2,913 research outputs found

    Smart Regulation for Smart Grids

    Get PDF
    Climate change and security of supply policies are driving us towards a decarbonization of the electricity system. It is in this context that smart grids are being discussed. Electricity grids, and hence their regulatory frameworks, have a key role to play in facilitating this transformation of the electricity system. In this paper, we analyze what is expected from grids and what are the regulatory tools that could be used to align the incentives of grid companies and grid users with what is expected from them. We look at three empirical cases to see which regulatory tools have already been applied and find that smart grids need a coherent regulatory framework addressing grid services, grid technology innovation and grid user participation to the ongoing grid innovation. The paper concludes with what appears to be a smart regulation for smart grids.Regulation, innovation, electricity, grids, transmission, distribution

    Noise Analysis for Performance Evaluation of Biopotential Recording Front-Ends

    Full text link
    Noise efficiency factor (NEF) and power efficiency factor (PEF) are widely used as the figure of merit to quantify the performance of biopotential recording front-ends. NEF and PEF are discussed from the noise analysis to the trend survey. To provide a comprehensive performance comparison of the front-ends, the performance mapping is developed using the design parameters of the technology node, NEF, PEF, |PEF - NEF|, and supply voltage. Using |PEF - NEF| provides how well a front-end balances between current-noise efficiency and power-noise efficiency, in other words, how biased a front-end is between current- and power-noise efficiencies. Also, the performance mappings of different front-end architectures are presented.Comment: 16 pages, 8 figure

    On-chip adaptive power management for WPT-Enabled IoT

    Get PDF
    Internet of Things (IoT), as broadband network connecting every physical objects, is becoming more widely available in various industrial, medical, home and automotive applications. In such network, the physical devices, vehicles, medical assistance, and home appliances among others are supposed to be embedded by sensors, actuators, radio frequency (RF) antennas, memory, and microprocessors, such that these devices are able to exchange data and connect with other devices in the network. Among other IoT’s pillars, wireless sensor network (WSN) is one of the main parts comprising massive clusters of spatially distributed sensor nodes dedicated for sensing and monitoring environmental conditions. The lifetime of a WSN is greatly dependent on the lifetime of the small sensor nodes, which, in turn, is primarily dependent on energy availability within every sensor node. Predominantly, the main energy source for a sensor node is supplied by a small battery attached to it. In a large WSN with massive number of deployed sensor nodes, it becomes a challenge to replace the batteries of every single sensor node especially for sensor nodes deployed in harsh environments. Consequently, powering the sensor nodes becomes a key limiting issue, which poses important challenges for their practicality and cost. Therefore, in this thesis we propose enabling WSN, as the main pillar of IoT, by means of resonant inductive coupling (RIC) wireless power transfer (WPT). In order to enable efficient energy delivery at higher range, high quality factor RIC-WPT system is required in order to boost the magnetic flux generated at the transmitting coil. However, an adaptive front-end is essential for self-tuning the resonant tank against any mismatch in the components values, distance variation, and interference from close metallic objects. Consequently, the purpose of the thesis is to develop and design an adaptive efficient switch-mode front-end for self-tuning in WPT receivers in multiple receiver system. The thesis start by giving background about the IoT system and the technical bottleneck followed by the problem statement and thesis scope. Then, Chapter 2 provides detailed backgrounds about the RIC-WPT system. Specifically, Chapter 2 analyzes the characteristics of different compensation topologies in RIC-WPT followed by the implications of mistuning on efficiency and power transfer capability. Chapter 3 discusses the concept of switch-mode gyrators as a potential candidate for generic variable reactive element synthesis while different potential applications and design cases are provided. Chapter 4 proposes two different self-tuning control for WPT receivers that utilize switch-mode gyrators as variable reactive element synthesis. The performance aspects of control approaches are discussed and evaluated as well in Chapter 4. The development and exploration of more compact front-end for self-tuned WPT receiver is investigated in Chapter 5 by proposing a phase-controlled switched inductor converter. The operation and design details of different switch-mode phase-controlled topologies are given and evaluated in the same chapter. Finally, Chapter 6 provides the conclusions and highlight the contribution of the thesis, in addition to suggesting the related future research topics.Internet de las cosas (IoT), como red de banda ancha que interconecta cualquier cosa, se está estableciendo como una tecnología valiosa en varias aplicaciones industriales, médicas, domóticas y en el sector del automóvil. En dicha red, los dispositivos físicos, los vehículos, los sistemas de asistencia médica y los electrodomésticos, entre otros, incluyen sensores, actuadores, subsistemas de comunicación, memoria y microprocesadores, de modo que son capaces de intercambiar datos e interconectarse con otros elementos de la red. Entre otros pilares que posibilitan IoT, la red de sensores inalámbricos (WSN), que es una de las partes cruciales del sistema, está formada por un conjunto masivo de nodos de sensado distribuidos espacialmente, y dedicados a sensar y monitorizar las condiciones del contexto de las cosas interconectadas. El tiempo de vida útil de una red WSN depende estrechamente del tiempo de vida de los pequeños nodos sensores, los cuales, a su vez, dependen primordialmente de la disponibilidad de energía en cada nodo sensor. La fuente principal de energía para un nodo sensor suele ser una pequeña batería integrada en él. En una red WSN con muchos nodos y con una alta densidad, es un desafío el reemplazar las baterías de cada nodo sensor, especialmente en entornos hostiles, como puedan ser en escenarios de Industria 4.0. En consecuencia, la alimentación de los nodos sensores constituye uno de los cuellos de botella que limitan un despliegue masivo práctico y de bajo coste. A tenor de estas circunstancias, en esta tesis doctoral se propone habilitar las redes WSN, como pilar principal de sistemas IoT, mediante sistemas de transferencia inalámbrica de energía (WPT) basados en acoplamiento inductivo resonante (RIC). Con objeto de posibilitar el suministro eficiente de energía a mayores distancias, deben aumentarse los factores de calidad de los elementos inductivos resonantes del sistema RIC-WPT, especialmente con el propósito de aumentar el flujo magnético generado por el inductor transmisor de energía y su acoplamiento resonante en recepción. Sin embargo, dotar al cabezal electrónico que gestiona y condicionada el flujo de energía de capacidad adaptativa es esencial para conseguir la autosintonía automática del sistema acoplado y resonante RIC-WPT, que es muy propenso a la desintonía ante desajustes en los parámetros nominales de los componentes, variaciones de distancia entre transmisor y receptores, así como debido a la interferencia de objetos metálicos. Es por tanto el objetivo central de esta tesis doctoral el concebir, proponer, diseñar y validar un sistema de WPT para múltiples receptores que incluya funciones adaptativas de autosintonía mediante circuitos conmutados de alto rendimiento energético, y susceptible de ser integrado en un chip para el condicionamiento de energía en cada receptor de forma miniaturizada y desplegable de forma masiva. La tesis empieza proporcionando una revisión del estado del arte en sistemas de IoT destacando el reto tecnológico de la alimentación energética de los nodos sensores distribuidos y planteando así el foco de la tesis doctoral. El capítulo 2 sigue con una revisión crítica del statu quo de los sistemas de transferencia inalámbrica de energía RIC-WPT. Específicamente, el capítulo 2 analiza las características de diferentes estructuras circuitales de compensación en RIC-WPT seguido de una descripción crítica de las implicaciones de la desintonía en la eficiencia y la capacidad de transferencia energética del sistema. El capítulo 3 propone y explora el concepto de utilizar circuitos conmutados con función de girador como potenciales candidatos para la síntesis de propósito general de elementos reactivos variables sintonizables electrónicamente, incluyendo varias aplicaciones y casos de uso. El capítulo 4 propone dos alternativas para métodos y circuitos de control para la autosintonía de receptores de energíaPostprint (published version

    A multiport partial power processing converter with energy storage integration for EV stationary charging

    Get PDF
    Battery storage system (BSS) integration in fast charging station (FCS) is becoming popular to achieve higher charging rates with peak-demand shaping possibility. However, the additional conversion stage for integrating the BSS increases the system losses, size and cost. The concept of partial power processing converter (PPPC), can mitigate this effect. Compared to conventional used full power processing converter, PPPC reduces the amount of transferred power from the BSS to the electric vehicle by the converter. As a consequence, the power losses generated by the converter are reduced, leading to lower sized converters and higher system efficiencies. This paper proposes a DC/DC multiport converter which allows the integration of battery storage in FCS based on a partial power processing concept, while maintaining the specific requirements in terms of isolation for FCS. The proposed three-port partial power processing converter (3P-PPPC) is derived from the commonly used triple active bridge (TAB) converter. The resulting design trade-offs, the dynamic behavior and limitations of the topology are investigated. Furthermore, the round-trip efficiency of the 3P-PPPC for integrating BSS in FCS is compared with conventional full power processing converter solutions, highlighting the superiority of the proposed topology. A prototype has been built to validate the 3P-PPPC

    Design Space Evaluation for Resonant and Hard-charged Switched Capacitor Converters

    Get PDF
    USB Power Delivery enables a fixed ratio converter to operate over a wider range of output voltages by varying the input voltage. Of the DC/DC step-down converters powered from this type of USB, the hard-charged Switched Capacitor circuit is of interest to industry for its potential high power density. However implementation can be limited by circuit efficiency. In fully resonant mode, the efficiency can be improved while also enabling current regulation. This expands the possible applications into battery chargers and eliminates the need for a two-stage converter.In this work, the trade-off in power loss and area between the hard-charged and fully resonant switched capacitor circuit is explored using a technique that remains agnostic to inductor technology. The loss model for each converter is presented as well as discussion on the restrained design space due to parasitics in the passive components. The results are validated experimentally using GaN-based prototype converters and the respective design spaces are analyzed

    Review of architectures based on partial power processing for DC-DC applications

    Get PDF
    This paper presents a review of advanced architectures based on the partial power processing concept, whose main objective is to achieve a reduction of the power processed by the converter. If the power processed by the converter is decreased, the power losses generated by the power converter are reduced, obtaining lower sized converters and higher system efficiencies. Through the review 3 different partial power processing strategies are distinguished: Differential Power Converters, Partial Power Converters and Mixed strategies. Each strategy is subdivided into smaller groups that entail different architectures with their own advantages and disadvantages. Also, due to the lack of agreement that exists in the sources around the naming of the different architectures, this paper seeks to stablish a nomenclature that avoids confusion when indexing this type of architectures. Regarding Partial Power Converters an extensive application oriented description is also developed. Finally, the main conclusions obtained through the review are presented

    Review of Architectures Based on Partial Power Processing for DC-DC Applications

    Get PDF
    This paper presents a review of advanced architectures based on the partial power processing concept, whose main objective is to achieve a reduction of the power processed by the converter. If the power processed by the converter is decreased, the power losses generated by the power converter are reduced, obtaining lower sized converters and higher system efficiencies. Through the review 3 different partial power processing strategies are distinguished: Differential Power Converters, Partial Power Converters and Mixed strategies. Each strategy is subdivided into smaller groups that entail different architectures with their own advantages and disadvantages. Also, due to the lack of agreement that exists in the sources around the naming of the different architectures, this paper seeks to stablish a nomenclature that avoids confusion when indexing this type of architectures. Regarding Partial Power Converters an extensive application oriented description is also developed. Finally, the main conclusions obtained through the review are presented

    The Application of Model Predictive Control on Paralleled Converters for Zero Sequence Current Suppression and Active Thermal Management

    Get PDF
    In the field of power electronics, the control of rectifiers is a crucial area of study. Rectifiers are used to convert AC power into DC power, and are commonly used in a wide range of applications, including renewable energy systems, industrial automation, and consumer electronics. However, in medium and high-power systems when multiple rectifiers are connected in parallel to a DC bus, stability issues can arise, including voltage fluctuations, zero sequence circulating current, and thermal imbalance. Achieving stable DC bus voltage is essential for maintaining the proper functioning of electronic devices, while suppressing zero sequence current is necessary for protecting the power electronics equipment from damage and ensuring that a power system\u27s performance is not degraded. Active thermal management is important for ensuring the longevity and reliability of the power electronics equipment. To achieve these objectives, advanced control techniques must be developed and implemented. This research investigates the use model predictive control to achieve three objectives in two paralleled rectifier each control cycle: DC voltage stability, zero sequence suppression, and thermal balance. These objectives are critical for ensuring the reliable and efficient operation of power electronics systems. The findings of this research will contribute to the development of more reliable and efficient power electronics systems, with the Navy\u27s (power electronic building block) PEBB systems particularly in mind. However, this research can be extended to other medium and high-powered applications in modern technology too such as missile defense systems, data centers, and uninterruptible power supplies

    Energy efficiency in wireless communications for mobile user devices

    Get PDF
    Mención Internacional en el título de doctorMobile user devices’ market has experi-enced an exponential growth worldwide over the last decade, and wireless communications are the main driver for the next generation of 5G networks. The ubiquity of battery-powered connected devices makes energy efficiency a major research issue. While most studies assumed that network interfaces dominate the energy consumption of wireless communications, a recent work unveils that the frame processing carried out by the device could drain as much energy as the interface itself for many devices. This discovery poses doubts on prior energy models for wireless communications and forces us to reconsider existing energy-saving schemes. From this standpoint, this thesis is de-voted to the study of the energy efficiency of mobile user devices at multiple layers. To that end, we assemble a comprehensive en-ergy measurement framework, and a robust methodology, to be able to characterise a wide range of mobile devices, as well as individual parts of such devices. Building on this, we first delve into the en-ergy consumption of frame processing within the devices’ protocol stack. Our results identify the CPU as the leading cause of this energy consumption. Moreover, we discover that the characterisation of the energy toll ascribed to the device is much more complex than the previous work showed. Devices with complex CPUs (several frequencies and sleep states) require novel methodologies and models to successfully characterise their consumption. We then turn our attention to lower levels of the communication stack by investigating the behaviour of idle WiFi interfaces. Due to the design of the 802.11 protocol, together with the growing trend of network densification, WiFi devices spend a long time receiving frames addressed to other devices when they might be dormant. In order to mitigate this issue, we study the timing constraints of a commercial WiFi card, which is developed into a standard-compliant algorithm that saves energy during such transmissions. At a higher level, rate adaptation and power control techniques adapt data rate and output power to the channel conditions. However, these have been typically studied with other metrics rather than energy efficiency in mind (i.e., performance figures such as throughput and capacity). In fact, our analyses and sim-ulations unveil an inherent trade-off between throughput and energy efficiency maximisa-tion in 802.11. We show that rate adaptation and power control techniques may incur inef-ficiencies at mode transitions, and we provide energy-aware heuristics to make such decisions following a conservative approach. Finally, our research experience on simula-tion methods pointed us towards the need for new simulation tools commited to the middle-way approach: less specificity than complex network simulators in exchange for easier and faster prototyping. As a result, we developed a process-oriented and trajectory-based discrete-event simulation package for the R language, which is designed as a easy-to-use yet pow-erful framework with automatic monitoring capabilities. The use of this simulator in net-working is demonstrated through the energy modelling of an Internet-of-Things scenario with thousands of metering devices in just a few lines of code.El mercado de los dispositivos de usuario móviles ha experimentado un crecimiento exponencial a nivel mundial en la última década, y las comunicaciones inalámbricas son el principal motor de la siguiente generación de redes 5G. La ubicuidad de estos dispos-itivos alimentados por baterías hace de la eficiencia energética un importante tema de investigación. Mientras muchos estudios asumían que la interfaz de red domina el consumo energético de las comuni-caciones inalámbricas, un trabajo reciente revela que el procesado de tramas que se lleva a cabo en el disposi-tivo podría gastar tanta energía como la propia interfaz para muchos dispositivos. Este descubrimiento plantea dudas sobre los anteriores modelos energéticos para comunicaciones inalámbricas y nos obliga a reconsid-erar los esquemas de ahorro energético existentes. Desde este punto de vista, esta tesis está dedicada al estudio de la eficiencia energética de dispositivos de usuario móviles en múltiples capas. Para ello, se construye un completo sistema de medida de energía, y una metodología robusta, capaz de caracterizar un amplio rango de dispositivos móviles, así como partes individuales de tales dispositivos. A partir de esto, en primer lugar se profundiza en el consumo energético del procesamiento de tramas en la pila de protocolos de los dispositivos. Nuestros resul-tados identifican a la CPU como principal causa de tal consumo. Además, se descubre que la caracterización de la cuota energética adscrita al dispositivo es mucho más compleja que lo mostrado por el trabajo ante-rior. Los dispositivos con CPU complejas (múltiples frecuencias y modos de apagado) requieren nuevas metodologías y modelos para caracterizar su consumo de manera existosa. En este punto, volvemos nuestra atención hacia niveles más bajos de la pila de comunicaciones para investigar el comportamiento de las interfaces WiFi en estado inactivo. Debido al diseño del protocolo 802.11, junto con la tendencia creciente hacia la densifi-cación de las redes, los dispositivos WiFi pasan mucho tiempo recibiendo tramas destinadas a otros dispos-itivos cuando podrían estar apagados. Para mitigar este problema, se estudian las limitaciones temporales de una tarjeta WiFi comercial, lo que posteriormente se utiliza para desarrollar un algoritmo conforme con el estándar que es capaz de ahorrar energía durante dichas transmisiones. A un nivel más alto, las técnicas de adaptación de tasa y control de potencia adaptan la tasa de datos y la potencia de salida a las condiciones del canal. No obstante, estas técnicas han sido típicamente es-tudiadas con otras métricas en mente (i.e., figuras de rendimiento como la tasa total y la capacidad). De hecho, nuestros análisis y simulaciones desvelan un conflicto entre la maximización de la tasa total y la efi-ciencia energética en 802.11. Se muestra que las técni-cas de adaptación de tasa y control de potencia pueden incurrir en ineficiencias en los cambios de modo, y se proporcionan heurísticos para tomar tales decisiones de un modo conservador y eficiente energéticamente. Finalmente, nuestra experiencia investigadora en métodos de simulación nos hizo conscientes de la necesidad de nuevas herramientas de simulación comprometidas con un enfoque intermedio: menos especificidad que los complejos simuladores de re-des a cambio de facilidad y rapidez en el prototipado. Como resultado, se desarrolló un paquete de simu-lación por eventos discretos para el lenguaje R orien-tado a procesos y basado en trayectorias, el cual está diseñado como una herramienta fácil de utilizar a la par que potente con capacidad de monitorización au-tomática integrada. El uso de este simulador en redes se demuestra mediante el modelado en energía de un escenario de la Internet de las Cosas con miles de dis-positivos de medida en tan solo unas pocas líneas de código.Programa Oficial de Doctorado en Ingeniería TelemáticaPresidente: Juan Manuel López Soler.- Secretario: Francisco Valera Pintor.- Vocal: Paul Horatiu Patra
    corecore