85 research outputs found

    Efficient design of WIMAX/802.16 mesh networks

    Get PDF
    Broadband wireless networks are becoming increasingly popular due to their fast and inexpensive deployment and their capabilities of providing flexible and ubiquitous Internet access. While the majority of existing broadband wireless networks are still exclusively limited to single hop access, it is the ability of these networks to forward data frames over multi-hop wireless routes which enabled them to easily extend the network coverage area. Unfortunately, achieving good multi- hop throughput has been challenging due to several factors, such as lossy wireless links caused by interference from concurrent transmissions, and intra-path interference caused by transmissions on successive hops along a single path. A wireless mesh network WMN consists of a number of stationary wireless mesh routers, forming a wireless backbone. The wireless mesh routers serve as access points (APs) for wireless mobile devices, and some of them also act as gateways to the Internet via high speed wireless links. Several technologies are currently being considered for mesh (multi-hop) networks, including, IEEE 802.11 (both single channel and multi-channel), IEEE 802.16/WiMAX, and next generation cellular networks (LTE). In this work, we focus on the IEEE 802.16. To maximize the network performance of mesh networks (e.g., throughput), it is essential to consider a cross-layer design, exploiting the dependency between protocol layers such as the routing network layer and the scheduling resource allocation MAC layer. Therefore this PhD thesis considers a cross-layer design approach for designing efficient wireless mesh networks; we first develop mathematical models (link-based and path-based) for the problem of joint routing tree construction and link scheduling in WiMAX-based mesh networks with the objective of minimizing the schedule length to satisfy a set of uplink and downlink demands. This is achieved by maximizing the number of concurrent active transmissions in the network by efficiently reusing the spectrum spatially. Second, we exploit the broadcasts nature of the wireless medium and enhance our design models by incorporating opportunistic network coding into the joint routing tree construction and link scheduling problem. Identifying coding-aware routing structures and utilizing the broadcasting feature of the wireless medium play an important role in realizing the achievable gain of network coding. Last, the uprising mobile WiMAX (802.16e amendment) has introduced more difficulties and challenges into the network design problem; thus, ensuring larger connection lifetime and better routing stability become of greater interest for the joint routing and scheduling problem. This is addressed by augmenting the previously designed models. Throughout this thesis, we assume centralized scheduling at the base station (BS) and we develop, for the joint problems, integer linear programming (ILP) models which require the enumeration of all feasible solutions to reach the optimal solution. Given their complexities, we rely on optimization decomposition methods using column generation for solving each model in an efficient way

    Cross-layer Optimization in Wireless Multihop Networks

    Get PDF
    In order to meet the increasing demand for higher data rates, next generation wireless networks must incorporate additional functionalities to enhance network throughput. Multihop networks are considered as a promising alternative due to their ability to exploit spatial reuse and to extend coverage. Recently, industry has shown increased interest in multihop networks as they do not require additional infrastructure and have relatively low deployment costs. Many advances in physical and network layer techniques have been proposed in the recent past and they have been studied mostly in single-hop networks. Very few studies, if any, have tried to quantify the gains that these techniques could provide in multihop networks. We investigate the impact of simple network coding, advanced physical layer and cooperative techniques on the maximum achievable throughput of wireless multihop networks of practical size. We consider the following advanced physical layer techniques: successive interference cancellation, superposition coding, dirty-paper coding, and some of their combinations. We achieve this by formulating several cross-layer frameworks when these techniques are jointly optimized with routing and scheduling. We also formulate power allocation subproblems for the cases of continuous power control and superposition coding. We also provide numerous engineering insights by solving these problems to optimality

    Physical Layer Securities in Wireless Communication Systems

    Get PDF
    Due to the tremendous advancement in the semiconductor and microelectronics technologies, wireless technologies have blossomed in the recent decades. The large scale deployment of wireless networks have revolutionized the way people live. They bring a great deal of convenience and enjoyment to us. Undoubtedly, we have become more and more dependent on these wireless technologies. These include cellular and radio frequency identification (RFID) technologies. However, with great technologies also come great risks and threats. Unlike wired transmissions, the nature of wireless transmissions result in the transmitted signals over the channel can be easily intercepted and eavesdropped by malicious adversaries. Therefore, security and privacy of the employed wireless communication system are easily compromised compared to the wired communication system. Consequently, securing wireless network has attracted a lot of attention in the recent years and it has huge practical implications. Securing wireless networks can be and indeed are performed at all layers of a network protocol stack. These include application, network, data link and physical (PHY) layers. The primary focus of our research is on the PHY layer approaches for securing and attacking wireless networks. In this thesis, we identify three research topics and present our results. They are: 1) PHY layer phase encryption (P-Enc) vs XOR encryption (XOR-Enc); 2) PHY layer signaling scheme to ensure the confidentiality of the transmitted messages from the tag to the reader in RFID systems. 3) Active eavesdropping attack framework under frequency hopping spread spectrum (FHSS) RFID systems. In the first work, we introduce a new OFDM encryption scheme which we call OFDM-Enc, different from convectional XOR-Enc, OFDM-Enc encrypts data by multiplying each of in-phase and quadrature component of the time domain OFDM symbol by a keystream bit. We then perform an initial investigation on the security of OFDM-Enc. We show it is secure against all attacks that are considered in this work. Moreover, depending on the modulation type, OFDM would potentially reduce the keystream size required for encryption, while still achieving the required security level. We also conduct simulations to compare OFDM-Enc with conventional XOR-Enc. We show indeed OFDM-Enc is viable and can achieve good performances. Then we extend OFDM-Enc to general communication systems. Since the encryption is essentially done by changing the phase of the data constellations, we just adopt the term P-Enc. In addition, we form mathematical formulations in order to compare between P-Enc and XOR-Enc in terms of efficiency, security and hardware complexity. Furthermore, we show P-Enc at the PHY layer can prevent traffic analysis attack, which cannot be prevented with the upper layer encryptions. Finally, simulations are conducted again to compare the performance of P-Enc and XOR-Enc. In the second work, we are interested in protecting tag's data from leaking or being compromised to malicious adversaries. As discussed earlier, due to the nature of wireless channels, communications between the tag and the reader is susceptible to eavesdropping. The conventional method uses encryption for confidentiality protection of transmitted messages. However, this requires to pre-share keys between the reader and the tag. As a result, a key management and distribution system needs to be put in place. This introduces heavy system overhead. In this work, we first propose a new PHY layer RFID privacy protection method which requires no pre-shared keys and would achieve the same goal. We also perform theoretical analysis to first validate of our proposed scheme. Finally, we conduct experiments to further verify the feasibility our proposed scheme under the passive eavesdropping attack model. In the third work, we present a new attack on the FHSS RFID system called active eavesdropping attack. In most semi-passive and passive RFID systems, tag to reader communications are accomplished via backscattering modulation. This implies the tag is not required to identify the frequency of the legitimate reader's transmitted signal, it simply responds to a reader's query by setting its impedance in the circuitry to low and high to represent bit 1 and 0. The attacker exploits this design weakness of the tag and broadcasts his own continuous wave (CW) at a different frequency. Consequently, the eavesdropper receives two copies of responses: one from his own broadcasted CW and one from reader's CW. We perform theoretical analysis to show the optimal strategy for the attacker in terms of the decoding error probability. Finally, we conduct simulations and experiments to verify with our theoretical results

    Optimization and Applications of Modern Wireless Networks and Symmetry

    Get PDF
    Due to the future demands of wireless communications, this book focuses on channel coding, multi-access, network protocol, and the related techniques for IoT/5G. Channel coding is widely used to enhance reliability and spectral efficiency. In particular, low-density parity check (LDPC) codes and polar codes are optimized for next wireless standard. Moreover, advanced network protocol is developed to improve wireless throughput. This invokes a great deal of attention on modern communications

    The Logic of Random Pulses: Stochastic Computing.

    Full text link
    Recent developments in the field of electronics have produced nano-scale devices whose operation can only be described in probabilistic terms. In contrast with the conventional deterministic computing that has dominated the digital world for decades, we investigate a fundamentally different technique that is probabilistic by nature, namely, stochastic computing (SC). In SC, numbers are represented by bit-streams of 0's and 1's, in which the probability of seeing a 1 denotes the value of the number. The main benefit of SC is that complicated arithmetic computation can be performed by simple logic circuits. For example, a single (logic) AND gate performs multiplication. The dissertation begins with a comprehensive survey of SC and its applications. We highlight its main challenges, which include long computation time and low accuracy, as well as the lack of general design methods. We then address some of the more important challenges. We introduce a new SC design method, called STRAUSS, that generates efficient SC circuits for arbitrary target functions. We then address the problems arising from correlation among stochastic numbers (SNs). In particular, we show that, contrary to general belief, correlation can sometimes serve as a resource in SC design. We also show that unlike conventional circuits, SC circuits can tolerate high error rates and are hence useful in some new applications that involve nondeterministic behavior in the underlying circuitry. Finally, we show how SC's properties can be exploited in the design of an efficient vision chip that is suitable for retinal implants. In particular, we show that SC circuits can directly operate on signals with neural encoding, which eliminates the need for data conversion.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113561/1/alaghi_1.pd

    On feedback-based rateless codes for data collection in vehicular networks

    Full text link
    The ability to transfer data reliably and with low delay over an unreliable service is intrinsic to a number of emerging technologies, including digital video broadcasting, over-the-air software updates, public/private cloud storage, and, recently, wireless vehicular networks. In particular, modern vehicles incorporate tens of sensors to provide vital sensor information to electronic control units (ECUs). In the current architecture, vehicle sensors are connected to ECUs via physical wires, which increase the cost, weight and maintenance effort of the car, especially as the number of electronic components keeps increasing. To mitigate the issues with physical wires, wireless sensor networks (WSN) have been contemplated for replacing the current wires with wireless links, making modern cars cheaper, lighter, and more efficient. However, the ability to reliably communicate with the ECUs is complicated by the dynamic channel properties that the car experiences as it travels through areas with different radio interference patterns, such as urban versus highway driving, or even different road quality, which may physically perturb the wireless sensors. This thesis develops a suite of reliable and efficient communication schemes built upon feedback-based rateless codes, and with a target application of vehicular networks. In particular, we first investigate the feasibility of multi-hop networking for intra-car WSN, and illustrate the potential gains of using the Collection Tree Protocol (CTP), the current state of the art in multi-hop data aggregation. Our results demonstrate, for example, that the packet delivery rate of a node using a single-hop topology protocol can be below 80% in practical scenarios, whereas CTP improves reliability performance beyond 95% across all nodes while simultaneously reducing radio energy consumption. Next, in order to migrate from a wired intra-car network to a wireless system, we consider an intermediate step to deploy a hybrid communication structure, wherein wired and wireless networks coexist. Towards this goal, we design a hybrid link scheduling algorithm that guarantees reliability and robustness under harsh vehicular environments. We further enhance the hybrid link scheduler with the rateless codes such that information leakage to an eavesdropper is almost zero for finite block lengths. In addition to reliability, one key requirement for coded communication schemes is to achieve a fast decoding rate. This feature is vital in a wide spectrum of communication systems, including multimedia and streaming applications (possibly inside vehicles) with real-time playback requirements, and delay-sensitive services, where the receiver needs to recover some data symbols before the recovery of entire frame. To address this issue, we develop feedback-based rateless codes with dynamically-adjusted nonuniform symbol selection distributions. Our simulation results, backed by analysis, show that feedback information paired with a nonuniform distribution significantly improves the decoding rate compared with the state of the art algorithms. We further demonstrate that amount of feedback sent can be tuned to the specific transmission properties of a given feedback channel

    Contribution to quality of user experience provision over wireless networks

    Get PDF
    The widespread expansion of wireless networks has brought new attractive possibilities to end users. In addition to the mobility capabilities provided by unwired devices, it is worth remarking the easy configuration process that a user has to follow to gain connectivity through a wireless network. Furthermore, the increasing bandwidth provided by the IEEE 802.11 family has made possible accessing to high-demanding services such as multimedia communications. Multimedia traffic has unique characteristics that make it greatly vulnerable against network impairments, such as packet losses, delay, or jitter. Voice over IP (VoIP) communications, video-conference, video-streaming, etc., are examples of these high-demanding services that need to meet very strict requirements in order to be served with acceptable levels of quality. Accomplishing these tough requirements will become extremely important during the next years, taking into account that consumer video traffic will be the predominant traffic in the Internet during the next years. In wired systems, these requirements are achieved by using Quality of Service (QoS) techniques, such as Differentiated Services (DiffServ), traffic engineering, etc. However, employing these methodologies in wireless networks is not that simple as many other factors impact on the quality of the provided service, e.g., fading, interferences, etc. Focusing on the IEEE 802.11g standard, which is the most extended technology for Wireless Local Area Networks (WLANs), it defines two different architecture schemes. On one hand, the infrastructure mode consists of a central point, which manages the network, assuming network controlling tasks such as IP assignment, routing, accessing security, etc. The rest of the nodes composing the network act as hosts, i.e., they send and receive traffic through the central point. On the other hand, the IEEE 802.11 ad-hoc configuration mode is less extended than the infrastructure one. Under this scheme, there is not a central point in the network, but all the nodes composing the network assume both host and router roles, which permits the quick deployment of a network without a pre-existent infrastructure. This type of networks, so called Mobile Ad-hoc NETworks (MANETs), presents interesting characteristics for situations when the fast deployment of a communication system is needed, e.g., tactics networks, disaster events, or temporary networks. The benefits provided by MANETs are varied, including high mobility possibilities provided to the nodes, network coverage extension, or network reliability avoiding single points of failure. The dynamic nature of these networks makes the nodes to react to topology changes as fast as possible. Moreover, as aforementioned, the transmission of multimedia traffic entails real-time constraints, necessary to provide these services with acceptable levels of quality. For those reasons, efficient routing protocols are needed, capable of providing enough reliability to the network and with the minimum impact to the quality of the service flowing through the nodes. Regarding quality measurements, the current trend is estimating what the end user actually perceives when consuming the service. This paradigm is called Quality of user Experience (QoE) and differs from the traditional Quality of Service (QoS) approach in the human perspective given to quality estimations. In order to measure the subjective opinion that a user has about a given service, different approaches can be taken. The most accurate methodology is performing subjective tests in which a panel of human testers rates the quality of the service under evaluation. This approach returns a quality score, so-called Mean Opinion Score (MOS), for the considered service in a scale 1 - 5. This methodology presents several drawbacks such as its high expenses and the impossibility of performing tests at real time. For those reasons, several mathematical models have been presented in order to provide an estimation of the QoE (MOS) reached by different multimedia services In this thesis, the focus is on evaluating and understanding the multimedia-content transmission-process in wireless networks from a QoE perspective. To this end, firstly, the QoE paradigm is explored aiming at understanding how to evaluate the quality of a given multimedia service. Then, the influence of the impairments introduced by the wireless transmission channel on the multimedia communications is analyzed. Besides, the functioning of different WLAN schemes in order to test their suitability to support highly demanding traffic such as the multimedia transmission is evaluated. Finally, as the main contribution of this thesis, new mechanisms or strategies to improve the quality of multimedia services distributed over IEEE 802.11 networks are presented. Concretely, the distribution of multimedia services over ad-hoc networks is deeply studied. Thus, a novel opportunistic routing protocol, so-called JOKER (auto-adJustable Opportunistic acK/timEr-based Routing) is presented. This proposal permits better support to multimedia services while reducing the energy consumption in comparison with the standard ad-hoc routing protocols.Universidad Politécnica de CartagenaPrograma Oficial de Doctorado en Tecnologías de la Información y Comunicacione

    Towards Secure and Scalable Tag Search approaches for Current and Next Generation RFID Systems

    Get PDF
    The technology behind Radio Frequency Identification (RFID) has been around for a while, but dropping tag prices and standardization efforts are finally facilitating the expansion of RFID systems. The massive adoption of this technology is taking us closer to the well known ubiquitous computing scenarios. However, the widespread deployment of RFID technology also gives rise to significant user security issues. One possible solution to these challenges is the use of secure authentication protocols to protect RFID communications. A natural extension of RFID authentication is RFID tag searching, where a reader needs to search for a particular RFID tag out of a large collection of tags. As the number of tags of the system increases, the ability to search for the tags is invaluable when the reader requires data from a few tags rather than all the tags of the system. Authenticating each tag one at a time until the desired tag is found is a time consuming process. Surprisingly, RFID search has not been widely addressed in the literature despite the availability of search capabilities in typical RFID tags. In this thesis, we examine the challenges of extending security and scalability issues to RFID tag search and suggest several solutions. This thesis aims to design RFID tag search protocols that ensure security and scalability using lightweight cryptographic primitives. We identify the security and performance requirements for RFID systems. We also point out and explain the major attacks that are typically launched against an RFID system. This thesis makes four main contributions. First, we propose a serverless (without a central server) and untraceable search protocol that is secure against major attacks we identified earlier. The unique feature of this protocol is that it provides security protection and searching capacity same as an RFID system with a central server. In addition, this approach is no more vulnerable to a single point-of-failure. Second, we propose a scalable tag search protocol that provides most of the identified security and performance features. The highly scalable feature of this protocol allows it to be deployed in large scale RFID systems. Third, we propose a hexagonal cell based distributed architecture for efficient RFID tag searching in an emergency evacuation system. Finally, we introduce tag monitoring as a new dimension of tag searching and propose a Slotted Aloha based scalable tag monitoring protocol for next generation WISP (Wireless Identification and Sensing Platform) tags

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks
    corecore