsmen pay closer attention to the
alpine pastures in central Tibet and in areas where species richness likely experiences large changes under ongoing climate
change.
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